283 research outputs found

    Proceedings of the Fifth International Mobile Satellite Conference 1997

    Get PDF
    Satellite-based mobile communications systems provide voice and data communications to users over a vast geographic area. The users may communicate via mobile or hand-held terminals, which may also provide access to terrestrial communications services. While previous International Mobile Satellite Conferences have concentrated on technical advances and the increasing worldwide commercial activities, this conference focuses on the next generation of mobile satellite services. The approximately 80 papers included here cover sessions in the following areas: networking and protocols; code division multiple access technologies; demand, economics and technology issues; current and planned systems; propagation; terminal technology; modulation and coding advances; spacecraft technology; advanced systems; and applications and experiments

    The mobile satellite service (MSS) systems for global personal communications

    Get PDF
    A worldwide interest has arisen on personal communications via satellite systems. The recently proposed mobile satellite service(MSS) systems are categorized four areas: geostationary earth orbit(GEO) systems, medium earth orbit(MEO) systems, low earth orbit(LEO) systems, and highly elliptical orbit(HEO) systems. Most of the systems in each category are introduced and explained including some technical details. The communication links and orbital constellations of some systems are analyzed and compared with different categories, and with different systems. Some economical aspects of the systems are mentioned. The regulatory issues about frequency spectrum allocation, and the current technical trends in these systems are summarized

    A random access MAC protocol for MPR satellite networks

    Get PDF
    Dissertação apresentada para obtenção do Grau de Mestre em Engenharia Electrotécnica e de Computadores, pela Universidade Nova de Lisboa, Faculdade de Ciências e TecnologiaRandom access approaches for Low Earth Orbit (LEO) satellite networks are usually incompatible with the Quality of Service (QoS) requirements of multimedia tra c, especially when hand-held devices must operate with very low power. Cross-Layered optimization architectures, combined with Multipacket Reception (MPR)schemes are a good choice to enhance the overall performance of a wireless system. Hybrid Network-assisted Diversity Multiple Access (H-NDMA) protocol, exhibits high energy e ciency, with MPR capability, but its use with satellites is limited by the high round trip time. This protocol was adapted to satellites, in Satellite-NDMA, but it required a pre-reservation mechanism that introduces a signi cant delay. This dissertation proposes a random access protocol that uses H-NDMA, for Low Earth Orbit (LEO) satellite networks, named Satellite Random-NDMA (SR-NDMA). The protocol addresses the problem inherent to satellite networks (large round trip time and signi cant energy consumption) de ning a hybrid approach with an initial random access plus possible additional scheduled retransmissions. An MPR receiver combines the multiple copies received, gradually reducing the error rate. Analytical performance models are proposed for the throughput, delay, jitter and energy e ciency considering nite queues at the terminals. It is also addressed the energy e ciency optimization, where the system parameters are calculated to guarantee the QoS requirements. The proposed system's performance is evaluated for a Single-Carrier with Frequency Domain Equalization (SC-FDE) receiver. Results show that the proposed system is energy e cient and can provide enough QoS to support services such as video telephony

    Proceedings of the Third International Mobile Satellite Conference (IMSC 1993)

    Get PDF
    Satellite-based mobile communications systems provide voice and data communications to users over a vast geographic area. The users may communicate via mobile or hand-held terminals, which may also provide access to terrestrial cellular communications services. While the first and second International Mobile Satellite Conferences (IMSC) mostly concentrated on technical advances, this Third IMSC also focuses on the increasing worldwide commercial activities in Mobile Satellite Services. Because of the large service areas provided by such systems, it is important to consider political and regulatory issues in addition to technical and user requirements issues. Topics covered include: the direct broadcast of audio programming from satellites; spacecraft technology; regulatory and policy considerations; advanced system concepts and analysis; propagation; and user requirements and applications

    A Performance Analysis of a Joint LMDS/ Satellite Communication Network

    Get PDF
    The goal of this research is to provide a performance analysis of a joint terrestrial/ satellite communication network. The systems of interest are the Local Multipoint Distribution Service (LMDS) terrestrial system and the proposed Teledesic satellite network. This analysis is performed using the OPNET network simulation tool. Simulations are run for twelve separate scenarios involving three factors which include: number of users, modulation type, and Quality of Service (QoS). The key metrics for characterizing simulation scenarios are the end-to-end delay, bit error rate, and average system throughput. The results obtained display the benefit of improved throughput, approximately 20 Mbps for the low user load and approximately 8 to 11 Mbps for the high user load, when the modulation schemes where changed. This improvement comes at the expense the bit error rate. For example, the bit error rate increased by a factor of 5 for the low user load when changing from BPSK to QPSK and by a factor of 1.5 for the QPSK to 8-PSK change. The peak end-to-end delay results, ranging from .053 seconds to .446 seconds, proved to support real-time voice communication for all but one scenario (BPSK/ high user load). The QoS proved to be a benefit for scenarios with a high user load (150 users) increasing the average throughput by 2 to 4 Mbps. The QoS also reduced the peak end-to-end delay, narrowing the range from .04 to .104 seconds. The analysis of these three main operational characteristics gives a fundamental look at the joint network\u27s performance capabilities

    QoS in LEO satellite networks with multipacket reception

    Get PDF
    Dissertação apresentada para obtenção do Grau de Mestre em Engenharia Electrotécnica e de Computadores, pela Universidade Nova de Lisboa, Faculdade de Ciências e TecnologiaLow Earth Orbit (LEO) satellite networks can improve terrestrial wireless networks to allow global broadband services for Mobile Terminals (MT), regardless of the users' location. In this context, hybrid telecommunication systems combining satellites with Long Term Evolution (LTE) networks, like the LightSquared technology, are intended to provide ubiquitous high-speed services. This dissertation analyses the performance of a random access protocol that uses Hybrid Network-assisted Diversity Multiple Access (H-NDMA), for a LEO satellite system network, named by Satellite Random NDMA (SR-NDMA). The protocol also considers a Single Carrier-Frequency Domain Equalization (SC-FDE) scheme for the uplink transmission and a Multipacket Reception (MPR) receiver. In this scenario, the transmission of data packets between MTs and the Base Station (BS) is made through random access and schedule access slots, organized into super-frames with the duration of a Round Trip Time (RTT). A SR-NDMA simulator is implemented to measure the system performance in matters of throughput, energy consumption, system delay and also the protocol capacity to meet Quality of Service (QoS) requirements. A set of simulations tests were made with a random Poisson process tra c generation to validate the analytical model. The capacity to ful l the QoS requirements of a real-time tra c class was also tested.FCT/MEC: MPSat - PTDC/EEA-TEL/099074/2008, OPPORTUNISTIC CR - PTDC/EEA-TEL/115981/2009, Femtocells - PTDC/EEA-TEL/120666/2010 e ADIN - PTDC/EEI-TEL/2990/201

    System level performance of ATM transmission over a DS-CDMA satellite link.

    Get PDF
    PhDAbstract not availableEuropean Space Agenc
    corecore