
Title Architecture for dual-mode quadruple precision floating point
adder

Author(s) Jaiswal, MK; Bogaraju, SV; So, HKH

Citation
The 2015 IEEE Computer Society Annual Symposium on VLSI
(ISVLSI), Montpellier, France, 8-10 July 2015. In Conference
Proceedings, 2015, p. 249-254

Issued Date 2015

URL http://hdl.handle.net/10722/214074

Rights IEEE Computer Society Annual Symposium on VLSI. Copyright
© IEEE Computer Society.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by HKU Scholars Hub

https://core.ac.uk/display/38075654?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

Architecture for Dual-Mode Quadruple Precision Floating Point Adder

Manish Kumar Jaiswal, B. Sharat Chandra Varma, and Hayden K.-H So

Department of EEE, The University of Hong Kong, Hong Kong

Email: {manishkj, varma, hso}@eee.hku.hk

Abstract—This paper presents a configurable dual-mode
architecture for floating point (F.P.) adder. The architecture
(named as QPdDP) works in dual-mode which can operates
either for quadruple precision or dual (two-parallel) double
precision. The architecture follows the standard state-of-the-art
flow for floating point adder. It is aimed for the computation of
normal as well as sub-normal operands, along with the support
for the exceptional case handling. The key sub-components
in the architecture are re-designed & optimized for on-the-fly
dual-mode processing, which enables efficient resource sharing
for dual precision operands. The data-path is optimized for
minimal multiplexing circuitry overhead. The presented dual-
mode architecture provide SIMD support for double precision
operands, along with high (quadruple) precision support.
The proposed architecture is synthesized using UMC 90nm
technology ASIC implementation. It is compared with the
best available literature works, and have shown better design
metrics in terms of area, period and area× period, along with
more computational support.

Keywords-Floating Point Addition, Configurable Architec-
ture, Dual-Mode Arithmetic, ASIC, Digital Arithmetic.

I. INTRODUCTION

Floating point (FP) number system [1], due to its wide

dynamic range, is a common choice for a large set of

scientific, engineering and numerical processing computa-

tions. Generally, the performance of these computations

greatly depends on the underlying floating point arithmetic

processing unit. Furthermore, the availability for double pre-

cision (DP) computation is not enough and the demand for

high precision arithmetic is increasing in many application

areas [2], [3].

The contemporary processing units achieve high per-

formance requirement by using multiple units of single

precision and double precision arithmetic hardware. Like,

the Synergistic Processing Element (SPE) in Cell-BE pro-

cessor [4] contains a vector array of 4 single precision and

an array of 2 double precision. The ARM VFU co-processor

(VFU9-S) [5] provides a vector array of 16 single precision

FP units and 8 double precision vector array. Similarly, it

can be seen in recent Intel Xeon PhiT M and Nvidia KeplerT M

GK110 [6]. In general, these computing systems contain sep-

arate units/arrays for single precision and double precision

computations. However, if an unified and configurable unit

can support a double precision with dual/two-parallel single

precision (DPdSP) arithmetic, or quadruple precision (QP)

with dual/two-parallel double precision (QPdDP) arithmetic,

it can save a large silicon area in the above computing

machines. In view of above, this paper is aimed towards the

design of a configurable dual-mode floating adder/subtractor

architecture, with high precision support.

Some literature [7], [8], [9] have proposed dual-mode

architectures for adder. These works have tried to improve

the resource utilization for the hardware with multi-precision

computational support. However, the overhead of extra hard-

ware, and un-optimized data-path and resource sharing lead

to large overhead of area and period metrics. Furthermore,

they have limited support only for normal operands. The

dual-mode adder architectures of [7], [8] used a large

number of multiplexers (to support dual mode) at various

level of architecture, and have less tuned data path for dual

mode operation. Further the extra use of resources (like more

adders/subtractors for exponent & mantissa, relatively larger

dual shifters, extra mantissa normalizing shifters for dual

mode support) made their area & period overhead larger.

Some recent literature [10], [11] have also worked on the

dual-mode architectures, but with low precision support.

This paper proposes an architecture for dual-mode QPdDP

(quadruple precision with dual/two-parallel double preci-

sion) adder/subtractor arithmetic. The computational sub-

components are designed for configurable dual-mode sup-

port. The data-path is tuned for better resource sharing

and to minimize the multiplexing circuitry. The proposed

architecture provides full support for normal as well as sub-

normal operands computation, exceptional case handling,

and with round-to-nearest rounding method. Other rounding

methods can also be easily included. A pipelined architec-

ture is designed and synthesized using 90nm standard cell

based ASIC implementation. The proposed architecture is

compared with the best available literature.

II. PROPOSED ARCHITECTURE OF QUADRUPLE

PRECISION / DUAL (TWO-PARALLEL) DOUBLE

PRECISION (QPDDP) ADDER/SUBTRACTOR

The present work on the dual-mode floating point adder

architecture follows the basic single-path algorithm for this

computation. A floating point arithmetic computation in-

volves computing separately the sign, exponent and mantissa

part of the operands, and later combine them after rounding

and normalization [1]. The standard format for floating point

numbers are as follows:

SP :

Sign
︷ ︸︸ ︷

1−bit

Exponent
︷ ︸︸ ︷

8−bit

Mantissa
︷ ︸︸ ︷

23−bit

2015 IEEE Computer Society Annual Symposium on VLSI

978-1-4799-8719-1/15 $31.00 © 2015 IEEE

DOI 10.1109/ISVLSI.2015.70

249

DP :

Sign
︷ ︸︸ ︷

1−bit

Exponent
︷ ︸︸ ︷

11−bit

Mantissa
︷ ︸︸ ︷

52−bit

QP :

Sign
︷ ︸︸ ︷

1−bit

Exponent
︷ ︸︸ ︷

15−bit

Mantissa
︷ ︸︸ ︷

112−bit

A basic state-of-the-art computational flow of the floating

point adder is shown in the Algorithm 1. Here, steps 6-7

and step-22 are require for sub-normal processing. In this

work, each steps of the flow are constructed for the support

of the dual-mode operation with resource sharing and tuned

data-path with minimum multiplexing circuitry.

Algorithm 1 F.P. Adder Computational Flow [1]

1: (IN1, IN2) Input Operands;
2: Data Extraction & Exceptional Check-up:
3: {S1(Sign1), E1(Exponent1), M1(Mantissa1)} ← IN1
4: {S2, E2, M2} ← IN2
5: Check for INFINITY, NAN
6: Check for SUB-NORMALs
7: Update Exponents & Mantissa’s MSB for SUB-

NORMALs
8: COMPARE, SWAP & Dynamic Right SHIFT:
9: IN1_gt_IN2←{E1,M1} ≥ {E2,M2}

10: Large_E,M ← IN1_gt_IN2 ? E1,M1 : E2,M2
11: Small_E,M ← IN1_gt_IN2 ? E2,M2 : E1,M1
12: Right_Shift ← Large_E - Small_E
13: Small_M ← Small_M >> Right_Shift
14: Mantissa Computation:
15: OP← S1⊕S2
16: if OP == 1 then
17: Add_M ← Large_M + Small_M
18: else
19: Add_M ← Large_M - Small_M
20: Leading-One-Detection & Dynamic Left SHIFT:
21: Left_Shift ← LOD(Add_M)
22: Left_Shift ← Adjustment for SUB-NORMAL or Under-

flow
23: Add_M ← Add_M << Left_Shift
24: Normalization & Rounding:
25: Mantissa Normalization & Compute Rounding ULP based

on Guard, Round & Sticky Bit
26: Add_M ← Add_M + ULP
27: Large_E ← Large_E + Add_M[MSB] - Left_Shift
28: Finalizing Output:
29: Update Exponent & Mantissa for Exceptional Cases
30: Determine Final Output

The architecture for proposed dual-mode QPdDP adder

is shown in Fig. 1. The input/output register for this ar-

chitecture is assumed as shown in Fig. 2. The two 128-bit

input operands, contain either 1 set of quadruple precision

or 2 sets of double precision operands. Based on the mode

deciding control signal (qp_d p), the dual-mode architecture

switched to either quadruple precision or dual (two-parallel)

double precision computation mode (qp_d p: 1 → QP Mode,

qp_d p: 0 → Dual DP Mode). All the computational steps

in QPdDP dual mode adder are discussed below in detail.

The data-extraction, sub-normal and exceptional handling

are shown in the Fig. 3. Based on the precision format,

the sign, exponent and mantissa parts of the operands

are extracted for both, the quadruple precision and double

precision.

m_L m_S e_L

Dua-Mode DRS

add_m

e_S

e_L

Data Extraction & SubNormal HandlerComparator

_sn: SubNormal
-gt-: Greater than
-eq-: Equal to

_L: Large
_S: Small
l: Left
r: Right

_s: Sign
_e : Exponent
_m: Mantissa
_op: Operation

Swap: Large Sign, Exp, Mant and OP

R_Shift_Amount

LOD_in

Left Shift Update (for subnormal, underflow)

Exponent Update
(for subnormal, underflow,

overflow, exceptional cases)

Final Processing

m_ovf

m_ovf

add_mu add_ml

add_m_shifted

qp_dp

qp_dp
dp1_r_shiftqp_r_shiftdp2_r_shift

qp_dp
m_S_shifted

dp2_op

dp1_op

qp_opDual-Mode Add/Sub

Dual-Mode LOD
dp1_l_shift_tmpqp_l_shift_tmpdp2_l_shift_tmpdp1_sn

dp2_sn
qp_sn

qp_dp

dp2_l_shift qp_l_shift dp1_l_shift
qp_dpDual-Mode DLS

qp_dp

dp1_sn
dp2_sn

qp_sn

qp_dp
dp1_Ls

dp2_Ls
qp_Ls

qp: Quadruple Precision
dp: Double Precision
qp_dp: Quadruple/Double

Mantissa Sum & LOD_in

Normalization &
Dual-Mode Rounding

in2[127:0] in1[127:0]

128128
22 22

6 67

65 65

128

2
128

6 6
7

6 67

128

128

qp_dp

128

e_L

Figure 1: QPdDP Adder Architecture.

128-bit
64-bit

15-bit 112-bit

11-bit 52-bit 11-bit 52-bit

QP[127:64] / DP2 QP[63:0] / DP1

Figure 2: QPdDP Adder: Input / Output Register Format.

dp1_sn1=~|in1[62:52]
dp1_sn2=~|in2[62:52]
dp1_sn=dp1_sn1 & dp1_sn2

dp2_sn1=~|in1[126:116]
dp2_sn2=~|in2[126:116]
dp2_sn=dp1_sn1 & dp2_sn2

qp_sn1=~|in1[115:112] & dp2_sn1
qp_sn2=~|in2[115:112] & dp2_sn2
qp_sn = qp_sn1 & qp_sn2

dp1_e1={in1[62:53],in1[52] | dp1_sn1}
dp1_e2={in2[62:53],in2[52] | dp1_sn2}
dp2_e1={in1[126:117],in1[116] | dp2_sn1}
dp2_e2={in2[126:117],in2[116] | dp2_sn2}
qp_e1={in1[126:113],in1[112] | qp_sn1}
qp_e2={in2[126:113],in2[112] | qp_sn2}

qp_m1={~qp_sn1,in1[111:0]}
qp_m2={~qp_sn2,in2[111:0]}

dp1_m1={~dp1_sn1,in1[51:0]}
dp1_m2={~dp1_sn2,in2[51:0]}
dp2_m1={~dp2_sn1,in1[115:64]}
dp2_m2={~dp2_sn2,in2[115:64]}

Figure 3: QPdDP Adder: Data Extraction and Subnormal

Handler.

As shown in Fig. 2 that the exponent portion of QP and

250

dp1_in1-gt-in2 =(in1[62:0] > in2[62:0]) ? 1 : 0

dp2_in1-eq-in2=(in1[126:64] == in2[126:64]) ? 1 : 0

dp2_in1-gt-in2 =(in1[127:64] > in2[127:64]) ? 1 : 0

qp_in1-gt-in2 = dp2_in1-gt-in2 | (dp2_in1-eq-in2 &
((in1[63]&~in2[63) | (in1[63]~^in2[63])&dp1_in1-gt-in2))

QP[127:64] / DP2 QP[63:0] / DP1

Compare DP-1Compare DP-2

dp2_in1-gt-in2 dp1_in1-gt-in2
qp_in1-gt-in2

Figure 4: QPdDP Adder: Comparator.

second DP (DP-2) operand are overlapped.

QP Exponent
︷ ︸︸ ︷

xxxxxxxxxxx
︸ ︷︷ ︸

DP−2 Exponent

xxxx

This scenario is used to share the resources related to sub-

normal, infinity, and NaN checks computations of QP and

second DP operands (the checks of sub-normal is shown in

the Fig. 3, similarly the checks for infinity and NaN are

handled). After these exceptional checks the exponent and

mantissa are updated accordingly. In comparison to only QP

computation, this unit requires extra related resources for

first DP (DP-1) operands.

The dual-mode comparator unit for dual-mode QPdDP

adder is shown in Fig. 4. The comparator unit determines

which operand is large and which one is small. This unit is

shared among the QP and both DP operands. It comprises

of two comparator units for both DPs operands, which

generates their corresponding comparison results. These DP

results are further combined to form QP comparison. In

terms of resources, this comparator unit requires similar

resources as needed in only QP comparator, and there is

no area overhead in this unit.

The next computational unit in this architecture is the

Dual-Mode SWAP, which generates large sign (effectively

output sign-bit), small & large exponents, small & large

mantissas and effective operations (to be performed between

large and small mantissas). This computational unit is shown

in Fig. 5. For SWAP, in general to handle both DPs and

QP, it needs four 11-bit (for both DP exponents), two 15-

bit (for QP exponents), four 53-bit (for both DP mantissas)

and two 113-bit (for QP mantissa) SWAP components for

all the computations of this section. However, to minimize

the swapping overhead, the unified exponents, mantissas and

greater-than control signals are generated, by multiplexing

either of the quadruple precision or both double precision

operands (as shown in Fig. 5). This is an important step

included in the dual-mode QPdDP architectural flow, which

helps to design a tuned data-path computation in later stages,

with reduced multiplexing circuitry. Using these unified

exponents, mantissas and greater-than control signals, it

requires only four 11-bit (for exponents) and four 64-bit (for

mantissas) SWAP circuitry for entire processing. Effectively,

dp1_Le = e_L[10:0]
dp2_Le = e_L[21:10]
qp_Le = e_L[14:0]

OP
dp1_op = dp1_s1 ~^ dp1_s2
dp2_op = dp2_s1 ~^ dp2_s2
qp_op = qp_s1 ~^ qp_s2

Large Sign
dp1_Ls = dp1_in1-gt-in2 ? dp1_s1 : dp1_s2
dp2_Ls = dp2_in1-gt-in2 ? dp2_s1 : dp2_s2
qp_Ls = qp_in1-gt-in2 ? qp_s1 : qp_s2

C1 C2

e1[10:0]

e2[10:0]
e_L[10:0]

e1[21:11]

e2[21:11]
e_L[21:11]

Large Exp

Small Exp
e_S[10:0] = c1 ? e2[10:0] : e1[10:0] e_S[21:11] = c2 ? e2[21:11] : e1[21:11]

Large Mantissa
m_L[63:0]= c1 ? m1[63:0] : m2[63:0]
m_L[127:64]= c2 ? m1[127:64] : m2[127:64]

Small Mantissa
m_S[63:0]= c1 ? m2[63:0] : m1[63:0]
m_S[127:64]= c2 ? m2[127:64] : m1[127:64]

0

1

0

1

Unified Exponent

qp_dp

C1

qp_dp

qp_in1_gt_in2

dp2_in1_gt_in2
C2

Unified Compare

0

1qp_in1_gt_in2

dp1_in1_gt_in2 0

1

Unified Mantissa qp_dp

{qp_m1,15’b0}

m1

{dp2_m1,11’b0,
dp1_m1,11’b0} 0

1

qp_dp

{qp_m2,15’b0}

m2

{dp2_m2,11’b0,
dp1_m2,11’b0} 0

1

qp_dp

e1
{dp2_e1,dp1_e1}

{7’b0,qp_e1}

0

1

qp_dp

e2
{dp2_e2,dp1_e2}

{7’b0,qp_e2}

0

1

shift = e_L - e_S

qp_r_shift = dp_sp ? shift[14:0] : 0
dp1_r_shift = ~qp_dp ? shift[10:0] : 0
dp2_r_shift = ~qp_dp ? shift[21:11] :0

Right Shift Amount

Figure 5: QPdDP Adder: SWAP - Large Sign, Exponent,

Mantissa and OPERATION; Right Shift Amount.

it needs SWAP components slightly more than it requires for

only QP (only QP requires two 15-bit SWAP for exponents

and two 113-bit SWAP for mantissas), along with extra

multiplexing circuitry needed to generate unified signals,

however, facilitates the tuned data-path processing. Further,

among extra appended LSB ZEROs in mantissa multiplexing

(for m1 and m2), 3-bit are for Guard, Round and Sticky bit

computations in rounding phase, and remaining can provide

extended precision support to the operands.

The m_L contains mantissa of either large QP operand or

both of large DP operands. Similarly, m_S contains small

mantissas. Likewise, e_L contains large exponent, and e_S

contains small exponents, either of QP or both DP operands.

Now, the small mantissa needs right shifting by the

difference of large and small exponents. The right shift

amount for small mantissas are determined using the com-

ponent shown in Fig. 5. In general, it requires two 11-

bit subtractors for both double precision and one 15-bit

subtractor for quadruple precision. However, because of

effective multiplexing of operands in SWAP section, it

needs only one a 22-bit subtractor. A subtraction of unified

large exponent (e_L) and unified small exponent (e_S) will

produce right shift amount either for quadruple precision or

for both double precision. For right shift amount, compared

251

0101

01

y=2**x

>> y

One Stage Unit

[127:64] [63:0]

qp[x] | dp2[x] qp[x] | dp1[x]

[127:64] [63:0]

[63+y:64] [63-y:0]

qp_dp & qp[x]

[63:0][127:64]

>> y

in

01

Shifted Output

SHIFT<-- qp[6:0], dp2[5:0], dp1[5:0]

qp[6]

[127:0]

Dual-Mode Right Shifting
(6 Stage <- f(qp[5:0], dp2[5:0], dp1[5:0])

in[127:0]<-- {[127:0]} / {[63:0],[63:0]}

in >> 64

Figure 6: QPdDP Dual Mode Dynamic Right Shifter (DRS).

add_mu add_ml

qp_dp[63:0][63:0][127:64][127:64]

qp_dp
qp_op
dp2_op

dp1_op
qp_op

Add/Sub 64-bit

add_ml[64]

Add/Sub 64-bit

m_S_shiftedm_L

65 65

Figure 7: QPdDP Adder: Dual Mode Mantissa Addi-

tion/Subtraction.

to only quadruple precision, it requires extra resources for 7-

bit subtraction. Other processing in this section are bit-wise

operations, and are done separately for all operands.

For right shifting of small mantissas of quadruple and

both double precision operands, a dual-mode dynamic right

shifter (DRS) is designed. The QPdDP dual-mode dynamic

right shifter is shown in Fig. 6, which is used to right-shift

the small mantissas of either QP or both DPs. The initial step

in it right-shifts the operand by 64-bit in case of QP mode

with its true shift bit. The later 6-stages in it works in dual

mode, either for QP or for both DPs operands. Each dual-

mode stage contains two shifters for each of 64-bit blocks,

which right-shifts their inputs corresponding to their shifting

bit (either for quadruple or double precision). Each of these

stages also include one multiplexer which selects between

lower shifting output or their combination with primary input

to the stage, based on the mode of the operation.

Further to the right shifting of small mantissas, the

core operation of mantissa addition/subtraction fall in the

computational flow. The large mantissas and right-shifted

small mantissas undergo addition/subtraction based on their

effective operation. This computation is performed in dual-

mode using two 64-bit integer adder-subtraction unit, which

individually works for each double precision, and collec-

tively works for quadruple precision computation (as shown

in Fig. 7). This unit generates the lower and upper parts

of addition/subtraction separately. This component requires

effectively similar resources as present in only QP adder.

The lower and upper mantissa addition/subtraction results

[62:0][63:0] 1

add_ml[63:1]1
qp_dp

add_ml[64]

0

add_mu[0]

add_mu[64:1]

add_m

[62:0]1

01 qp_dp LOD_in
add_mu[62:0]

[62:0]1

|add_mu[64:63]
add_ml[63] |add_ml[64:63]

add_ml[62:0]

mant_ovf

add_mu[64:0] add_ml[64:0]

Figure 8: QPdDP Dual Mode Mantissa SUM and LOD_in.

1 0

out_hout_hv

{1’b1,out_l}{1’b0,out_h}

out_lout_lv

LOD_in[127:64] LOD_in[63:0]

LOD_64:6 LOD_64:6

dp1_shift[5:0]dp2_shift[5:0] qp_shift[6:0]

LOD_in[63:32] LOD_in[31:0]

1 0

out_hout_hv

{1’b1,out_l}{1’b0,out_h}

out_lout_lv

out_valid

LOD_32:5 LOD_32:5

out[5:0]

LOD_64:6 LOD_128:7

Figure 9: QPdDP Dual Mode Leading-One-Detector.

generated in previous unit combined in “Mantissa SUM

and LOD_in unit”, to provide the actual sum (either for

QP or both DPs), mantissa overflow, and the input for next

level unit, leading-one-detector (LOD). This unit is shown

in Fig. 8.

The mantissa sum now requires to check for any un-

derflow, which requires a leading-one-detector (LOD), and

further a dynamic left shifter for mantissa. This situation

occurs when two very close mantissa undergoes subtrac-

tion operation. The LOD requires to compute the left-

shift amount. In present context, the dual-mode leading-one-

detector for QPdDP processing is shown in Fig. 9. The input

of LOD is either a QP LOD_in or two DP LOD_in. The

dual mode LOD is designed in a hierarchical manner, which

leads to 64-bit LOD. It is comprised of two 64-bit LOD.

The individual 64-bit LOD provides left shift information

for both DP operands, and collectively for QP operand. It

effectively requires resources equivalent to that of only QP

LOD.

The left shift amount, thus generated from LOD, is then

updated for sub-normal input cases (both sub-normal input

operands) and underflow cases (if left shift amount exceeds

or is equal to the corresponding large exponent). For both

sub-normal input operand case, the corresponding left shift is

forced to zero, and for the underflow case, the corresponding

left shift will be equal to corresponding large exponent

decremented by one. For the exponent decrements, one of

the related subtractor is shared for the QP and first DP,

as done in the case of computation of right shift amount.

This becomes possible because the required LSBs of e_L

are shared among the exponents of QP and first DP. This

exponent decrements requires one 7-bit (shared for QP

and a DP) and one 6-bit (for another DP) decrement. All

other computations, related to left shift update need to be

computed separately for QP and both DPs. With true qp_d p,

both DPs’ left shift are set to zero, and for false qp_d p the

QP left shift is forced to zero.

252

[63:0][127:65] 1

x[127] {x[62:0],0}
x[63:0]

1 000 11

qp_dp

x[127] x[63]

01qp_dp
0

01

x[64]

x[63]
x[127:65]

x[126:64]

Figure 10: QPdDP Dual Mode 1-Bit Left Shifter.

qp_dp

add_m[127:64]

Add 64-bit

add_ml_r

Add 64-bit

add_mu_r

add_m[63:0]

Cin dp2_ULP

add_ml_r[64]

dp1_ULP

qp_ULP

qp_dp

0

11

0 Cin

L: Rounding Position Bit
G: Guard Bit
R: Round Bit
S: Sticky Bit
ULP = (G & (R | S)) | (L & G & ~(R | S))

R

S

G

G
L

ULP

Figure 11: QPdDP Dual Mode ULP Addition.

The mantissa sum is then shifted left using a dual-mode

dynamic left shifter (DLS). The basic design concept for

dual-mode DLS architecture is similar to the dual-mode

DRS, except that there is change in the shifting direction.

(Architecture of DLS is not shown due to space limitation).

The output of dual-mode DLS then undergoes 1-bit left

shifting (normalization), in-case of mantissa overflow in

mantissa-addition. The dual-mode 1-bit left-shifter unit is

shown in Fig. 10. It either performs a 1-bit left shifting for

QP mode, or carries out 1-bit left-shifting for both DPs,

with-respect-to their corresponding mantissa overflow. The

resource requirement for this unit is similar to that of a only

QP 1-bit shifter, except two 1-bit 2:1 MUX.

The output from 1-bit left shifter is further processed for

rounding computation and ULP-addition (Fig. 11). In present

work, the round-to-nearest method is included, however,

other method can be included easily. The rounding ULP

computations are done based on LSB precision bit, Guard

bit, Round bit and Sticky bit. Here, the ULP computation

is required for separately for each of QP and both DP.

However, the ULP-addition is shared among both, as shown

in Fig. 11.

Parallel to above mantissa processing, in Exponent-update

unit, the exponents are updated for mantissa overflow and

mantissa underflow. In this, the large exponents need to be

incremented by one or decremented by left shift amount

(LargeExp+mant_ov f −Le f t_Shi f t). Since large exponent

(e_L) either contains large QP exponent or both DPs expo-

nents, this update is shared for the QP and DP-1, by sharing a

subtractor, similar to left shift update computation. In effect

it requires a 15-bit shared subtractor and a 11-bit subtractor

for DP-2. Thus it needs an extra 11-bit subtractor for DP-

2 processing, and a 7-bit multiplexer for left shift amount

multiplexing for the shared subtractor, as an overhead over

only QP processing.

Finally, the exponents and mantissas are updated for

underflow, overflow, sub-normal and exceptional cases to

produce the final output, and each requires separate units

for QP and both DPs. For overflow, the exponent will be set

to infinity and mantissa will be set to zero, and for underflow

case exponent will be set to zero and mantissa will take its

related computed value. The computed signs, exponents and

mantissas of quadruple precision and both double precision

are finally multiplexed to produce the final 128-bit output,

which either contains a QP output or two DP outputs.

III. IMPLEMENTATION RESULTS AND COMPARISONS

The proposed dual-mode QPdDP adder architecture is

synthesized using UMC90 nm standard-cell based ASIC

platform, using Synopsys Design Compiler. An architecture

for QP only and DP only adder is also designed (using sim-

ilar data path computational flow) and synthesized for area

& period overhead measurements. These architectures are

designed with four pipeline stages (as shown in Fig. 1). The

implementation details are shown in Table-I. Architectures

are synthesized for best possible period. The functionality

of proposed architecture is verified using 5-millions random

test cases in each mode, with all possible pairs of operands

(normal, sub-normal, exceptional cases).

The proposed dual-mode QPdDP adder architecture re-

quires approximately 17% more hardware resources and

roughly 5.45% extra period than only DP adder. However,

in comparison with a combination of 1-unit QP only and

two-units of DP only adder, the proposed QPdDP adder

requires approximately 35.86% smaller area ((QP+2*DP-

QPdDP)/(QP+2*DP)).

A comparison of dual-mode QPdDP architecture with

previous works is shown in Table-II. The comparisons are

carried out in terms of % area-overhead and % period-

overhead over corresponding only QP adder. Moreover,

for a technological independent comparison, gate-equivalent

or scaled area equivalent, and “Fan-Out-of-4’ (FO4) delay

are used. An unified comparison of area× period is also

performed.

A dual-mode QPdDP adder architecture is presented by

A. Akkas [7] with 3 & 6 pipelining stages, using 250 nm

technology. It requires approximately 15% more area and

roughly 8− 14% more period than their only QP design.

The proposed QPdDP architecture has similar area-overhead,

with smaller period overhead. Moreover, the area× period

of proposed architecture is much smaller than QPdDP adder

of [7]. Furthermore, the architectures shown in [7] does not

support sub-normal operands computation and exceptional

case handling.

A 110 nm based dual-mode QPdDP adder is proposed

by [8], with 3-stage and 5-stage pipelines. These archi-

tectures do not provide computational support for sub-

normal operands and without any exceptional case handling.

For their architectures, the area-overhead ranges between

253

Table I: ASIC Implementation Details

DP QP QPdDP

Latency 4 4 4

Area(μm2) 31863 76779 90116

Area(gates) 10621 25593 30038

Period(ns) 0.95 1.1 1.16

Period(FO4) 21.11 24.44 25.78

Power(mw) 7.26 12.87 16.93

Table II: Comparison of QPdDP Architecture with Related

Work

[7] 250nm [8] 110nm Proposed 90nm

Latency 3 6 3 5 4

Area OH1 15.3% 14.01% 35.80% 27.31% 17.37%

Period OH1 14.12% 8.71% 18.65% 10.11% 5.45%

Scaled Area2 - - 239250 199723 90116

Gate Count3 26967 33702 - - 30038

Period (FO4)4 65.28 35.92 28.9 17.81 25.78

Area × Period

(106) #1
- - 6.91 3.55 2.32

Area × Period

(106) #2
1.76 1.21 - - 0.77

1Area/Period OH = (QPdDP - QP) / QP
2in μm2 @ 90nm = (Area @ 110nm) * (90/110)2

3Based on minimum size inverter
41 FO4 (ns) ≈ (Tech. in μm) / 2
#1Scaled Area × Period (FO4), #2Gate Count × Period (FO4)

27−35% and period overhead is approximately 10−18%.

Compared to this work, the proposed dual-mode QPdDP

architecture outperforms them in terms of design overheads,

as well as in terms of design metrics: the area, period and

area× period.

Thus, compared to previous works, the proposed dual-

mode QPdDP adder architecture has smaller area-overhead

and period-overhead when compared to only QP adder. The

proposed QPdDP architecture shows an improvement of

approximately 50% in terms of unified metrics area× period

products.

IV. CONCLUSIONS

A configurable architecture for dual-mode floating point

adder arithmetic is presented in this paper. The proposed

dual-mode QPdDP adder architecture provides normal &

sub-normal computational support and exceptional case han-

dling. The data path and sub-components in the architecture

are constructed/re-designed for on-the-fly dual-mode pro-

cessing, with minimal required multiplexing. The presented

dual-mode QPdDP adder architecture needs approximately

17% more resources and 5.45% more period than the QP

only adder. When compared with the best literature work,

the proposed dual-mode design has approximately 50%

smaller area× period product, and has smaller area & period

overhead over only QP adder. It also provides more com-

putational support than previous literature work. Our future

work is aiming towards a tri-mode adder architecture, which

along with proposed computation can also be configured to

handle four-parallel single precision computation.

V. ACKNOWLEDGMENTS

This work is party supported by the “The University

of Hong Kong” grant (Project Code. 201409176200), the

“Research Grants Council” of Hong Kong (Project ECS

720012E), and the “Croucher Innovation Award” 2013.

REFERENCES

[1] “IEEE Standard for Floating-Point Arithmetic,” Tech. Rep.,
Aug. 2008.

[2] F. de Dinechin and G. Villard, “High precision numerical ac-
curacy in physics research,” Nuclear Instruments and Methods
in Physics Research Section A: Accelerators, Spectrometers,
Detectors and Associated Equipment, vol. 559, no. 1, pp. 207–
210, 2006.

[3] D. H. Bailey, R. Barrio, and J. M. Borwein, “High-precision
computation: Mathematical physics and dynamics,” Applied
Mathematics and Computation, vol. 218, no. 20, pp. 10 106–
10 121, 2012.

[4] H.-J. Oh, S. Mueller, C. Jacobi, K. Tran, S. Cottier,
B. Michael, H. Nishikawa, Y. Totsuka, T. Namatame,
N. Yano, T. Machida, and S. H.Dhong, “A fully pipelined
single-precision floating-point unit in the synergistic proces-
sor element of a cell processor,” Solid-State Circuits, IEEE
Journal of, vol. 41, no. 4, pp. 759–771, 2006.

[5] NXP Semiconductors, “AN10902 : Using the LPC32xx
VFP,” in Application note, Feb 2010. [Online]. Available:
www.nxp.com/documents/application_note/AN10902.pdf

[6] Nvidia, “NVIDIA’s Next Generation CUDAT M Compute
Architecture: KeplerT M GK110,” in White Paper, 2014.
[Online]. Available: www.nvidia.com/content/PDF/kepler/
NVIDIA-Kepler-GK110-Architecture-Whitepaper.pdf

[7] A. Akkas, “Dual-Mode Quadruple Precision Floating-Point
Adder,” Digital Systems Design, Euromicro Symposium on,
vol. 0, pp. 211–220, 2006.

[8] ——, “Dual-mode floating-point adder architectures,” Journal
of Systems Architecture, vol. 54, no. 12, pp. 1129–1142, Dec.
2008.

[9] M. Ozbilen and M. Gok, “A multi-precision floating-point
adder,” in Research in Microelectronics and Electronics,
2008. PRIME 2008. Ph.D., 2008, pp. 117–120.

[10] M. Jaiswal, R. Cheung, M. Balakrishnan, and K. Paul,
“Unified architecture for double/two-parallel single precision
floating point adder,” Circuits and Systems II: Express Briefs,
IEEE Transactions on, vol. 61, no. 7, pp. 521–525, July 2014.

[11] ——, “Configurable architecture for double/two-parallel sin-
gle precision floating point division,” in VLSI (ISVLSI), 2014
IEEE Computer Society Annual Symposium on, July 2014,
pp. 332–337.

254

