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Unified Architecture for Double / Two-Parallel

Single Precision Floating Point Adder
Manish Kumar Jaiswal, Ray C.C. Cheung, M. Balakrishnan and Kolin Paul

Abstract—Floating point (F.P.) addition is a core operation
for a wide range of applications. This paper presents an area-
efficient, dynamically configurable, multi-precision architecture
for F.P. addition. We propose an architecture of double precision
(DP) adder, which also support dual (two parallel) single precision
(SP) computational feature. Key components involved in the F.P.
adder architecture, such as comparator, swap, dynamic shifters,
leading one-detector (LOD), mantissa adders/subtractors and
rounding circuit, have been re-designed in order to efficiently
enable resource sharing for both precision operands with minimal
multiplexing circuitry. The proposed design supports both normal
and sub-normal numbers. The proposed architecture has been
synthesized for OSUcells Cell 0.18µm technology ASIC implemen-
tation. Compared to a standalone DP adder with two SP adders,
the proposed unified architecture can reduce the hardware
resources by ≈ 35%, with a minor delay overhead. Compared
to previous works, the proposed dual mode architecture has 40%
smaller area×delay, and has better area & delay overhead over
only DP adder.

Index Terms—Floating Point Addition, Multi-precision Arith-
metic, ASIC, Digital Arithmetic.

I. INTRODUCTION

Floating point (F.P.) addition is a core arithmetic operation

in a multitude of scientific and engineering computations. Over

the past few decades, considerable work have been done to

improve the architecture of floating point arithmetic [1], [2].

In view of the large area requirement of F.P. arithmetic per unit

computation, we aim for a unified multi-precision architecture.

In literature, some authors have focused on multi-precision

floating point arithmetic architecture design. Many of these

are focused on multi-precision F.P. multiplier architecture

design [3], [4], which supports only normalized numbers.

Isseven et. al. [5] has presented a multi-precision divider

for quadruple and dual double precision operands. A. Akkas

[6] has shown multi-precision architectures for F.P. addition,

which has been further extended in [7] with single path and

two path design. However both of them have designed to

support only normalized numbers. The computation related

to sub-normal numbers and exceptional case handling were

left for software processing. Further, Ozbilen et. al. [8] has

presented an adder architecture for double precision with dual

single precision support, targeted for normalized operands.
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In this paper, we have developed an architecture for addition

arithmetic with double precision F.P. numbers which can also

support on-the-fly dual (two parallel) single precision F.P.

numbers computations, named as DPdSP adder architecture.

We have designed and/or configured the key elements of

F.P. adder, in order to share them among different precision

operands, to support the multi-precision computation. The

proposed architecture fully supports normal as well as sub-

normal computations, with round-to-nearest rounding method.

Other rounding methods can be easily included. We have

compared our results with the best optimized implementations

available in the literature. The main contributions of this work

can be summarized as follows:

• Proposed an architecture for DPdSP adder, which can

perform on-the-fly either a Double Precision or dual (two

parallel) Single Precision addition/subtraction.

• Components have been optimized/configured with tuned

data path, to minimize the multiplexing circuitry, for

reducing the area and delay metrics. It can be easily

extend for any dual precision F.P. adder implementation.

• Compared to previous works, the proposed work provides

more computational support, and has smaller area over-

head over only DP design with similar or smaller delay

overhead.

II. PROPOSED DPDSP ADDER ARCHITECTURE

A basic state-of-the-art flow [9] of the floating point

addition is given below in Algo 1. In the present work of

DPdSP adder architecture, we have followed the complete

steps described in Algo. 1 and constructed them for the support

of the dual mode operation.

The proposed architecture of double precision with dual

single precision support (DPdSP) floating point adder is shown

in Fig. 1. Two 64-bit input operands, may contain either 1-

set of double precision or 2-sets of single precision operands.

First operand contains either first input of DP or first inputs

of both SPs, and second operand contains second inputs of

either of DP or both SPs. Based on the signal d p sp, it can

be dynamically switched to either double precision or dual

single precision mode (d p sp: 1 → DP Mode, d p sp: 0 →
Dual SP Mode). All the computational steps in dual mode is

discussed below in detail. The explanation has been in relation

to the state-of-the-art flow discussed in Algo. 1.

A. Data Extraction and Subnormal Handler

Computation of this sub-component is shown in Fig. 2.

In this part, the sign, exponent and mantissa of single or
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Algorithm 1 F.P. Adder Computational Flow [9]

1: (IN1, IN2) Input Operands;
2: Data Extraction & Exceptional Check-up:
3: {S1(Sign1), E1(Exponent1), M1(Mantissa1)} ← IN1
4: {S2, E2, M2} ← IN2
5: Check for INFINITY, SUB-NORMALs, NAN
6: Update hidden bit of Mantissa’s for SUB-NORMALs
7: COMPARE, SWAP & Dynamic Right SHIFT:
8: IN1 gt IN2←{E1,M1} ≥ {E2,M2}
9: Large E,M ← IN1 gt IN2 ? E1,M1 : E2,M2

10: Small E,M ← IN1 gt IN2 ? E2,M2 : E1,M1
11: Right Shift ← Large E - Small E
12: Small M ← Small M >> Right Shift
13: Mantissa Computation:
14: OP← S1⊕S2
15: if OP == 1 then
16: Add M ← Large M + Small M
17: else
18: Add M ← Large M - Small M
19: Leading-One-Detection & Dynamic Left SHIFT:
20: Left Shift ← LOD(Add M)
21: Left Shift ← Adjustment for SUB-NORMAL or Underflow or

No-Shift(True Add M MSBs)
22: Add M ← Add M << Left Shift
23: Normalization & Rounding:
24: Mantissa Normalization & Compute Rounding ULP based on

Guard, Round & Sticky Bit
25: Add M ← Add M + ULP
26: Large E ← Large E + Add M[MSB] - Left Shift
27: Finalizing Output:
28: Update Exponent & Mantissa for Exceptional Cases
29: Determine Final Output

double precision operands have been extracted from the input

operands, according to the floating point formats of single and

double precision [9].

The exponents have been checked for sub-normal condition

by NOR of their bits. Since, 8-bit exponents of double preci-

sion and second single precision overlapped, their sub-normal

check have been shared to save some resources. Further, all

the exponents and mantissas have been updated according to

the result of sub-normal checks‘. In this part, compared to

only double precision, we need extra resources for sub-normal

check and update for first single precision operands. Similar

to sub-normal checks, the checks for infinity and nan has

been shared among DP and SP

B. Comparator

This component has been shared among operands, with the

resource used only for double precision operands. Related

computation of this sub-unit is shown in Fig. 2. A 31-bit

comparator (for “greater than”) is used for first single precision

operands comparison. Another, 31-bit “greater than” compara-

tor is used for second single precision operands. By combining

these two outputs with a 31-bit “equal to” and 1-bit “greater

than equal to” comparator, the double precision comparison

has been established. Even for only double precision, we

require the same/similar components for comparator, which

have been configured to support DP with dual SP processing.

C. SWAP: Large Sign, Exponent, Mantissa & OPERATION

The underlying computation of this sub-component is shown

in Fig. 2. This section of the architecture determines the

effective operation between large and small mantissa (addi-

tion/subtraction). This also produces the large sign (in effect

output sign bits), small & large exponents, and small & large

mantissa. For SWAP, in general, we need four 8-bit (for both

SP exponents), two 10-bit (for DP exponent), four 24-bit (for

both SP mantissas) and two 53-bit (for DP mantissa) SWAP

components for all the computations of this section. However,

by multiplexing either of the double precision or both single

precision operands, we need only four 8-bit (for exponents)

and four 32-bit (for mantissas) SWAP circuitry for entire pro-

cessing. Effectively, it needs SWAP components slightly more

than we require for only DP, along with extra multiplexing

circuitry. Among extra appended LSB ZEROs in mantissa

multiplexing (for m1 and m2), 3-bit are for Guard, Round and

Sticky bit computations in Rounding phase, and remaining can

provide extended precision support to the operands. The output

m L contains mantissa of either large DP operand or both of

large SP operands. Similarly, m S contains small mantissas.

Likewise, e L contains large exponent, and e S contains small

exponents, either of DP or both SP operands.

D. Right Shift Amount

The right shift amount has been determined by the differ-

ence between large and small exponents, generated in SWAP

unit. In general, it requires two 8-bit subtractors for single

precision and one 11-bit subtractor for double precision. How-

ever, because of effective multiplexing of operands in SWAP

section, we need only one 16-bit subtractor for this. It will

produce either shift amount for double precision or for both

single precision. For shift amount, compared to only double

precision, it requires extra resources for 5-bit subtraction.

Other processing in this section are bit-wise operations, and

are done separately for all operands. Computation of this sub-

component is shown in Fig. 2.

E. Dynamic Right Shifter

This component in the adder architecture is for the right

shifting of small mantissa which is used to align the decimal

points of mantissas. The architecture of the dual mode dy-

namic right shifter is shown in Fig. 3a. The input to this unit is

small mantissas m S from SWAP unit, and right shifted amount

d p r shi f t, sp2 r shi f t and sp1 r shi f t. When d p sp is

true, the sp2 r shi f t = sp1 r shi f t = 0, and when it is

false, d p r shi f t = 0. When MSB of d p r shi f t is true

(in case d p sp = 1) the 64-bit input is right shifted by 32-

bit. All the other stages (Stage-1 to Stage-5) work on the

dual shift mode, and are parameterized for their inputs. The

proposed dynamic right shifter can be easily extended for

any size dual mode dynamic shifting. Each of these stages

contains two multiplexers for each 32-bit blocks, which shift

their inputs based on the corresponding shifting bit (either

of double or single precision). Along with this, it contains a

multiplexer which can select between lower shifting output or

their combination with primary input to the stage, based on

the true d p sp and corresponding shifting bit of d p r shi f t.

Except this multiplexer, the architecture behaves like two 32-

bit barrel shifter, which have been constructed to support dual
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e_L

Final Output (64-bit)
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-eq-: Equal to

_L: Large

_S: Small

_l_: Left

_r_: Right

dp: Double Precision

sp: Single Precision

dp_sp: Double/Single

_s: Sign

_e : Exponent

_m: Mantissa

_op: Operation

Swap: Large Sign, Exp, Mant and OP

R_Shift_Amount
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LOD_in

Left Shift Update (for subnormal, underflow)
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Final Stage
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m_ovf

sp1_Ls
sp2_Ls
dp_Ls
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add_ml[32]

add_ml

sp1_sn sp2_sn dp_sn
4

3

1

2

add_m_shifted

Data Extraction & SubNormal Handler

Rounding -> f(guard-bit, round-bit, sticky-bit)
Compute -> dp-ULP, sp2-ULP, sp1-ULP

ULP = dp_sp ? {dp-ULP} : {sp2-ULP,sp1-ULP}
add_m_rounded = add_m + ULP

      Exponent Update 

(for subnormal, underflow, 

overflow, exceptional cases)

e_L

Fig. 1: DPdSP Adder Architecture (with 4-Stage Pipeline)

mode shifting operation. The proposed dual mode dynamic

right shifter takes approximately similar area with minor delay

overhead than a single mode 64-bit dynamic right shifter.

F. Mantissa Addition & SUM Normalization

This unit uses two 32-bit adder-subtraction (add-sub) units.

The input operands to this section are m L from SWAP unit and

right shifted small mantissa from dynamic right shifter. For

true d p sp, both adders perform together for DP processing,

and for false d p sp, they perform individually for both SP’s.

In effect, this unit requires the resources similar to only double

precision processing. The “Mantissa SUM Normalization” unit

combine the previous two 32-bit sum operation, to generate

actual sum (either for DP or SP’s), mantissa overflow bits,

and the inputs for LOD. generally, for only DP it requires

a 1-bit shifter of 64-bits, whereas, in dual mode it has been

accomplished by two 1-bit shifters of 31-bits each, along with

some gates for small control logics, as shown in Fig. 2.

G. Leading-One-Detector (LOD) and Left Shift Update

This section of the architecture is meant to detect leading

one in the add m, in case it has lost its MSB, in order to bring

it in to normalized format after left shifting. It happens when

32-bit

23-bit8-bit
52-bit11-bit

DP-in[31:0] / SP1-inDP-in[63:32] / SP2-in

64-bit  (in / out)

Data Extraction & SubNormal Handler
sp2_sn1=~|in1[62:55]

sp2_sn2=~|in2[62:55]

sp2_sn = sp1_sn1 & sp2_sn2

sp2_s1=in1[63],    sp2_s2=in2[63]

sp2_e1={in1[62:56],in1[55] | sp2_sn1}

sp2_e2={in2[62:56],in2[55] | sp2_sn2}

sp2_m1={~sp2_sn1,in1[54:32]}

sp2_m2={~sp2_sn2,in2[54:32]}

sp1_sn1=~|in1[30:23]

sp1_sn2=~|in2[30:23]

sp1_sn = sp1_sn1 & sp1_sn2

sp1_s1 = in1[31],    sp1_s2 = in2[31]

sp1_e1={in1[30:24],in1[23] | sp1_sn1}

sp1_e2={in2[30:24],in2[23] | sp1_sn2}

sp1_m1={~sp1_sn1,in1[22:0]}

sp1_m2={~sp1_sn2,in2[22:0]}

Comparator
sp2_in1-gt-in2 =(in1[62:32] > in2[62:32]) ? 1 : 0

sp2_in1-eq-in2=(in1[62:32] == in2[62:32]) ? 1 : 0 

dp_in1-gt-in2  = sp2_in1-gt-in2 | (sp2_in1-eq-in2 & ((in1[31]&~in2[31) | (in1[31]~^in2[31])&sp1_in1-gt-in2)) 

sp1_in1-gt-in2 =(in1[30:0] > in2[30:0]) ? 1 : 0

sp1_op = sp1_s1 ~^ sp1_s2

sp2_op = sp2_s1 ~^ sp2_s2

dp_op = dp_s1 ~^ dp_s2

sp1_Ls = sp1_in1-gt-in2 ? sp1_s1 : sp1_s2

sp2_Ls = sp2_in1-gt-sp2 ? sp2_s1 : sp2_s2

dp_Ls = dp_in1-gt-in2 ? dp_s1 : dp_s2

sp1_Le = e_L[7:0]

sp2_Le = e_L[15:8]

dp_Le = e_L[10:0]

c1=(dp_sp & dp_in1-gt-in2) | (~dp_sp & sp1_in1-gt-in2)

c2=(dp_sp & dp_in1-gt-in2) | (~dp_sp & sp1_in1-gt-in2)
Control & MUX

Swap: Large Sign, Exp, Mant and OP

e1=dp_sp ? {5’b0,dp_e1} : {sp2_e1,sp1_e1}

e2=dp_sp ? {5’b0,dp_e2} : {sp2_e2,sp1_e2}

          e_L[7:0]= c1 ? e1[7:0] : e2[7:0]

          e_L[15:8]= c2 ? e1[15:8] : e2[15:8]

          e_S[7:0] = c1 ? e2[7:0] : e1[7:0]

          e_S[15:8] = c2 ? e2[15:8] : e1[15:8]

m1=dp_sp ? {dp_m1,11’h0} : {sp2_m1,8’h0,sp1_m1,8’h0}

m2=dp_sp ? {dp_m2,11’h0} : {sp2_m2,8’h0,sp1_m2,8’h0}

           m_L[31:0]= c1 ? m1[31:0] : m2[31:0]

           m_L[63:32]= c2 ? m1[63:32] : m2[63:32]

           m_S[31:0]= c1 ? m2[31:0] : m1[31:0]

           m_S[63:32]= c2 ? m2[63:32] : m1[63:32]

R_Shift_Amount shift = e_L - e_S
sp2_r_shift = ~dp_sp ? shift[15:8] :0sp1_r_shift = ~dp_sp ? shift[7:0] : 0
dp_r_shift = dp_sp ? shift[10:0] : 0

SUM Normalization
add_m[63:32] = add_mu[32] ? add_mu[32:1] : add_mu[31:0]

tmp = (dp_sp & add_mu[32]) | (~dp_sp & add_ml[32])

add_m[31:0] = tmp ? {dp_sp&add_mu[32],add_ml[31:1]} : add_ml[31:0]
LOD_in = {|add_mu[32:31],add_mu[30:0]},dp_sp?add_ml[31]:|add_ml[32:31],add_ml[30:0]}

dp_sn1=~|in1[54:52] & sp2_sn1

dp_sn2=~|in2[54:52] & sp2_sn2

dp_sn = dp_sn1 & dp_sn2

dp_s1=in1[63],    dp_s2=in2[63]

dp_e1={in1[62:53],in1[52] | dp_sn1}

dp_e2={in2[62:53],in2[52] | dp_sn2}

dp_m1={~dp_sn1,in1[51:0]}

dp_m2={~dp_sn2,in2[51:0]}

Fig. 2: DPdSP Adder: Sub-Components

two mantissa, values are very close to each other, undergoes

subtraction operation. Input to the LOD would be either a DP

operand or two SP operands, generated from mantissa sum

normalizer unit. LOD unit architecture is shown in Fig. 3b. It

consists of two 32-bit LOD, each of which processes 32-bit

input on LOD in. Their individual outputs acts as SP left shift

amount, which after combining act as DP left shift amount.

The architecture of 32-bit LOD is based on a easy hierarchical

flow shown in Fig. 3b. Based on the above approach, this can

be easily extend to larger size LOD. The LOD, in effect, uses

same resources as used for only DP processing.

Further to quantify the left shift amount, it has been up-

dated for sub-normal cases (both sub-normal input operands),

underflow cases (if the left shift amount exceeds or equals to

the corresponding large exponent), and no-shift case (add m

MSBs are true, either for DP or SPs). For both sub-normal

input operands case or the no-shift case, the corresponding

left shift is forced to zero, and for the underflow case,

the corresponding left shift is equal to corresponding large

exponent decremented by one. Further, for true d p sp, the

SP left shifts are forced to zero, and for false d p sp the DP

left shift is forced to zero. In the left shift update section, the

exponent decremented part of DP and first SP has been shared.

This becomes possible because the required LSBs of e L has

been shared among them. All other computation, related to

left shift update need to be computed separately for DP and

both SP.

H. Dynamic Left Shifter

The architecture of dual mode dynamic left shifter is shown

in Fig. 3c. The input to this unit are mantissa addition add m,
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Fig. 3: DPdSP Adder : Dynamic Left/Right Shifter, LOD

TABLE I: Resource Sharing in DPdSP Adder Sub-Components

DPdSP Architectural Components Shared Resources Extra resource over Only DP

Data Extraction & Subnormal Handler “Subnormal, infinity, & NAN” checks of DP and one SP For one SP

Comparator, Dynamic Shifters, LOD Shared DP and both SP Nil

SWAP: Large Sign, Exp, Mant & OP Shared SWAP of DP and both SP Two 80-bit MUX, Control Logic

Right Shift Amount Subtraction for DP & both SP 5-bit sub, some bit-wise ANDing

Mantissa Add/Sub, Sum Normalization Shared DP and both SP two 2:1 MUX & small control logic

Left Shift Update Exponent difference of DP and one SP Remaining computation of both SP

Rounding ULP addition shared among DP and both SP ULP-computation of both SP

Exponent Update Shared the update of DP and one SP some bit-wise AND operations

Final Processing Post Round Update of Exponent & Mantissa Remaining processing of both SP, one 64-bit
MUX to discharge final output

and updated left shift amount from previous stage. The basic

idea of this is similar to dual mode dynamic right shifter. It

contains two left shifters to process each of the 32-bit inputs

in this stage. In comparison to right shifter, the additional

multiplexer is used to process the higher left shift output or

its combination with primary input of the stage. Furthermore,

this is also parameterized and can be easily extended for any

amount of dual mode dynamic left shifting.

I. Exponent Update

In this unit the exponents have been updated for mantissa

overflow and mantissa underflow. The exponents need to be

incremented by one or decremented by left shift amount. This

update has been shared for DP and one SP, by sharing a

subtractor. This need an extra 5-bit adder for a SP processing

as an overhead over DP processing.

J. Rounding and Final Processing

The primary operands for this section is the left shifted

mantissa from previous dual mode dynamic left shifter. The

add m shi f ted consists either of DP or both SP in each of

its 32-bit parts. Based on the MSBs of the add m shi f ted,

the rounding position need to be determined. Right next bit

to the rounding position is the Guard-bit, the next right is

Round-Bit, and remaining right bits generate Sticky-bit. Based

on the rounding position bit, Guard-bit, Round-bit, Sticky-bit

and MSB-bit, the round ULP (unit at last place) has been

computed. This need to perform separately for DP and both SP

and requires few gates for each. Approximately we need thrice

of DP only computation. After generating the ULP, it has been

added to add m shi f ted using two 32-bit adders, individually

works for SP computation, and collectively produce the output

for DP (similar to the case of mantissa addition). Further,

this rounded mantissa sum has been normalized. The rounding

adder in effect is similar to that required for only DP process-

ing. Further to rounding of the mantissa, the exponents has

been updated, for mantissa overflow. For this, each exponent

update may require to be incremented by one. One adder has

been shared for DP and one SP-1, because of shared operands

in e L. Further to this, each exponent has been updated for

either of infinity, sub-normal or underflow cases, and each

requires separate units. The computed signs, exponents and

mantissas of double precision and both single precision have

been finally multiplexed to produce the final 64-bit output,

which either contains a DP output or two SP outputs.

Thus, the complete architecture needs only one multiplexer

for multiplexing the operands, and this belongs to the SWAP

section. All other processing data path components have

been tuned to follow those operands to support dual mode

operations without any further extra multiplexing circuitry,

except the last one to produce the final 64-bit output. A brief

summary of shared resources and extra resources over only
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TABLE II: ASIC Implementation Details

DPdSP DP SP

Latency 1 4 1 4 1

Area (mm2) 0.164 0.172 0.142 0.147 0.065

Period (ns) 7.84 2.56 7.31 2.47 6.07

Power (mW) 9.76 48.38 6.98 33.5 5.35

TABLE III: Comparison with Related Work

[6] 0.25µm [7] 0.11µm Proposed 0.18µm

Latency 3 5 3 1 4

Area OH1 24% 26% 33% 15% 17%

Period OH1 9% 9.6% 13.3% 7% 3.5%

Scaled Area2 - 0.370 0.433 0.164 0.172

Gate Count3 13224 - - 10288 10794

Period (FO4)4 49 18 24.7 87 28.4
Total Delay (FO4)∗ 140∗ 65∗ 55∗ 87

Area × Delay #1 - 24.05 23.815 14.268

Area × Delay #2 1851360 - - 895056

1Area/Period OH = (DPdSP - DP) / DP
2in mm2 @180µm = Area @110µm * (180/110)2

3Based on minimum size inverter, 41 FO4 (ns) ≈ (Tech. in µm) / 2
5Obtained after combining all stages delay
#1Scaled Area × Total FO4 Delay, #2Gate Count × Total FO4 Delay

DP adder is shown in Table-I.

III. IMPLEMENTATION RESULTS AND COMPARISONS

The proposed architecture is synthesized using the open-

source “OSUcells Cell [10]” 0.18µm technology, using Syn-

opsys Design Compiler. We have also synthesized only DP and

only SP adder using similar data path computational flow, for

comparison purpose. The implementation details have been

shown in Table-II. Each module has been synthesized for

best possible delay. The proposed DPdSP architecture needs

roughly 15% more hardware & 7% extra delay than only DP

adder, however has 37% saving when compared to combined

one DP with 2 SP modules (Area(DP+2*SP)- Area(DPdSP) /

Area(DP+2*SP)).

A comparison with previous works is shown in Table-III.

Other previously reported DPdSP adder designs [6], [7], [8]

support only normal implementation, and lacks exceptional

case handling. Though the inclusion of sub-normal support and

exceptional case handling is not difficult, it affects the overall

area and critical path delay significantly [11], [12]. Because of

different technology implementations, comparison is based on

the % area and period/delay overhead over corresponding only

DP adder based on the same technology. Ozbilen et. al [8]

has shown a little implementation details, and (approximately)

has more than 25% area and 15% delay overhead than their

corresponding DP adder. A. Akkas [6] has proposed a DPdSP

adder in 0.25µm technology and it needs 24% more hardware

than their DP design for a 3 clock cycle latency. Further,

[7] has extended his single-path design of [6] and proposed

two-path DPdSP adder design. It needs roughly 26% and

33% extra hardware than their only DP adder. Due to their

two path method the delay (and overhead) reduced than their

earlier [6] design, however, with much larger hardware (and

overhead) requirements. The designs in [6], [7] have used

a large number of multiplexers (to support dual mode) at

various level of architecture ,and have less tuned data path for

dual mode operation. Further the extra use of resources (like

more adders/subtractors for exponent & mantissa, relatively

larger dual shifters, extra mantissa normalizing shifters for

dual mode support) made their overhead larger. Whereas,

proposed architecture has reduced the multiplexing circuitry

(mainly two MUX: one in SWAP and one in Final Output

section), with more shared and tuned data path. Compared

to previous works, the proposed DPdSP adder design has

smaller area & delay overhead when compared to only DP, and

has 40%− 50% smaller area× delay product. The proposed

DPdSP architecture provides full support to normal and sub-

normal, along with relevant exceptional case handling.

IV. CONCLUSIONS

In this paper, we have presented an architecture for floating

point adder with on-the-fly dual precision support, with both

normal and sub-normal support, and exceptional case han-

dling. It supports double precision with dual single precision

(DPdSP) adder computation. The data path has been tuned

with minimal required multiplexing circuitry. The supporting

sub-components have been tuned for on-the-fly dual mode

computation. It needs approx 15% more resources than DP

module and has a benefit of more than 37% reduction in area

when compared to combined single DP and two SP module.

In comparison to previous works in literature, our proposed

DPdSP design has 40%−50% smaller area×delay product,

and has smaller area & delay overhead when compared to only

DP, and provide more computational support.
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