249 research outputs found

    Integer-Forcing MIMO Linear Receivers Based on Lattice Reduction

    Full text link
    A new architecture called integer-forcing (IF) linear receiver has been recently proposed for multiple-input multiple-output (MIMO) fading channels, wherein an appropriate integer linear combination of the received symbols has to be computed as a part of the decoding process. In this paper, we propose a method based on Hermite-Korkine-Zolotareff (HKZ) and Minkowski lattice basis reduction algorithms to obtain the integer coefficients for the IF receiver. We show that the proposed method provides a lower bound on the ergodic rate, and achieves the full receive diversity. Suitability of complex Lenstra-Lenstra-Lovasz (LLL) lattice reduction algorithm (CLLL) to solve the problem is also investigated. Furthermore, we establish the connection between the proposed IF linear receivers and lattice reduction-aided MIMO detectors (with equivalent complexity), and point out the advantages of the former class of receivers over the latter. For the 2×22 \times 2 and 4×44\times 4 MIMO channels, we compare the coded-block error rate and bit error rate of the proposed approach with that of other linear receivers. Simulation results show that the proposed approach outperforms the zero-forcing (ZF) receiver, minimum mean square error (MMSE) receiver, and the lattice reduction-aided MIMO detectors.Comment: 9 figures and 11 pages. Modified the title, abstract and some parts of the paper. Major change from v1: Added new results on applicability of the CLLL reductio

    Precoded Integer-Forcing Universally Achieves the MIMO Capacity to Within a Constant Gap

    Full text link
    An open-loop single-user multiple-input multiple-output communication scheme is considered where a transmitter, equipped with multiple antennas, encodes the data into independent streams all taken from the same linear code. The coded streams are then linearly precoded using the encoding matrix of a perfect linear dispersion space-time code. At the receiver side, integer-forcing equalization is applied, followed by standard single-stream decoding. It is shown that this communication architecture achieves the capacity of any Gaussian multiple-input multiple-output channel up to a gap that depends only on the number of transmit antennas.Comment: to appear in the IEEE Transactions on Information Theor

    Integer-Forcing Linear Receivers

    Get PDF
    Linear receivers are often used to reduce the implementation complexity of multiple-antenna systems. In a traditional linear receiver architecture, the receive antennas are used to separate out the codewords sent by each transmit antenna, which can then be decoded individually. Although easy to implement, this approach can be highly suboptimal when the channel matrix is near singular. This paper develops a new linear receiver architecture that uses the receive antennas to create an effective channel matrix with integer-valued entries. Rather than attempting to recover transmitted codewords directly, the decoder recovers integer combinations of the codewords according to the entries of the effective channel matrix. The codewords are all generated using the same linear code which guarantees that these integer combinations are themselves codewords. Provided that the effective channel is full rank, these integer combinations can then be digitally solved for the original codewords. This paper focuses on the special case where there is no coding across transmit antennas and no channel state information at the transmitter(s), which corresponds either to a multi-user uplink scenario or to single-user V-BLAST encoding. In this setting, the proposed integer-forcing linear receiver significantly outperforms conventional linear architectures such as the zero-forcing and linear MMSE receiver. In the high SNR regime, the proposed receiver attains the optimal diversity-multiplexing tradeoff for the standard MIMO channel with no coding across transmit antennas. It is further shown that in an extended MIMO model with interference, the integer-forcing linear receiver achieves the optimal generalized degrees-of-freedom.Comment: 40 pages, 16 figures, to appear in the IEEE Transactions on Information Theor

    Decoding by Sampling: A Randomized Lattice Algorithm for Bounded Distance Decoding

    Full text link
    Despite its reduced complexity, lattice reduction-aided decoding exhibits a widening gap to maximum-likelihood (ML) performance as the dimension increases. To improve its performance, this paper presents randomized lattice decoding based on Klein's sampling technique, which is a randomized version of Babai's nearest plane algorithm (i.e., successive interference cancelation (SIC)). To find the closest lattice point, Klein's algorithm is used to sample some lattice points and the closest among those samples is chosen. Lattice reduction increases the probability of finding the closest lattice point, and only needs to be run once during pre-processing. Further, the sampling can operate very efficiently in parallel. The technical contribution of this paper is two-fold: we analyze and optimize the decoding radius of sampling decoding resulting in better error performance than Klein's original algorithm, and propose a very efficient implementation of random rounding. Of particular interest is that a fixed gain in the decoding radius compared to Babai's decoding can be achieved at polynomial complexity. The proposed decoder is useful for moderate dimensions where sphere decoding becomes computationally intensive, while lattice reduction-aided decoding starts to suffer considerable loss. Simulation results demonstrate near-ML performance is achieved by a moderate number of samples, even if the dimension is as high as 32

    Design guidelines for spatial modulation

    No full text
    A new class of low-complexity, yet energyefficient Multiple-Input Multiple-Output (MIMO) transmission techniques, namely the family of Spatial Modulation (SM) aided MIMOs (SM-MIMO) has emerged. These systems are capable of exploiting the spatial dimensions (i.e. the antenna indices) as an additional dimension invoked for transmitting information, apart from the traditional Amplitude and Phase Modulation (APM). SM is capable of efficiently operating in diverse MIMO configurations in the context of future communication systems. It constitutes a promising transmission candidate for large-scale MIMO design and for the indoor optical wireless communication whilst relying on a single-Radio Frequency (RF) chain. Moreover, SM may also be viewed as an entirely new hybrid modulation scheme, which is still in its infancy. This paper aims for providing a general survey of the SM design framework as well as of its intrinsic limits. In particular, we focus our attention on the associated transceiver design, on spatial constellation optimization, on link adaptation techniques, on distributed/ cooperative protocol design issues, and on their meritorious variants

    Novel Efficient Precoding Techniques for Multiuser MIMO Systems

    Get PDF
    In Multiuser MIMO (MU-MIMO) systems, precoding is essential to eliminate or minimize the multiuser interference (MUI). However, the design of a suitable precoding algorithm with good overall performance and low computational complexity at the same time is quite challenging, especially with the increase of system dimensions. In this thesis, we explore the art of novel low-complexity high-performance precoding algorithms with both linear and non-linear processing strategies. Block diagonalization (BD)-type based precoding techniques are well-known linear precoding strategies for MU-MIMO systems. By employing BD-type precoding algorithms at the transmit side, the MU-MIMO broadcast channel is decomposed into multiple independent parallel SU-MIMO channels and achieves the maximum diversity order at high data rates. The main computational complexity of BD-type precoding algorithms comes from two singular value decomposition (SVD) operations, which depend on the number of users and the dimensions of each user's channel matrix. In this thesis, two categories of low-complexity precoding algorithms are proposed to reduce the computational complexity and improve the performance of BD-type precoding algorithms. One is based on multiple LQ decompositions and lattice reductions. The other one is based on a channel inversion technique, QR decompositions, and lattice reductions to decouple the MU-MIMO channel into equivalent SU-MIMO channels. Both of the two proposed precoding algorithms can achieve a comparable sum-rate performance as BD-type precoding algorithms, substantial bit error rate (BER) performance gains, and a simplified receiver structure, while requiring a much lower complexity. Tomlinson-Harashima precoding (THP) is a prominent nonlinear processing technique employed at the transmit side and is a dual to the successive interference cancelation (SIC) detection at the receive side. Like SIC detection, the performance of THP strongly depends on the ordering of the precoded symbols. The optimal ordering algorithm, however, is impractical for MU-MIMO systems with multiple receive antennas. We propose a multi-branch THP (MB-THP) scheme and algorithms that employ multiple transmit processing and ordering strategies along with a selection scheme to mitigate interference in MU-MIMO systems. Two types of multi-branch THP (MB-THP) structures are proposed. The first one employs a decentralized strategy with diagonal weighted filters at the receivers of the users and the second uses a diagonal weighted filter at the transmitter. The MB-MMSE-THP algorithms are also derived based on an extended system model with the aid of an LQ decomposition, which is much simpler compared to the conventional MMSE-THP algorithms. Simulation results show that a better BER performance can be achieved by the proposed MB-MMSE-THP precoder with a small computational complexity increase

    MIMOă‚·ă‚čăƒ†ăƒ ă«ăŠă‘ă‚‹æ Œć­ćŸșćș•çžźć°ă‚’ç”šă„ăŸäżĄć·æ€œć‡șæł•ćŠăłăăźćżœç”šă«é–ąă™ă‚‹ç ”ç©¶

    Get PDF
    Multiple-input multiple-output (MIMO) technology has attracted attention in wireless communications, since it provides signi cant increases in data throughput and the high spectral efficiency. MIMO systems employ multiple antennas at both ends of the wireless link, and hence can increase the data rate by transmitting multiple data streams. To exploit the potential gains o ered by MIMO, signal processing involved in a MIMO receiver requires a large computational complexity in order to achieve the optimal performance. In MIMO systems, it is usually required to detect signals jointly as multiple signals are transmitted through multiple signal paths between the transmitter and the receiver. This joint detection becomes the MIMO detection. The maximum likelihood (ML) detection (MLD) is known as the optimal detector in terms of minimizing bit error rate (BER). However, the complexity of MLD obstructs its practical implementation. The common linear detection such as zero-forcing (ZF) or minimum mean squared error (MMSE) o ers a remarkable complexity reduction with performance loss. The non-linear detection, e.g. the successive interference cancellation (SIC), detects each symbol sequentially withthe aid of cancellation operations which remove the interferences from the received signal. The BER performance is improved by using the SIC, but is still inferior to that of the ML detector with low complexity. Numerous suboptimal detection techniques have been proposed to approximately approach the ML performance with relatively lower complexity, such as sphere detection (SD) and QRM-MLD. To look for suboptimal detection algorithm with near optimal performance and a ordable complexity costs for MIMO gains faces a major challenge. Lattice-reduction (LR) is a promising technique to improve the performance of MIMO detection. The LR makes the column vectors of the channel state information (CSI) matrix close to mutually orthogonal. The following signal estimation of the transmitted signal applies the reduced lattice basis instead of the original lattice basis. The most popular LR algorithm is the well-known LLL algorithm, introduced by Lenstra, Lenstra, and Lov asz. Using this algorithm, the LR aided (LRA) detector achieves more reliable signal estimation and hence good BER performance. Combining the LLL algorithm with the conventional linear detection of ZF or MMSE can further improve the BER performance in MIMO systems, especially the LR-MMSE detection. The non-linear detection i.e. SIC based on LR (LR-SIC) is selected from many detection methods since it features the good BER performance. And ordering SIC based on LR (LR-OSIC) can further improve the BER performance with the costs of the implementation of the ordering but requires high computational complexity. In addition, list detection can also obtain much better performance but with a little high computational cost in terms of the list of candidates. However, the expected performance of the several detections isnot satis ed directly like the ML detector, in particular for the high modulation order or the large size MIMO system. This thesis presents our studies about lattice reduction aided detection and its application in MIMO system. Our studies focus on the evaluation of BER performance and the computational complexity. On the hand, we improve the detection algorithms to achieve the near-ML BER performance. On the other hand, we reduce the complexity of the useless computation, such as the exhaustive tree search. We mainly solve three problems existed in the conventional detection methods as - The MLD based on QR decomposition and M-algorithm (QRMMLD) is one solution to relatively reduce the complexity while retaining the ML performance. The number of M in the conventional QRM-MLD is de ned as the number of the survived branches in each detection layer of the tree search, which is a tradeo between complexity and performance. Furthermore, the value of M should be large enough to ensure that the correct symbols exist in the survived branches under the ill-conditioned channel, in particular for the large size MIMO system and the high modulation order. Hence the conventional QRM-MLD still has the problem of high complexity in the better-conditioned channel. - For the LRA MIMO detection, the detection errors are mainly generated from the channel noise and the quantization errors in the signal estimation stage. The quantization step applies the simple rounding operation, which often leads to the quantization error. If this error occurs in a row of the transmit signal, it has to propagate to many symbols in the subsequent signal estimation and result in degrading the BER performance. The conventional LRA MIMO detection has the quantization problem, which obtains less reliable signal estimation and leads to the BER performance loss. - Ordering the column vectors of the LR-reduced channel matrix brings large improvement on the BER performance of the LRSIC due to decreasing the error propagation. However, the improvement of the LR-OSIC is not su cient to approach the ML performance in the large size MIMO system, such as 8 8 MIMO system. Hence, the LR-OSIC detection cannot achieve the near-ML BER performance in the large size of MIMO system. The aim of our researches focuses on the detection algorithm, which provides near-ML BER performance with very low additional complexity. Therefore, we have produced various new results on low complexity MIMO detection with the ideas of lattice reduction aided detection and its application even for large size MIMO system and high modulation order. Our works are to solve the problems in the conventional MIMO detections and to improve the detection algorithms in the signal estimation. As for the future research, these detection schemes combined with the encoding technique lead to interesting and useful applications in the practical MIMO system or massive MIMO.é›»æ°—é€šäżĄć€§ć­Š201

    A comparative study of STBC transmissions at 2.4 GHz over indoor channels using a 2 × 2 MIMO testbed

    Get PDF
    In this paper we employ a 2×2 Multiple-Input Multiple-Output (MIMO) hardware platform to evaluate, in realistic indoor scenarios, the performance of different space-time block coded (STBC) transmissions at 2.4GHz. In particular, we focus on the Alamouti orthogonal scheme considering two types of channel state information (CSI) estimation: a conventional pilot-aided supervised technique and a recently proposed blind method based on second-order statistics (SOS). For comparison purposes, we also evaluate the performance of a Differential (non-coherent) space-time block coding (DSTBC). DSTBC schemes have the advantage of not requiring CSI estimation but they incur in a 3dB loss in performance. The hardware MIMO platform is based on high-performance signal acquisition and generation boards, each one equipped with a 1GB memory module that allows the transmission of extremely large data frames. Upconversion to RF is performed by two RF vector signal generators whereas downconversion is carried out with two custom circuits designed from commercial components. All the baseband signal processing is implemented off-line in MATLAB¼, making the MIMO testbed very flexible and easily reconfigurable. Using this platform we compare the performance of the described methods in line-of-sight (LOS) and non-line-of-sight (NLOS) indoor scenarios.This work has been supported by Ministerio de Educación y Ciencia of Spain, Xunta de Galicia and FEDER funds of the European Union under grant numbers TEC2004-06451-C05-02, TEC2004-06451-C05-01, PGIDT05PXIC10502PN, and FPU grants AP2004-5127 and AP2006-2965

    Lattice sampling algorithms for communications

    No full text
    In this thesis, we investigate the problem of decoding for wireless communications from the perspective of lattice sampling. In particular, computationally efficient lattice sampling algorithms are exploited to enhance the system performance, which enjoys the system tradeoff between performance and complexity through the sample size. Based on this idea, several novel lattice sampling algorithms are presented in this thesis. First of all, in order to address the inherent issues in the random sampling, derandomized sampling algorithm is proposed. Specifically, by setting a probability threshold to sample candidates, the whole sampling procedure becomes deterministic, leading to considerable performance improvement and complexity reduction over to the randomized sampling. According to the analysis and optimization, the correct decoding radius is given with the optimized parameter setting. Moreover, the upper bound on the sample size, which corresponds to near-maximum likelihood (ML) performance, is also derived. After that, the proposed derandomized sampling algorithm is introduced into the soft-output decoding of MIMO bit-interleaved coded modulation (BICM) systems to further improve the decoding performance. According to the demonstration, we show that the derandomized sampling algorithm is able to achieve the near-maximum a posteriori (MAP) performance in the soft-output decoding. We then extend the well-known Markov Chain Monte Carlo methods into the samplings from lattice Gaussian distribution, which has emerged as a common theme in lattice coding and decoding, cryptography, mathematics. We firstly show that the statistical Gibbs sampling is capable to perform the lattice Gaussian sampling. Then, a more efficient algorithm referred to as Gibbs-Klein sampling is proposed, which samples multiple variables block by block using Klein’s algorithm. After that, for the sake of convergence rate, we introduce the conventional statistical Metropolis-Hastings (MH) sampling into lattice Gaussian distributions and three MH-based sampling algorithms are then proposed. The first one, named as MH multivariate sampling algorithm, is demonstrated to have a faster convergence rate than Gibbs-Klein sampling. Next, the symmetrical distribution generated by Klein’s algorithm is taken as the proposal distribution, which offers an efficient way to perform the Metropolis sampling over high-dimensional models. Finally, the independent Metropolis-Hastings-Klein (MHK) algorithm is proposed, where the Markov chain arising from it is proved to converge to the stationary distribution exponentially fast. Furthermore, its convergence rate can be explicitly calculated in terms of the theta series, making it possible to predict the exact mixing time of the underlying Markov chain.Open Acces
    • 

    corecore