Provided by UPCommons. Portal del coneixement obert de la UPC

Metadata, citation and similar papers at core.ac.uk

Media Streams Allocation and LLoad Patterns for a
WebRTC Cloud Architecture

Vamis Xhagjika*Ti, Oscar Divorra Escoda*, Leandro Navarro! and Vladimir Vlassov}
*Tokbox Inc. - a Telefonica company, Barcelona, Spain
TUniversitat Politécnica de Catalunya, Barcelona, Spain
iRoyal Institute of Technology, Stockholm, Sweden
Email: {xhagjika, leandro} @ac.upc.edu, {vamis, oscar} @tokbox.com, vladv@kth.se

Abstract—Web Real-Time Communication Web Real-Time
Communication (WebRTC) is seeing a rapid rise in adoption foot-
print. This standard provides an audio/video platform-agnostic
communications framework for the Web build-in right in the
browser. The complex technology stack of a full implementation
of the standard is vast and includes elements of various compu-
tational disciplines like: content delivery, audio/video processing,
media transport and quality of experience control, for both P2P
and Cloud relayed communications. To the best of our knowledge,
no previous study examines the impact of Cloud back-end load
and media quality at production scale for a media stream process-
ing application, as well as load mitigation for Cloud media Selec-
tive Forwarding Units. The contribution of this work is the anal-
ysis and exploitation of server workload (predictable session size,
strong periodical load patterns) and media bit rate patterns that
are derived from real user traffic (toward our test environment),
over an extended period of time. Additionally, a simple and effec-
tive load balancing scheme is discussed to fairly distribute big ses-
sions over multiple servers by exploiting the discovered patterns
of stable session sizes and server load predictability. A Cloud sim-
ulation environment was built to compare the performance of the
algorithm with other load allocation policies. This work is a basis
for more advanced resource allocation algorithms and media
Service Level Objectives (SLO) spanning multiple Cloud entities.

Keywords-load measurements, webrtc, rtp/rtcp, media, bit rate,
stream allocation, simulcast, load balancing, simulcast

I. INTRODUCTION

WebRTC[1], [2] is the HTMLS5 extension for real-time com-
munications, enabling live media communications between
two or more parties using standardised web technologies.
WebRTC/RTCWEB is currently specified through three main
aspects:

o WebRTC W3C standard API specification for use in web
browsers [1].

« RTCWEB IETF standard recommendation for the set of
protocols necessary for media communications for every
connection [2].

o Webrtc reference software media stack (open source
component of Chrome browser), implementing previous
specifications [3].

WebRTC/RTCWEB are a set of standard recommendations
conceived for delay non-tolerant applications where interactive
real-time communication is necessary. One application of
WebRTC/RTCWEB is multiparty audio/video conferences. A
conference is a session where each participant, publishes his

audio/video sources while simultaneously receiving audio and
video streams from other participants. The API nature of
WebRTC in web browsers makes it possible to easily go
beyond basic conferencing use cases and allow applications
to blend with media communications in ways that had not
been possible before.

WebRTC clients are general purpose Web Browsers or
devices that implement WebRTC/RTCWEB compatible stan-
dards. Common nomenclature for both is WebRTC End-
point' (hence, both referred as such in the remainder of this
work). To coordinate among them and/or with the cloud,
WebRTC/RTCWEB endpoits require a messaging infrastruc-
ture as well. WebRTC/RTCWEB, though, specifically leaves
messaging out of its definition, allowing freedom of choice,
and focuses on the range of communication protocols and
technology stacks that take care of real time communi-
cations for media (audio and video) and data signaling.
WebRTC/RTCWEB stack intended for both: P2P and cloud-
relayed communications. This work focuses on real-time me-
dia transmission leveraging WebRTC/RTCWEB and cloud-
relayed architectures. An analysis of quality of such media
architecture operation is of utmost importance for user expe-
rience and the overall performance of the system.

The protocol in charge to deliver media is the Real-Time
Transport Protocol (RTP) and uses Real-Time Transport Con-
trol Protocol (RTCP) for quality control. RTP/RTCP[4] is a
general purpose transport protocol that provides support for
multi-homing. It is standardized to run over both lower level
UDP and TCP protocols (although UDP is usually the rule
for timeliness performance). RTP/RTCP, among other, adds
support for media source identification, media mixers, media
track synchronization facilities, quality of service feedback or
media bundling and multiplexing. RTP is agnostic to specific
codecs and can function as a transport for both video and audio
stream formats. For example, in the framework of WebRTC
we can encounter VP8, H.264 and VP9 video codecs, while
for audio OPUS, ISAC, G.722 or G.711 are common as well.

Live Audio/Video Conferencing in WebRTC/RTCWEB is
implemented to use RTP to deliver media to endpoints and
servers. In middlebox/server based topologies[5], each end-
point publishes one or more RTP streams for each media

IStandardized in: https:/tools.ietf.org/html/draft-ietf-rtcweb-overview-12

© 2017 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other
uses, in any current or future media, including reprinting/republishing this material for advertising or

promotional purposes,creating new collective works, for resale or redistribution to servers or lists, or reuse of any

copyrighted component of this work in other works. DOI 10.1109/NOF.2017.8251214

https://core.ac.uk/display/185528529?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

stream, and subscribes to each of the RTP streams of the other
participants in the session. Other typical mechanisms are also
implemented as well by means of a backend, like STUN and
TURN for Nat-Trasversal.

WebRTC/RTCWEB is supported natively by major web
browsers (e.g. Chrome, Firefox and Edge) and provides a free
real-time communication medium. A pure P2P implementation
of the standard has many limitations. Some of these limitations
are: i) The upload bandwidth (and CPU usage) a client
needs when sending the stream grows proportionally with
the number of clients receiving such stream. ii) users behind
firewalls or NATs may be subject to severe network restrictions
and as such P2P direct communication may be not possible.
iii) the rate of connectivity failure grows with the number
of clients joining the session. iv) Additional operations like
archiving (saving to a permanent storage) a session may be a
challenge. These and other issues constitute a big problem for
applications that need reliability, quality and cost effectiveness
in common fixed or mobile networks with higher download
and far lower upload bandwidths. Common middlebox/server

Fig. 1.

System Overview

topologies include using Multipoint Control Units (MCU) or
Selective Forwarding Unit (SFU). MCUs typically implement
both software assisted multicast as well as media translation
as needed, while SFUs selectively forward to each participant
media (and control) packets in more or less sophisticate ways
without transcoding operations. One of the most evolved forms
of selective forwarding is the capacity to adapt media quality
individually for every endpoint without conducting media
translation when scalable/simulcast media encodings are used
[6], [7]. In such a case, a sending endpoint (publisher) produce
media streams composed of multiple qualities that can then
be intelligently selected and forwarded by SFUs for each
receiving endpoint (subscriber). Fig.1 shows the high level
design of such an architecture.

In this work we will focus on examining media parameters
and load profiles in the scenario where media operations use
a Selective Forwarding Unit (SFU) as media relay (Fig. 1).

Network Quality of Service (QoS) is of utmost importance
for these communication architectures. Also, one of the most
important properties directly related to video quality is video
bit-rate. For resilient real-time communications, bit-rate needs
to adapt at every moment to the available resources in clients
and network, and avoid dropping the communication. End-to-

end rate-control in combination with RTP/RTCP takes care
of it. In this work, we will focus on studying the impact of
machine load in terms of streams/server towards rate-control
and bit-rate received at the clients, as well as on the impact
of rate-control with single layer encoded video if compared to
simulcast[7].

In order to satisfy resource needs, enough SFU units need
to be provisioned for all sessions in a communications cloud
platform. This work assumes the definition of server load to
be the number of streams managed by each SFU, and since
the servers are cloud machines within defined categories we
can benchmark maximum allowed streams per server for each
category. This metric appears to be more reliable than other
resource metrics and can be easily sampled for each server.
The allocation of streams directly impacts load factors as well
as it can translate into media quality (such as bit-rate).

The first contribution of this work, is the study at ’produc-
tion scale” of stream load patterns (per SFU), and other system
parameters (topology). With these, one can devise automatic
algorithms to predict resource needs and enforce Service Level
Objective (SLO) limits. As a second contribution, we provide
a sever selection policy that fairly distributes sessions among
SFUs, minimizing the chance for server overload and thus not
lowering media quality. The third contribution is a comparative
study of media bit-rates(quality) for different session sizes and
the use of simulcast (senders producing multiple qualities) or
single stream adaptive approach where senders adapt bit-rate to
the worst bandwidth available to a receiver (all using Google’s
Congestion Control [8][9]). The last contribution of this work
is the implementation of a simulation framework to simulate
session allocation algorithms for WebRTC streams.

Our study differs from previous work in the field, by
examining the behaviour of a Cloud SFU at production scale
with real user traffic. We tackle the problem of how hundreds
of thousands streams impact the overall quality of a generic
media stream processing application over time, with hundreds
of streams concurrently being handled by the same SFU.

The remainder of this paper is organized as follows: in
Sec. II we provide a study and characterization of server
stream loads for different servers over an extended time
interval. Based on such workload analysis we provide in
Sec. III a session based minimum load allocation algorithm for
WebRTC/RTCWEB SFUs. We continue in Sec. IV by making
a comparison of video quality for both simulcast and single
stream rate-control over an increasing size of subscribers per
publisher and how that can be impacted by session topology
or size. Then following, in Sec. V, we present a comparison
of load balancing algorithms for stream allocation (using min-
imal user information). The comparison is conducted through
experiments ran on a cloud simulation environment based
on CloudSim [10][11] and using real session traces from
our testing environment. At last, we conclude in Sec. VI
with final remarks on this work, as well as a description of
the future work toward multi-cloud resource allocation for
WebRTC/RTCWEB backends.

II. LOAD CHARACTERIZATION

Load characterization is an impacting factor in devising
resource allocation strategies for a distributed service. The
scenario we are investigating is composed of a distributed
software media multicast, real-time, delay non-tolerant in a
subscribers/publishers cloud delivery system. The SFU is the
multicast backend while the subscribers and publishers are the
consumer and producer clients. Table. I shows the distribution
of the load measurements taken on our test cloud as number of
streams per server over 2msn intervals. Publisher Streams have
a mean of 37.31 streams/server while having a 25% — 75%
percentile range of 32 — 51 streams/server. The number of
Subscriber streams, on the other hand, are centered at 85.52
streams/server and have a 25% — 75% percentile range of
24—125. The number of streams/server without discriminating
subscribers and publishers is centered around 122.83 and has
a 25% — 75% percentile range range of 44 — 177.

Distribution by Test Machine

TABLE I
DATA DISTRIBUTION LOAD TEST CLOUD 2MIN INTERVAL
Property | Publisher Streams | Subscriber Streams | Streams
Count 190279 190279 190279
Mean 37.31 85.52 122.83
25% 32 24 44
75% 51 125 177
Max 159 868 980

A very interesting trait of such distribution is that the
maximum number of streams reached per machine is 5x-10x
times higher than the respective means. This aspect is very
important as once the first stream is allocated to a server,
the following streams associated to the same session need
to be allocated on the same server. This study is built with
the assumption that a session does not span multiple servers
in order to gain simplicity, while different sessions can be
allocated in different server or clouds. In turn, big sessions
are not allowed to be migrated to different servers, which
makes resource scheduling a critical task for a cloud back-
end. If multiple big sessions would be allocated on the same
machine, that could cause such sessions to hit the machine
stream capacity limit. Once such limit is reached, it would
cause problems for streams joining the session as the SFU
would not be able to handle the load.

We visualize in Fig. 2 the average count of streams/server as
measured for one week worth of data (a subset of the dataset
used for this resource allocation part). Visualization of the
entire dataset would be tedious for longer periods. The load
presented in Fig. 2 is sampled in 2min intervals as measured
from server logs over our test data center. In general we make
the observation from the data that the there is a strong periodic
load pattern. Further exploring such pattern, we examine the
load distribution in the form of a lag plot (Fig. 3) where each
lag unit represents a duration of 2min.

The lag plot exposes a strongly auto-correlated sequence.
Clustering of values around the diagonal represents a strong
positive auto-correlation. Data Center centric load as such

1000 - test-001 test-004 test-006 test-008
test-002 test-005 test-007 test-009
800 - test-003

600 -

Streams

400 -

200 -

o 02 03 04 05 06

Time in Days

Fig. 2. Data Center/Server Load Distribution 7days period
5000 - | | | | | 3
— Regression
«*« Lag Values
4000 - -
= 3000 - -
-
B 2000 - -
1000 - -
—1000 0 1000 2000 3000 4000 5000
y(t)
Fig. 3. Data Center total load lag plot 1month period

can be well approximated by an auto-regressive (or running-
averages) model. The linear regression equation covering the
lag observations is written in Eq. 1 with parameters slope =
0.9974 and intercept = 2.8282. Even though we are able to
predict the total load going to a defined data center, a resource
allocation algorithm can still get into problems under the
restrictions that once the first stream of a session is assigned
to one server all other streams of that session will be assigned
to the same server. As such, extra care needs to be taken in
allocating sessions to servers, so that the load is spread fairly.
The predictability of patterns in server loads for the cloud
SFUs that was observed in this section can be exploited to
provide better session allocation algorithms. This is exactly
the purpose of Alg. 1 which tries to balance the load on the
SFUs by allocating new sessions to underutilized servers.

Vi1 = 0.9974 « Y;_1 + 2.8282 (1)

III. LOAD BALANCING ALGORITHM

In this section we present a stream allocation algorithm
that distributes as much as possible peak sessions without
previous knowledge of session sizes. In a Platform as a Ser-
vice deployment architecture, knowledge of individual users
connecting to the platform is restricted and user anonymity
must be guaranteed. Such restrictions in information handling

introduce limitations in the stream allocation algorithms. In
practice each stream gets a unique identification string chosen
at random on creation, and as such no historical data can be
aggregated for a defined end user of the platform. Predicting
session size may be difficult given that minimal individual user
information is available. The allocation policy for each stream
should try to offload peaks to different servers as much as
possible with only server load-centric historical information.

Algorithm 1 Min Load Server Allocation Policy
1: procedure SERVER_SELECTION(S ,oqqs, Tadius, mazx)
Il SLoadsli], array of structures [(srv_id,load)...]
/! radius, Minimal set selection radius
/l max, Maximal allowed streams per server

2: SLoads < sort_ascending(SLoads)

3 SMinSet — []

4: srv_selected < Nil

5: for (srv_id, load) in Spoqqs do

6: if load < mar &&

7: ((load — Spoads[0]-load) < radius) then
8: SMinSet-add(SLoads [Z])

9: else

10: break;

11: end if

12: end for

13: if len(SMmSet) == (0 then

14 srv_selected «+— allocate_new_server()
15: else

16: index < rand_int(0, len(Sprinset) — 1)
17: sru_selected < Sprinset|index].srv_id
18: end if

19: return srv_selected

20: end procedure

The server selection policy, part of the Minimal Load
selection algorithms, presented in Alg. 1 allocates incoming
streams to the machines with current minimal load in a
determined time window. Load statistics normally lay within
a time window that can be deduced from the data in order to
take into account subsequent big sessions arrival time. Lines
2 — 4 initialize the state of the selection algorithm, then in
the following lines (5 — 12) a subset of the currently allocated
servers with minimal load are selected. The minimal set entries
do not differ more than radius stream utilization from the
absolute minimal server load in the system. To conclude, lines
13— 17 select either one of the target subset servers at random
with min load cardinality, or allocates a new server to expand
the system. We will observe in Sec. V that the family of
Minimal Server load algorithms performs better in terms of
maximal server load during operations, through a series of
simulation based on real usage trace data from our test data
center.

Fig. 4 shows the distribution of the peak sessions for the
servers of the test data center over a period of 2 days, we can

1000 - — test-001 —-— test-004 test-006 —— test-008
--- test-002 test-005 test-007 —— test-009
800 - test-003
E 600 l
(1]
g
B,

0- | '
00:00 06:00 12:00 18:00 00:00 06:00 12:00 18:00
01-Jul 02-Jul
2016

Timeline

Fig. 4. Max Servers Loads for 2min Intervals

observe that by applying the min load policy, we manage to
distribute the big sessions over the different servers and thus
protect the system from allocating consecutive big sessions on
the same machines. This property is seen as a result of big
sessions being rare and their inter-arrival time being sporadic.

The algorithm presented is a simple but efficient way to
handle and distribute the load between servers in a fair way.
Alas other parameters need to be taken into account before
this algorithm is production ready. The decision to either start
new servers when existing resources are not available could
be changed to a mixed solution between admission control
and resource allocation to keep resource cost at bay. Another
limiting aspect of the algorithm is that if the rate of incoming
subsequent big sessions is lower that the rate at which users
join the session, multiple big sessions would end up on the
same server. Those sessions on the same server would exhaust
the resources available on the server and provide quality issues.
The randomization part of Alg.1 (lines 16 — 17) tries to tackle
exactly this problem by allocating streams on different servers
randomly within the subset of servers with minimal load.
In practice, one can assume that the rate of incoming big
sessions is far lower than the rate at which users join existing
sessions. Under these assumptions, the algorithm even though
simple, performs quite well. Later in this work (Sec. V) we
will further examine other allocation algorithms and compare
their performance with Alg.1 through a simulated environment
based on real session traces.

IV. NON/SIMULCAST IMPACT ON QUALITY

In case of non-simulcast video streams, given that only a
single layer encoded stream is available, the publisher shall
adapt bit rate to match an estimate of the worst subscriber
bandwidth or some lower limit called Minimal Bit rate. On
the other hand, simulcast publishers send all the available
video qualities directly without limiting or adapting bit rates
(as long as upload bandwidth allows). In the case of simulcast,
the SFU chooses for every subscriber which quality it shall
receive, matching at best, the available bandwidth. From such
definitions, we can see that as more clients are subscribing
to the same stream simulcast provides more flexibility, and
permits to keep average bit rate more stable, avoiding the

worst subscriber effect of pure packet relaying topologies, as
bad subscribers typically are few.

The results of this section are derived from client side
measurement using our test SFU-based cloud over a period of
14Days. We sample data for different distributed test machines
in order to avoid bias on data due to geolocation. Bit rate
estimations should not be affected by physical allocation of
cloud resources as they are sampled on all connections at the
same time. We focus here on VGA quality for simplicity.

600Kbps - —e—]S-Client-SFU-nosim —<—]S-Client-SFU-sim
500Kbps -
3z
© 400Kbps -
=
o 300Kbps -
[
S
> 200Kbps -
100Kbps -
OKbps - ! ! ! . ! .
0 10 20 30 40 50 60
Subscribers / Publisher
Fig. 5. Average Bit rate for #Subscribers/Publisher

Inspecting the impact of topology on the average bit rate,
we see that with an increase of #subscribers/publisher non-
simulcast adapts the bit rate to match either the minimum bit
rate limit of the system or to the lowest performing subscriber;
thus, all subscribers being penalized. This behaviour is not op-
timal for sessions with a high number of subscribers. In Fig. 5,
we observe that in general bit rates for simulcast (on the same
platform) are equal or better than non-simulcast. They are, at
most, comparable just for low number of subscribers/streams
(at around 2 subscribers). As commented, the more the number
of subscribers, the more the bit rate profile falls for non-
simulcast, giving rise to the the patterns shown in Section. IV.
With the increase of load we have higher number of sessions
per machine and as the number of #subscribers/#publishers
increases on those sessions the average bit rate falls further
to accommodate the lower performing subscribers up to a
minimum bit rate threshold. As such it is not only the load
in itself that leads to a lower bit rate but the topology of
the sessions as the presence of sessions with more than 3
#subscribers/#publisher already start impacting bit rate in a
non-simulcast session.

100% -

—8— JS-Client-SFU-nosim —*— JS-Client-SFU-sim

80% -
60% -

40% -

Percent Improvement
AVG vs. MIN Bitrate

20% -
0% - ' J ']))
0 10 20 30 40 50 60

Subscribers / Publisher

Fig. 6. Percent improvement AVG over MIN bit rate for #Subs/Pub

A good factor to further examine the impact of simulcast
and non-simulcast publishers on the quality of the streams,
is the relative difference of average set of bit rates to the
minimum bit rate perceived by the worst of the subscribers
from the same publisher. This parameter would present the
relative perceptual improvement of the average bit rate over
the minimum. In general simulcast outperforms non-simulcast
by 2 times and also provide more stable bit rates as the number
of subscribers increases. This behaviour is captured in Fig. 6,
where we have the percent improvement over the number of
#subscriber/publisher.

Simulcast performance can be tempting as a way to increase
stability and scalability, but for low number of subscribers, like
the case of One-to-One sessions, encoding and transmitting all
video qualities may be a waste of client and network resources.
In the case of mobile devices, simulcast may be beyond the
possibilities of some hardware models, as it can easily take a
30% more CPU resources than the non-simulcast scenario for
the same nominal resolution. This is only a small limitation at
the moment of writing, as with the projected growth of mobile
device CPUs, and with the inclusion of video encoder/decoder
in the hardware architecture it will lead to more efficient
encoding/decoding.

On a One-to-One user session the non-simulcast would not
only need lower CPU usage but also would use the available
bandwidth between the two users more efficiently as only
one resolution layer is sent from the publisher. In WebRTC
/ RTCWEB, by means of Session Description Protocol (SDP)
renegotiation, it is specified that it should be possible for
endpoints to switch between simulcast and non-simulcast.
However, some platforms may not support switching video
transmission mode, thus knowing when to enable or disable
simulcast becomes a very important decision or trade-off point.
This further motivates our study of bit rate patterns and the
results provided in this section can be used exactly to tackle
this problem and drive trade-off decisions.

V. LOAD BALANCING EVALUATION AND
EXPERIMENTATION

As a convenient way to experiment with session and stream
allocation policies and have a coherent and repeatable way
to compare them, we implemented a SFU workload sim-
ulation framework. Such simulation framework also lowers
experiment costs and duration. Further experimentation was
conducted by comparing the performance of various allocation
algorithms, and in turn verify the efficiency of the proposed
algorithm (Alg. 1). To drive the comparative analysis of such
stream allocation policies, a dataset of traces of real WebRTC
sessions was extracted from our test cloud. These traces” were
used as simulation events for the resource allocation algorithm
of a simulated cloud environment. The various load allocation
techniques are built so that no user information outside of
stream parameters provided in the WebRTC[4] standard are
used. A simulation environment is used to compare the various

2Traces can be provided on-demand by the authors.

session/streams allocation algorithms as it permits faster and
way less expensive means of experimentation with different
allocation scenarios. A real deployment would have high
resource costs for the both cloud SFUs and Clients as well
as take longer to run.

A. Experiment Setup

Experiments on the performance of the various stream
allocation policies were conducted in a simulated cloud envi-
ronment, using task parameters to mimic the real Test Cloud
environment. The simulation environment was implemented
by extending the CloudSim [10][11] platform with a custom
package to handle WebRTC streams. Normal operations of
the CloudSim framework support batch processing tasks, we
have coded in our extension package the ability to process
WebRTC streams defined by the following parameters: Stream
Identifier, Session Identifier, Stream Start Time, Stream Du-
ration, Allocated Server Identifier. The extended simulation
environment supports the creation of multiple data centers,
each one with an arbitrary number of Hosts, on which a
single Virtual Machine (VM) is allocated. The package permits
the configuration of the number of Hosts/VMs and also an
upper limit on the number of streams that can be processed
without SLO violations. During simulation run-time each VM
can process in parallel as much streams as configured by the
maximum streams parameter. Once the simulation is running
if the number of streams surpasses the maximum configured
number per VM, the additional streams will be executed in a
time-share manner with the existing streams on the machine.
In case that such streams are running in a time-shared fashion,
the completion time of these streams would be delayed causing
a violation of the SLOs. This aspect of the simulation permits
to directly detect the performance of the stream allocation
strategies, not only in terms of number of streams processed
by the server, but also as reduced quality streams that would
not meet real-time requirements.

For our experiments we have sampled one week of real
system traces from our Test Data Center. We have selected a
period with data concerning both normal operational loads and
a particular day with a sudden spike in load behaviour. This
data ensures that we have a general view of the implemented
algorithms for both spiked data and normal operations. Our
simulation environment is made up of: 1 Data Center, 9 hosts,
9 VMs and 196 325 WebRTC Streams. First we examine an
algorithm that mimics the same stream allocation algorithm
as the original data, which is also our baseline for testing
the simulated environment. By comparing this algorithm to
the original data we prove that the simulation is valid and
calculates the same load profiles as the real Test Data Center.
Other algorithms were implemented based on: Static Thresh-
old, Minimal Load, and as well as Rotational algorithms
such as Round Robin variants. Each one of the implemented
algorithms is compared to the others and the baseline. As
previously seen and observed in Fig. 7, the distribution of
session sizes follows a tail distribution in which the majority
of the sessions have a small compact size while there is a long

0.8

0.6

04

0.2

0.0
0 100 200 300 400 500 600 700 800

Max Streams in Session

Fig. 7. CDF of Max Streams in Session

tail of big sessions which needs to be handled. The distribution
shows that high spikes in session sizes or sessions with very
high number of streams are rare and exceptional events. This
makes it very unlikely for such sessions to have similar inter-
arrival times and lower the impact of concurrent big sessions
to the system.

B. Establishing a Baseline

Verification of the simulated environment was provided
through the implementation of the Preset Allocation algo-
rithm. The algorithm reads the input data and schedules the
tasks to be processed at the same machine as the real system,
with the same defined upper limit of 1100 streams/machine
and same Stream Start Time. The implemented baseline al-
gorithm mimics the same configuration of the original system
data sampled from the Test Data Center. We define in the
context of this work the concept of SLO violation as streams
which duration, or completion time is higher than the original
duration of the stream.

Original Data
1600
st s4 6 4+ S8
1400 s2 S5 s7 s9
1200 S3
1000 Max10490 -

Streams on Server
8
o

1600

» s1 s4 6 s8
0 s2 S5 s7 s9
1200 S3

Max10490 e
1000 Y

Streams on Server
8
o

400 ‘
200 tl | n P i, v t ¥ i
0
0 100000 200000 300000 400000 500000 600000
Time in Seconds

Fig. 8. Comparison of Original Data with Simulation

The simulation finished with no violations of SLO and both
Stream Start Time as well as Stream Duration are identical

to that of the original data. The load profiles for both the
original data and the simulation are presented in Fig.§, these
profiles are totally identical. This data verifies our simulation
environment and provides strong evidence of a stable and
repeatable way for conducting further experiments.

C. The Minimum Load Algorithms

In order to try and minimize the maximum utilization
in terms of streams in our servers, and lower the impact
of peaks in form of big sessions, we experimented with
minimum stream load algorithms. All the experiments were
conducted by using the same parameters of our Test Data
Center environment as the setup previously described when
establishing our baseline (Sec. V-B).

Algorithm Min [Rand Window]
1600

S0 3 S5 S
1400 S1 4 S6 * S8
. 1200 S2
2
R Y
S 800
M
£
g 600 !
9 400 f H

Algorithm Min [No Rand Window]

1600

S0 s3 S5 s7
1400 st s4 6 s8
1200 S2

1000
Max:847.0

800

600

Streams on Server

0 100000 200000 300000

Time in Seconds

400000 500000 600000

Fig. 9. Comparison with Minimum Load Algorithm

The first experiment provided is though Alg. 1 with a
threshold of 30 streams resource occupation difference for the
minimal load set. Within the minimal load set, the selection
of server where to allocate the next streams is done through
randomly selecting one server candidate. We observe from our
experiments that this algorithm already lowers the maximum
observed utilization seen on all servers by 15%. This policy
implements a minimal load algorithm with randomized selec-
tion windows and the results are presented in Fig. 9. Although
this algorithm performs quite good, we can still improve over
it by using a purely Minimal load selection algorithm. The
algorithm plainly chooses for each new stream the server
with minimal load without randomizing a set of minimal load
servers. The results presented in Fig. 9 last subplot shows
an additional improvement over the maximal load reached
for all servers in the baseline, scored at 19% lower than the
max utilization of the original data. Both algorithms provide
a noticeable improvement over the other algorithms and thus
were selected to tackle the problem of stream allocation.

D. Round Robin and Static Threshold

One other family of algorithms that were implemented and
evaluated were rotation based algorithms implemented both
as a per stream rotation and a threshold based rotation. The
stream based rotational algorithm performs better than the
original data and that the threshold rotation algorithms, but
under-performs as compared to the minimal load algorithms.
We observed that the maximal peak reached for all servers
on the Round Robin stream allocation algorithm scores a
maximal peak value of 925 and as such doesn’t generate any
SLO violations (Fig. 10). In these experiment results peak
utilization do not reach the maximum number of streams per
machine. Such numbers hold also due to the fact that in
general a low number of #subs/#pubs dominates session sizes.
The incoming rate of big sessions (more than 50 streams) is
very rare but still impacts the overall performance. Clearly
the impact of these rare big sessions is seen in the class of
algorithms based on Static Threshold.

1600 Algorithm RR
1400 S0 s3 S5 +— ST
st s4 S6 s8
g 1200 s2
$ 1000 Max:925.0
& 800
o
5 &0
°
0 400

200
0

0 100000

200000

300000
Time in Seconds

400000 500000 600000

Fig. 10. Comparison with Round Robin Algorithm

The class of Static Threshold algorithms exhibits very big
spikes in streams that do not only surpass the thresholds but
as well the maximum number of streams that the machine can
handle, creating SLO violations. We implemented a Round
Robin variant, in which servers are not rotated until the
resource occupation matches a given threshold. This technique
has benefits as the servers needed to handle the load are in av-
erage less than the allocated number of machines. Even though
we have a clear benefit in number of machines being used,
the peaks reached during operations show an unacceptable
side effect by producing a high number of SLO violations
in terms of server overbooking. We show the result of such
experiments in Fig. 11, where peak utilization of the servers
reaches a values of 1484. The other implemented algorithm of
the threshold family is the static threshold with minimal load
utilization policy selection. After the threshold utilization for a
server is reached the next stream is allocated to the server with
minimal load. Both these algorithm are fragile and prospect
to be impacted by big sessions assigned to a server that has
reached near threshold utilization. As previously discussed in
this case the peak utilization of such server reaches utilization
factors of 134,9%, which is unacceptable for real production
scenarios.

Algorithm Threshold Rotate
1600

Mexi4840
1400 S0 s3 §5 —4— ST
1200 s1 s4 6 8
s2
1000
800

1

i :
400 F:
200 ‘L} 4

Streams on Server

y
re

0

1600 Algorithm Min Threshold Rotate

Mexi4s4o
1400 S0 S3 S5 S7
5 1200 :; s4 6 s8
& 1000
1]
c
S 800
E { i
© 600
£ 5
400 ' "}j
200 ‘ 4
¥ ¥
0
0 100000 200000 300000 400000 500000 600000
Time in Seconds
Fig. 11. Comparison with Static Threshold Algorithm Variants

VI. CONCLUSIONS

Previous work conducted in [9] deals with both performance
aspects and bit-rate estimation algorithms, but the study is
limited to a small controlled environment. Work conducted in
[8] [12] explore the behaviour of multiple rate-control algo-
rithms and streaming properties, as well as introducing novel
rate-control algorithms. Resource allocation for WebRTC
in [13] leads to a Network Virtual Functions based cloud ar-
chitecture to interconnect IP Media Subsystems and WebRTC.

Building on these previous state-of-the-art, we provide
insight into Cloud load patterns and load mitigation on a real,
large scale WebRTC Cloud SFU system. Media performance
is characterized through video bit-rates profiles for a SFU-
based cloud supporting both simulcast and single source rate
controlled video streams. We have shown from real client
measurements that video simulcast provides benefits as big as
2 times higher than the minimum perceived bit-rate in the non-
simulcast case, and that session topology size highly impacts
media quality. Constructing on the discovered load and media
patterns, we have provided a session allocation algorithm to
fairly distribute big sessions among machines.

Different algorithms were evaluated in order to verify that
the selected Minimal Load algorithm really behaves better in
terms of peak utilization reached as compared to Round Robin
and Static Threshold algorithms. All the algorithms that were
discussed need minimal information on distributing the load
and guarantee user anonymity toward the platform. This is
an important aspect of running a Platform as a Service, and
also in terms of insurances that can be given to both the users
and the software implementers. We observe that the minimal
load algorithms perform better than the rest of the observed
algorithms and optimize peak utilization by exhibiting peaks
of 19% lower than the real allocation and up to 50% lower

than the static threshold algorithms.

Future work includes providing load allocation algorithms
for multi-cloud deployment SFUs to optimize either cloud
resources or user latencies. Further work can be conducted
to investigate the alternate model in which sessions can
span multiple SFUs and servers. This new system bypasses
restrictions of single server session allocation treated here, but
introduces new challenges on trunking and latency concerns.

ACKNOWLEDGMENT

This work was done in the framework of an Erasmus
Mundus Joint Doctorate in Distributed Computing (EMJD-
DC) from the Education, Audiovisual and Culture Executive
Agency (EACEA) of the European Commission under FPA
2012-0030, and Spanish government under TIN2013-47245-
C2-1-R. A special mention is for Tokbox Inc. a Telefonica
company, for funding this research work, and providing the
testing environment and underlying technology to build on.
We thank as well Michael Wilson and Jose Carlos Pujol from
Tokbox Inc. for fruitful discussions.

REFERENCES
[1] World Wide Web Consortium. (2016, Nov.) Webrtc 1.0:
Real-time communication between browsers. [Online]. Available:
https://www.w3.org/TR/webrtc/
[2] The Internet Engineering Task Force. (2016, Nov.) Real-
time communication in web-browsers. [Online]. Available:

https://datatracker.ietf.org/wg/rtcweb/documents/

[3] The webrtc project. [Online]. Available: https://webrtc.org/

Network Working Group. (2003, Jul.) Rtp: A transport protocol for real-

time applications. [Online]. Available: https://tools.ietf.org/html/rfc3550

Internet Engineering Task Force (IETF). (2015, Nov.) Rtp topologies.

[Online]. Available: https://tools.ietf.org/html/rfc7667

[6] H. Schwarz, D. Marpe, and T. Wiegand, “Overview of the Scalable

Video Coding Extension of the H.264/AVC Standard,” IEEE TRANSAC-

TIONS ON CIRCUITS AND SYSTEMS FOR VIDEO TECHNOLOGY,

vol. 17, no. 9, pp. 1103-1120, Sep. 2007.

The Internet Engineering Task Force. (2016, Oct.) Using simulcast

in sdp and rtp sessions draft-ietf-mmusic-sdp-simulcast-06. [Online].

Available: https://tools.ietf.org/html/draft-ietf-mmusic-sdp-simulcast-06

[8] L. D. Cicco, G. Carlucci, and S. Mascolo, “Understanding the dynamic

behaviour of the google congestion control for rtcweb,” in 2013 20th

International Packet Video Workshop, Dec 2013, pp. 1-8.

V. Singh, A. A. Lozano, and J. Ott, “Performance analysis of receive-

side real-time congestion control for webrtc,” in 2013 20th International

Packet Video Workshop, Dec 2013, pp. 1-8.

[10] R. N. Calheiros, R. Ranjan, A. Beloglazov, C. A. F. De Rose,
and R. Buyya, “Cloudsim: a toolkit for modeling and simulation of
cloud computing environments and evaluation of resource provisioning
algorithms,” Software: Practice and Experience, vol. 41, no. 1, pp.
23-50, 2011. [Online]. Available: http://dx.doi.org/10.1002/spe.995

[11] R. Buyya, R. Ranjan, and R. N. Calheiros, “Modeling and simulation
of scalable cloud computing environments and the cloudsim toolkit:
Challenges and opportunities,” in 2009 International Conference on
High Performance Computing Simulation, June 2009, pp. 1-11.

[12] S. Islam, M. Welzl, D. Hayes, and S. Gjessing, “Managing real-time
media flows through a flow state exchange,” in NOMS 2016 - 2016
IEEE/IFIP Network Operations and Management Symposium, April
2016, pp. 112-120.

[13] D. T. Nguyen, K. K. Nguyen, S. Khazri, and M. Cheriet, “Real-time
optimized nfv architecture for internetworking webrtc and ims,” in 2016
17th International Telecommunications Network Strategy and Planning
Symposium (Networks), Sept 2016, pp. 81-88.

—
=

[5

[7

[9

