484 research outputs found

    Reinventing a teleconferencing system

    Get PDF
    Thesis (S.M.)--Massachusetts Institute of Technology, Program in Media Arts & Sciences, 2001.Includes bibliographical references (p. 67-71).In looking forward to more natural we can anticipate that the teleconferencing system of the future will enable participants at distant locations to share the same virtual space. The visual object of each participant can be transmitted to the other sites and be rendered from an individual perspective. This thesis presents an effort, X-Conference, to reinvent a teleconferencing system toward the concept of "3-D Virtual Teleconferencing." Several aspects are explored. A multiple-camera calibration approach is implemented and is employed to effectively blend the real view and the virtual view. An individualized 3-D head object is built semi-automatically by mapping the real texture to the globally modified generic model. Head motion parameters are extracted from tracking artificial and/or facial features. Without using the articulation model, facial animation is partially achieved by using texture displacement. UDP/IP multicast and TCP/IP unicast are both utilized to implement the networking scheme.by Xin Wang.S.M

    Dynamic adaptation of streamed real-time E-learning videos over the internet

    Get PDF
    Even though the e-learning is becoming increasingly popular in the academic environment, the quality of synchronous e-learning video is still substandard and significant work needs to be done to improve it. The improvements have to be brought about taking into considerations both: the network requirements and the psycho- physical aspects of the human visual system. One of the problems of the synchronous e-learning video is that the head-and-shoulder video of the instructor is mostly transmitted. This video presentation can be made more interesting by transmitting shots from different angles and zooms. Unfortunately, the transmission of such multi-shot videos will increase packet delay, jitter and other artifacts caused by frequent changes of the scenes. To some extent these problems may be reduced by controlled reduction of the quality of video so as to minimise uncontrolled corruption of the stream. Hence, there is a need for controlled streaming of a multi-shot e-learning video in response to the changing availability of the bandwidth, while utilising the available bandwidth to the maximum. The quality of transmitted video can be improved by removing the redundant background data and utilising the available bandwidth for sending high-resolution foreground information. While a number of schemes exist to identify and remove the background from the foreground, very few studies exist on the identification and separation of the two based on the understanding of the human visual system. Research has been carried out to define foreground and background in the context of e-learning video on the basis of human psychology. The results have been utilised to propose methods for improving the transmission of e-learning videos. In order to transmit the video sequence efficiently this research proposes the use of Feed- Forward Controllers that dynamically characterise the ongoing scene and adjust the streaming of video based on the availability of the bandwidth. In order to satisfy a number of receivers connected by varied bandwidth links in a heterogeneous environment, the use of Multi-Layer Feed-Forward Controller has been researched. This controller dynamically characterises the complexity (number of Macroblocks per frame) of the ongoing video sequence and combines it with the knowledge of availability of the bandwidth to various receivers to divide the video sequence into layers in an optimal way before transmitting it into network. The Single-layer Feed-Forward Controller inputs the complexity (Spatial Information and Temporal Information) of the on-going video sequence along with the availability of bandwidth to a receiver and adjusts the resolution and frame rate of individual scenes to transmit the sequence optimised to give the most acceptable perceptual quality within the bandwidth constraints. The performance of the Feed-Forward Controllers have been evaluated under simulated conditions and have been found to effectively regulate the streaming of real-time e-learning videos in order to provide perceptually improved video quality within the constraints of the available bandwidth

    Local Coordination for Interpersonal Communication Systems

    Get PDF
    The decomposition of complex applications into modular units is anacknowledged design principle for creating robust systems and forenabling the flexible re-use of modules in new applicationcontexts. Typically, component frameworks provide mechanisms and rulesfor developing software modules in the scope of a certain programmingparadigm or programming language and a certain computing platform. Forexample, the JavaBeans framework is a component framework for thedevelopment of component-based systems -- in the Java environment.In this thesis, we present a light-weight, platform-independentapproach that views a component-based application as a set of ratherloosely coupled parallel processes that can be distributed on multiplehosts and are coordinated through a protocol. The core of ourframework is the Message Bus (Mbus): an asynchronous, message-orientedcoordination protocol that is based on Internet technologies andprovides group communication between application components.Based on this framework, we have developed a local coordinationarchitecture for decomposed multimedia conferencing applications thatis designed for endpoint and gateway applications. One element of thisarchitecture is an Mbus-based protocol for the coordination of callcontrol components in conferencing applications

    End-to-end security in active networks

    Get PDF
    Active network solutions have been proposed to many of the problems caused by the increasing heterogeneity of the Internet. These ystems allow nodes within the network to process data passing through in several ways. Allowing code from various sources to run on routers introduces numerous security concerns that have been addressed by research into safe languages, restricted execution environments, and other related areas. But little attention has been paid to an even more critical question: the effect on end-to-end security of active flow manipulation. This thesis first examines the threat model implicit in active networks. It develops a framework of security protocols in use at various layers of the networking stack, and their utility to multimedia transport and flow processing, and asks if it is reasonable to give active routers access to the plaintext of these flows. After considering the various security problem introduced, such as vulnerability to attacks on intermediaries or coercion, it concludes not. We then ask if active network systems can be built that maintain end-to-end security without seriously degrading the functionality they provide. We describe the design and analysis of three such protocols: a distributed packet filtering system that can be used to adjust multimedia bandwidth requirements and defend against denial-of-service attacks; an efficient composition of link and transport-layer reliability mechanisms that increases the performance of TCP over lossy wireless links; and a distributed watermarking servicethat can efficiently deliver media flows marked with the identity of their recipients. In all three cases, similar functionality is provided to designs that do not maintain end-to-end security. Finally, we reconsider traditional end-to-end arguments in both networking and security, and show that they have continuing importance for Internet design. Our watermarking work adds the concept of splitting trust throughout a network to that model; we suggest further applications of this idea

    Applications of satellite technology to broadband ISDN networks

    Get PDF
    Two satellite architectures for delivering broadband integrated services digital network (B-ISDN) service are evaluated. The first is assumed integral to an existing terrestrial network, and provides complementary services such as interconnects to remote nodes as well as high-rate multicast and broadcast service. The interconnects are at a 155 Mbs rate and are shown as being met with a nonregenerative multibeam satellite having 10-1.5 degree spots. The second satellite architecture focuses on providing private B-ISDN networks as well as acting as a gateway to the public network. This is conceived as being provided by a regenerative multibeam satellite with on-board ATM (asynchronous transfer mode) processing payload. With up to 800 Mbs offered, higher satellite EIRP is required. This is accomplished with 12-0.4 degree hopping beams, covering a total of 110 dwell positions. It is estimated the space segment capital cost for architecture one would be about 190Mwhereasthesecondarchitecturewouldbeabout190M whereas the second architecture would be about 250M. The net user cost is given for a variety of scenarios, but the cost for 155 Mbs services is shown to be about $15-22/minute for 25 percent system utilization

    Towards all-optical label switching nodes with multicast

    Get PDF
    Fiber optics has developed so rapidly during the last decades that it has be- come the backbone of our communication systems. Evolved from initially static single-channel point-to-point links, the current advanced optical backbone net- work consists mostly of wavelength-division multiplexed (WDM) networks with optical add/drop multiplexing nodes and optical cross-connects that can switch data in the optical domain. However, the commercially implemented optical net- work nodes are still performing optical circuit switching using wavelength routing. The dedicated use of wavelength and infrequent recon¯guration result in relatively poor bandwidth utilization. The success of electronic packet switching has inspired researchers to improve the °exibility, e±ciency, granularity and network utiliza- tion of optical networks by introducing optical packet switching using short, local optical labels for forwarding decision making at intermediate optical core network nodes, a technique that is referred to as optical label switching (OLS). Various research demonstrations on OLS systems have been reported with transparent optical packet payload forwarding based on electronic packet label processing, taking advantage of the mature technologies of electronic logical cir- cuitry. This approach requires optic-electronic-optic (OEO) conversion of the op- tical labels, a costly and power consuming procedure particularly for high-speed labels. As optical packet payload bit rate increases from gigabit per second (Gb/s) to terabit per second (Tb/s) or higher, the increased speed of the optical labels will eventually face the electronic bottleneck, so that the OEO conversion and the electronic label processing will be no longer e±cient. OLS with label processing in the optical domain, namely, all-optical label switching (AOLS), will become necessary. Di®erent AOLS techniques have been proposed in the last ¯ve years. In this thesis, AOLS node architectures based on optical time-serial label processing are presented for WDM optical packets. The unicast node architecture, where each optical packet is to be sent to only one output port of the node, has been in- vestigated and partially demonstrated in the EU IST-LASAGNE project. This thesis contributes to the multicast aspects of the AOLS nodes, where the optical packets can be forwarded to multiple or all output ports of a node. Multicast capable AOLS nodes are becoming increasingly interesting due to the exponen- tial growth of the emerging multicast Internet and modern data services such as video streaming, high de¯nition TV, multi-party online games, and enterprise ap- plications such as video conferencing and optical storage area networks. Current electronic routers implement multicast in the Internet protocol (IP) layer, which requires not only the OEO conversion of the optical packets, but also exhaus- tive routing table lookup of the globally unique IP addresses. Despite that, there has been no extensive studies on AOLS multicast nodes, technologies and tra±c performance, apart from a few proof-of-principle experimental demonstrations. In this thesis, three aspects of the multicast capable AOLS nodes are addressed: 1. Logical design of the AOLS multicast node architectures, as well as func- tional subsystems and interconnections, based on state-of-the-art literature research of the ¯eld and the subject. 2. Computer simulations of the tra±c performance of di®erent AOLS unicast and multicast node architectures, using a custom-developed AOLS simulator AOLSim. 3. Experimental demonstrations in laboratory and computer simulations using the commercially available simulator VPItransmissionMakerTM, to evaluate the physical layer performance of the required all-optical multicast technolo- gies. A few selected multi-wavelength conversion (MWC) techniques are particularly looked into. MWC is an essential subsystem of the AOLS node for realizing optical packet multicast by making multiple copies of the optical packet all-optically onto di®er- ent wavelengths channels. In this thesis, theMWC techniques based on cross-phase modulation and four-wave mixing are extensively investigated. The former tech- nique o®ers more wavelength °exibility and good conversion e±ciency, but it is only applicable to intensity modulated signals. The latter technique, on the other hand, o®ers strict transparency in data rate and modulation format, but its work- ing wavelengths are limited by the device or component used, and the conversion e±ciency is considerably lower. The proposals and results presented in this thesis show feasibility of all-optical packet switching and multicasting at line speed without any OEO conversion and electronic processing. The scalability and the costly optical components of the AOLS nodes have been so far two of the major obstacles for commercialization of the AOLS concept. This thesis also introduced a novel, scalable optical labeling concept and a label processing scheme for the AOLS multicast nodes. The pro- posed scheme makes use of the spatial positions of each label bit instead of the total absolute value of all the label bits. Thus for an n-bit label, the complexity of the label processor is determined by n instead of 2n

    Assessing the quality of audio and video components in desktop multimedia conferencing

    Get PDF
    This thesis seeks to address the HCI (Human-Computer Interaction) research problem of how to establish the level of audio and video quality that end users require to successfully perform tasks via networked desktop videoconferencing. There are currently no established HCI methods of assessing the perceived quality of audio and video delivered in desktop videoconferencing. The transport of real-time speech and video information across new digital networks causes novel and different degradations, problems and issues to those common in the traditional telecommunications areas (telephone and television). Traditional assessment methods involve the use of very short test samples, are traditionally conducted outside a task-based environment, and focus on whether a degradation is noticed or not. But these methods cannot help establish what audio-visual quality is required by users to perform tasks successfully with the minimum of user cost, in interactive conferencing environments. This thesis addresses this research gap by investigating and developing a battery of assessment methods for networked videoconferencing, suitable for use in both field trials and laboratory-based studies. The development and use of these new methods helps identify the most critical variables (and levels of these variables) that affect perceived quality, and means by which network designers and HCI practitioners can address these problems are suggested. The output of the thesis therefore contributes both methodological (i.e. new rating scales and data-gathering methods) and substantive (i.e. explicit knowledge about quality requirements for certain tasks) knowledge to the HCI and networking research communities on the subjective quality requirements of real-time interaction in networked videoconferencing environments. Exploratory research is carried out through an interleaved series of field trials and controlled studies, advancing substantive and methodological knowledge in an incremental fashion. Initial studies use the ITU-recommended assessment methods, but these are found to be unsuitable for assessing networked speech and video quality for a number of reasons. Therefore later studies investigate and establish a novel polar rating scale, which can be used both as a static rating scale and as a dynamic continuous slider. These and further developments of the methods in future lab- based and real conferencing environments will enable subjective quality requirements and guidelines for different videoconferencing tasks to be established

    The Road Ahead for Networking: A Survey on ICN-IP Coexistence Solutions

    Full text link
    In recent years, the current Internet has experienced an unexpected paradigm shift in the usage model, which has pushed researchers towards the design of the Information-Centric Networking (ICN) paradigm as a possible replacement of the existing architecture. Even though both Academia and Industry have investigated the feasibility and effectiveness of ICN, achieving the complete replacement of the Internet Protocol (IP) is a challenging task. Some research groups have already addressed the coexistence by designing their own architectures, but none of those is the final solution to move towards the future Internet considering the unaltered state of the networking. To design such architecture, the research community needs now a comprehensive overview of the existing solutions that have so far addressed the coexistence. The purpose of this paper is to reach this goal by providing the first comprehensive survey and classification of the coexistence architectures according to their features (i.e., deployment approach, deployment scenarios, addressed coexistence requirements and architecture or technology used) and evaluation parameters (i.e., challenges emerging during the deployment and the runtime behaviour of an architecture). We believe that this paper will finally fill the gap required for moving towards the design of the final coexistence architecture.Comment: 23 pages, 16 figures, 3 table

    Performance-Engineered Network Overlays for High Quality Interaction in Virtual Worlds

    Get PDF
    Overlay hosting systems such as PlanetLab, and cloud computing environments such as Amazon’s EC2, provide shared infrastructures within which new applications can be developed and deployed on a global scale. This paper ex-plores how systems of this sort can be used to enable ad-vanced network services and sophisticated applications that use those services to enhance performance and provide a high quality user experience. Specifically, we investigate how advanced overlay hosting environments can be used to provide network services that enable scalable virtual world applications and other large-scale distributed applications requiring consistent, real-time performance. We propose a novel network architecture called Forest built around per-session tree-structured communication channels that we call comtrees. Comtrees are provisioned and support both unicast and multicast packet delivery. The multicast mechanism is designed to be highly scalable and light-weight enough to support the rapid changes to multicast subscriptions needed for efficient support of state updates within virtual worlds. We evaluate performance using a combination of analysis and experimental measurement of a partial system prototype that supports fully functional distributed game sessions. Our results provide the data needed to enable accurate projections of performance for a variety of session and system configurations

    Media streams allocation and load patterns for a WebRTC cloud architecture

    Get PDF
    Web Real-Time Communication (WebRTC) is seeing a rapid rise in adoption footprint. This standard provides an audio/video platform-agnostic communications framework for the Web build-in right in the browser. The complex technology stack of a full implementation of the standard is vast and includes elements of various computational disciplines like: content delivery, audio/video processing, media transport and quality of experience control, for both P2P and Cloud relayed communications. To the best of our knowledge, no previous study examines the impact of Cloud back-end load and media quality at production scale for a media stream processing application, as well as load mitigation for Cloud media Selective Forwarding Units. The contribution of this work is the analysis and exploitation of server workload (predictable session size, strong periodical load patterns) and media bit rate patterns that are derived from real user traffic (toward our test environment), over an extended period of time. Additionally, a simple and effective load balancing scheme is discussed to fairly distribute big sessions over multiple servers by exploiting the discovered patterns of stable session sizes and server load predictability. A Cloud simulation environment was built to compare the performance of the algorithm with other load allocation policies. This work is a basis for more advanced resource allocation algorithms and media Service Level Objectives (SLO) spanning multiple Cloud entities.Peer ReviewedPostprint (author's final draft
    corecore