6 research outputs found

    Architecture for dual-mode quadruple precision floating point adder

    Get PDF
    This paper presents a configurable dual-mode architecture for floating point (F.P.) adder. The architecture (named as QPdDP) works in dual-mode which can operates either for quadruple precision or dual (two-parallel) double precision. The architecture follows the standard state-of-the-art flow for floating point adder. It is aimed for the computation of normal as well as sub-normal operands, along with the support for the exceptional case handling. The key sub-components in the architecture are re-designed & optimized for on-the-fly dual-mode processing, which enables efficient resource sharing for dual precision operands. The data-path is optimized for minimal multiplexing circuitry overhead. The presented dual- mode architecture provide SIMD support for double precision operands, along with high (quadruple) precision support. The proposed architecture is synthesized using UMC 90nm technology ASIC implementation. It is compared with the best available literature works, and have shown better design metrics in terms of area, period and area × period, along with more computational support.published_or_final_versio

    Unified Architecture for Double/Two-Parallel Single Precision Floating Point Adder

    Get PDF
    postprin

    Configurable Architectures For Multi-mode Floating Point Adders

    Get PDF
    published_or_final_versio

    Configurable Architecture for Double/Two-Parallel Single Precision Floating Point Division

    Get PDF
    postprin

    A new floating-point adder FPGA-based implementation using RN-coding of numbers

    Get PDF
    A well-known problem in the computer science area is related to numerical data representation, which directly affects adder circuits’ design and a reason to have different formats: IEEE Std. 754, Half-Unit-Biased (HUB), and Round-to-Nearest (RN). RN has an advantage that rounding to nearest is equivalent to a word truncation. It avoids double rounding errors and intermediate rounding steps with an exact conversion between formats, making it applicable to general problems. However, there is a lack of research on the hardware implementation of the RN representation. In this work, we propose hardware architectures for binary and floating-point adders, analyzing for the latter its performance in terms of error and resource consumption in FPGAs. To accomplish this, we have developed a one-bit RN-based adder that allows modular designs, considering an efficient signal propagation to obtain new architectures for both binary and floating-point single-precision adders. The results open new perspectives for further applications

    Single-Precision and Double-Precision Merged Floating-Point Multiplication and Addition Units on FPGA

    Get PDF
    Floating-point (FP) operations defined in IEEE 754-2008 Standard for Floating-Point Arithmetic can provide wider dynamic range and higher precision than fixed-point operations. Many scientific computations and multimedia applications adopt FP operations. Among all the FP operations, addition and multiplication are the most frequent operations. In this thesis, the single-precision (SP) and double-precision (DP) merged FP multiplier and FP adder architectures are proposed. The proposed efficient iterative FP multiplier is designed based on the Karatsuba algorithm and implemented with the pipelined architecture. It can accomplish two parallel SP multiplication operations in one iteration with a latency of 6 clock cycles or one DP multiplication operation in two iterations with a latency of 9 clock cycles. Implemented on Xilinx Virtex-5 (xc5vlx155ff1760-3) FPGA device, the proposed multiplier runs at 348 MHz using 6 DSP48E blocks, 1117 LUTs, and 1370 FFs. Compared to previous FPGA based multiple-precision FP multiplier, the proposed designs runs at 4% faster clock frequency with reduction of 33% of DSP blocks, 17% latency for SP multiplication, and 28% latency for DP multiplication. The proposed high performance FP adder is designed based one the two-path FP addition algorithm. With fully pipelined architecture, the proposed adder can accomplish one DP or two parallel SP addition/subtraction operations in 6 clock cycles. The proposed adder architecture is implemented on both Altera and Xilinx 65nm process FPGA devices. The proposed adder can run up to 336 MHz with 1694 FFs, 1420 LUTs on Xilinx Virtex-5 (xc5vlx155ff1760-3) FPGA device. Compared to the combination of one DP and two SP architecture built with Xilinx FP operator, the proposed adder has 11.3% faster clock frequency. On Altera Stratix-III (EP3SL340F1760C2) FPGA device, the maximum clock frequency of the proposed adder can reach 358 MHz and 1686 ALUTs and 1556 registers are occupied. The proposed adder is 11.6% faster than the combination of one DP and two SP architecture built with Altera FP megafunction. For the reference of other researchers, the implementation results of the proposed FP multiplier and FP adder on the latest Xilinx Virtex-7 device and Altera Arria 10 device are also provided
    corecore