
X-Conference: Reinventing a Teleconferencing System

by

Xin Wang

M.S., Electrical Engineering
Peking University, 1998
B.S., Technical Physics
Peking University, 1995

Submitted to the Program in Media Arts and Sciences,
School of Architecture and Planning,

in partial fulfillment of the requirements for the degree of

Master of Science in Media Technology

at the

Massachusetts Institute of Technology

June 2001 MASSACHUSETTS INSTITUTE
OF TECHNOLOGY

D 2001 Massachusetts Institute of Technology. All rights reser e
JUN 1 3 2001

LIBRARIES
Author4

Program in Media Arts and Sciences 01
May 11, 2001

Certified by - -____

Dr. V. Michael Bove, Jr.
Principal Research Scientist

MIT Media Laboratory
Thesis Supervisor

'fVm/Accepted by
KStephen

A. Benton
Chair, Departmental Committee on Graduate Students

Program in Media Arts and Sciences

7

X-Conference: Reinventing a Teleconferencing System

by

Xin Wang

Submitted to the Program in Media Arts and Sciences,
School of Architecture and Planning,

on May 11, 2001, in partial fulfillment of the
requirements for the degree of

Master of Science in Media Technology

Abstract

In looking forward to more natural telecollaboration, we can anticipate that the
teleconferencing system of the future will enable participants at distant locations to share
the same virtual space. The visual object of each participant can be transmitted to the
other sites and be rendered from an individual perspective. This thesis presents an effort,
X-Conference, to reinvent a teleconferencing system toward the concept of "3-D Virtual
Teleconferencing." Several aspects are explored. A multiple-camera calibration approach
is implemented and is employed to effectively blend the real view and the virtual view.
An individualized 3-D head object is built semi-automatically by mapping the real texture
to the globally modified generic model. Head motion parameters are extracted from
tracking artificial and/or facial features. Without using the articulation model, facial
animation is partially achieved by using texture displacement. UDP/IP multicast and
TCP/IP unicast are both utilized to implement the networking scheme.

Thesis Supervisor: Dr. V. Michael Bove, Jr.

Title: Principal Research Scientist, MIT Media Laboratory

4

X-Conference: Reinventing a Teleconferencing System

by

Xin Wang

The following people served as readers for this thesis:

Thesis Reader

Alex Pentland
Professor of Media Arts and Sciences, Academic Head

Program in Media Arts and Sciences

ii

Thesis Reader

\V Dr. Thomas R. Gardos
Intel Research Affiliate

Manager of Streaming Video Technology
Intel Architecture Labs, Intel Corporation

Acknowledgments

I would like to express my gratitude to all the people who have helped me.

Deep thanks to Dr. V. Michael Bove, Jr., my advisor, who offered me an opportunity to
study and work at Media Lab. Thanks so much for helpful suggestions, for sincere
encouragement, and for leaving me free to develop.

To Prof. Alex Pentland for being my thesis reader. His achievements and publications
have always been invaluable to my research.

To Dr. Thomas R. Gardos for being my thesis reader, for his comments, and for his
recommendation of OpenCV library.

To Constantine Kleomenis Christakos, Jacky Mallett, Stefan Agamanolis, Sumit Basu,
and Tony Jebara for helpful discussions.

To Juan M. Rivas, Ken Kung, and Yi Li for being my office mates and for being my
experiment models.

To Linda Peterson and Pat Solakoff for their patience to answer my questions and for
reminding me before every deadline.

Special thanks to the staff at MIT Writing Center for polishing my English.

Contents

CHAPTER 1

INTRODUCTION ... 13

1.1 A NEW CONCEPT FOR FUTURE TELECONFERENCING .. 13

1.2 R ELA TED W O R K ... 15

1.3 CHALLENGES AND APPROACHES .. 17

1.4 X -C O N FER EN C E ... 18

1.5 O U T LIN E .. 20

CHAPTER 2

CAM ERA CALIBRATION... 21

2.1 V ID EO CA PTU R IN G ... 2 1

2.2 CAMERA CALIBRATION.. 22

2.2.1 Camera parameters... 22

2.2.2 Correction of camera distortion.................... 24

2.2.3 Calibration procedures .. 25

2.3 CONFIGURATION OF OPENGL VIRTUAL CAMERAS... 26

2.3.1 OpenGL camera location and orientation 27

2.3.2 OpenGL camera perspective view 27

2.3.3 OpenGL view port.. 29

CHAPTER 3

BUILDING A 3-D HEAD OBJECT ... 31

3 .1 O V E R V IE W ... 3 1

3.2 PREDEFINING FEATURE POINTS .. 32

3.3 POSING THE 3-D HEAD MODEL 34

3.4 T EX TURE M A PPIN G .. 37

3.4.1 Predefining texture boundary lines.. 37

3.4.2 Texture im ag e... 3 8

3.4.3 Texture coordinates... 41

3.4.4 Texture mapping ... 42

CHAPTER 4

TRACKING AND ANIMATION EXPERIMENT.. 43

4 .1 O V ER V IE W ... 4 3

4.2 TRACKING USING ARTIFICIAL FEATURES... 44

4.3 TRACKING USING FACIAL FEATURES .. 47

4.4 ANIMATION USING TEXTURE DISPLACEMENT. 50

CHAPTER 5

NETWORKING SCHEMES AND SYSTEM IMPLEMENTATIONS 54

5.1 MANY-TO-MANY ARCHITECTURE .. 54

5.2 R A TE A D A PTA TIO N .. 56

5.3 SOFTWARE IMPLEMENTATION...57

5.4 U SER IN TERFA C ES.. 58

CHAPTER 6

FUTURE DIRECTIONS.. 62

6.1 IMPROVEMENTS FOR X-CONFERENCE 62

6.2 INFRASTRUCTURES AND RESOURCES FOR FUTURE RESEARCH .. 63

6.3 FUTURE RESEARCH DIRECTION.. 64

6.4 THE FUTURE W E ENVISION... 64

REFERENCES .. 67

List of Figures

Figure 1-1 A conceptual sketch of the office of the future [Raskar, 1998]. 14

Figure 1-2 Collaborative interaction between two groups in different buildings [McLeod,

19 9 9] ... 14

Figure 2-1 Video capturing... 21

Figure 2-2 The relationships between the coordinate systems involved 22

Figure 2-3 Correction of camera distortion ... 25

Figure 2-4 OpenGL perspective viewing frustum .. 28

Figure 2-5 OpenGL view port... 29

Figure 2-6 Calibration results .. 30

Figure 3-1 Building a 3-D individualized head object.. 31

Figure 3-2 Predefining feature points .. 32

Figure 3-3 The 3-D point is inside a triangle... 33

Figure 3-4 Initial state of the generic head model .. 35

Figure 3-5 Pose the 3-D head model.. 36

Figure 3-6 Predefining texture boundary lines ... 38

Figure 3-7 Three images ready for merging ... 38

Figure 3-8 Multiresolution image mosaic.. 40

Figure 3-9 Merge areas ... 41

Figure 3-10 Texture image merging ... 41

Figure 3-11 Texture coordinates.. 41

Figure 3-12 Individualized 3-D head object ... 42

Figure 4-1 A special sign for tracking .. 45

10

Figure 4-2

Figure 4-3

Figure 4-4

Figure 4-5

Figure 4-6

Figure 4-7

Figure 5-1

Figure 5-2

Figure 5-3

Figure 5-4

Figure 5-5

Figure 5-6

Figure 5-7

Figure 5-8

Figure 6-1

Initial state of tracking .. 46

Tracking by using artificial features .. 48

Tracking by using facial features ... 49

Predefine the anim ation area... 51

Texture displacem ent .. 52

Anim ation using texture displacement... 52

M any-to-m any architecture... 55

Software architecture of the server ... 57

Software architecture of the client ... 58

The user interface of a server ... 59

Client interface of audience .. 59

Client interface of m ember A ... 60

Client interface of m em ber B ... 60

Client interface of m em ber C ... 61

Future w e envision ... 65

12

Chapter 1

Introduction

1.1 A new concept for future teleconferencing

The past decades have seen great improvements in the field of telecommunications.

However, until now the basic concept has remained unchanged. Recently, delivering

object-based synthetic content beyond natural content has gradually become one potential

direction for multimedia telecommunications. We believe that future multimedia

telecommunication will be a "smart" service, enabling visual/audio objects to be

acquired, constructed, transmitted, mixed, and represented more efficiently and flexibly.

Teleconferencing is a good starting point for exploring the future multimedia

telecommunications. This thesis represents an effort to reinvent a teleconferencing

system based on a new concept. In this effort, we focus on visual objects. The typical

visual object involved in teleconferencing systems is the human upper body; the main

part is the head.

The research issues relating to teleconferencing basically can be classified into two

layers. One is the transmission layer, in which the main problem is how to reduce the rate

and latency. The other is the representation layer, in which the main problem is how to

describe the content. In the representation layer, current teleconferencing systems have

two obvious problems. First, it is impossible to build gaze awareness, due to uncertainty

of camera position and orientation. Second, the current systems leave in place the barrier

of distance because of the use of separated display windows. Some studies even doubt the

advantage of current videoconferencing over audio-only communication because of these

problems [Gemmell, 2000]. To overcome them, a new concept has been introduced over

the past several years. There are several magic words to describe the new concept for

future teleconferencing such as "Telepresence," "Telecollaboration," "Virtual Space

Conference," "Immersive Conference," and "Media Immersion Environment." Figure 1-1

and Figure 1-2 are the concept pictures from some researchers.

Figure 1-1 A conceptual sketch of the office of the future [Raskar, 19981.

Figure 1-2 Collaborative interaction between two groups in different buildings [McLeod, 1999].

In this thesis, we will use "3-D Virtual Teleconferencing" (3DVTC) to designate the new

concept introduced above. The point is to bring the 3-D visual objects of participants

from distant locations together into a virtual space so that face-to-face communication

can be established naturally. As we have mentioned, conferencing is only a starting point.

We can extend 3DVTC into "3-D Virtual Telepresence" (3DVTP) in which 3-D objects

will not be limited to human upper bodies, and the use of virtual space will not be limited

to meetings. We believe that 3DVTP might have amazing effects on human life in the

future. As far as we can see today, it has commercial potential for both the

telecommunication and entertainment industries.

1.2 Related work

"ClearBoard" is designed to make mutual eye contact possible by using the metaphor of

"talking through a big transparent glass board" [Ishii, 1994]. Instead of the normal

whiteboard for a meeting, "ClearBoard" has advantages in maintaining the attention

contact while participants are drawing or posting the objects on the board. This is an

effective approach by concentrating participants' focus on the 2-D screen rather than

rebuilding a 3-D virtual scene. This approach seems not suitable for more-than-two-

participant cases.

"Magic Mirror" is a mirror in which you see not only a reflection of yourself, but also the

reflections of the other participants in the virtual space as if they were standing next to

you, looking at you through a real mirror, even though they are all in separate remote

locations [Agamanolis, 1997]. "Magic Mirror" is an effective metaphor to combine the

2D live-video objects, but it does not deal with 3-D objects.

CU-SeeMe VR created a 3-D chat environment [Han, 1996]. CU-SeeMe provides 3-D

presence of the virtual environment; however, it does not show real 3-D views of

participants. Instead, CU-SeeMe uses texture-mapped flat planes with dynamic projection

to indicate the navigation of the users. Besides using live video, CU-SeeMe also

implements an audio spatializer.

"Virtual Conference" has been introduced in the past several years. At each sending or

receiving site of the teleconferencing system, a 3-D model of each participant is

constructed from a wire frame model mapped by color texture and rendered on a 3-D

display [Ohya, 1995]. Researchers have not, to date, developed an effective approach to

construct a realistic human model from live video. Additionally, many challenges remain

on matters such as detecting human behaviors, graphic rendering, and real-time

computing requirements. If humanlike avatars were utilized, some big barriers could

probably be avoided, but this would hurt the sense of face-to-face communication.

BT Laboratories developed a similar virtual conferencing system for a single user

[Mortolock, 1999]. The system uses some computer vision-tracking techniques to do

facial feature tracking and body tracking [Machin, 1996]. A 3-D avatar with a

personalized talking head is created and used to represent the participant. The synthesis

of facial expression is achieved by modeling the action of the muscles within the face.

The data rate to control the virtual human is less than 8 kbps. The virtual human in the

BT system has limited behaviors; errors in the body- and face-tracking systems need to

be eliminated.

The project of "Perceptually-driven Avatars and Interfaces" [Darrell, 1997] explores the

computer vision techniques that might be useful for the virtual conferencing domain.

Rather than the conventional tracking methods, this project develops an active and multi-

resolution-tracking method so that the multiple scales of motion, required to control the

avatar, can be potentially tracked in real time. Several applications of the perceptual

interface are described in [Darrell, 1997].

TELEPORT is an experimental teleconferencing system with the goal of enabling a small

group of people, although geographically separated, to meet as if face-to-face [Gibbs,

1999]. In addition to common cameras, TELEPORT uses a viewer tracker to track the

viewpoint. Additionally, TELEPORT uses a wall-size screen to enhance the sense of

immersion. TELEPORT is an immersive VR system like CAVE, and therefore it has to

employ high-end equipment such as SGI Onyx. The heavy load of texture mapping and

rendering limits its visual quality.

3-D Tele-immersion is being developed at the University of North Carolina at Chapel

Hill [Lanier, 2001]. It typically uses seven cameras and five Quad-processor PCs for one

person. The system uses a "sea of cameras" and "imperceptible structure light (ISL)" to

capture the 3-D objects. The frame rate is low (2 to 3 fps). For a single person, the

demand for bandwidth is extremely high, 20-80 Mbps. For three-way conversation, the

bandwidth requirement must be multiplied accordingly, even requiring the whole OC3

bandwidth. The UNC system uses multiple projectors, head trackers, and polarizing

glasses to represent the 3-D scene. UNC Tele-immersion is very expensive, around

$100,000 for each site, and the quality is not perfect.

1.3 Challenges and approaches
Although the concept of 3DVTC is interesting, many challenges remain in this field. An

accurate, well-articulated 3-D human model cannot yet be constructed. Object

segmentation from live video needs more improvement. Computer vision techniques

cannot track a human body reliably. Large size display quality is poor. Additionally, the

system has to depend on high-end equipment. Many difficulties also remain on issues

such as network bandwidth and latency. Some researchers have claimed that a 3DVTC-

like system will not be commercial for 10 years [Lanier, 2001].

A 3DVTC system consists of three parts: acquisition, transmission, and representation.

Each part involves many research challenges. Regarding whole system solutions, we

currently have three types.

1) Switching 2-D objects

This solution is relatively easy technologically. At each site, we can set up multiple

cameras. Each camera can be considered as the "remote eye" of each participant at the

other sites. The system segments the 2-D object and transmits the object to the specific

participant point-to-point. In this approach, the viewpoints actually have been fixed on

the positions of cameras, without any flexibility. Normally, because the cameras cannot

be set up just at the height of the real user's eye, gaze correction cannot be avoided.

Additionally, point-to-point transmission will lead to heavy traffic.

2) Synthetic View

This solution typically involves many cameras. For the acquisition part, a good example

is the "3D room" project at Carnegie Mellon University [Kanade, 1998; Saito, 1999].

They use 51 calibrated cameras to watch the 3-D scene. The dynamic 3-D shape model

can be obtained by applying the approach of multiple baseline stereo frame by frame.

With the help of the 3-D model, the virtual view can be interpolated by applying the 2-D

image morphing process to two selected camera view images. It can record temporally

varying 3-D events with compelling quality. But it is non-real-time because of the large

number of cameras and heavy computing load on 18 distributed PCs. Additionally, this

solution is not suitable for networking transmission because of the high demand for

bandwidth. The UNC "Tele-immersion" project uses a similar approach.

3) 3-D Avatar

This solution, like the BT system, typically involves a 3-D virtual human. The

information about gestures and movement extracted from real cameras is used to control

the virtual human that is rendered in other sites. One important advantage is that the

bandwidth requirement can be reduced greatly because only some parameters of

movement need to be transmitted. The other advantage is that the number of cameras

involved is very small. The challenges are to attain realistic 3-D object building, reliable

motion tracking, and natural animation.

1.4 X-Conference
During the several months of research and development, we have realized that building a

3DVTC system is complicated. We have not found effective solutions for some problems

that we have already encountered, and new problems may arise. We named this thesis

project "X-Conference," meaning the framework to explore and solve the problems in

various aspects of reinventing a teleconferencing system toward the 3DVTC concept,

rather than the development of a concrete system itself.

For the whole system solution, X-Conference uses "3-D Avatar" as the basic approach

because we intend that the system involve only a small number of cameras, relatively

low-end equipment, and low bandwidth. However, multiple well-calibrated cameras will

be helpful for modeling, tracking, and view synthesizing when needed. Calibrated

cameras are one part of the basic infrastructure of X-Conference. We implemented the

software module for multiple-camera calibration. Currently, we use three cameras. Our

calibration module can easily be extended to more cameras.

As a framework, X-Conference includes a series of functions dealing with 3DVTC-

related image processing problems, such as computing 3-D coordinates from

corresponding 2-D coordinates, computing epipolar lines, computing the point on the 3-D

model given the 2-D projection, and blending images in multiresolution pyramids. Based

on these functions, X-Conference has developed software approaches to deal with the

experiments for 3DVTC core problems such as 3-D head building, head tracking, and

head animation. X-Conference also implements TCP/IP unicasting and UDP/IP

multicasting modules to support 3DVTC-involved networking transmission. Moreover,

X-Conference includes the graphic user interface for interactively guiding and controlling

the process.

X-Conference is also an attempt to investigate and implement our idea of "object-based

media," which concentrates on harnessing the power of digital processing and analysis to

move from traditional visual and auditory media toward more semantically and

physically meaningful "object-based" representation [Bove, 1995] [Agamanolis, 1997].

The impressive advance of computer graphics opens a way toward a fantastic virtual

world generated by computers. However, we should also explore how to seamlessly

integrate the real world and the virtual world. Although we are a very long distance from

this goal, and there exist many hard problems to solve, we believe "object-based media"

can combine the strengths of computer vision and computer graphics. As for software

implementation, X-Conference is an example of combining current OpenCV and

OpenGL libraries for multimedia applications.

1.5 Outline
The rest of the thesis is organized as follows. Chapter 2 introduces the procedures of

camera calibration, and addresses the issues about configuring the OpenGL virtual

cameras. Chapter 3 describes how to build the individualized 3-D head object. Chapter 4

discusses 3-D head tracking and a simple approach to animation. Chapter 5 discusses the

networking transmission scheme. Finally, Chapter 6 discusses the directions for future

research.

Chapter 2

Camera Calibration

Before building 3-D objects, we need to calibrate the cameras in our system. This

chapter discusses two problems. One is how to evaluate both intrinsic and extrinsic real

camera parameters. The other is how to configure OpenGL virtual cameras to view the

scene the same way as the real cameras do.

2.1 Video
In our system,

capturing
we use a single PC to support three frame-grabbers to capture video

__________________ concurrently. The PC is the HP

Kayak workstation XU800 (PIll
Frame

Grabber600MHz). The frame grabber is theGrabber

PXC200 color frame-grabber
Frame

Grabber developed by Imagination

FrameCorporation. CMU "3D) Room" also
Frame

Grabber used the same frame-grabber

[Kanade, 1998]. Figure 2-1 shows

the capture system.

Figure 2-1 Video capturing

The X-Conference system provides a testing function to test the video capturing

performance. In our experiment, the system is able to capture three frames concurrently

at real-time speed (30Hz) without any errors detected; the capture resolution is 320x243,

and the color format is 24bits. If we use the standard NTSC format (640x480), the

system can capture two frames concurrently without any error at 30Hz.

2.2 Camera calibration

Camera2

Image
plane

V

Camera

I

Camera
Projection
center

axis

z

P (X, Y, Z).

Az'

Object

k::* x'

S, (X, Y, Z)
Se" (x, , z)

S0 (x', y', z')

-- calibrated scene coordinate system

-- camera-centered coordinate system

-- object-centered coordinate system

-- image plane coordinate system

ameraO

Figure 2-2 The relationships between the coordinate systems involved

2.2.1 Camera parameters

Camera parameters describe a particular camera configuration. The intrinsic camera

parameters are used to specify the properties of the camera itself; they include the focal

lengths f(f,,f,), the coordinates of principal point c(c,,c,), and the distortion

X

coefficient of the lens k (kJ ,k, k3 k4). The extrinsic camera parameters are used to

describe the location of the camera in the 3-D world. They include the transformation

vector t and the rotation matrix R. The relationship between a 3-D point p, and its

image projection m is given by:

(2.1)s m = A(Rp, + t),

where

s

m (uv)

-- an arbitrary scale factor;

-- projection point in the image plane coordinate system;

p, (X,Y,Z) -- 3-D point in the calibrated scene coordinate system;

A -- camera intrinsic matrix;

f,0 c,'
A= 0 f, c

-0 0 1

[Rt] -- camera extrinsic matrix;

R = [r, r2 r3];

t = [ti, t2,"t3]T .

Usually we use the augmented vector by adding 1 as the last element:

i [u, v,1] T and i, = [X,Y,Z,1] T .

In this manner, (2.1) is then written as:

sin-=Hp, or

u l ho hi
s v H z where H=A[Rt] = h4 h5

1 hH h9-1

h2 h3
h6 h7 .

h:o hii

(2.2)

(2.3)

In the camera-centered coordinate system, (2.2) can be written as:

s i = Agi,

p, (x, y, z) -- 3-D point in the camera-centered coordinate system.

For any 3-D point p. (X, Y, Z) in the scene, we need to compute the 2-D projection m(u,

v) from the perspective of the camera with intrinsic matrix A and extrinsic matrix [Rt].

Matrix [RtJ is used to transform the coordinates p, (X, Y, Z) in the calibrated scene

coordinate system to the corresponding coordinates p (x, y, z) in the camera-centered

coordinate system. In the camera-centered coordinate system, the zero point is camera

COP (center of projection), and the z axis is parallel to the camera optical axis. Matrix A

is used to project the camera-centered coordinates p, (x, y, z) onto the image plane

coordinates m(u, v).

2.2.2 Correction of camera distortion

Usually, the pinhole model needs some corrections for the systematically distorted image

coordinates.

Let r 2 =X 2 +y2

In [Heikkila, 1997], the radial distortion was approximated using the following

expression:

6x(r) [x(kr 2 +k2r' +...)] (2.4)

8y(r) y(kr2+k 2 r +...)

Typically one or two coefficients are enough to compensate for the distortion.

Centers of curvature of lens surfaces are not always strictly collinear. The expression for

the tangential distortion is:F 8x(')] [2kxy+k,(r2 + 2x2)] (2.5)
6y(t) k (r 2 +2y2)+ 2k4xy

In the camera-centered coordinate system, (x, y) are ideal coordinates, and (i, f) are

distorted coordinates. We have:

[j [X + 6xi') + 8xII

F _ y +6y(r) +5y(') (2.6)

Let (u,v)be ideal image projection coordinates, and (iii)be distorted image projection

coordinates. Then we have:

24

i C +(f,/s)y .
(2.7)

In the camera-centered coordinate system s is equal to z; this equivalence can be derived

from (2.3). However, we cannot find out z, the depth of the scene, only from a 2-D

projection image. Therefore, when we evaluate the distortion coefficients or correct the

distorted image, we have to assume z is a constant number, and z # 0. For convenience, s

or z is assumed to be 1 when we deal with lens distortion problems. And we can use

(i, f) instead of (x,y) to evaluate distortion. Making all these assumptions, we can easily

get ideal (u,v) based on the formulas (2.4)-(2.7).

(a) Before correction (b) After correction

Figure 2-3 Correction of camera distortion

2.2.3 Calibration procedures

We use an 1 lxII chessboard pattern to calibrate the three cameras. Without loss of

generality, the first internal corner point on the board (shown in Figure 2-6) is assumed to

be the zero point, the board is assumed to be the plane Z=0, and the X and Y axes are

assumed to be parallel respectively to the chessboard row and column. We build a series

of software routines with friendly graphic interface so that the calibration can be

performed conveniently and almost automatically. The whole calibration session has two

steps: intrinsic calibration and extrinsic calibration. We use a popular method developed

by the researchers at Microsoft [Zhang, 1999]. Our task differs in that we need to

calibrate multiple cameras in a common coordinate system.

1) Intrinsic calibration

In this step, the intrinsic parameters {f,c,k} of each camera are independently calibrated.

We hold the chess board and keep moving it. The software system detects each video

frame to automatically find the internal corner points. With an 1 xII pattern, we have

100 internal corners. Because of the motion and the view angle of the camera, not all the

internal corners can be guaranteed to be detected by the software system. If all the

internal corners are found in a frame, this frame is selected as a good frame for

calibration, and all the 2-D coordinates of the corners are stored in the data file. If fewer

than 100 corners are found for a frame, the software system will ignore it as a bad frame.

We select many good frames (about 100) that correspond to different board locations and

orientations. Then we use the closed-form solution to evaluate the intrinsic parameters

[Zhang, 1999].

2) Extrinsic calibration

In this step, the extrinsic parameters {R, t} of all the three cameras are evaluated. We

pose the board in an appropriate location so that each camera can see all the internal

corners clearly. We take three frames from three cameras in one shot. We can use the

software routine to find out the comers, unfortunately the result is not reliable because

some cameras can only see a side view of the board. In this case, we manually pick the

internal corner points with the mouse. After all the internal corners are detected, and

since the intrinsic parameters {f,c,k} have been known from the previous step, we can

evaluate {R, t} easily.

2.3 Configuration of OpenGL virtual cameras
Using the real camera intrinsic matrix A and extrinsic matrix [Rt], we can configure the

virtual cameras in the virtual 3-D world so that the virtual cameras are able to perform

exactly the same viewing function as the real cameras in the real 3-D world. OpenGL

splits the viewing process into three separate parts: 1) to specify the location and

orientation of the camera; 2) to determine the perspective view of the camera; 3) to map

the camera's image onto the display screen. OpenGL provides a series of library functions

for each respective part. In this section, we will discuss how to configure the OpenGL

virtual cameras by using the calibrated real camera parameters A and [Rt].

2.3.1 OpenGL camera location and orientation

OpenGL uses three vectors to describe the location and orientation of the camera: vector

eye, vector view, and vector up.

Vector eye is the OpenGL camera location. We have

0 = R eye + t.

Therefore,

eye = -R T t. (2.8)

Vector view is the OpenGL camera view direction. In the camera-centered coordinate

system, view is (0,0,1); therefore in the calibrated scene coordinate system,

view = R-'[0,0,1]T. (2.9)

Vector up is the "up" direction of the OpenGL camera. In the camera-centered coordinate

system, up is parallel to the y axis; therefore, in the calibrated scene coordinate system,

up = R-'[0,-1,0]T . (2.10)

2.3.2 OpenGL camera perspective view

In OpenGL the volume of space which eventually appears in the projection image is

known as view frustum. Perspective projection makes the view frustum look like a

pyramid. OpenGL usesfovy to denote the angle of the image's vertical field of view and it

uses aspect to denote the ratio of the width and height of the frustum bottom plane.

cop . ~.

-.............. -

width

height view
...................................... 0.

(c" c)

fovy/2
............................

(u'v)

Figure 2-4 OpenGL perspective viewing frustum

For a projection pixel (u,v) on the image projection plane, the corresponding 3-D point

(X, Y, Z) will be on the line linking the projection center and the pixel (u,v).

h9u - h, h1ou - h2 h- h,,u
h9v-h 5 h10v-h h,-hIv

(2.11)

We can consider this line to be the intersection of two planes. Let u- cX, and

v-c, + height /2. The normal vectors of two planes are:

n, = {hc, -hoh 9c, -h,h 10 c -h 2 };

n2 = {h(c, + height / 2) - ho,h,(c, + height / 2) - h,,h1 0 (c, + height / 2)- h2}.

Let r denote the vector parallel to the line linking the projection center and the projection

pixel (c, c, + height /2), r = n, x n2 . Finally, we have:

(2.12)fovy =2cos' (_view
Ir|viewl

h8u - ho
h8v-h 4

2.3.3 OpenGL view port

OpenGL view port ,&

Real image view port

Synthetic
image in
real image
view port

Read OpenGL
rendering buffer

OpenGL view port is a rectangular

area for displaying the final

synthetic image, just as the monitor

screen is used as a real image view

port for showing the real image

grabbed from the real camera. Our

system needs to blend the synthetic

view and the real view together,

therefore it is necessary to address

how to set the view ports and read

out the OpenGL rendering buffer so

that we can put the synthetic image

data into the real image view port.

Figure 2-5 OpenGL view port

After setting the location, orientation, and perspective view of the OpenGL camera, the

image plane coordinate system of the synthetic view overlaps the one of the real view. In

order to simplify the situation, we set the size of the OpenGL view port larger than the

real image size. For example, the real image size is 320x243, and we set both the width

and height of the OpenGL view port at 360. Since we know the principal point

Cr (cX , c,) of the real view is identical to the principal point c, (cx, c,) of the synthetic

view, we can determine the starting point of the synthetic image data in the rendering

buffer. Note that in the OpenGL view port, coordinates x and y specify the shift from the

bottom-left corner; in the real image view port, coordinates x and y specify the shift from

the top-right corner. In the OpenGL view port, c, (cx, c,) is the central point; however, it

may not be the central point in the real image view port.

Figure 2-6 Calibration results

Images a, b, and c are the frames captured

with the real cameras. We configure the

OpenGL virtual cameras to simulate the real

cameras. The red, green, and blue lines

correspond to the X, Y, and Z axes of the

calibrated scene coordinate system. These

lines are captured with the OpenGL virtual

cameras.

Chapter 3

Building a 3-D Head Object

Now we have the calibrated cameras. In this chapter, we build a 3-D head object. The 3-

D object is described in VRML (Virtual Reality Modeling Language), including a multi-

triangle shape model, a 2-D texture image, and texture mapping coordinates. Our basic

idea is to map an individualized texture image on a generic 3-D model. We scale the

generic model to match the real head shape, but leave the detailed modification for future

research.

3.1 Overview
Some researchers have developed a semi-automatic approach to building the 3-D head

from two orthogonal views [Lee, 2000]. Our goal is to build the 3-D head object by

taking advantage of the calibrated cameras. We seek to minimize the need for user

guidance. Figure 3-1 shows all the steps for this task. Green boxes indicate some user

guidance is needed for that process.

Figure 3-1 Building a 3-D individualized head object

3.2 Predefining feature points

In Figure 3-2, image (a) is one view from a predefined

virtual camera. Three red points are picked using the

mouse to indicate the locus of face feature points.

Knowing the camera parameters and the shape of the 3-D

model, we can calculate the 3-D coordinates of the face

feature points. Images (b), (c), and (d) show the feature

points on the 3-D head model.

Figure 3-2 Predefining feature points

The following will address how to find out the model point p in the calibrated scene

coordinate system, given the corresponding pixel m (uv) in the image plane coordinates

system, the involved camera matrix H, and the 3-D model composed of the triangles.

This inverse problem is very common when the user wants to click some particular pixels

for 3-D model analysis.

There are two steps in solving this inverse problem.

1) Determine which triangle the model point will belong to.

The points p1(X1,Y,Z 1), p 2 (X 2 ,Y2,Z 2), and p3 (X 3,Y3,Z3)are the vertices of the

triangle. The pixels m0 , m1, and m2 are the projections of the vertices, and m(u,v) is

the projection of the unknown 3-D point p.

In Figure 3-3,

Line mm0 is:

fmm, (M) = fmmO (m) =0.

Similarly,

Line mm, is:

fmm, (m) fmm, (m,) 0. (3.1)

m2

Therefore, if the following conditions

are satisfied, the point is inside the

Figure 3-3 The 3-D point is inside a triangle triangle A m mi m 2 :

fmm0 (m,)fmm (M 2) <0 and

fmm1 (mo)fmm, (mi) < 0 . (3.2)

Clearly, if m is inside the triangle A m 0 m, m 2 , then p is inside a triangle A p0 p, p2.

2) Compute the coordinates of the model point.

If we have found that the model point p is inside a triangle A p0 p1 p 2 which has three

vertices p1 (X 1,Y,Z 1), p 2(X 2,Y2,Z 2), and p3(X3 ,Y,Z), we can calculate p based on

the three vertices and the camera parameters H.

The plane of the triangle ApIp 2p 3 is

X - X Y - Y Z-Z,

X2-X Y2- Z2-Z, =0. (3.3)

X3 - X 3 1 i 3 1-Z1

In order to simplify the description, we let

Y2 - 1 Z2 - Z X2 - X, Z2 -Z, X2 - X Y2 - 1to = - z I x z -z x -x -y
Y -Y Z - Z1 2 -X, 2 Y

_Y2 -1 Z2-z , X2 - X1 Z2 - Z + X2-x, Y2 -yt 3 -=X 1 - 1,+Z.
Y -Y Z 3 -Z 1 X 3 -X 1 Z 3 -Z, X 3 -X 1 Y-Y

Then the plane equation in (3.3) is:

t3 =t 0X +tY +t 2Z . (3.4)

Combining (3.4) and (2.10), we have:

hu-ho h9u -hi h1ou-h2 X h3 -hu1
hev-h4 hv - h5 htov- h6 Y =h7 -h]v. (3.5)

to ti t2 _ Z t3

Therefore,

X heu-ho hu-h, h10u 2 h3 -h11u
Y hev-h 4 h9v-h 5 h10v-h 6 h7 -hav (3.6)

Z to t t t

3.3 Posing the 3-D head model
There are 4 steps in posing the 3-D generic head model properly so that the real head and

the virtual head have the same location and orientation.

(a) The input real video images and the initial pose state of the generic head model are

shown as Figure 3-4. Images (a-0), (a-1), and (a-2) are the real views from the three

cameras. Image (a-3) is the virtual view of the 3-D head from the second camera. We

generate the 3-D head virtual view from all the perspectives of the three cameras, and

post the 3-D head virtual views back to the real images in the semitransparent format

so that we can observe, compare, and match the virtual and the real views. In the

image (a-3), the pure red, green, and blue lines are the calibrated scene coordinate

axes X, Y, and Z. Besides the scene coordinate frames, we also define the object-

centered coordinate axes x', y', and z'. At the initial state, the axes x', y', and z' overlap

the axes X, Y, and Z without any relative translation or rotation; and the 3-D head is

on the point (0, 0, 0) with the scale vector (1.0, 1.0, 1.0).

(b) Our software provides users with an interactive environment so that the users are able

to simply pick the feature points (eyes and nose) with the mouse. In Figure 3-5,

images (b-0), (b-1) and (b-2) show the video frames with the selected feature pixels

(pure red, green, and blue ones) in different views. Among the three views, we can

choose any two of them to "click" the 2-D feature pixels, then calculate the 3-D

feature points from the corresponding 2-D pixels and the parameters of the calibrated

cameras.

Figure 3-4 Initial state of the generic head model

(c) In step (b), three feature points have been obtained. All these feature points

correspond to the feature points of the 3-D model, but some motion has happened

including rotation and translation. In this step, we will address how to compute the

motion R and t from two corresponding 3-D data sets ("3-D -- 3-D estimation").

Without loss of generality, we assume the two sets are X1,...,XN Y1 '*' N . And each

Yk (1 < k < N) is obtained as a rotation and a translation of Xk (1 < k < N).

To evaluate R and t, we will minimize

Nf 2

(3.7)

subject to the constraint R T = R-'

We can obtain [Haralick, 1989]

Ily, -(Rx, +t)||

N

Ixn
t=y - Rx where x = "=1

N

N

xyn

y = "=
N

Figure 3-5 Pose the 3-D head model

R=V[

det(VU T)j

(3.8)

(3.9)

Let K denote the correlation matrix:

N

K= yx.
n=1

From SVD (singular value decomposition) K = VAU T, where A is diagonal.

With the R and t thus determined, the 3-D model can be moved to the estimated real

head location. Images (c-0), (c-1), and (c-2) show the blending of the real views and

the virtual views of the 3-D model with the estimated pose. We can see that the 3-D

head model and the real head nearly overlap.

(d) We should be aware that the estimation in step (c) is not perfect because of three

factors. The number of feature points is very small (only three); there is noise from

errors in step (b); and the 3-D head model is only a generic model, not an

individualized one. In order to make the model fit the real head better, we will

employ some user guidance to refine the pose of the model and also to modify the

scale of the model. Our software provides users with a graphical interface so that the

user can interactively translate, rotate, and scale the 3-D model with the mouse.

Normally only some tiny modifications are needed. Images (d-0), (d-1), and (d-2)

show the new blending of the real views and the virtual views of the 3-D model after

manual refining. Image (d-3) shows the virtual view of the 3-D head from the

perspective of the second camera.

3.4 Texture mapping

3.4.1 Predefining texture boundary lines

In Figure 3-6, image (a) is one view from a predefined

virtual camera. The red lines illustrate the location of the

predefined texture boundary lines. In the same way as

the section 3.2, we can find out the 3-D coordinates of

(a) the points on the texture boundary lines.

(b) (c) (d)

Figure 3-6 Predefining texture boundary lines

Images (b), (c), and (d) show the texture boundary lines on the 3-D head model from different

perspectives.

3.4.2 Texture image

Figure 3-7 Three images ready for merging

Figure 3-7 shows the views of the texture boundary lines from three real cameras. When

combining the side views and the front view, we keep the front view as it is, and deform

the side views so that the 2-D projection of the 3-D texture boundary lines on the side

views and the front view can be connected seamlessly. We create a lookup table to store

the deformation; the deformation is also useful for both texture image and texture

coordinates generation.

We combine three input images, which correspond respectively to the left side, the front,

and the right side view, to generate the whole head texture image. The boundary effects

between different view images are not easily avoided. Alpha blending is a simple

approach to combining textures from different camera images [Tsai, 1997]. For the better

quality, we use pyramid decomposition of images to merges the different images at

multiresolution levels [Burt, 1983; Lee, 2000].

Assume we need an N-level pyramid. First we need to obtain Gaussian images Gk by

iteratively using REDUCE operation.

Gk = REDUCE [G_,] (0<k<N) (3.10)

By REDUCE we mean

5

Gk (i, j)= g(m.n)Gk_, (2i + m,2j + n), (3.11)
m.n=1

where g(m,n) is a Gaussian filter kernel.

Then the EXPAND operation is used to obtain Laplacian images Lk.

G = EXPAND[Gl] (0<k<N) (3.12)

By EXPAND we mean

I 2i+m 2j+nGk(i,j)=4> 1 GkI(2I '2 , (3.13)
m,n=-2 2 2

(Gk-EXPAND[G-_] 0<k<N-1

Gk k=N -1

We can see the property of the Laplacian pyramid:

N-I

Go =jLk . (3.15)
k=O

Assume images A, B, and C are needed to merge into image S. The Laplacian pyramids

of image S will first be obtained, then the sum of these Laplacian images will be the

image S.

Laplacian Gaussian
Pyramid Pyramid

LG3

I 3] 1,...4 .

[L2 - G2

up down

L +-
up down

Image A Image B

Ima

LAf, L Bn L cn

LAn L Bn-1 Lcn-I n-

+ I1
up

L A LB LCI L +

up

LAO B cO o +

Figure 3-8 Multiresolution image mosaic

Image C

ge A+B+C

We define the level k Laplacian image of S as the following:

Lsk (i, j) = R (A, i, j)LAk (i, j) + Rk(B, i, j)LB,k (i, j) + Rk (C, i, j)Lck (i, 1), (3.16)

where the function R means:

r1 (i,j)eP
R(P,i,j)=, (3.17) A B C

10 (i,j)e P

where P could be A, B, or C. I

Figure 3-9 Merge areas

(a) Before multiresolution processing (b) After multiresolution processing

Figure 3-10 Texture image merging

3.4.3 Texture coordinates

Basically, the 2-D texture coordinates can be obtained by projecting the 3-D triangle

vertices onto the 2-D image plane. For the vertices projected onto the front view, between

two texture boundary lines, the 2-D projection coordinates are identical to the texture

coordinates. However, for the vertices

projected on the side views, outside the

texture boundary lines, we should

modify the 2-D coordinates based on the

correction value in the deformation

look-up table created in section 3.4.1.

Fig 3-10 shows the texture coordinates

overlaid onto a texture image.

Figure 3-11 Texture coordinates

Note that neither the texture coordinates nor the texture image can cover all the triangles

of the model because of the view angle limitations of the three cameras.

3.4.4 Texture mapping

After getting both the texture image and texture coordinates, we can use OpenGL texture

mapping library functions to do texture mapping and to get the individualized 3-D head

object. Figure 3-11 shows the 3-D head object rendered from different perspectives.

Figure 3-12 Individualized 3-D head object

Chapter 4

Tracking and Animation Experiment

Now, we have the individualized 3-D head object. In this chapter, we use the 3-D head

object to mimic the motion of the real head. There are two kinds of motion with a head:

rigid and non-rigid. This chapter focuses on rigid motion.

4.1 Overview
Non-rigid motion typically refers to facial animation, which usually has to involve

numerous well-designed animation parameters such as MPEG-4's 68 facial animation

parameters (FAP). Rigid motion is relatively simpler; we can use the rotation matrix R

and the translation vector t to describe rigid motion. Estimation of R and t from video

sequences has been an interesting research topic for years. Typically, a 3-D model is

involved in the tracking process to constrain the 2-D individual tracking features in a

global 3-D structure. Three approaches need to be mentioned.

In [Basu, 1996], a 3-D ellipsoidal model is employed for tracking. In this way, both the

actual image optical flow and the model optical flow are computed. Then we can

compare the model flow with the actual flow to find the optimal parameters R and t. This

method is robust because computing optical flow in a large area is able to compensate for

individual errors. However, this method is non-real-time.

In [Jebara, 1997; Jebara, 1999], a real-time system for 3-D adaptive feedback tracking is

introduced. The system uses eight 2-D squares for 2-D template matching; each square

represents two points. The resulting sixteen 2-D points are fed into the SfM (structure

from motion) algorithm to recover sixteen 3-D points and other camera and motion

parameters, including R and t. In [Strom, 1999], a simple texture-mapped 3-D face model

was added to this method for better selection of feature points and more robust 2-D

template matching. This method actually deals with the problem of "2-D projection -- 3-

D pose estimation," which is a non-linear problem requiring an iterative least-square

solution. Additionally, this method is only for small displacement, normally one pixel per

frame.

In [Valente, 2000], a near-real-time approach for visual analysis/synthesis feedback

tracking is introduced. This method uses the extended Kalman filter to estimate the 3-D

pose from 2-D coordinates of the tracking features found in the 2-D image. This approach

employs a realistic head model. Its strength is that the difference between the synthetic

face image and the real video frame is used for more robust 2-D feature tracking. This

approach makes possible improved solutions to the problems of lighting, scale, large

rotation, and geometry deformations.

All these algorithms mentioned above are relatively complex mathematically and are

typically used for the non-calibrated single camera case. They are not suitable for our

system because we have multiple calibrated cameras that should be taken advantage of.

Animation is not our main focus because we only employ a rigid head model for the

current thesis project. Here we use texture displacement to implement animation.

4.2 Tracking using artificial features
The existing head tracking systems using computer vision technology have several

limitations in common. Working time is relatively short, from several seconds to several

minutes; fast motion and large rotation out of plane usually lead to the loss of the

features; a real-time requirement is hard to meet when complex algorithms (especially

recursive computing sessions) are involved. Besides vision approaches, several other

kinds of products exist for detection of human head poses, such as magnetic sensors;

however, this kind of equipment is expensive and is not comfortable for users.

Sometimes marks are attached on the face for tracking [Ohya, 1995], which may annoy

the users. Since we are just trying to track the rigid motion of the head, and we know it is

hard to estimate the motion by directly detecting the facial features, why not identify the

motion of other objects attached to the head? This idea is straightforward. We attach a

specially designed sign to a cap. When the user wears the cap, the system will estimate

the pose of the head by viewing the sign. Since our system has calibrated cameras, we

can use two of them to recover the 3-D pose from the 2-D correspondences.

We use the sign as shown in Figure 4-1. In order to

avoid light reflection, the sign is made of cloth. Even in

an uncontrolled environment, it is quite easy to detect

the white points on the black background. One problem

we encountered is that the camera sometimes cannot

view the white point clearly because of the rotation out

of plane. A better sign needs to be designed for more

robust detection.

Figure 4-1 A special sign for tracking

We use stereo vision to detect the 3-D positions of the three white points on the sign.

After detecting the points in one camera view, the epipolar constraint is used for faster

detection in the other camera's view.

On the image plane of the camera 1, (u,v) is known. We have:

h8u -ho h9u--h, h1ou-h2 h3 -huu
Lh8v-h4 h9v-h5 hv-h 1[][h7-hv1 (4.1)

Z-

Then, on the image plane of the camera 2, (u', v') is the point corresponding to (u,v), and

we have:

h'8 u'-h'o h'9 u'-h'1 h'10 u'-h'2 [h'3-h'n u'

h': v-h'4 h19 V-h'5 h'10 V-h' L h'7-h'fl V1 (4.2)

Selecting one of (4.2) to combine with (4.1), we obtain

h1 u -h 2 X h3 -h,,u

h1ov -h 6 Y = h, -hv .

h ou -h Z h -hLu'

Then we know

X_ h u - ho h9u - h h1ou - h2 h3 -hU

Y =hv- h4 h 9v -h 5 h1ov - h6 h, -hav
Z h'u'- h' h u' - h; h' u' - h h - h u'

When (4.3) is fed into (4.2), we can get the equation of the epipolar

plane of camera 2

h'8 u'-h'o
h'8 v'--h'4

h'9 u'-h'l
h'9 v'-h'5

h',0 u'-h'2 8 0
h8v - h4

h',0 v'-h'6 ,"u - ,
-hou - h'

hu - h1
h~v - h5

h 'u' - h;

(4.3)

line in the image

hou - h2 h3 -hu
h1v -h6 h, --hv

-h - h ' uu

[h'3 -h'I Iu'

h'7 -h' 1 v'

(4.4)

Figure 4-2 Initial state of tracking

Before the real-time tracking session, we should first link the 3-D pose of the sign and the

3-D pose of the head. Two video frames are taken by the stereo vision system. We select

three facial feature points in each image by hand. The three white points on the sign can

be detected automatically. All the 3-D coordinates can be estimated from the

h8u -ho

hev-h4

h8u' -h'

h9u -hi
h9v -h 5

h u' -h

corresponding 2-D projections on the image views of the stereo vision system. In this

way we can get the initial coordinates of the feature points both on the head and on the

sign. The motion applied to the sign is exactly that applied to the head.

During the real-time tracking session, the white points on the sign are automatically

detected frame by frame. We can estimate the 3-D pose by using the method of "3-D --

3-D estimation" described in the chapter 2. The 3-D pose is determined by the rotation

matrix R and the translation vector t. Here we can use a 4x4 motion matrix M to

describe the 3-D pose.

M [R] (4.5)
0 11

OpenGL uses the similar 4x4 matrix. The difference is that the motion matrix stored in

OpenGL is MT .

Figure 4-3 shows the tracking result. The tracking speed is 30Hz. The colored crosses

denote the artificial feature points on the sign. The little colored squares denote the facial

features. The colored lines in images (1-b) and (2-b) are the epipolar lines. The 3-D head

object can mimic the real head; images (1-c) and (2-c) show the virtual view of the 3-D

head object from the perspective of the left camera.

4.3 Tracking using facial features
The artificial sign is helpful for more reliable tracking, but we still try to use only facial

features for tracking. We can use the sign to set the three feature templates and initialize

the pose; the sign can be got rid of during the real-time tracking session. The feature

templates are 1 lxII patches. When a new frame comes, the searching area is determined

by the feature locations in the previous frame. The templates are matched with the

patches in a 5x5 search window by using normalized correlation. Let vector b denote the

candidate patches and vector t denote the template. The normalized correlation is given

by:

Figure 4-3 Tracking by using artificial features

48

Figure 4-4 Tracking by using facial features

coso = . (4.6)

The b with the maximum cose is selected as the candidate of the 2-D feature location in

the current frame. The 3-D coordinates of each feature can be computed from 2-D

correspondences in the stereo views. Then "3-D -- 3-D estimation" is used to obtain the

rigid motion. Finally, the 3-D coordinates of the features are adjusted by applying the

rigid motion to the 3-D model, and they are projected back onto the 2-D image plane to

update the new locations in the current frame. Figure 4-4 shows the tracking result. The

speed is 30Hz. Images (1-c) and (2-c) show the virtual view of the 3-D head object from

the perspective of the left camera. In the images (1-a), (1-b), (2-a), and (2-b), the crosses

indicate the 2-D feature matching results, and the squares indicate the projections of the

3-D features. This tracking approach is not robust; a more reliable solution needs to be

developed.

4.4 Animation using texture displacement
When the image resolution is relatively low (the videoconferencing case), face animation

can probably be implemented by altering the texture patches in the areas of the mouth

and eyes. In this section, we will apply this animation approach to the mouth area.

The texture patch that can be displaced should be predefined. The red rectangle in Figure

4-5 (b) shows the predefined patch. This patch consists of multiple triangles. All these

triangles should be deformed to implement facial animation. To simplify the problem, we

can use a quadrilateral on a plane to approximate the shape of the mouth since the

accurate shape is unknown. For the convenience of further computing, we use the closest

vertices on the VRML model to replace the four vertices of the rectangle region indicated

by Figure 4-5 (b). The texture coordinates of the four VRML model vertices having been

determined, the corresponding quadrilateral on the 2-D texture image is thereby defined.

We use QTto denote this quadrilateral on the texture image and QM to denote the

quadrilateral on the 3-D model. We select a camera that can maximize the cosine of the

angle between the normal of Qm and the camera viewing direction. QM is projected onto

the view plane of the selected camera. The projection quadrilateral is denoted by QPM.

Figure 4-5 (a) shows the camera view; the green quadrilateral in (a) is Qp, . Figure 4-5

(b) shows the 3-D model; the green quadrilateral in (b) is QM; the red rectangle is the

predefined animation area drawn by hand. Figure 4-5 (c) shows the texture image; the

green quadrilateral in (c) is QT Note that the quadrilaterals in Figure 4-5 are used only to

illustrate the relationships between Qpm, Qm, and QT . They are not accurately generated

by the system.

Figure 4-5 Predefine the animation area

In the process of texture displacement, Qpm is mapped onto QT to replace the texture

patch with the current image data. Multiresolution pyramids are used for blending the

new patch with the original texture image. The mathematical details can be found in

(3.10-17). To improve the processing speed, five-level pyramids of the original texture

image can be obtained ahead of time, and the results can be loaded directly when needed.

Figure 4-6 shows the result of texture displacement. Figure 4-6 (a) is a video frame; the

green contour is the position of the 3-D head model; the green quadrilateral is the

projection of the animation area. Figure 4-6 (b) is the updated texture image.

Figure 4-6 Texture displacement

Figure 4-7 Animation using texture displacement

Figure 4-7 shows the results of texture displacement. The advantage of using texture

displacement is that the articulation model and non-rigid motion parameters can be

omitted. The drawback is that the quality is not as good; and when the tracking result is

not reliable, non-natural faces cannot be avoided.

Chapter 5

Networking Schemes and System

Implementations

X-Conference is implemented on the Win32 platform. In this chapter, we discuss

networking schemes in the X-Conference system. Additionally, we introduce the

software implementations of X-Conference.

5.1 Many-to-many A rchitecture
On each conferencing site, two PCs are involved. One PC performs as a server that

captures the real video, builds the 3-D object, extracts the motion parameters, and

transmits the objects and parameters to the other sites. The other PC performs as a client

that receives the visual objects and motion parameters, composes the visual objects into

the scene, and renders the scene based on the perspective of the local user. In addition to

such conferencing sites, there can be more audience sites that require only client PCs to

receive the objects and render the scene. Each server sends the object to multiple clients,

and each client receives the objects from the multiple servers. This is a typical many-to-

many application. The sending server is a one-to-many application, and the receiving

client is a many-to-one application.

As we know, multicast is suitable for one-to-many application because it can reduce

server load and network congestion by sending a single data packet to multiple receivers

simultaneously. We use the multicasting scheme for real-time conferencing sessions.

However, there are still two problems that need to be solved.

* UDP/IP multicast is unreliable. The packets may get lost or arrive out of order. This

is not a critical problem for the real-time session. However, before the real-time

session, the geometry model, texture image, texture coordinates, and probably texture

pyramids are required to be transmitted to the receiving site reliably. Otherwise, the

errors in the 3-D object will exist for the whole conferencing session.

* UDP/IP multicast sends the packet to the whole group, without knowledge of the

receiving sites. If a new receiving client intends to join the conferencing session after

the beginning, the objects that only the new client needs should not be sent to the

whole group.

Clients

Internet

IP .

IP,
IP0

MIPn

M_IP

MIP0

IP

MIP,
IP

MIRn
MIP1
MIlP0

MIP0

IPn

IP,

IPO

M-IPn

M_IP,
MIP0

Figure 5-1 Many-to-many architecture

Servers

IP,

M_IP,

TCP Unicast server thread

UDP Multicast server thread

M_IP The multicast IP address; each
server has a unique address.

IP, IP address

TCP Unicast client

UDP Multicast client

1Pn

M-IPn

To overcome these two problems, two networking threads are involved in one server.

One thread performs as a TCP unicast server; the other thread performs as a UDP

multicast server. The TCP thread handles the transmission of the objects. The UDP

thread deals with the real-time conferencing session. The TCP server thread is always

listening to any TCP client socket. The object will be sent to the client once the request

from the client is accepted. The UDP multicast server thread sends the motion parameters

out at nearly 30Hz (the speed is dependent on the receiving sites). Each server has a

unique IP address and a unique multicast group IP address. The multicast group IP

address range is from 224.0.0.0 to 239.255.255.255.

Before joining the multicast group, the client connects to the TCP server sockets one by

one to receive the objects. Then the client creates multiple multicast client sockets to join

multiple multicast groups. After that, the real-time thread is generated to receive the

motion parameters of multiple objects from multiple multicast group servers. When all

the motion parameters are brought into the buffer, the real-time thread will send a

message to notify the other modules to render and display the scene. Figure 5-1 illustrates

the many-to-many architecture.

5.2 Rate adaptation
The additional TCP connections between servers and clients have advantages in

improving multicast efficiency. As an example, this section will introduce the rate

adaptation strategy in our system.

For current video multicast systems, rate adaptation is used to match the available

network capacity. The situation in our system is somewhat different. Our system uses the

3-D avatar approach, which requires low transmission bandwidth. At the current stage,

only the rigid-motion parameters are transmitted for each frame. All these parameters

consist of 12 float numbers -- 3 for translation and 9 for rotation. Therefore, the output

rate of a server is 512bits/frame; the input rate of the client is n times 512bits/frame (n is

the number of the objects). In this case, network capacity is not a problem. However, 3-D

rendering speed varies significantly between different client PCs. Rate adaptation in our

system is intended to efficiently serve all these clients with variability in graphics

processing capabilities.

The rendering time for each client may vary dynamically. New clients may join in and

old clients may quit at any time. Every five seconds (this clock is adjustable), each client

detects the rendering time for a single frame and sends this number to the server through

the TCP connection. The server receives the reports from all the clients and adjusts its

multicast sending rate based on the fastest rendering speed reported so that the high-

graphics-capability client is not being underutilized. Other clients also receive all the

frames transmitted from the server, but only render some of them, based on their own

graphics processing capabilities.

5.3 Software implementation
The software system is implemented on the Win32 platform, utilizing OpenGL, OpenCV,

and WinSock functionality libraries. Figure 5-2 illustrates the software architecture of the

server. Figure 5-3 illustrates the software architecture of the client.

Figure 5-2 Software architecture of the server

Networking Connection

clock

Figure 5-3 Software architecture of the client

5.4 User interfaces
Figure 5-4 shows the user interface of a server. The user can supervise the process with

the mouse and the keyboard. Both the 3-D graphics view and the video images are shown

concurrently under the common window frame.

Figure 5-5 shows the client interface from one perspective of audience. The head object

of members A, B, and C are composed into one virtual room space. The blue 3-D box

shows the virtual room space. Figures 5-6, 5-7, and 5-8 respectively show the client

interfaces from the corresponding perspective of member A, B, and C. Only one head

object can perform rigid motion because we only set up the cameras on one server site.

Figure 5-4 The user interface of a server

Figure 5-5 Client interface of audience

Figure 5-6 Client interface of member A

Figure 5-7 Client interface of member B

..

Figure 5-8 Client interface of member C

Chapter 6

Future Directions
The previous chapters have introduced several aspects of our system. This chapter

discusses the limitations of, and proposes improvements for, our system. Moreover, this

chapter explores the future directions of teleconferencing reinvention.

6.1 Improvements fo r X-Conference
Our current system has several limitations. The future improvements may be on the

following issues:

e Build a more realistic 3-D head by taking advantage of image sequences. A generic

head model is used in the current system. In many cases only scaling in three

directions cannot cover all the shape differences between the generic model and the

real human head. We need to explore the approaches to building a 3-D head from

image sequences by tracking and comparing the real images and the model views so

that more individualized details can be reconstructed.

* Find a more reliable solution for tracking. The animation quality is highly dependent

on the tracking results. To get more reliable tracking results, we need to track more

features. We also need to develop some approaches to facial features finding and

confidence measurement so that the tracking errors can be recovered when the

tracking process fails. Moreover, some methods other than the pure computer vision

approach also need to be considered.

" Design a generic model more suitable for video conferencing. Our current system

uses a generic VRML model that has 2313 triangles and 1257 vertices. If the

expected resolution is similar to that of current videoconference systems, such a

sophisticated 3-D model is not necessary. Additionally, more details in the shape of

eyes, mouth, and nose usually worsen the quality of texture mapping, especially when

texture displacement is employed for animation. A simpler but more effective 3-D

model needs to be designed for our purposes, because current 3-D models available

on the Web or scanned by the specialized equipment are usually not qualified for our

applications.

Explore immersive display approaches. In our system, each site has an independently

calibrated 3-D scene coordinate system. To smoothly compose the objects of different

sites into a single virtual scene, we need to convert the separate 3-D scene coordinates

to the common 3-D scene coordinates based on the predefined spatial relationships.

Additionally, we hope that a flexible approach can be developed so that precise

configuration work is not necessary.

6.2 Infrastructures and resources for future research

Reinventing a teleconferencing system goes much beyond designing a specific system.

To support the research effort, some facility and software infrastructures and resources

need to be built. Some of them are being developed in other research groups around the

world.

. Build multiple calibrated camera systems. Although there exist some solutions for

evaluating 3-D structure and the camera parameters from the non-calibrated camera, a

multiple calibrated camera system will definitely provide more flexible opportunities

to explore a variety of approaches including synthetic view, visual hull, and so on.

Additionally, a special space is needed to contain the camera system. CMU's "3D

room" [Kanade, 1998] is an example. This effort not only includes facility

configuration but also requires the development of the relevant software.

" Build the 3-D head Database. One of the most promising techniques for modeling

textured 3-D faces is the learning strategy introduced in [Blanz, 1999]. This technique

uses a linear combination of a large number of 3-D face models to describe an

arbitrary human face. The process of modeling is to obtain the optimized combination

parameter sets. The result is compelling. Building or having access to the 3-D head

Database will bring us further improvement through use of some learning algorithms.

e Access MPEG-4 animation resources. MPEG-4 has specified three types of

parameters related to the 3-D human face object: Facial Animation Parameters (FAP),

Facial Definition Parameters (FDP), and FAP Interpolation Table (FIT). Some

research activities are being conducted in this area. Having access to the relevant

resources such as a well-designed articulation facial model containing MPEG-4

parameters will be helpful for our future work.

6.3 Future research direction
One of the future research directions is to capture, model, and deliver the motion of the

human upper body including gestures. We can also use an avatar to represent the motion.

However, we find that visual hull may be a more effective approach to solving this

problem. In [Buehler, 1999;Matusik, 2000], a real-time approach to computing visual

hulls from silhouette image data is introduced. Only four cameras are used. Visual hull is

not suitable for head modeling because it will lose too many details. However, it may be

good for real-time human body modeling. Although body motion is important for visual

communication, the resolution requirement can be lower, compared to the required head

resolution. Therefore, we plan to combine both avatar and visual hull approaches for

future development. With this approach, merging the head and the body smoothly is one

challenge; compression of visual hull's shape and texture for transmission is another

problem to be considered.

6.4 The future we envision
Figure 6-1 shows the future teleconferencing system we can envision today. On each site,

the server acquires the 3-D visual object of the local participant, and transmits it to the

Internet; the client receives the 3-D visual objects of the other participants and composes

the objects into the scene, being rendered from the individual perspective of the local

participant. Additionally, the visual objects of all the participants can be composed

together for broadcasting news for delivery to a larger population other than the meeting

group. In Figure 6-1, the research problems are indicated for each aspect. Although there

have been many years of efforts, the 3-D virtual teleconferencing system is still a

Broadcasting News

Inteme

teinpression

Networking architecture

Mulimedia/IP

(PCs)

Figure 6-1 Future we envision

............

challenging research topic. We hope this thesis will make available our investigations and

insights for some parts of the topic.

References

[Agamanolis, 1997]

[Basu, 1996]

[Blanz, 1999]

[Bove, 1995]

[Buehler, 1999]

[Burt, 1983]

Stefan Agamanolis, Alex Westner, and V. Michael Bove, Jr.,

'Reflection of Presence: Toward More Natural and Responsive

Telecollaboration," Proc. SPIE Multimedia Networks, 3228A,

1997.

Sumit Basu, Irfan Essa, Alex Pentland, "Motion Regularization for

Model-based Head Tracking," Proceddings of 13th Int'l. Conf. on

Pattern Recognition (ICPR'96).

Volker Blanz, Thomas Vetter, "A Morphable Model For The

Synthesis of 3D Faces," SIGGARAPH 99, Los Angeles.

V. M. Bove, Jr., "Object-Oriented Television," SMPTE Journal,

104, Dec. 1995, pp. 803-807.

Chris Buehler, Wojciech Matusik, Steven Gortler, and Leonard

McMillan, "Creating and Rendering Image-based Visual Hulls,"

MIT Laboratory for Computer Science Technical Report MIT-

LCS-TR-780, June 14, 1999.

Peter J. Burt, Edward H. Adelson, "A Multiresolution Spline with

Application to Image Mosaics," ACM Transactions on Graphics,

vol. 2, no. 4, pp. 217-236 (1983).

[Darrell, 1997]

[Gemmell, 2000]

[Gibbs, 1999]

[Han, 1996]

[Haralick, 1989]

[Heikkila, 1997]

[Ishii, 1994]

Trevor Darrell, Sumit Basu, Christopher Wren, and Alex Pentland,

"Perceptually-Driven Avatars and Interfaces: Active Methods for

Direct Control," SIGGRAPH'97.

Jim Gemmell, Kentaro Toyama, C.Lawrence Zitnick, Thomas

Kang, Steven Seitz, "Gaze Awareness for Videoconferencing:

software Approach." IEEE MultiMedia, October-December 2000.

Simon J. Gibbs, Constantin Arapis, Christian J. Breiteneder,

"TELEPORT - Towards immersive copresence," Multimedia

Systems 7(3): 214-221 (1999).

Jefferson Han, Brian Smith, "CU-SeeMe VR Immersive Desktop

Teleconferencing," ACM Multimedia'96, ACM New York, 1996,

pp. 199-207.

Robert M. Haralick, Hyonam Joo, Chung-nan Lee, Xinhua

Zhuang, Vaidya G. Vaidya, Man Bae Kim, "Pose estimation from

corresponding point data." Systems, Man and Cybernetics, IEEE

Transactions on, Volume: 19 Issue: 6 , Nov.-Dec. 1989.

Janne Heikkila, Olli Silven, "A Four-step Camera Calibration

Procedure with Implicit Image Correction." IEEE Conference on

Computer Vision and Pattern Recognition (CVPR'97).

Hiroshi Ishii, Minoru Kobayashi, Kazuho Arita., "Iterative Design

of Seamless Collaboration Media," Communications of the ACM

(CACM), Special Issue on Internet Technology, ACM, Vol. 37,

No. 8, August 1994, pp. 83-97.

[Jebara, 1997]

[Jebara, 1999]

[Kanade, 1998]

[Lanier, 2001]

[Lee, 2000]

[Machin, 1996]

[Matusik, 2000]

[McLeod, 1999]

Tony Jebara, Alex Pentland, "Parameterized Structure from

Motion for 3D Adaptive Feedback Tracking of Faces." IEEE

Conference on Computer Vision and Pattern Recognition

(CVPR'97).

Tony Jebara, Ali Azarbayejani, Alex Pentland, "3D structure from

2D motion," IEEE Signal Processing Magazine, Volume: 16 Issue:

3 , May 1999.

Takeo Kanade, Hideo Saito, Sundar Vedula, "The 3D Room:

Digitizing Time-Varying 3D Events by Synchronized Multiple

Video Streams", CMU-RI-TR-98-34.

Jaron Lanier, "Virtually There," Scientific American, April 2001.

Won-Sook Lee, Nadia Magnenat-Thalmann, "Fast Head Modeling

for Animation," Journal Image and Vision Computing, Volume 18,

Number 4, pp.355-364, Elsevier, March 2000.

David Machin, "Real-time facial motion analysis for virtual

teleconferencing," Proceedings of the Second International

Conference on Automatic Face and Gesture Recognition, 1996.

Wojciech Matusik, Chris Buehler, Ramesh Raskar, Steven Gortler,

and Leonard McMillan, "Image-based Visual Hulls," SIGGRAPH

2000.

Dennis Mcleod, Ulrich Neumann, Chrysostomos L. Nikias, And

Alexander A. Sawchuk, "Integrated Media Systems: The Move

Toward Media Immersion," IEEE Signal Processing Magazine,

January 1999 VOL. 16, No.1

[Mortlock, 1999]

[Ohya, 1995]

A N Mortlock, D Machin, S McConnell and P J Sheppard, "Virtual

Conferencing," Telepresence, Kluwer Academic Publishers,

Boston, 1999, pp. 209-225.

Jun Ohya, Yasuichi Kitamura, Fumio Kishino, Nobuyoshi

Terashima, Haruo Takemura, Hirofumi Ishii, "Virtual Space

Teleconferencing: Real-time Reproduction of 3D Human Images,"

Journal of Visual Communication and Image Representation

Vol.6, No.1, March, pp. 1-25, 1995.

[Raskar, 1998] Ramesh Raskar, Greg Welch, Matt Cutts,

Henry Fuchs, "The Office of the Future:

Image-Based Modeling and Spatially

SIGGRAPH 98, Orlando, Florida, 1998.

Adam lake, Lev Stesin,

A unified Approach to

Immersive Displays,"

[Saito, 1999]

[Strom, 1999]

[Tsai, 1997]

Hideo Saito, Shigeyuki Baba, Makoto Kimura, Sundar Vedula,

Takeo Kanade, "Appearance-Based Virtual View Generation of

Temporally-Varying Events from Multi-Camera Images in the 3D

room," CMU-CS-99-127.

Jacob Strom, Tony Jebara, Sumit Basu, Alex Pentland, "Real Time

Tracking and Modeling of Faces: An EKF-based Analysis by

Synthesis Approach." Proceedings of the Modeling People

Workshop at ICCV'99.

Chun-Jen Tsai, Peter Eisert, Bernd Girod, and Aggelos K.

Katsaggelos, "Model-based Synthetic View Generation from a

Monocular Video Sequence," IEEE International Conference on

Image Processing, p. 1-444, Santa Barbara, Oct. 1997.

[Valente, 2000]

[Zhang, 1999]

Stephane Valente, Jean-Luc Dugelay, "Face Tracking and Realistic

Animations for Telecommunicant Clones," IEEE Multimedia,

January-March 2000.

Z. Zhang. "Flexible Camera Calibration By Viewing a Plane From

Unknown Orientations." International Conference on Computer

Vision (ICCV'99), Corfu, Greece, pages 666-673, September 1999.

