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Abstract

Floating-point (FP) operations defined in IEEE 754-2008 Standard for Floating-Point

Arithmetic can provide wider dynamic range and higher precision than fixed-point operations.

Many scientific computations and multimedia applications adopt FP operations. Among all

the FP operations, addition and multiplication are the most frequent operations.

In this thesis, the single-precision (SP) and double-precision (DP) merged FP multiplier

and FP adder architectures are proposed. The proposed efficient iterative FP multiplier is

designed based on the Karatsuba algorithm and implemented with the pipelined architec-

ture. It can accomplish two parallel SP multiplication operations in one iteration with a

latency of 6 clock cycles or one DP multiplication operation in two iterations with a latency

of 9 clock cycles. Implemented on Xilinx Virtex-5 (xc5vlx155ff1760-3) FPGA device, the

proposed multiplier runs at 348 MHz using 6 DSP48E blocks, 1117 LUTs, and 1370 FFs.

Compared to previous FPGA based multiple-precision FP multiplier, the proposed designs

runs at 4% faster clock frequency with reduction of 33% of DSP blocks, 17% latency for SP

multiplication, and 28% latency for DP multiplication.

The proposed high performance FP adder is designed based one the two-path FP addition

algorithm. With fully pipelined architecture, the proposed adder can accomplish one DP or

two parallel SP addition/subtraction operations in 6 clock cycles. The proposed adder archi-

tecture is implemented on both Altera and Xilinx 65nm process FPGA devices. The proposed

adder can run up to 336 MHz with 1694 FFs, 1420 LUTs on Xilinx Virtex-5 (xc5vlx155ff1760-

3) FPGA device. Compared to the combination of one DP and two SP architecture built with

Xilinx FP operator, the proposed adder has 11.3% faster clock frequency. On Altera Stratix-

III (EP3SL340F1760C2) FPGA device, the maximum clock frequency of the proposed adder

can reach 358 MHz and 1686 ALUTs and 1556 registers are occupied. The proposed adder

is 11.6% faster than the combination of one DP and two SP architecture built with Altera

FP megafunction.

For the reference of other researchers, the implementation results of the proposed FP

multiplier and FP adder on the latest Xilinx Virtex-7 device and Altera Arria 10 device are

also provided.
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Chapter 1

Introduction

This chapter introduces the work proposed in this thesis. Section 1.1 presents the overview

of the binary floating-point addition and multiplication operations. The motivation of this

thesis work is presented in Section 1.2. Section 1.3 presents the objectives of this thesis work.

Finally, the outline of the remaining chapters of this thesis is presented in Section 1.4.

1.1 Overview

Floating-Point (FP) multiplication and addition/subtraction defined in [1] are the most fre-

quent arithmetic operations [2]. The average frequency of various FP operations relative

to the total number of FP operations in the benchmark suite, which is used to evaluate

the FP system performance, is shown in Figure 1.1. The FP multiplication and FP addi-

tion/subtraction occupy large portion among all FP operations. Compared to the conven-

tional fixed-point numbers, FP numbers can provide wider dynamic range. Therefore, many

applications, such as scientific computation, digital signal processing (DSP) applications, and

multimedia applications, adopt FP multiplication and addition operations.

FP multiplication needs a large width multiplier to accomplish the mantissa multiplica-

tion, therefore, it is time-consuming and occupies large area. During the past few decades,

many research works have been done in order to improve the performance or reduce the area

of FP multiplications [3] [4] [5]. In [3], Andrew Booth proposes the Booth multiplication

algorithm that greatly reduces the area of the multiplier and also improves the performance.

A high performance FP multiplier designed by combining the modified Booth algorithm, the

carry save adder scheme, and high speed adder is proposed in [4]. In [5], a low-power variable

latency FP multiplier architecture that reduces the power consumption and average delay of

1
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Fig. 1. Distribution of floating point instructions.

Fig. 2. Distribution of functional unit stall time.

The results for division can be compared with those of
addition and multiplication, shown in Fig. 7 and Fig. 8.

3.3 Performance and Area Tradeoffs
The excess CPI due to division is determined by summing
all of the stalls due to division interlocks, which is the total
penalty, and dividing this quantity by the total number of
instructions executed. The performance degradation due to
division latency is displayed in Fig. 9. This graph shows
how the excess CPI due to the division interlocks varies
with division unit latency between one and 20 cycles for O3
optimization. Varying the optimization level also changed
the total number of instructions executed, but left the num-
ber of division instructions executed constant. As a result,
the fraction of division instructions is also a function of op-
timization level. While CPI due to division actually in-
creases from O0 to O2, the overall performance at O2 and
O3 increases because the total instruction count decreases.

This effect is summarized in Table 1, where the division
latency is taken to be 20 cycles.

TABLE 1
EFFECTS OF COMPILER OPTIMIZATION

Optimization Level Division Frequency Excess CPI
O0 0.33% 0.057
O2 0.76% 0.093
O3 0.79% 0.091

Fig. 9 also shows the effect of increasing the number of
instructions issued per cycle on excess CPI due to division.
To determine the effect of varying instruction issue rate on
excess CPI due to division, a model of an underlying ar-
chitecture must be assumed. In this study, an optimal su-
perscalar processor is assumed, such that the maximum
issue rate is sustainable. This model simplifies the analysis
while providing an upper bound on the performance deg-

Fig. 3. Spice with optimization O0.

Fig. 4. Spice with optimization O3.

Figure 1.1: Distribution of floating-point instructions (from Fig.1 in S. Oberman
and M. Flynn, “Design issues in division and other floating-point operations,” IEEE
Transactions on Computers, vol.46, no.2, pp.154-161, Feb 1997)

the FP multiplier is proposed.

The FP addition operation is much more complicated than the FP multiplication. The

conventional FP addition algorithm contains alignment shifter, large width mantissa adder,

normalization shifter, and rounding modules and is therefore time-consuming. Many research

works have been done in order to improve its performance [6–11]. In [6] [7] [8], the two-path

FP addition algorithm is proposed that significantly reduces the whole latency of FP addition

operation. A reduced latency FP adder that combined the rounding with the mantissa addi-

tion is proposed in [9]. In [10], a pipelined architecture of the FP adder is proposed. A delay

optimized FP addition algorithm achieved by combining various optimization techniques is

presented in [11].

2



1.2 Motivation

In multimedia applications, single-precision (SP) operations are more common. However,

in recent years, double-precision (DP) and higher precision operations are getting more and

more attention on scientific research [12], such as 3D and general-purpose computing on

graphics processing units (GPGPU) applications. This trend is expected to continue at

the upcoming big data era. On the other hand, for the graphics processing unit (GPU)

in computers, when the basic display tasks are being performed, only half-precision or SP

operations are required. However, when 3D gaming applications are running, DP operations

are necessary. Therefore, a unified architecture for both multiplier and adder which supports

multiple-precision operations is required in order to efficiently support the operations of

different precisions.

Some unified architectures for FP multiplier [13] [14] [15] and FP adder [16] [17] [18]

already appear in the literature. In [13], the author proposes a low-power SP and DP merged

multiplier architecture. A dual-mode FP multiplier which supports both DP and quadruple-

precision (QP) multiplications is proposed in [14]. In [15], a merged precision multiplier

which supports SP, DP, and QP is presented. Meanwhile, in [16], the authors propose a SP

and DP merged adder architecture. A dual-mode FP adder that supports both DP and QP

additions is proposed in [17]. This work is further extended in [18], where a SP and DP

merged adder is also implemented.

However, all these works are designed for application-specific integrated circuit (ASIC)

platform that they cannot be mapped efficiently on field programmable gate array (FPGA)

devices. FPGA has the advantage of reconfigurable, low power consumption [19] [20], and

high performance computing [21]. As shown in Figure 1.2, the FPGA device (xc4vlx160)

can operate at high speed with low energy consumption compared to CPU device (Xeon

dual-core), and GPU devices (Geforce 8600GT and Tesla C1060). As shown in Table 1.1,

the FPGA devices (Virtex-4 and Virtex-5) are able to achieve a much higher FP operations

throughput compared to CPU device (Opteron). Moreover, current FPGA devices can pro-

vide large amount of high-speed logic resources and intellectual property (IP) cores. All of

these advantages make the FPGA a good candidate for high performance applications, such
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Figure 1.2: Computational time and energy consumption relationship of CPU, GPU,
and FPGA devices (from A.H.T.Tse, D.Thomas, and W.Luk, “Design Exploration of
Quadrature Methods in Option Pricing,” IEEE Transactions on VLSI Systems, vol.20,
no.5, pp.816-826, May 2012)

as scientific computation [22] and cryptography [23] [24].

In [25], the authors propose a SP and DP merged FP multiplier architecture based on

the Karatsuba algorithm [26] on FPGA. On Xilinx Virtex-5 device, 9 DSP blocks are needed

to implement their proposed multiplier. This amount of DSP blocks usage is large especially

for some low-end FPGA devices where the number of DSP blocks is quite limited.

1.3 Objective

In this thesis, an efficient iterative SP and DP merged FP multiplier architecture for FPGA

devices is proposed. This design is aimed at efficient implementation that is to reduce the

resource usage as much as possible. The objectives of the multiplier design are summarized

as follows:

• The proposed multiplier supports both SP and DP FP multiplication operation. The
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Table 1.1: Performance comparison of double-precision operations12

Opteron

Dual-core 2.5 GHz

Virtex-4

LX200 185 MHz

Virtex-5

LX330 237 MHz

Mult/Add 10 15.9 28.0

Mult only 5 12.0 19.9

Add only 5 23.9 55.3

1 Unit: Gflops (flops: floating-point operations per second)
2 Data come from D. Strenski, “FPGA Floating Point Performance,” HPCwire,

Jan. 2007

iterative multiplication algorithm is applied so that the proposed multiplier is able to

accomplish two parallel SP operations in one iteration or one DP operation in two

iterations.

• The mantissa multipliers are mapped on FPGA devices using DSP blocks in order to

obtain the best performance. The Karatsuba algorithm [26] is applied to further reduce

the DSP block usage.

• The proposed multiplier can achieve a reduction in DSP blocks usage with satisfied

performance when compared to previous work [25].

• The proposed multiplier will also be implemented on latest Xilinx Virtex-7 and Altera

Arria-10 FPGA devices.

In addition, a high performance SP and DP merged FP adder is also designed and im-

plemented on FPGA devices. The proposed adder is designed based on the two-path FP

addition algorithm. The objectives of the adder design are summarized as follows:

• The proposed adder supports both one DP addition/subtraction operation or two par-

allel SP additions/subtractions.

• Compared to the standalone adder architecture built by combing one DP adder and

two SP adders with the same data-path, the proposed adder can achieve area reduction

with minor timing overhead.

• Compared to the standalone adder architecture built by combing one DP adder and

two SP adders built with Xilinx FP operator [27] and Altera megafunction [28], the
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proposed adder is able to have speed advantage.

• The proposed adder will also be implemented on latest Xilinx Virtex-7 and Altera

Arria-10 FPGA devices.

1.4 Thesis Outline

The rest of this thesis is organized as follows: Chapter 2 presents the background knowledge,

including the IEEE floating-point format, the conventional floating-point multiplication and

addition algorithm, and FPGA basics. Several previous works that are used as the competi-

tors of the proposed designs are presented in Chapter 3. Chapter 4 presents the proposed

floating-point multiplier. The proposed floating-point adder is presented in Chapter 5. Chap-

ter 6 presents the implementation results of the proposed multiplier and adder, the analysis

of these results, and the comparison of the proposed designs with previous works. Finally,

the conclusion is drawn in Chapter 7.
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Chapter 2

Background

This chapter introduces the background information and fundamental concepts in this

thesis. In Section 2.1, the binary floating-point format defined in IEEE Standard 754-2008

is presented. The rounding algorithm of binary floating-point numbers is presented in Sec-

tion 2.2. Section 2.3 presents the binary floating-point multiplication algorithm. In Sec-

tion 2.4, the binary floating-point addition algorithm is presented. Moreover, the target

FPGA architecture, including the Xilinx and Altera FPGA logic resources and DSP blocks

is presented in Section 2.5. Section 2.6 summarizes the whole chapter.

2.1 Binary Floating-Point Format

The binary FP numbers defined in [1] contain three parts: 1-bit sign (S), w-bit biased

exponent (E), and p-bit mantissa (M), as shown in Figure 2.1. MSB means the most

significant bit and LSB means the least significant bit. Assume e is the actual exponent

value, then E = e + bias, where bias = 2w−1 − 1. For SP numbers, w = 8 and p = 23. For

DP numbers, w = 11 and p = 52.

S

(sign)

E

(biased exponent)

M

(mantissa field)

MSB LSB MSB LSB

1-bit w-bit p-bit

Figure 2.1: IEEE 754 floating-point format

Binary FP number in IEEE format is required to be normalized number. The significand
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value is always within the range [1, 2). Therefore, the leading bit is hidden so that the

mantissa can have 1-bit higher precision.

The IEEE FP format also reserves some special values for exceptional cases handling.

The FP number T represented in IEEE format and its actual value v can be summarized as

follows:

• If E = 2w − 1 and M 6= 0, then T is not a number (NaN).

• If E = 2w − 1 and M = 0, then T is infinity (Inf) and v = (−1)S × (+∞).

• If 1 ≤ E ≤ 2w− 2, then T is normal number and v = (−1)S × (1.M)× 2E−bias. Normal

number has the implicit leading bit of 1.

• If E = 0 and M 6= 0, then T is subnormal number and v = (−1)S × (0.M) × 21−bias.

Subnormal number has the implicit leading bit of 0.

• If E = 0 and M = 0, then T is zero and v = (−1)S × (+0).

2.2 Binary Floating-Point Rounding

The results of the FP operations must fit in the IEEE FP format. Sometimes there are

more bits than the FP format allowed in the results. In these cases, the rounding operation

must be performed in order to make the result be able to be represented by the IEEE

format. Rounding is to represent the infinite precision result by choosing a representable

finite precision number that is closest to the result.

In IEEE standard 754-2008 [1], five rounding schemes are proposed:

• roundTiesToEven: the FP number nearest to the infinite precision result should be

chosen. If nearest FP numbers are equally near, the one with the even LSB should be

chosen.

• roundTiesToAway: the FP number nearest to the infinite precision result should be

chosen. If nearest FP numbers are equally near, the one with larger magnitude should

be chosen.
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• roundTowardPositive: the FP number closest to and no less than the infinite preci-

sion result should be chosen.

• roundTowardNegative: the FP number closest to and no greater than the infinite

precision result should be chosen.

• roundTowardZero: the FP number closest to and no greater in magnitude than the

infinite precision result should be chosen.

The roundTiesToEven scheme is the default rounding scheme.

2.3 Binary Floating-Point Multiplication

2.3.1 General FP Multiplication Algorithm

When performing the multiplication operations, the sign, exponent, and mantissa need to be

processed separately.

For sign processing, the sign of the product (Sp) is the Exclusive-OR (XOR) of the signs

of the two operands (S1 and S2):

Sp = S1 ⊕ S2 (2.1)

For exponent processing, the exponents of the two operands (E1 and E2) are added

together. As discussed in Section 2.1, the exponent in IEEE format is biased exponent. In

order to keep the exponent of the product (Ep) conform to the IEEE format, the bias should

be subtracted from the summation:

Ep = E1 + E2 − bias (2.2)

The exponent obtained here may need further adjustment when normalizing the mantissa of

the product.

For mantissa processing, the mantissas of the two operands (M1 and M2) are prefixed

with the leading bits. Then the mantissa of the product (Mp) can be obtained by performing

unsigned fixed-point multiplication on the two prefixed mantissas:

Mp = M1 ×M2 (2.3)
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As discussed in Section 2.1, M1 and M2 are within the range [1, 2). Therefore, the mantissa

of the product Mp is in the range [1, 4). In other words, no more than 1-bit normalization

shifting is needed for Mp. If Mp is within the range [1, 2), then no further operations are

needed. Otherwise, if Mp is larger than 1, then 1-bit right shift is needed for Mp and at the

same time, Ep should be added by 1.

The normalized mantissa is then rounded to reserve the most significant 24-bit (including

the leading bit). If overflow (rounded Mp is larger than 1) occurs, further normalization and

exponent adjustment is needed. Finally, Sp, Ep, and Mp (discarding the leading bit) are

packed according to the IEEE FP format.

For large width mantissas, direct multiplication is not efficient. In order to improve the

performance, the recursive method is proposed. Moreover, the Karatsuba algorithm [26] is

proposed based on the recursive method to further improve the performance of the large

multiplication. On the other hand, in order to reduce the area, the iterative method is

proposed. The following three sub-sections present these three methods.

2.3.2 Recursive Multiplication

In order to compute A × B, the two operands A and B are first divided into two parts

(with arbitrary width) A1, A2, B1, and B2. Then the product of A× B can be obtained by

combining the results of A1 ×B1, A1 ×B2, A2 ×B1, and A2 ×B2 as shown in Figure 2.2.

A1 A2

B1 B2

A2xB2

A1xB2

A2xB1

A1xB1

AxB

X

Figure 2.2: Recursive multiplication

By implementing parallel smaller width multiplications, the performance of large width
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multiplication can be improved.

2.3.3 Karatsuba Algorithm

Assume the two operands are A and B, they can be rewritten as equation (2.4):

A = A1 × 2n + A2

B = B1 × 2n + B2

(2.4)

where A2 and B2 are the least significant n-bit of A and B, respectively. And A1 and B1 are

the remaining part of A and B.

According to the Karatsuba algorithm [26], A×B can be calculated as equation (2.5):

A×B = (A1 × 2n + A2)(B1 × 2n + B2)

= F1 × 22n + (F1 + F3 − F2)× 2n + F3

(2.5)

where F1, F2, and F3 are shown in equation (2.6):

F1 = A1 ×B1

F2 = (A1 − A2)(B1 −B2)

F3 = A2 ×B2

(2.6)

Therefore, only three multiplications instead of four in recursive method are needed to

accomplish a large width multiplication. This algorithm is especially helpful when doing the

multiplication operation on FPGA using DSP blocks. With reduced number of multiplica-

tions, the DSP blocks usage can also be reduced.

2.3.4 Iterative Multiplication

In order to compute A×B, the two operands A and B are first divided into two parts (with

equal width) A1, A2, B1, and B2. Because A1 and A2 (B1 and B2) have the same width,

A1×B1 and A1×B2 can be finished using the same hardware. Similarly, A2×B1 and A2×B2

can be done with the same hardware. Therefore, only two multipliers are built and these two

multipliers can be reused in different iterations. As shown in Figure 2.3, in the first iteration,

A1 × B2 and A2 × B2 are computed and in the second iteration, A1 × B1 and A2 × B1 are

computed.
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A1 A2

B1 B2

A2xB2

A1xB2

A2xB1

A1xB1

AxB

X

iteration 1

iteration 2

Figure 2.3: Iterative multiplication

By using the iterative method, the area of the multiplier can be significantly reduced.

In the proposed multiplier architecture, the recursive method, the Karatsuba algorithm,

and the iterative method are combined with the general FP multiplication algorithm. This

will be discussed in detail in Chapter 4.

2.4 Binary Floating-Point Addition

2.4.1 One-Path Algorithm

The diagram of conventional one-path FP addition algorithm is shown in Figure 2.4a. In

order to compute a± b, seven major steps need to be executed:

1. Exponent comparison: Subtract the exponents |ea − eb| = d and swap the mantissa

accordingly. Denote the larger exponent as ebase.

2. Alignment shifting: Right shift the mantissa of the second operand by d-bit, so that

the two operands now have the same exponent ebase.

3. Mantissa addition: Execute addition or subtraction to the two operands according to

the effective operation eop. eop can be determined by the sign of the two operands and

the actual operation op.

4. Conversion: Convert the result if it is negative.
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(a) One-path algorithm
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Mantissa 
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Shifter
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Anticipating 
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FAR NEAR

(b) Two-path algorithm

Figure 2.4: Binary floating-point addition algorithms

5. Leading zero detection (LZD): Detecting the number n of zeros in front of the most

significant one.

6. Normalization shifting: Left shift the result by n-bit and add n to ebase.

7. Rounding: Round the normalized result according to one of the rounding algorithm

defined in [1].

2.4.2 Two-Path Algorithm

The steps in the conventional one-path algorithm are executed in sequential which makes

the FP addition time-consuming. In order to improve the performance of the FP addition,

in [6] [8] [29], the two-path addition algorithm was proposed. The data-flow, as shown in

Figure 2.4b, is split into two path, the NEAR path and the FAR path. The result of the

NEAR path is selected when d is 0 or 1 and eop is subtraction. In other cases, the result
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from the FAR path is selected.

This algorithm is developed based on the following analysis:

• First, when d is 0 or 1 (NEAR path), a long normalization shifter may be needed,

however, a 1-bit shifter is enough for alignment. On the other hand, when d is larger

than 1 (FAR path), a long alignment shifter may be needed, however, the normalization

shifting is within 1-bit. Therefore, one of the two long shifters is removed from the

critical path.

• Second, the negative result occurs only when d is 0. In this case, no rounding is needed,

therefore, the conversion and rounding are mutually exclusive.

The two-path algorithm can significantly improve the performance of FP addition at the

expense of larger area.

The proposed adder architecture is built based on the two-path FP addition algorithm.

The detail of the proposed FP adder will be discussed in Chapter 5.

2.5 Target FPGA Architecture

In this thesis, the proposed multiplier architecture is implemented on Xilinx Virtex-7 and

Altera Arria-10 FPGA devices. In order to compare with the previous work, the proposed

multiplier is also implemented on Xilinx Virtex-5 FPGA device. Meanwhile, the proposed

adder architecture is implemented on Xilinx Virtex-5 and Altera Stratix-III FPGA devices.

Moreover, the implementation results of the proposed adder on Xilinx Virtex-7 and Altera

Arria-10 devices are also provided.

In this section, the architectures of Xilinx Virtex-5 and Virtex-7 and Altera Strtix-III and

Arria-10 are presented.

2.5.1 Xilinx Virtex-5 and Virtex-7

Configurable Logic Blocks (CLBs)

The configurable logic blocks (CLBs) are the resources for implementing logic functions on

Xilinx FPGA devices. Each CLB contains two slices. The diagram of the slice on Virtex-
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5 devices is shown in Figure 2.5. Each slice contains 4 look-up tables (LUTs), 4 storage

elements, the carry logic, and some multiplexers [30].

LUTs are used to implement the logic functions. Virtex-5 devices adopt 6-input LUTs

and each LUT has 6 independent inputs and two independent outputs. One LUT can either

implement one 6-input boolean logic functions or two 5-bit boolean logic functions. One

LUT is fully utilized when all its 6-input are used.

Each slice also contains 4 storage elements. They can be configured to flip-flops (FFs).

The FFs can be used as input/output registers in synchronous designs or pipeline registers

in pipelined designs.

Another important component of the slice is the carry logic. The dedicated carry logic can

perform fast addition and subtraction in slices. The adder can be described using behavior

level model in hardware description language (HDL) code and the FPGA tools will map the

adder to the dedicated carry logic. The carry lookahead adder using the dedicated carry

logic has the best performance over other kinds of adders on FPGA [31]. This is different

from ASIC design. In ASIC design, some fast adders, for example parallel prefix tree adders,

have better performance than carry lookahead adders. However, if the prefix tree adder

is implemented on FPGA, they will be mapped to LUTs which is much slower than the

dedicated carry logic.

The CLBs and LUTs in Virtex-7 devices [32] have similar architectures as those of Virtex-

5 devices. One of the differences is that it has 8 storage elements in each LUT. Some other

new technologies, for example the advanced silicon modular block (ASMBL) and stacked

silicon interconnect (SSI), will not be discussed here.

DSP Blocks

In this thesis, the DSP blocks are only used in the proposed multiplier design in order to

get the best performance. Because the multiplier built by DSP blocks is much faster than

that built by LUTs. The DSP blocks are not used in the proposed adder design, because the

dedicated carry logics are already able to provide satisfied performance.

The diagram of DSP48E blocks in Virtex-5 devices is shown in Figure 2.6. By assigning

different OPMODE and ALUMODE value, DSP48E can accomplish various arithmetic op-
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Figure 2.5: Slice diagram of Virtex-5 devices (from Virtex-5 FPGA User Guide
(UG190(v5.4)), Mar. 2012, p.176)
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Chapter 1: DSP48E Description and Specifics
R

Architectural Highlights
The Virtex-5 FPGA DSP48E slice includes all Virtex-4 FPGA DSP48 features plus a variety 
of new features. Among the new features are a wider 25 x 18 multiplier and an 
add/subtract function that has been extended to function as a logic unit. This logic unit can 
perform a host of bitwise logical operations when the multiplier is not used. The DSP48E 
slice includes a pattern detector and a pattern bar detector that can be used for convergent 
rounding, overflow/underflow detection for saturation arithmetic, and auto-resetting 
counters/accumulators. The Single Instruction Multiple Data (SIMD) mode of the 
adder/subtracter/logic unit is also new to the DSP48E slice; this mode is available when 
the multiplier is not used. The Virtex-5 DSP48E slice also has new cascade paths. The new 
features are highlighted in Figure 1-2.

Figure 1-1: Virtex-5 FPGA DSP48E Slice
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Figure 2.6: Diagram of Virtex-5 DSP48E blocks (from Virtex-5 FPGA XtremeDSP
Design Considerations User Guide (UG193(v3.5)), Jan. 2012, p.14)

erations. DSP48E supports 25× 18 two’s complement multiplication [33]. In multiplication

mode, A and B are the input ports for the two input operands. P is the output port. DSP48E

also provides cascaded data input port PCIN and cascaded output port PCOUT. PCIN can

receive the data from PCOUT of the previous DSP48E. Similarly, PCOUT can send the data

to PCIN of the next DSP48E. The cascade connection is used to calculate the F1 + F3 − F2

as discussed in Section 2.3.3.

In order to get the maximum speed, three stages pipeline registers are required for the

multiplier based designs [33]. With the speed grade of -3, the clock frequency of DSP48E in

multiplier mode can be up to 550 MHz [34].

There are two methods to use the DSP blocks. One is to use behavior level model to

implicit the multiplier in HDL code. The FPGA synthesis tools will automatically detect

the multiplication operation and map it to the DSP blocks. Another way is to use the

instantiation template provided by Xilinx [35]. The mapping using this method is more

accurate. In the proposed multiplier design, the DSP instantiation template is used in order
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Note: The Quartus II software automatically configures the ALMs for optimized performance.

Figure 1-6: ALM High-Level Block Diagram for Arria 10 Devices
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while the register drives another output.

Register packing improves device utilization by allowing unrelated register and combinational logic to be
packed into a single ALM. Another mechanism to improve fitting is to allow the register output to feed
back into the LUT of the same ALM so that the register is packed with its own fan-out LUT. The ALM can
also drive out registered and unregistered versions of the LUT or adder output.
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Figure 2.7: ALM diagram of Arria-10 devices (from Arria 10 Core Fabric and General
Purpose I/Os Handbook, May. 2015, p.1-7)

to ensure the mapping is exactly the same as designed.

DSP48E1 in Virtex-7 devices has the same data-path in multiplier mode [36]. The new

functions, for example the pre-addition, are not used in the proposed design and they will

not be discussed here.

2.5.2 Altera Stratix-III and Arria-10

Logic Array Blocks (LABs)

The logic array blocks (LABs) are the logic functions generators on Altera FPGA devices.

Each LAB contains 10 adaptive logic modules (ALMs). The diagram of the ALM on Arria-10

devices is shown in Figure 2.7. Each ALM contains 2 adaptive look-up tables (ALUTs), 4

registers, 2 dedicated full adders, carry chain, and shared arithmetic chain [37].

ALUT has similar functions as the LUT in Xilinx devices. The two ALUTs in one ALM
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have a total of 8-input. Therefore, one ALM can either implement one 6-input or 7-input

function or various combinations of two functions. The ALM architecture is backward-

compatible with 4-input LUT architectures in the older product series.

Similar to the storage elements in Xilinx FPGA slices, the four registers in one ALM can

be used as input/output registers or pipeline registers.

The dedicated carry chain can perform fast addition and subtraction in ALMs.

The ALM has four operating modes [37]:

• Normal Mode: Allow two functions to be implemented in one ALM, or a single function

of up to 6 inputs.

• Extended LUT Mode: Allow 7-input functions to be implemented in one ALM.

• Arithmetic Mode: Allow two sets of two 4-input LUTs along with two dedicated full

adders. Each adder can add the output of two 4-input functions. The carry chain works

in this mode.

• Shared Arithmetic Mode: Allow 3-input addition in ALM by using shared arithmetic

chain.

The LABs, ALMs, and ALUTs in Stratin-III devices have similar architectures and func-

tions with those in Arria-10 devices except that there is only two registers in each ALM.

Native Fixed-Point DSP IP Core

In Arria-10 devices, although the hardened floating-point DSP blocks are provided, only the

SP operations are supported [37]. In the proposed multiplier, in order to support both SP and

DP operations in a unified architecture, the native fixed-point DSP blocks [38] is adopted.

The fixed-point DSP blocks in Arria-10 devices support 27× 27 unsigned multiplication

[38]. The diagram of Arria-10 DSP in fixed-point 27 × 27 mode is shown in Figure 2.8. In

this mode, result = dataa x0× dataa y0.

In order to get the maximum speed, three stages pipeline registers are required in 27 ×
27 mode. Under normal working voltage, the DSP in the device with extended operation

temperature, standard power, and speed grade of 1 can run up to 541 MHz [39].
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Figure 3-2: Variable Precision DSP Block Architecture in 27 x 27 Mode for Fixed-Point Arithmetic in
Arria 10 Devices
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and General Purpose I/Os Handbook, May. 2015, p.3-11)

There are two methods to use the DSP blocks in Altera devices. One is the same as that

of Xilinx DSP, that is to implicit the multiplier in HDL code. Another method is to use the

IP Catalog and Parameter Editor provided in Quartus II software [38]. In order to ensure

the mapping is exactly the same as designed, the IP Catalog tool is used in the proposed

multiplier design.

Only the Arria-10 device is used to implement the proposed multiplier architecture, there-

fore, the DSP blocks in Stratix-III device is not discussed here.

2.6 Summary

In this chapter, the background information and fundamental concepts related to this thesis

are presented.

The binary floating-point format defined in IEEE Std 754-2008 is first introduced. It

contains three components: sign, exponent, and mantissa. The actual value of the number

represented in IEEE format is discussed, including normal number, zero, subnormal number,

NaN, and Inf.
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There are five rounding schemes defined in IEEE Std 754-2008: roundTiesToEven, round-

TiesToAway, roundTowardPositive, roundTowardNegative, and roundTowardZero. The roun-

dTiesToEven is the default rounding scheme.

When implementing FP multiplication, the three components need to be processed sep-

arately. For large width multiplication, the recursive method, the Karatsuba algorithm, and

the iterative method can be applied in order to efficiently implement the large multiplication.

The conventional FP addition algorithms include the one-path algorithm and the two-

path algorithm. The two-path algorithm can significantly improve the performance of FP

adder but at the expense of larger area.

Finally, the architecture of the LUTs resource and DSP blocks in Xilinx Virtex-5 and

Virtex-7 and Altera Stratix-III and Arria-10 devices are presented.
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Chapter 3

Previous Works

This chapter briefly presents two previous works [25] and [40], and the DP multiplication

solution for Xilinx Virtex-5 FPGA provided in [33]. The proposed FP multiplier is to be

compared with these three works in order to show its advantages. For the proposed FP

adder design, to the best of our knowledge, there is no published work on such SP and DP

merged adder designed on FPGA devices. The proposed FP adder is to be compared with the

Xilinx FP operator [27] and Altera FP megafunction [28]. The architectures of FP solutions

in Xilinx FP operator and Altera FP megafunction are encrypted and will not be discussed

in this thesis.

3.1 Double-Precision Multiplication Solution on Xilinx

Virtex-5 Device

In [33], the DP multiplication solution for Xilinx Virtex-5 FPGA using DSP48E blocks is

provided. A 59×59 signed multiplier is built to implement the 53×53 mantissa multiplication.

Because the FP mantissa multiplication is an unsigned multiplication, the extra sign bits are

all set to zero.

The 59 × 59 signed multiplier is implemented with 10 DSP48E blocks. The diagram of

the lower 5 DSP blocks is shown in Figure 3.1 and that of the upper 5 DSP blocks is shown

in Figure 3.2. As shown in Figure 3.1 and Figure 3.2, the whole 59 × 59 multiplication is

divided into 10 smaller multiplications, each of which can be handled by one DSP block.

These 10 DSP blocks are cascaded using the internal data bus between each two DSP blocks.

These internal data buses are only available to DSP blocks and cannot be accessed through
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LUT resources. In order to obtain the best performance of the DSP blocks, all the embedded

pipeline registers are utilized. In addition, several external registers are used in order to

maintain the data coherence of the pipeline design. At the end of the 12th clock cycles, the

complete product of 59 × 59 multiplication can be obtained. In DP multiplication opera-

tion, this product needs to be normalized and rounded in the following steps. These steps

contain another 6 pipeline stages. Therefore, a total of 18 clock cycles are needed for a DP

multiplication operation.

The sign and exponent processing of this DP multiplication solution is implemented on

LUT resources.

The implementation results show that this design needs a total of 10 DSP blocks, 339

LUTs, and 482 FFs. The maximum clock frequency runs at 319 MHz and the complete DP

multiplication operation needs 18 clock cycles to accomplish.

This DP solution is basically mapping the DP multiplier on the FPGA devices straight-

forwardly. It occupies large amount of DSP blocks and is therefore not efficient. Besides, this

solution only supports DP operation. If the SP operation is required, another standalone SP

multiplier should be built. Unless the SP operands extend to DP numbers to perform DP

multiplication operation. However, either way is not efficient.

3.2 Double-Precision Multiplication on FPGA using

Tiling Technique

In [40], the authors propose a DP multiplier architecture for Xilinx FPGA devices using their

proposed tiling technique.

For the multiplication of double-precision or beyond, the multiplication is first divided

into several smaller multiplications to make them fit in the capability of DSP blocks. Each of

the smaller multiplication is done by one DSP blocks. When adding these partial products

together, the same DSP blocks are used. The internal data bus between two DSP blocks can

shift the previous result by 17-bit. The partial product from the previous DSP block is sent

to the next DSP block using the internal data bus and it is added to the result generated by

the next DSP block. Therefore, a large amount of LUT resources can be saved.
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multiplier

consists in tiling a u×v rectangular multiplication board us-
ing a minimal number of such multipliers. Starting from the
tiled multiplication board, the circuit equation is obtained
using a simple rewriting technique.

Tiling, as a reformulation technique for this optimization
problem, has been first introduced in [5], where only rect-
angular tiles were considered. We show in this work that
considering more complex tiles allows the tiling technique
to optimize the use not only of the multipliers, but also of
the adders within DSP blocks.

We take as running example Figure 2(b) (from [5]) in or-
der to introduce tiling for a DP mantissa multiplication on
a Virtex5 FPGA. The rectangles denoted by M1 to M8 are
the eight Virtex5 multiplier tiles used to perform the multi-
plication (17×24 bits). The central 10×10-bit multiplication
might be either performed in logic if the DSP count is a big
constrain, either partially using one DSP block.

Each rectangle represents the product between a range of
bits of X and Y . For example M1 = X0:23 × Y0:16. For
each rectangle, the ranges of X and Y correspond to its
projection on the X and Y axis respectively. A rectangle
has a weighted contribution to the final product, the weight
being equal to the sum of its upper right corner coordinates
(e.g. the weight of the M4 tile is 217+34). The presented
rewriting technique yields:

XY =
`
M1 + 217M2 + 234M3 + 251M3

´
S0

+224
`
M8 + 217M7 + 234M6 + 251M5

´
S1

+248 MLogic

We have parenthesized the equation in order to make full
use of the Virtex5 internal DSP adders (see section 2.2).
Due to the fixed 17-bit shifts between the operands, each
sub-sum S0 and S1 may be computed entirely using DSP
block resources. This reduces the number of inputs of the
final multi-operand adder to three.

Such a parenthesing involving only 17-bit shifts is graph-
ically descried as a super-tile. Figure 3 shows some super-
tiles corresponding to the DSP capabilities of Virtex 4 and
5/6. These super-tiles (and all their subsets) don’t require
additional hardware to perform the full product. In addi-
tion, larger super-tiles can be obtained by coupling the black
and white circles of adjacent super-tiles. This corresponds
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Figure 2: 53-bit multiplication using Virtex-5
DSP48E. The dashed square is the 53x53 multipli-
cation.
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Figure 3: Some super-tiles exactly matching DSP
blocks

to using the cascading adder input of the DSP blocks. Ac-
tually, all the possible super-tiles may be generated by the
primitives shown on Figure 4.

On Stratix, the large adders inside the DSP block that can
be used to add up to four 18x18-bit partial products having
the same magnitude. This corresponds to a line of tiles
parallel to the main diagonal. However, as previously stated,
we are currently unable to obtain the predicted performance
out of the Altera Quartus tools. This could be solved by
using Alter-specific primitives, but would require much more
development work.

3.1 Design Decisions
In the previous example, there remains an untiled 10-bit×

10-bit square. Should this be implemented as logic, or as an
underutilized DSP block? This is a trade-off between logic
and DSP blocks, and as such the decision should be left to
the user. This situation is very common, for instance there
is also an untiled part in Figure 2(c). We have therefore
decided to offer the user the possibility to select a ratio be-
tween DSP count and logic consumption. This ratio is as a
number in the [0, 1] range. Larger values for the ratio favour
DSP oriented architecture whereas lower values favour logic
oriented architectures. The total number of multipliers used
is a function of the input widths, ratio and FPGA target.

In order to exploit this user-provided ratio accurately, we
have modelled the logical equivalence of a DSP block for
various FPGA families, inside FloPoCo’s Target hierarchy.

3.2 Algorithm
The construction of a tentative multiplier configuration

consists of three steps.

1. Generate a valid partition of the large multiplication
into smaller partial products or tiles.

2. Group these tiles as super-tiles in order to reduce the

Figure 3.3: Architecture of the floating-point multiplier (from S. Banescu, F. de
Dinechin, B. Pasca, and R. Tudoran, “Multipliers for Floating-Point Double-Precision
and Beyond on FPGAs,” SIGARCH Computer Architecture News, vol.38, no.4, pp.
73-79, Jan. 2011)
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consists in tiling a u×v rectangular multiplication board us-
ing a minimal number of such multipliers. Starting from the
tiled multiplication board, the circuit equation is obtained
using a simple rewriting technique.

Tiling, as a reformulation technique for this optimization
problem, has been first introduced in [5], where only rect-
angular tiles were considered. We show in this work that
considering more complex tiles allows the tiling technique
to optimize the use not only of the multipliers, but also of
the adders within DSP blocks.

We take as running example Figure 2(b) (from [5]) in or-
der to introduce tiling for a DP mantissa multiplication on
a Virtex5 FPGA. The rectangles denoted by M1 to M8 are
the eight Virtex5 multiplier tiles used to perform the multi-
plication (17×24 bits). The central 10×10-bit multiplication
might be either performed in logic if the DSP count is a big
constrain, either partially using one DSP block.

Each rectangle represents the product between a range of
bits of X and Y . For example M1 = X0:23 × Y0:16. For
each rectangle, the ranges of X and Y correspond to its
projection on the X and Y axis respectively. A rectangle
has a weighted contribution to the final product, the weight
being equal to the sum of its upper right corner coordinates
(e.g. the weight of the M4 tile is 217+34). The presented
rewriting technique yields:

XY =
`
M1 + 217M2 + 234M3 + 251M3

´
S0

+224
`
M8 + 217M7 + 234M6 + 251M5

´
S1

+248 MLogic

We have parenthesized the equation in order to make full
use of the Virtex5 internal DSP adders (see section 2.2).
Due to the fixed 17-bit shifts between the operands, each
sub-sum S0 and S1 may be computed entirely using DSP
block resources. This reduces the number of inputs of the
final multi-operand adder to three.

Such a parenthesing involving only 17-bit shifts is graph-
ically descried as a super-tile. Figure 3 shows some super-
tiles corresponding to the DSP capabilities of Virtex 4 and
5/6. These super-tiles (and all their subsets) don’t require
additional hardware to perform the full product. In addi-
tion, larger super-tiles can be obtained by coupling the black
and white circles of adjacent super-tiles. This corresponds
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Figure 2: 53-bit multiplication using Virtex-5
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blocks

to using the cascading adder input of the DSP blocks. Ac-
tually, all the possible super-tiles may be generated by the
primitives shown on Figure 4.

On Stratix, the large adders inside the DSP block that can
be used to add up to four 18x18-bit partial products having
the same magnitude. This corresponds to a line of tiles
parallel to the main diagonal. However, as previously stated,
we are currently unable to obtain the predicted performance
out of the Altera Quartus tools. This could be solved by
using Alter-specific primitives, but would require much more
development work.

3.1 Design Decisions
In the previous example, there remains an untiled 10-bit×

10-bit square. Should this be implemented as logic, or as an
underutilized DSP block? This is a trade-off between logic
and DSP blocks, and as such the decision should be left to
the user. This situation is very common, for instance there
is also an untiled part in Figure 2(c). We have therefore
decided to offer the user the possibility to select a ratio be-
tween DSP count and logic consumption. This ratio is as a
number in the [0, 1] range. Larger values for the ratio favour
DSP oriented architecture whereas lower values favour logic
oriented architectures. The total number of multipliers used
is a function of the input widths, ratio and FPGA target.

In order to exploit this user-provided ratio accurately, we
have modelled the logical equivalence of a DSP block for
various FPGA families, inside FloPoCo’s Target hierarchy.

3.2 Algorithm
The construction of a tentative multiplier configuration

consists of three steps.

1. Generate a valid partition of the large multiplication
into smaller partial products or tiles.

2. Group these tiles as super-tiles in order to reduce the

Figure 3.4: Mantissa multiplier using DSP blocks (from S. Banescu, F. de Dinechin, B.
Pasca, and R. Tudoran, “Multipliers for Floating-Point Double-Precision and Beyond
on FPGAs,” SIGARCH Computer Architecture News, vol.38, no.4, pp. 73-79, Jan.
2011)
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The diagram of the multiplier architecture presented in [40] is shown in Figure 3.3. The

mantissa multiplier is realized by tiling technique and the diagram of the mantissa multiplier

is shown in Figure 3.4. The first one is the tiling method used by Xilinx tools. The second

one is the authors’ previous work and the third one is the tiling diagram presented in [40].

The dash square in Figure 3.4 is the resource required by the mantissa multiplication. Each

of the rectangle is one DSP block. The space outside the DSP means these functions have to

be realized by LUT resource. The DSP blocks are arranged in this format so that the results

from one DSP blocks can be sent to the next one using internal data bus. For the mantissa

multiplication, 7 DSP blocks are needed.

For the whole multiplier, when the latency is set to 14 clock cycles, this multiplier can

run up to 407 MHz, using 804 LUTs, 804 FFs, and 9 DSP blocks. When the latency is 13

clock cycles, the maximum clock frequency remains 407 MHz, however, 1184 LUTs, 1080

FFs, and 9 DSP blocks rare required.

In this work, the tiling technique is used in order to make fully use of the DSP blocks. The

DSP blocks required by the DP multiplication operation are reduced. However, this design

still only supports DP operations and is therefore not efficient to implement SP operations.

3.3 Double-Precision Multiplier on FPGA with Dual

Single-Precision Support

In [25], the authors propose a SP and DP merged FP multiplier for FPGA device. Their

proposed multiplier supports one DP operation or two parallel SP operations.

The diagram of their proposed architecture is shown in Figure 3.5. One 66×66 multiplier is

implemented to realize the mantissa multiplication. With two partition Karatsuba algorithm

[26], the 66-bit multiplier can be implemented using two 33-bit multipliers (m00 and m11

in Figure 3.5) and one 34-bit multiplier (m10 in Figure 3.5). As a result, the multiplier

supports both DP multiplication and SP multiplications. In SP mode, the first SP operation

is done by m00, and the second SP operation is done by m11. In DP mode, all these three

multipliers are used to calculate the DP mantissa result. The results from these multipliers

are combined using additional adders and subtractors built using LUT resources to generate
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4.1. Sign and exponent computations

These computations are performed in a straightforward way.
Output sign will be the logical XOR of the sign-bit of both

operands.

Sign_out¼ Sign_in1� Sign_in2

The output exponent is given by addition of both input exponents
and then adjusting it by BASE, i.e

Exp_out¼ Exp_in1þExp_in2�1023

For double precision floating point numbers the BASE is equal to
1023 (211�1

�1). BASE of any floating point number is given by
(2exponent bits-1

�1).

4.2. Exceptional case handling

As defined by the IEEE 754 standard [7,8], there are several
exceptional cases like NaN, INFINITE, ZERO, UNDERFLOW, OVER-
FLOW appears in any floating point arithmetic. Thus, the main
computation has been combined with the detection of all excep-
tional cases, and determining the final output as defined by the
standard. The execution of all the exceptional cases are handled
in-line with Xilinx Core multiplier, which differs slightly from
IEEE 754 standard. For example, if any/both of the operands is
infinite we produce a Infinity as output (with computed sign-
bit). If either of the input operands is denormalized, output will be
zero (with respective sign-bit). If output exponent goes ZERO or
below ZERO, UNDERFLOW will activate, and if it goes beyond
11’h7fe (2046 in decimal), OVERFLOW will be activated.

In addition, when one operand is infinite and the other is
denormalized, an INVALID operation is indicated and results in
NaN output.
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Fig. 6. DP/Dual-SP FP multiplication architecture.
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Figure 3.5: DP and dual SP floating-point multiplier architecture (from M. K. Jaiswa
and R. C. C. Cheung, “Area-efficient architecture for double precision multiplier on
FPGA, with run-time-reconfigurable dual single precision support,” Microelectronics
Journal, vol.44, no.5, pp. 421-430, 2013)
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the DP mantissa result.

In order to use DSP blocks, the two 33-bit multipliers and the 34-bit multiplier are again

implemented using two partition Karatsuba algorithm. The diagram of the 34-bit multiplier

is shown in Figure 3.6. The 33/34-bit multiplier needs two 17-bit multiplier and one 18-bit

multiplier. Each of the 17 or 18-bit multiplier is done by one DSP block. A total of three

DSP blocks are required for one 33 or 34-bit multiplier. Therefore, the whole multiplier needs

9 DSP blocks.

4.1. Sign and exponent computations

These computations are performed in a straightforward way.
Output sign will be the logical XOR of the sign-bit of both

operands.

Sign_out¼ Sign_in1� Sign_in2

The output exponent is given by addition of both input exponents
and then adjusting it by BASE, i.e

Exp_out¼ Exp_in1þExp_in2�1023

For double precision floating point numbers the BASE is equal to
1023 (211�1

�1). BASE of any floating point number is given by
(2exponent bits-1

�1).

4.2. Exceptional case handling

As defined by the IEEE 754 standard [7,8], there are several
exceptional cases like NaN, INFINITE, ZERO, UNDERFLOW, OVER-
FLOW appears in any floating point arithmetic. Thus, the main
computation has been combined with the detection of all excep-
tional cases, and determining the final output as defined by the
standard. The execution of all the exceptional cases are handled
in-line with Xilinx Core multiplier, which differs slightly from
IEEE 754 standard. For example, if any/both of the operands is
infinite we produce a Infinity as output (with computed sign-
bit). If either of the input operands is denormalized, output will be
zero (with respective sign-bit). If output exponent goes ZERO or
below ZERO, UNDERFLOW will activate, and if it goes beyond
11’h7fe (2046 in decimal), OVERFLOW will be activated.

In addition, when one operand is infinite and the other is
denormalized, an INVALID operation is indicated and results in
NaN output.
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Fig. 6. DP/Dual-SP FP multiplication architecture.
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Fig. 7. 34-bit Multiplier Architecture.

M.K. Jaiswal, R.C.C. Cheung / Microelectronics Journal 44 (2013) 421–430 427

Figure 3.6: Architecture of one 34-bit multiplier (from M. K. Jaiswa and R. C. C.
Cheung, “Area-efficient architecture for double precision multiplier on FPGA, with
run-time-reconfigurable dual single precision support,” Microelectronics Journal, vol.44,
no.5, pp. 421-430, 2013)

Considering both Figure 3.5 and Figure 3.6, the SP operation needs 7 clock cycles to
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accomplish and the DP operation needs 12 clock cycles to accomplish. The implementation

results show that the clock frequency of this multiplier can run up to 336 MHz, and 9 DSP

blocks, 1168 LUTs, and 1373 FFs are required.

This design supports both SP and DP multiplication operations. The number of DSP

blocks for the DP multiplication are reduced due to the use of Karatsuba algorithm. However,

the mantissa multiplier in this design is a 66-bit multiplier that is larger than the require-

ment of DP mantissa multiplication. On the other hand, this design uses a fully parallel

architecture for both SP and DP operations. If the iterative method is applied to the DP

operation, the area of the multiplier can be further reduced.

3.4 Summary

In this chapter, the two previous works and one DP multiplication solution provided by

Xilinx Corporation are briefly presented. The proposed multiplier in this thesis is to be

compared with these three works in order to show the advantage of the proposed multiplier

architecture.
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Chapter 4

The Proposed Floating-Point Multiplier

This chapter presents the proposed FP multiplier architecture and its implementation on

Xilinx and Altera FPGA devices. In Section 4.1, the architecture of the proposed multiplier

and its implementation on Xilinx Virtex-5 device are presented. The mapping solutions of

the proposed multiplier architecture on the latest Xilinx Virtex-7 and Altera Arria-10 devices

are presented in Section 4.2. Finally, the whole contents of this chapter are summarized in

Section 4.3.

4.1 The Proposed FP Multiplier Architecture

The data-path of the proposed FP multiplier for Xilinx FPGA is shown in Figure 4.1. The

bold lines represent the pipeline registers and the dash lines separate pipeline stages.

The data-path consists of 6 pipeline stages for SP multiplication and 8 pipeline stages

for DP multiplication. For SP operation, the multiplicand processing, multiplier processing,

exponent processing, sign processing, and the two 27 × 27 multipliers occupy the first five

pipeline stages. The sixth pipeline stage consists of sp round and normalize module and

sp post-processing module. For DP operation, the first five pipeline stages are the same as

those of SP multiplication operation. The sixth pipeline stage is composed of dp carry save

tree module. Then the dp compound adder occupies the seventh pipeline stages. The eighth

pipeline stage contains dp rounding and normalize module and dp post-processing module.

In the proposed architecture, the 64-bit input operands contain one-set of DP number

(DP mode) or two-set of SP numbers (SP mode). In SP mode, the first inputs of the two SP

multiplication operations are included in multiplicand and the second inputs are stored in

multiplier. All major components of the proposed architecture are discussed below in detail.
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Figure 4.2: Sign and exponent processing in the proposed multiplier

4.1.1 Sign and Exponent Processing

As discussed in Section 2.3, the sign of the product is the XOR of the signs of the two

operands and the exponent of the product is the sum of the exponents of the two operands

with a bias adjustment.

In the proposed architecture, the sign and exponent of the product are obtained with the

circuits shown in Figure 4.2. For sign processing, as shown in Figure 4.2a, two XOR circuits

are built. The signs of the operands of DP operation and first SP operation are in the same

bit position. Therefore, they share the first XOR gate. The second XOR gate is dedicated

for the second SP operation. The s h contains the sign of the product of DP operation (DP

mode) or the sign of the product of the first SP operation (SP mode). In SP mode, the s l

contains the sign of the product of the second SP operation. In DP mode, the s l is set to

the same as s h.

For exponent processing, as shown in Figure 4.2b, two addition circuits are built: the

11-bit addition logic shared by the DP operation and the first SP operation; the 8-bit addi-

tion logic dedicated to the second SP operation. As shown in equation (2.2), the exponent

processing is a 3-input addition operation. In order to improve the performance, one level

of (3,2) counters are used to reduce the operands from three to two. Then the two operands

are added using carry lookahead adder. The (3,2) counter has the same architecture as a full

adder. The difference is that instead of propagating the output carry of the previous adder

to the next adder, all the output carry are reserved and form a new data vector. The result
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of (3,2) counter is the redundant carry-save format sum vector and carry vector.

4.1.2 Multiplicand and Multiplier Processing

In parallel with the sign and exponent processing, the mantissas of multiplicand and multi-

plier are processed to generate the operands of the 27× 27 mantissa multipliers.

The diagram of multiplicand processing and multiplier processing module is shown in

Figure 4.3. In SP mode, the 23-bit mantissa m1s1 and m1s2 of the multiplicand and m2s1 and

m2s2 of multiplier are prefixed with the leading bit and extended with 3-bit zeros to form the

27-bit mcand h, mcand l, mlier h, and mlier l, respectively.

In DP mode, the mantissa multiplication operation is shown in Figure 4.4. For the
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multiplicand, the 52-bit mantissa m1d is prefixed with the leading bit and extended with

1-bit zero to form the 54-bit mcand dp. Then mcand dp is divided into two parts with equal

length 27-bit and assign to mcand h and mcand l, respectively. For the multiplier, the 52-bit

mantissa m2d is also extended with 2′b01. Then the 54-bit format is divided into the 27-bit

{2′b01,m2d[51 : 27]} and 27-bit m2d[26 : 0]. In the first iteration (itr = 0), both mlier h and

mlier l are set to m2d[26 : 0] and in the second iteration (itr = 1), both mlier h and mlier l

are set to {2′b01,m2d[51 : 27]}.

4.1.3 Mantissa Multiplier

The two 27 × 27 mantissa multipliers are designed and implemented using DSP blocks em-

bedded in Xilinx Virtex-5 devices in order to efficiently implement the proposed multiplier

and to obtain the best performance.

DSP48E blocks in Virtex-5 device support 25 × 18 two’s complement multiplication.

The required 27 × 27 multiplication cannot be achieved by using only one DSP blocks. In

order to accomplish this multiplication, the Karatsuba algorithm [26] is applied. For the

left 27 × 27 multiplier, mcand h is divided into higher 14-bit mdhh and lower 13-bit mdhl.

Similarly, mlier h is divided into 14-bit mrhh and 13-bit mrhl. According to the Karatsuba

algorithm [26], mcand h×mlier h can be calculated as equation (4.1):

mcand h×mlier h = (mdhh213 + mdhl)(mrhh213 + mrhl)

= M12
26 + (M1 + M3 −M2)2

13 + M3

(4.1)

where M1, M2, and M3 are shown in equation (4.2):

M1 = mdhh ×mrhh

M2 = (mdhh −mdhl)(mrhh −mrhl)

M3 = mdhl ×mrhl

(4.2)

Each of M1, M2, and M3 is generated by one DSP block. Therefore, a total of three DSP

blocks are needed for one 27× 27 multiplication.

The mapping diagram of the left 27× 27 multiplier on Xilinx Virtex-5 device is shown in

Figure 4.5. The bold vertical lines represent pipeline registers. In Figure 4.5, A, B, P, PCIN,
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Figure 4.5: Mapping diagram of the left 27×27 mantissa multiplier on Xilinx Virtex-5
FPGA

and PCOUT are DSP48E ports that discussed in Section 2.5. For the three DSP48E blocks,

DSP48E 1 is configured to A×B mode, DSP48E 2 is configured to PCIN+A×B mode, and

DSP48E 3 is configured to PCIN-A×B mode. These three DSP blocks are used to generate

M1, M1+M3, and M1+M3−M2, respectively. With the subtractor built with peripheral LUT

logics, M3 can be generated from M1 +M3. Finally, according to equation (4.1), the product

of mcand h ×mlier h can be obtained. The proposed multiplier architecture contains two

such 27 × 27 multipliers, therefore, a total of 6 DSP blocks are required for the proposed

design.

4.1.4 Single-Precision Rounding and Normalization

For SP operation, after the mantissa multiplication, rounding and normalization should be

performed to the two products generated by the two 27× 27 mantissa multipliers.

For SP multiplication, the mantissa plus the leading bit has a length of 24-bit. Therefore,

the actual product of the mantissa multiplication cannot be larger than 48-bit. As a result,

the most significant 6-bit of the two products generated by the 27 × 27 multipliers can be

discarded. The remaining 48-bit has the format as shown in Figure 4.6. In order to make

the product fit in the IEEE FP format, the rounding operation is required.
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Figure 4.6: Result format of single-precision mantissa multiplication

In Figure 4.6, S47, S46, S24 (N -bit), S23 (L-bit), S22 (R-bit), and S21:0 are the bits needed

to perform rounding operation. S-bit is sticky bit that can be obtained by ORing S21:0. S24

and S23 are the possible LSB of the rounded product, depending on S47. If S47 = 0, then S23 is

the LSB, otherwise, if S47 = 1, thenS24 is the LSB. In the proposed design, roundTiesToEven

is performed. The rounding rule can be found in Table 4.1.

When Round = 1, the rounding decision needs to add 1 to the product. Here, the 1 is

always added to L-bit. It is reasonable when S47 = 0, because in that case, L-bit is the LSB

of the rounded product. However, it is still reasonable when S47 = 1, although the LSB of the

rounded result is N -bit. When rounding is required in this case, L-bit is always 1. Therefore,

add 1 to the L-bit and a carry will be generated and propagated to N -bit. It is equivalent to

add 1 to N -bit. In hardware, always add 1 to the L-bit can significantly simplify the circuit.

The rounded product can then be normalized according to the value of S47. When S47 = 1,

a 1-bit right shift is needed and the exponent should be added 1. When S47 = 0, usually no

further operation is needed. However, there is one case need to be careful. When S47 = 0 and

Round = 1, after plus 1 to the L-bit, (S + 1)47 may equal to 1. In this case, normalization

is still needed. Therefore, when S47 = 0 and Round = 1, (S + 1)47 need to be detected to

determine if normalization is required.

Each of the normalized mantissa product is then packed with its corresponding exponent

and sign to form the IEEE format SP number. In SP mode, the 64-bit result contains two

SP numbers. The SP operation needs 6 clock cycles to accomplish.

4.1.5 Double-Precision Carry Save Tree (CST)

For DP mode, in each iteration, two partial products are generated after the two 27 × 27

mantissa multipliers. These four partial products need to be accumulated by the carry save
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Table 4.1: Rounding rule for SP operation

N L R S
Round

S47 = 0 S47 = 1

0 0 0 0 0 0

0 0 0 1 0 0

0 0 1 0 0 0

0 0 1 1 1 0

0 1 0 0 0 0

0 1 0 1 0 1

0 1 1 0 1 1

0 1 1 1 1 1

1 0 0 0 0 0

1 0 0 1 0 0

1 0 1 0 0 0

1 0 1 1 0 0

1 1 0 0 0 1

1 1 0 1 0 1

1 1 1 0 1 1

1 1 1 1 1 1

tree (CST) to two data vectors before being sent to the DP adder.

The iterative multiplication scheme is realized by this CST module. As shown in Fig-

ure 4.1, in the first iteration (itr = 0), feedback sum and feedback carry are set to all zeros.

The two products product h and product l and the two feedback vectors are accumulated by

the DP CST. In the second iteration (itr = 1), the two vectors vec s and vec c generated in

the first iteration are feedbacked. These two vectors together with the two products gener-

ated in the second iteration are combined by the DP CST and generate the two inputs to

the DP compound adder.

In DP mode, the vec s and vec c generated by the CST is 108-bit in length. Feedback
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Figure 4.7: Bitwise analysis of partial products and feedback vectors

these two large vectors needs a large amount of multiplexers and a quite complicated routing.

In order to efficiently realize the feedback operation, a bitwise analysis of the partial products

and the feedback vectors is performed.

In the first iteration, the two feedback vectors are all zeros. Therefore, the two vectors

need to be feedbacked are determined by the accumulation of the two partial products.

As shown in Figure 4.7, the black dots are the bits generated by accumulating the two

partial products and they need to be feedbacked to participate the second iteration operation.

All other bit positions are zero and do not need to be sent back. Therefore, the required

length for feedback sum and feedback carry are only 81-bit and 27-bit, respectively, which

significantly reduces the area consumption and routing complexity.

The operations of the optimized DP CST is shown in Figure 4.8. In the first iteration, the

two feedback vectors are set to all zeros. Two 108-bit vectors vec s and vec c are generated

by accumulating these two feedback vectors and the two partial products product h and

product l. vec s[107 : 27] and vec c[80 : 54] are feedbacked and assigned to feedback sum and

feedback carry in the second iteration, respectively. In the second iteration, feedback sum

and feedback carry and the two newly generated partial products are combined to produce

two new vec s and vec c. Then the vec s and vec c are sent to dp compound adder module

to perform the final addition.

4.1.6 Double-Precision Compound Adder

DP addition and rounding are time-consuming due to the large operand length. In the

proposed multiplier, in order to improve the performance, the compound adder that combines
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Figure 4.8: Double-precision carry save tree operations in two iterations

addition and rounding operations is adopted. The compound adder can calculate sum,

sum + 1, and sum + 2 in parallel. Therefore, the following rounding operation is simplified

to select one out of these three sums instead of the time-consuming plus one operation.

The DP mantissa multiplication is actually a 53 × 53 multiplication. Therefore, the

product cannot be exceeded 106-bit. As a result, the most significant two bits of vec s and

vec c can be discarded. Then each of the remaining 106-bit is divided into two parts: the

higher 54-bit and the lower 52-bit. The higher 54-bit are used to generate the mantissa of

the product and the lower 52-bit is only used for rounding. The addition of these two parts

is implemented separately. The lower order adder will generate an output carry lower cout.

It is only used for rounding and will not be propagated to the higher order adder.

In the proposed multiplier design, all the sum, sum+ 1, and sum+ 2 of the higher 54-bit

are required. In the rounding stage, when the rounding is not required and lower cout = 0,

the sum is selected. When rounding needs to plus one and lower cout = 0, or rounding is
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Figure 4.9: Result format of double-precision mantissa multiplication

not required and lower cout = 1, sum+ 1 is selected. When rounding needs to plus one and

lower cout = 1, sum + 2 is selected. These three sums can be generated in parallel.

For the lower order addition, as shown in Figure 4.8, the least significant 27-bit of vec c

are all zeros. Therefore, for the least significant 28-bit of vec s, no addition operation is

required. As a result, the adder size can be reduced to only 24-bit.

The generated sum, sum+ 1, sum+ 2, lower cout, and lower order 52-bit lower bits are

sent to the dp round and normalize module to perform the rounding selection and normal-

ization operation.

4.1.7 Double-Precision Rounding and Normalization

The sum concatenated with the lower bits has the format as shown in Figure 4.9. S53 (N -

bit) and S52 (L-bit) are the possible LSB of the rounded result depending on the the value

of S105. If S105 = 0, then S52 is the LSB. Otherwise, S53 is the LSB. S51 (R-bit) is the MSB

of lower bits. The remaining bits of lower bits, S50:0, are ORed together to generate the

sticky-bit (S-bit).

The rounding selection rule is shown in Table 4.2. When lower cout = 0, sum or sum+1

is selected as the rounded result. The sum + 1 is generated by adding 1 to the L-bit of the

sum. When S105 = 0, L-bit is the LSB and sum + 1 can be generated by adding 1 to L-bit.

When S105 = 1, N -bit is the LSB. However, sum + 1 can still be generated by adding 1 to

L-bit. Because, as shown in Table 4.2, when sum+ 1 is selected for S105 = 1, L-bit is always

1. Therefore, by adding 1 to L-bit, a carry will be generated and propagate the N -bit.

When lower cout = 1, sum + 1 or sum + 2 is selected as the rounded result. In order to

generate the rounding rule, the lower cout can be first added to L-bit. Then the rounding

rule can be generated according to the new NLRS-bit. At this time, when rounding is
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Table 4.2: Rounding selection rule for DP operation

N L R S

Round

lower cout = 0 lower cout = 1

S105 = 0 S105 = 1 S105 = 0 S105 = 1

0 0 0 0 sum sum sum + 1 sum + 1

0 0 0 1 sum sum sum + 1 sum + 2

0 0 1 0 sum sum sum + 2 sum + 2

0 0 1 1 sum + 1 sum sum + 2 sum + 2

0 1 0 0 sum sum sum + 1 sum + 1

0 1 0 1 sum sum + 1 sum + 1 sum + 1

0 1 1 0 sum + 1 sum + 1 sum + 1 sum + 1

0 1 1 1 sum + 1 sum + 1 sum + 2 sum + 1

1 0 0 0 sum sum sum + 1 sum + 2

1 0 0 1 sum sum sum + 1 sum + 2

1 0 1 0 sum sum sum + 2 sum + 2

1 0 1 1 sum + 1 sum sum + 2 sum + 2

1 1 0 0 sum sum + 1 sum + 1 sum + 1

1 1 0 1 sum sum + 1 sum + 1 sum + 1

1 1 1 0 sum + 1 sum + 1 sum + 1 sum + 1

1 1 1 1 sum + 1 sum + 1 sum + 2 sum + 1

required, sum + 2 is selected, otherwise, sum + 1 is selected.

The selected rounded result is then normalized according to S105. If S105 = 1, 1-bit right

shift is needed and the exponent should be adjusted by adding 1. If S105 = 0, the same as we

discussed in SP rounding, the (S+1)105 or (S+2)105 also needs to be considered to determine

if normalization is needed.

The normalized mantissa product is then packed with sign and exponent to form the

IEEE format DP number. In DP mode, the 64-bit result contains one DP number. The DP

data-path contains 8 pipeline stages. However, in order to realize the iterative multiplication
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Figure 4.10: Mapping diagram of the left 27 × 27 mantissa multiplier on Xilinx
Virtex-7 FPGA

method, the DP CST is used twice. Therefore, the complete DP operation needs 9 clock

cycles.

4.2 Mapping Solutions on Xilinx Virtex-7 and Altera

Arria-10 Devices

The two 27 × 27 mantissa multipliers in the proposed multiplier architecture are mapped

on FPGA using DSP blocks. The DSP blocks among different FPGA devices have different

architectures or support different operation modes. Therefore, the mapping solutions of the

mantissa multiplier on various FPGA devices may be different. In this section, the mapping

solutions of the proposed multiplier on the latest Xilinx Virtex-7 and Altera Arria-10 devices

are provided.

4.2.1 Xilinx Virtex-7 Device

In Xilinx Virtex-7 device, the embedded DSP48E1 has similar architecture as DSP48E in

Virtex-5 devices. They all support 25× 18 two’s complement multiplication. Therefore, the

mapping strategy on Virtex-7 device is the same as that on Virtex-5 device.
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The mapping diagram of the left 27× 27 multiplier on Xilinx Virtex-7 device is shown in

Figure 4.10. The bold vertical lines represent pipeline registers. The mapping diagram here

is the same as that of Virtex-5 device. One 27 × 27 mantissa multiplier needs three DSP

blocks and a total of 6 DSP48E1 blocks are occupied by the whole multiplier design.

The design pipeline stages on Virtex-7 device is also the same as that on Virtex-5 device.

Two parallel SP operations can be accomplished in one iteration with a latency of 6 clock

cycles and one DP operation can be accomplished in two iterations with a latency of 9 clock

cycles.

4.2.2 Altera Arria-10 Device

In Arria-10 devices, although the hardened floating-point DSP blocks are provided, only the

SP operations are supported. In the proposed multiplier, in order to support both SP and

DP in a unified architecture, the proposed architecture is mapped on Arria-10 FPGA using

the native fixed-point DSP blocks. The fixed-point DSP blocks in Arria-10 support 27× 27

unsigned multiplication. Therefore, only one DSP block is needed to implement one 27× 27

mantissa multiplier in the proposed architecture.

The mapping diagram of the left 27 × 27 multiplier on Arria-10 device is shown in Fig-

ure 4.11. The bold vertical lines represent the registers inside the Arria-10 DSP blocks. The

first and last stages registers are data input and data output registers. The middle one is

one stage of pipeline registers. According to [38], in order to obtain the best performance,

all three stages registers are required by the DSP blocks. Therefore, each 27× 27 multiplier
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needs 2 clock cycles to finish its operation.
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Figure 4.12: Data-Path of the proposed single-precision and double-precision merged
floating-point multiplier on Altera Arria-10 device

Because of the pipeline stages of the mantissa multiplier are changed, the latency of SP

and DP operations are also changed. The full data-path of the proposed multiplier on Altera

Arria-10 device is shown in Figure 4.12. The bold lines represent the pipeline registers and

the long dash lines separate pipeline stages.

As shown in Figure 4.12, on Altera Arria-10 device, two parallel SP multiplications can

be accomplished in 4 clock cycles and one DP operation can be finished in two iterations
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with a latency of 7 clock cycles.

4.3 Summary

In this chapter, the architecture of the proposed FP multiplier is presented. The design of

each component is discussed in detail. The iterative multiplication method is used in order

to reduce the area of the proposed design. On Xilinx FPGA device, the Karatsuba algorithm

is also applied in order to further reduce the DSP block usage.

In order to efficiently implement the proposed multiplier on FPGA device, the DSP

blocks are used to map the mantissa multipliers. The DSP blocks in different FPGA devices

may have different architectures or support different operation modes. Therefore, different

mapping strategies may be applied to different FPGA devices. In this chapter, in addition to

Virtex-5 device, the mapping solutions for Virtex-7 and Arria-10 devices are also provided.

On both Virtex-5 and Virtex-7 devices, two parallel SP operations can be accomplished

in one iteration with a latency of 6 clock cycles and one DP operation can be accomplished

in two iterations with a latency of 9 clock cycles. Whereas, on Arria-10 device, two parallel

SP operations can be accomplished in one iteration with a latency of 4 clock cycles and one

DP operation can be accomplished in two iterations with a latency of 7 clock cycles.
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Chapter 5

The Proposed Floating-Point Adder

This chapter presents the proposed FP adder architecture. The design of pipeline stages is

presented. The design of each components, Dual-Path Setup (Section 5.1), Alignment Shifter

(Section 5.2), FAR Path ALU and Rounding (Section 5.3), NEAR Path ALU (Section 5.4),

Leading Zero Anticipation and Counting (Section 5.5), Normalization Shifter (Section 5.6),

and Path Selection (Section 5.7), to support both SP and DP operations are presented in

detail in each section. Finally, the whole design is summarized in Section 5.8.

The proposed adder is designed based on the two-path FP addition algorithm. The data-

path of the proposed adder is shown in Figure 5.1. The whole data-path is divided into 6

pipeline stages. As shown in Figure 5.1, the first pipeline stage contains the Dual-Path Setup

module. After that the data-path is divided into two paths: NEAR path and FAR path. For

FAR path, the Alignment Shifter occupies the second and third pipeline stages. Following

by Far Path ALU which occupies the fourth pipeline stages. The fifth pipeline stage is

occupied by Rounding module. Meanwhile, for NEAR path, the LZAC module occupies

three pipeline stages. In parallel, the Near Path ALU module takes up two pipeline stages.

The Normalization Shifter module is in the fifth pipeline stage. After the fifth pipeline stage,

the two paths re-convergence by the Path Selection module which occupies the sixth pipeline

stage.

In the proposed design, the 64-bit input operands contain one-set of DP number (DP

mode) or two-set of SP numbers (SP mode). In SP mode, the first inputs of the two SP

operations are included in operandone and the second inputs are stored in operandtwo. All

major components of the proposed architecture are discussed below in detail.
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5.1 Dual-Path Setup

The Dual-Path Setup module is to prepare the data for the FAR path and NEAR path for

further processing. In this module, the sign, exponent, and mantissa of the two operands

are first extracted. The exponents of the two operands are compared and the mantissas

are swapped accordingly. Besides, the effective operation and the sign of the result are

generated. The effective operation is the operation (addition/subtraction) performed on the

two operands. For example, if A is positive, B is negative, and the actual operation is

addition, then the effective operation of A + B is subtraction.
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Figure 5.2: Exp subtract blocks in Dual-Path Setup module

m11t 0 0 0 0 0 1 m12t

m21t 0 0 0 0 0 1 m22t

Figure 5.3: Combine two single-precision mantissa

In order to reduce the area, the DP operation and the first SP operation share the same

hardware to compare their exponents, as shown in Figure 5.2a. This hardware generates a
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6-bit shifting amount sha1 for the corresponding mantissa. Similarly, the second exponent

comparison circuit, as shown in Figure 5.2b, generates a 5-bit shift amount sha2 for the

second single-precision operation. In DP mode, sha2 is set to sha1[4:0]. Moreover, the

mantissa of the two SP operations are combined into a 52-bit format which is the same

width of the double-precision mantissa, as shown in Figure. 5.3. Then each of the two 52-bit

mantissa is divided into two 26-bit m11p, m12p (m21p, m22p). After swapping, m1 always

contains the mantissa of the larger number.

0 1

s1

1 1
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Figure 5.4: Sign and effective operation generation logic in Dual-Path Setup module

The diagram of sign generation and effective operation generation logics is shown in

Figure 5.4. For each operation, assume the sign of the two operands are s1 and s2, the actual

operation is op (op = 0 for addition and op = 1 for subtraction), the result of the exponents

comparison is less (less = 0 represents the first exponent is larger than the second one, and

less = 1 otherwise), the sign of the result s and the effective operation eop can be generated

according to equation (5.1)(5.2). The DP operation shares these logics with the first SP

operation.

s = (s1 · less) + (s2 ⊕ op) · less (5.1)

eop = s1 ⊕ s2 ⊕ op (5.2)
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5.2 Alignment Shifter
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Figure 5.5: Alignment shifter of the proposed FP adder

The Alignment Shifter module is used to shift the mantissa of the operand that has the

smaller exponent to make the two operands have the equal exponent.

The m2 from the Dual-Path Setup module is prefixed with the hidden 1 and extended

2-bit zeros to the right of the LSB (in order to reserve the Guard bit (G-bit) and Round bit

(R-bit) for the future rounding) to form the 55-bit input signal for the alignment shifter. For

SP operation, as shown in Figure. 5.3, the first mantissa is already been extended by zeros,
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therefore, there is no need to extend more bits for the first SP mantissa.

The diagram of the alignment shifter is shown in Figure 5.5. For DP operation, a 55-bit

dynamic shifter is required. The 55-bit shifter is divided into one 26-bit shifter (L-Shifter) and

one 29-bit shifter (R-Shifter) to support dual single-precision operations. In the pre-shifting

stage, the shifting amount sha1[5] is first considered because the possible shifting amount

32-bit is larger than maximum shifting amount of L-Shifter and R-Shifter. Obviously, only

in the DP mode, this 32-bit shifting can occur. The 55-bit pre-shifted signal m2 ps is then

divided into the 26-bit m2 psl which is the input of the L-Shifter and the 29-bit m2 psr

which is the input of the R-Shifter. The m2 psl is also sent to the R-Shifter because in DP

mode, the data bits shifted out from the L-Shifter should be sent to the R-Shifter.

The L-Shifter and R-Shifter are both dynamic shifter. In each stage, one bit of the shift

amount is considered. In order to obtain better performance, pipeline registers are inserted

between the first and second stages of the L-Shifter and R-Shifter (register l1, rin1, and r1).

The sticky bit (STK-bit) is calculated in parallel with the shifter by ORing the shifted

out bits. A large width OR operation can be efficiently implemented in FPGA by using the

dedicated carry logic in the slices. Therefore, the performance of the shifter is not affected.

Finally, the output signal is formed as shown in the bottom-right of Figure. 5.5, where S

represents the STK-bit.

In this module, the SP and DP operation share the shifting logic and the DP operation

shares the STK-bit generation logic with the second SP operation. Extra STK-bit generation

is needed for the first SP operation.

5.3 FAR Path ALU and Rounding

In the FAR path arithmetic logic unit (ALU) module, the compound adder that combines

the addition and the rounding is implemented. Two 27-bit compound adders that calculate

both the sum and sum + 1 are used to support two SP operations. In order to support DP

operation, the carry out of the lower order adder is used to select sum or sum + 1 of the

higher order adder. The rounding bits (G-bit, R-bit, and STK-bit) are calculated separately.

In the proposed design, the roundTiesToEven as shown in Section 2.2 is implemented. For
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Figure 5.6: Result format of FAR path ALU

the effective addition and effective subtraction, the rounding decision is generated separately

as described in [41].

The result sum of the FAR path ALU has the format as shown in Figure 5.6. L is the

LSB, N is the bit next to the LSB, G is guard bit, R is round bit, and S is sticky bit. Gneg,

Rneg, and Sneg are the two’s complement of G, R, and S used in subtraction. These bits

are used to determine if rounding is needed. The Sadd and Ssub are used to determine if

normalization is needed. For the two operands of the FAR path ALU, the larger mantissa is

within the range [1, 2) and the smaller mantissa is within the range (0, 2). When the eop is

addition, the result is in the range [1, 4). Therefore, if Sadd = 1, a 1-bit right shift is needed

to normalize the result. On the other hand, when the eop is subtraction, the result is located

within (−1, 2). The negative result is not considered because in that situation the NEAR

path result is selected. For the range of (0, 2), if Ssub = 1, a 1-bit left shift is needed to

normalize the result.

For effective addition, rounding operation can be implemented according to Table 5.1.

When generating the sum + 1 in the ALU, we always add 1 to L-bit. When Sadd = 1, a

1 needs to be added to N -bit, because after normalize, N -bit is the actual LSB. However,

by observing Table 5.1, when rounding is needed for Sadd = 1, L-bit is always 1. If the 1 is

added to the L-bit, there is a carry generated to the N -bit. Therefore, it is reasonable to

always add 1 to the L-bit if rounding is needed.

For effective subtraction, rounding operation can be implemented according to Table 5.2.

Here sum + 1 is still generated by adding 1 to L-bit. When Ssub = 1, Gneg will become the

actual LSB. Different from the N -bit in addition, we cannot add 1 to Gneg through the carry

bit. The solution here is to flip the Gneg-bit which is equivalent to add 1 to it. When the

original Gneg = 0, add 1 to it will not generate a carry, therefore, there is no need to add 1
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Table 5.1: Rounding rule for effective addition

N L G R + S
Round

Sadd = 0 Sadd = 1

0 0 0 0 0 0

0 0 0 1 0 0

0 0 1 0 0 0

0 0 1 1 1 0

0 1 0 0 0 0

0 1 0 1 0 1

0 1 1 0 1 1

0 1 1 1 1 1

1 0 0 0 0 0

1 0 0 1 0 0

1 0 1 0 0 0

1 0 1 1 1 0

1 1 0 0 0 1

1 1 0 1 0 1

1 1 1 0 1 1

1 1 1 1 1 1

to L-bit. On the other hand, when the original Gneg = 1, a 1 needs to be added to L-bit.

When Ssub = 0, if rounding is needed, the 1 is added to L-bit. The flip Gneg operation does

not affect the result because the Gneg-bit is not within the bit position range of the result.

Then according to the rounding decision, the sum and sum+1 are selected. The selected

result then needs to be normalized by no more than 1-bit right or left shifting. The normal-

ization operation should be determined by the rounded result instead of Sadd or Ssub that is

used in rounding determination. Because the rounding is determined by analyzing the bits

in sum. It is possible that when eop is addition, the sum is not overflow but the sum + 1

is overflow. Similarly, when eop is subtraction, sum is underflow but the sum + 1 might be
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Table 5.2: Rounding rule for effective subtraction

L Gneg Rneg Sneg

Round

Ssub = 1 Ssub = 0 operation

0 0 0 0 0 0 -

0 0 0 1 0 0 -

0 0 1 0 0 0 -

0 0 1 1 0 1 flip Gneg

0 1 0 0 0 0 -

0 1 0 1 1 0 add 1 to L

0 1 1 0 1 1 add 1 to L, flip Gneg

0 1 1 1 1 1 add 1 to L, flip Gneg

1 0 0 0 0 0 -

1 0 0 1 0 0 -

1 0 1 0 0 0 -

1 0 1 1 0 1 flip Gneg

1 1 0 0 1 0 add 1 to L

1 1 0 1 1 0 add 1 to L

1 1 1 0 1 1 add 1 to L, flip Gneg

1 1 1 1 1 1 add 1 to L, flip Gneg

normalized number.

There are two cases that the FAR path result should be discarded:

1. The result is negative. This can only occur when the exponents of the two operands

are equal and the effective operation is subtraction. The NEAR path has the circuit to

deal with negative result.

2. The result is too small that needs more than 1-bit left shift to normalize. This can

occur when the exponents difference is no more than one and the effective operation is

subtraction. This can be handled by the NEAR path normalization shifter.

If these two cases are detected, the signal u n1 or u n2 is asserted that indicates the NEAR
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path result should be selected in the Path Selection module.

In this module, the SP and DP operation share the mantissa adder. The DP operation

shares the rounding logic with the second SP operation and shares the normalization detection

and u n1 detection logic with the first SP operation. Extra rounding logic is needed for the

first SP operation and extra normalization and u n2 detection logic is needed for the second

SP operation.

5.4 NEAR Path ALU

The NEAR path is responsible for the cases when the exponent difference is 0 or 1 and

the effective operation is subtraction. Therefore, only the subtraction is performed in the

NEAR path ALU. The NEAR path ALU contains two 27-bit adders. In SP mode, they run

independently. In DP mode, the carry out from the lower adder is used to select the result

of the higher adder to form the double-precision result. In order to perform subtraction, the

second input operand B is first inverted and then added with the first input operands A with

the input carry setting to 1.

Not only A + B + 1, but also A + B are calculated. If A + B + 1 is positive, then it is

selected as the result. Otherwise, it should be complemented and at this time, the A + B is

the correct result according to equation (5.3).

−(A−B) = −(A + B + 1)

= −(A + B)− 1

= (A + B + 1)− 1

= A + B

(5.3)

Note that only when the FAR path result is negative or the FAR path result needs more

than 1-bit left shift to normalize, the NEAR path result is selected. In these two cases, no

rounding is needed. Therefore, there is no need to perform rounding in NEAR path.

In this module, the SP and DP operation share the mantissa subtracter. The DP operation

shares the sign detection logic with the first SP operation. Extra sign detection logic is needed

for the second SP operation.
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Figure 5.7: Leading zero anticipation and counting (LZAC) unit

5.5 Leading Zero Anticipation and Counting (LZAC)

When performing subtraction, leading zeros may occur when the result is positive and leading

ones may occur when the result is negative. In the proposed design, LZAC is used to predict

the position of the leading bit directly from the two operands and then calculate the number

of zeros or ones to the left of the leading bit. This number is used later by the normalization

shifter.

In the proposed design, both positive and negative results may be generated in the NEAR

path, according to [42], for k-bit operands A and B, the indicator generated by leading zero

anticipation (LZA) unit should be:

fk−1 =T 0T1

fi =Ti+1(GiZi−1 + ZiGi−1)+

T i+1(ZiZi−1 + GiGi−1) i < k − 1

(5.4)

where T = A⊕B, G = AB, and Z = A B.
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Figure 5.8: 5-bit priority encoder in the leading zero anticipation and counting
(LZAC) unit

There are many methods to count the leading digit number [42]. In FPGA, a good way

to realize the counting is to use the priority encoder [35]. The leading zero counting unit

implemented in the proposed adder is shown in Figure 5.7. In order to fully utilize the LUT

in Virtex-5 device [30], the 5-bit priority encoder is adopted. The indicator is divided into

5-bit groups. Each group uses one priority encoder to generate the valid signal and code

signal. The diagram of the 5-bit priority encoder is shown in Figure 5.8. The truth table of

the 5-bit priority encoder is shown in Table 5.3.

There are totally 11 such priority encoders and divided into three groups as shown in

Figure. 5.7. The valid signal and code signal generated by Group 1 and Group 3 are used

by another level of priority encoders to generate the number of leading bit for the two SP

operations. Group 2 only contains one 5-bit priority encoder and is only used in DP mode.

The diagram of the SP priority encoder is shown in Figure 5.9. The truth table of the SP

priority encoder is shown in Table 5.4. The number of leading bit for the single-precision

operation is obtained by adding the offset and the code together.

In the next stage, the five valid values in one group are ORed together to generate the

group valid signal valid gone, valid gmid, and valid gtwo. The group valid signals, the

single-precision counting lzd spone and lzd sptwo, and the code signal lzd mid generated
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Table 5.3: 5-bit priority encoder truth table

indicator valid code

1 x x x x 1 000

0 1 x x x 1 001

0 0 1 x x 1 010

0 0 0 1 x 1 011

0 0 0 0 1 1 100

0 0 0 0 0 0 101

Table 5.4: SP priority encoder truth table

valid one to valid fiv offset code

1 x x x x 0 code one

0 1 x x x 5 code two

0 0 1 x x 10 code thr

0 0 0 1 x 15 code for

0 0 0 0 1 20 code fiv

0 0 0 0 0 25 0

by the Group 2 are finally used to generate the number of leading bit for double-precision

operation. The diagram of the DP priority encoder is shown in Figure 5.10. The truth table

of DP priority encoder is shown in Table 5.5. By adding the offset and the code, the number

of leading bit for the double-precision operation is obtained.

In order to unify the SP and DP operation, two unified shifting amount shn1 and shn2

are sent out by this module. In SP mode, the 6-bit normalization shifting amount shn1 =

{1′b0, lzd spone} and the 5-bit shifting amount shn2 = lzd sptwo. In DP mode, shn1 =

lzd dp and shn2 = lzd dp[4 : 0].

In this module, there is no area overhead compared to the LZAC in DP adder to count

the leading bits. An extra level of multiplexers are needed to generate the unified shifting
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Figure 5.9: SP priority encoder in the leading zero anticipation and counting (LZAC)
unit

Table 5.5: DP priority encoder truth table

valid gone valid gmid valid gtwo offset code

1 x x 0 lzd spone

0 1 x 25 code mid

0 0 1 30 lzd sptwo

0 0 0 54 0

amount and these multiplexers also bring extra delay.

5.6 Normalization Shifter

The normalization shifter receives the mantissa summation from the NEAR path ALU and

the two shift amounts from LZAC and left shifts the mantissa in order to normalize it. The

normalization shifter contains two 27-bit shifters. The architecture of the normalization

shifter as shown in Figure 5.11 is similar to the alignment shifter as shown in Figure 5.5. The

difference is that the shifting direction is left.

The LZAC used in the previous step may have 1-bit error. In order to correct the 1-bit
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Figure 5.10: DP priority encoder in the leading zero anticipation and counting (LZAC)
unit

error, one more shifting stage is added. In that stage, the mantissa from the previous stage

is detected. If the MSB is 1, it is already normalized. Otherwise, another 1-bit shifting is

needed. The exponent needs to be adjusted accordingly.

The SP and DP operation share the shifting logic. The DP operation shares the final stage

normalization detection logic and the exponent adjustment logic with the first SP operation.

Extra final stage normalization detection logic and the exponent adjustment logic are needed

for the second SP operation.

5.7 Path Selection

In the last stage, the outputs from the FAR path and the NEAR path are selected by

the signal u n1 and u n2. If u n1 or u n2 is 1, the outputs from NEAR path is selected.

Otherwise, the FAR path outputs are selected.

Compared to DP only adder, extra logic is needed to select the exponent and sign for the

second SP operation.
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Figure 5.11: Normalization shifter of the proposed FP adder

Finally the selected sign, exponent, and mantissa are packed according to the IEEE FP

format [1]. In DP mode, the result is one 64-bit DP number. In SP mode, the result is two

32-bit SP numbers.

The proposed FP adder architecture is mapped on Xilinx Virtex-5 and Virtex-7 and Altera

Stratix-III and Arria-10 devices. Only LUT resources are used in the proposed architecture,

therefore, different from the proposed multiplier, the same architecture is mapped on all these

four devices.

5.8 Summary

In this chapter, the proposed FP adder architecture is presented. The proposed FP adder is

designed based on the two-path FP addition algorithm. Both SP and DP addition/subtraction

operations are supported and one DP addition or two parallel SP addition operations can

be accomplished in 6 clock cycles. With fully pipelined architecture, after the latency of the
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first operation, new results can be generated every clock cycle.

The design of each modules is presented in detail. Each component of the proposed adder

is optimized for mapping on FPGA devices in order to fully utilize FPGA logic resources.

The SP and DP operations are designed to share hardware between each other in order to

reduce area.
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Chapter 6

Result and Analysis

This chapter presents the implementation results of the proposed multiplier and adder

architectures.

In Section 6.1, the implementation results of the proposed FP multiplier on Xilinx Virtex-

5 FPGA are presented. The comparison of the speed and resource usage of the proposed

architecture with those of the previous designs are presented and analyzed. Moreover, the

implementation results of the proposed multiplier architecture on Xilinx Virtex-7 and Altera

Arria-10 devices are also provided.

In Section 6.2, the implementation results of the proposed FP adder on Xilinx Virtex-5

and Altera Stratix-III devices are presented. The speed and resource usage of the proposed

adder are compared with those of the DP+2SP architecture built with: 1) the same data-

path as the proposed architecture; 2) the Xilinx FP operator; 3) the Altera FP megafunction.

The implementation results of the proposed adder on Xilinx Virtex-7 and Altera Arria-10

devices are also provided.

6.1 The Proposed FP Multiplier

The Verilog HDL model of the proposed multiplier architecture is created in order to verify

and analyze the performance of the proposed multiplier design. For the 27 × 27 mantissa

multipliers, instead of inferring them in Verilog code, the DSP instantiation template (for

Xilinx) [43] [44] and the Quartus II DSP IP Catalog and Parameter Editor (for Altera) [38]

are applied in order to ensure the mapping of the mantissa multipliers is exactly the same

as discussed in Chapter 4. The functionality of the proposed design is verified by using a

SystemVerilog testbench with random testing vectors.
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Table 6.1: Delay and area of each pipeline stage of the proposed multiplier on Virtex-5
device

Pipeline

Stage

Delay

(ns)

Area

LUTs Ratio

1 2.568

474

+

6 DSP

42.4%1

2 2.568

3 2.568

4 2.568

5 2.568

6 2.768 291 26.1%

7 2.87 128 11.4%

8 2.878 224 20.1%

Total 2.878 1117 + 6 DSP 100%

1 LUT ratio only

6.1.1 Results on Xilinx Virtex-5 Device

Each Pipeline Stage

In order to compare with previous works, the proposed multiplier architecture is implemented

on Xilinx Virtex-5 FPGA device.

Each pipeline stage of the proposed multiplier architecture for Xilinx FPGA is compiled

using Xilinx ISE 14.7 on Virtex-5 (xc5vlx155ff1760-3) device. The delay and area of each

pipeline stage on Virtex-5 device is shown in Table 6.1. Note that the first 5 pipeline stages

contain DSP blocks, as shown in Figure 4.1, that cannot be divided and synthesized in each

pipeline stage. Therefore, the first 5 pipeline stages are synthesized and reported in Table 6.1

as a whole. Each of the eight pipeline stages has similar delay value, therefore the pipeline

stages of the proposed multiplier are balanced.

As shown in Table 6.1, the maximum delay falls in the last pipeline stage where the time-

consuming DP rounding module is implemented. In the proposed architecture, although the

compound adder is applied and the rounding operation is merely a selection among sum,

sum + 1, and sum + 2 as shown in Section 4.1.6, the whole dp round and normalization

module is still time-consuming because of the long OR operation to generate the sticky-bit,

the complicated logic operation to generate the rounding decision, and the normalization
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Table 6.2: Implementation results of the proposed multiplier on Virtex-5 device

Design DSP LUTs FFs Frequency

Proposed Multiplier 6 1117 945 348 MHz

shifting and exponent correction. In addition, the 7th pipeline stage takes long time because

of the three 54-bit long adders. Although the adder is implemented using the dedicated carry

logic in the slice, the 54-bit long carry propagation still needs long time.

In terms of area, the first five pipeline stages occupy more than 40% of the total LUTs.

This is because in addition to the operands processing logics, the 54-bit adder, the 48-bit

subtractor, and the 13-bit and 26-bit shifters incorporated with the DSP blocks, as shown

in Figure 4.5, occupy large area. Besides, the 6th and 8th pipeline stages occupy large

area because of the SP and DP rounding and normalization operations. For rounding, a

complicated logic is required to generate the rounding decision which takes up large amount

of LUTs. For the normalization, although only 1-bit shifting is required, the SP rounded

mantissa (25-bit) and DP rounded mantissa (54-bit) have large length and therefore the

shifting needs large amount of multiplexers.

The Whole Design

The whole proposed multiplier architecture is synthesized, placed and routed on Xilinx

Virtex-5 (xc5vlx155ff1760-3) FPGA device using Xilinx ISE 14.7. The post place and route

implementation results are shown in Table 6.2. The clock frequency can run up to 348 MHz,

and the proposed multiplier requires 6 DSP48E blocks, 1117 LUTs, and 945 Flip-Flops (FFs).

One DP operation can be accomplished in two iterations with a latency of 9 clock cycles and

two parallel SP operations can be accomplished in one iteration with a latency of 6 clock

cycles.

Comparison with Previous Works

The comparison of the proposed design with previous works is shown in Table 6.3. In order

to better illustrate the comparison, the comparison of normalized area and timing (the ratios
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Table 6.3: Area and timing comparison of the proposed multiplier with previous works

Design Latency ratio DSP48E ratio LUTs ratio FFs ratio
Frequency

(MHz)
ratio

Xilinx [33]

in 2012
18 21 10 1.67 339 0.3 482 0.51 319 0.92

Banescu [40]

in 2011

14

13

1.551

1.441
9

9

1.5

1.5

804

1184

0.72

1.05

804

1080

0.85

1.14

407

407

1.17

1.17

Jaiswal [25]

in 2013

7 (SP)

12 (DP)

1.16

1.33
9 1.5 1168 1.05 1373 1.45 336 0.96

Proposed

in 2015

6 (SP)

9 (DP)
1 6 1 1117 1 945 1 348 1

1 Compared to the DP operation of the proposed design

shown in Table 6.3) of the proposed design with previous works is also graphically shown

in Figure 6.1. The architectures design in [33] and [40] only support DP multiplication.

In [25], the authors present the SP and DP merged multiplier architecture for both normalized

number and subnormal number. In order to make fair comparison, only the architecture for

normalized numbers is considered in this thesis.

Compared to [33], the proposed multiplier needs 40% less DSP blocks, and has 50% less

latency and 9% faster clock frequency for DP operation, however, it occupies more LUTs

and registers. In [33], five stages of DSP blocks (instead of three in the proposed design)

are cascaded, therefore, more pipeline stages are needed that leads to a large latency. The

proposed design needs more LUTs resource than [33], because it needs extra logics to support

both SP and DP operations. Moreover, all major computations are done with DSP blocks

in [33], however, in the proposed architecture, the SP and DP incrementation as well as the

DP partial product reduction and final stage addition are done with LUTs resources.

Compared to [40], the proposed design needs 3 less DSP blocks. Although the proposed

design has slower clock frequency, it needs 5 (or 4) less clock cycles to accomplish one DP

operation. Besides, when the design in [40] is implemented with the latency of 13, it needs

5% more LUTs and 14% more Flip-Flops than the proposed design.

Compared to [25], in terms of area, the proposed multiplier requires 33% less DSP blocks

usage as well as 4.3% less LUTs and 31.2% less Flip-Flops. In terms of speed, the proposed

design has 3.6% faster clock frequency and 1 less clock cycle for SP operations and 3 less clock
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Figure 6.1: Normalized area and timing comparison of the proposed multiplier with
previous works (Banescu [40] L13 represents the design in [40] with a latency of 13, and
L14 represents the design in [40] with a latency of 14)
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Table 6.4: Implementation results of the proposed multiplier on Virtex-7 device

DSP LUTs FFs Frequency

Proposed Multiplier 6 952 973 427.35 MHz

cycles for DP operations. The design in [25] actually uses two levels of Karatsuba algorithm

to achieve one DP operation. Therefore, more stages of DSP blocks are concatenated together

that leads to more pipeline stages and DSP blocks usage.

6.1.2 Results on Xilinx Virtex-7 Device

In order to show the implementation results of the proposed multiplier on latest FPGA

devices, the proposed architecture is also implemented on Xilinx Virtex-7 device and Altera

Arria-10 device.

On Xilinx Virtex-7 (xc7v585tffg1761-3) device, the proposed multiplier is synthesized,

placed and routed using Xilinx Vivado 2015.2. The post place and route results are shown in

Table 6.4. On Virtex-7 device, the proposed multiplier can run up to 427.35 MHz, occupies

6 DSP48E1, 952 LUTs, and 973 Flip-Flops. On DP operation can be accomplished in two

iterations with a latency of 9 clock cycles and two parallel SP operations can be accomplished

in one iteration with a latency of 6 clock cycles.

The performance improvement on Virtex-7 device compared to Virtex-5 device comes

from two reasons. On one hand, Virtex-7 is fabricated with 28 nm technology while Virtex-

5 is with 65 nm technology. The logic circuits can run much faster in 28 nm technology

than in 65 nm technology. On the other hand, the Vivado tool has better synthesis strategy

compared to ISE tool so that the mapped logic is more compact and the routing delay can

be reduced.

6.1.3 Results on Altera Arria-10 Device

In order to implement the proposed multiplier on Altera Arria-10 device, the architecture of

the mantissa multipliers are modified as shown in Figure 4.11. The modified architecture is

synthesized, placed and routed on Altera Arria-10 (10AX090S1F45I1SG) device using Altera

69



Table 6.5: Implementation results of the proposed multiplier on Arria-10 device

DSP ALUTs Registers Frequency

Proposed Multiplier 2 789 730 438.8 MHz

Quartus II 15.0. The post place and route implementation results are shown in Table 6.5. On

Arria-10 device, the proposed multiplier can run up to 438.8 MHz, requiring 2 DSP blocks,

789 ALUTs, and 730 registers. One DP operation can be accomplished in two iterations

with a latency of 7 clock cycles and two parallel SP operations can be accomplished in one

iteration with a latency of 4 clock cycles.

Altera Arria-10 device is fabricated with 20 nm technology where the logic circuit can

run very fast. In addition, the DSP block in Arria-10 device supports 27 × 27 unsigned

multiplication, therefore, one 27× 27 mantissa multiplier can be achieved by only one DSP

blocks. As a result, the LUTs incorporated with the DSP blocks as in Xilinx architecture

can be saved.

6.2 The Proposed FP Adder

The Verilog HDL model of the proposed adder architecture is created in order to verify and

analyze the performance of the proposed adder design. The functionality of the proposed

adder is verified by using a SystemVerilog testbench with random testing vectors.

6.2.1 Results on Xilinx Virtex-5 Device

Each Pipeline Stage

Each pipeline stage of the proposed adder architecture is compiled using Xilinx ISE 14.7 on

Xilinx Virtex-5 (xc5vlx155ff1760-3). The area and delay of each pipeline stage is shown in

Table 6.6. Each of the 6 pipeline stages has similar delay value, therefore the pipeline stages

of the proposed adder are balanced.

As shown in Table 6.6, the maximum delay falls in the fifth pipeline stage where the time-

consuming rounding and normalization are implemented. The rounding is time-consuming
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Table 6.6: Delay and area of each pipeline stage of the proposed adder on Virtex-5
device

Pipeline

Stage

Delay

(ns)

Area

LUTs ratio

1 2.86 133 7.87%

2 2.91 310 18.32%

3 2.906 415 24.51%

4 2.947 162 9.6%

5 2.973 602 35.5%

6 2.361 72 4.2%

Total 2.973 1694 100%

because it needs a complicated logic to generate the rounding decision. The normalization

takes long time because the near path normalization shifter contains 7 levels of shifting

operation (6 level for normalization shifting and 1 more level to correct the LZAC error).

In terms of area, the third and fifth pipeline stages occupy large area because the major

part of alignment shifter and normalization shifter are located in these two pipeline stages.

The alignment shifter has 4-level shifting operation in the third pipeline stage and in each level

the shifting operand is 55-bit long. The normalization shifter has 7-level shifting operations

and on each level the shifting operand is 54-bit long. Therefore large amount of multiplexers

are required for these two shifters that leads to larger area.

The Whole Design

The whole proposed adder architecture is synthesized, placed and routed on Xilinx Virtex-5

(xc5vlx155ff1760-3) FPGA device using Xilinx ISE 14.7. The post place and route imple-

mentation results are shown in Table 6.7. The clock frequency can run up to 336.36 MHz,

and the proposed multiplier requires 1694 LUTs, and 1420 Flip-Flops. Both SP and DP

operation needs 6 clock cycles to accomplish. However, with the fully pipelined architecture,

after the latency of the first operation, new results can be obtained every clock cycle.
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Table 6.7: Implementation results of the proposed adder on Virtex-5 device

Design LUTs FFs Frequency

Proposed Adder 1694 1420 336.36 MHz

Table 6.8: Area and timing comparison of the proposed adder with DP+2SP archi-
tectures on Virtex-5 device

Design Latency LUTs Ratio FFs Ratio
Frequency

(MHz)
Ratio

Xilinx FP Operator 6 1541 0.91 1158 0.82 302.21 0.89

DP+2SP 6 1868 1.1 1441 1.02 346.74 1.03

Proposed Adder 6 1694 1 1420 1 336.36 1

Comparison

To the best of our knowledge, there is no published work on such SP and DP merged adder de-

signed on FPGA. On the other hand, researchers can build an architecture that has the same

function as the proposed design by combining two SP adders and on DP adder (DP+2SP).

In order to show the advantage of the proposed adder, the DP+2SP architecture is built with

1) the same data-path as the proposed design; 2) Xilinx FP operator. Xilinx FP operator is

the FP arithmetic solutions provided by Xilinx on their FPGA devices.

The comparison of the proposed design with the DP+2SP architectures are shown in

Table 6.8. The comparison of normalized area and timing of the proposed adder with the

DP+2SP architectures are also graphically shown in Figure 6.2. When using Xilinx FP

operator, both the SP and DP adders are configured to high speed mode and only the LUTs

are used. Moreover, the latency is set to 6.

Compared to the DP+2SP architecture with the same data-path, the proposed merged

design has 9.3% less LUTs and 1.5% less Flip-Flops with only 2.9% timing overhead. The

area is smaller because in the proposed adder design, the DP and SP adders are merged

together that they can share some hardware with each other. In terms of delay, the critical

path of the DP+2SP architecture falls in the data-path of the DP adder. However, in the
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Figure 6.2: Normalized area and timing comparison of the proposed adder with
DP+2SP architectures on Virtex-5 device

proposed adder architecture, in order to also support SP operation, extra multiplexers are

added to select between SP and DP operations. Therefore, the delay of the proposed adder

is larger than the DP+2SP architecture with the same data-path.

Compared to the DP+2SP architecture built with Xilinx FP operator, the proposed

adder has 11.3% faster clock frequency. However, it needs 9.92% more LUTs and 22% more

Flip-Flops.

6.2.2 Results on Altera Stratix-III Device

Each Pipeline Stage

Each pipeline stage of the proposed adder architecture is compiled using Altera Quartus II

13.0 on Altera Stratix-III (EP3SL340F1760C2). The area and delay of each pipeline stage

is shown in Table 6.9. Each of the 6 pipeline stages has similar delay value, therefore the

pipeline stages of the proposed adder are balanced.

As shown in Table 6.9, the maximum delay falls in the fifth pipeline stage where the time-

consuming rounding and normalization are implemented. The rounding is time-consuming

because it needs a complicated logic to generate the rounding decision. The normalization

takes long time because the near path normalization shifter contains 7 levels of shifting
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Table 6.9: Delay and area of each pipeline stage of the proposed adder on Stratix-III
device

Pipeline

Stage

Delay

(ns)

Area

ALUTs ratio

1 2.65 143 8.52%

2 2.69 299 17.72%

3 2.54 428 25.36%

4 2.73 166 9.85%

5 2.78 585 34.68%

6 1.86 65 3.87%

Total 2.78 1686 100%

Table 6.10: Implementation results of the proposed adder on Stratix-III device

Design ALUTs Registers Frequency

Proposed Adder 1686 1556 358.42 MHz

operation (6 level for normalization shifting and 1 more level to correct the LZAC error).

In terms of area, the third and fifth pipeline stages occupy large area because the major

part of alignment shifter and normalization shifter are located in these two pipeline stages.

The alignment shifter has 4-level shifting operation in the third pipeline stage and in each level

the shifting operand is 55-bit long. The normalization shifter has 7-level shifting operations

and on each level the shifting operand is 54-bit long. Therefore large amount of multiplexers

are required for these two shifters that leads to larger area.

The Whole Design

The whole proposed adder architecture is synthesized, placed and routed on Altera Stratix-

III (EP3SL340F1760C2) device using Altera Quartus II 13.0. The post place and route

implementation results are shown in Table 6.10. On Stratix-III device, the proposed adder

can run up to 358.42 MHz, occupying 1686 ALUTs and 1556 registers. Both SP and DP
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Table 6.11: Area and timing comparison of the proposed adder with DP+2SP archi-
tectures on Stratix-III device

Design Latency ALUTs Ratio Registers Ratio
Frequency

(MHz)
Ratio

Altera Megafunction 6 2416 1.43 1520 0.97 321.03 0.89

DP+2SP 6 1746 1.04 1760 1.13 362.71 1.01

Proposed Adder 6 1686 1 1556 1 358.42 1

operations need 6 clock cycles to accomplish. However, with the fully pipelined architecture,

after the latency of the first operation, new results can be obtained every clock cycle.

Comparison

Altera provides the FP megafunction as their FP arithmetic solutions on their FPGA devices.

The comparison here is to build the DP+2SP architecture with 1) the same data-path as the

proposed design; 2) Altera FP megafunction. The comparison of the proposed design with

the DP+2SP architectures are shown in Table 6.11. The comparison of normalized area and

timing of the proposed adder with the DP+2SP architectures are also graphically shown in

Figure 6.2. When using Altera FP megafunction, both the SP and DP adders are set to

speed optimized and no DSP are used. In addition, the latency is set to 6.

Compared to the DP+2SP architecture with the same data-path, the proposed merged

design has 3.4% less LUTs and 11.5% less Flip-Flops with only 1.2% timing overhead. The

area is smaller because in the proposed adder design, the DP and SP adders are merged

together that they can share some hardware with each other. In terms of delay, the critical

path of the DP+2SP architecture falls in the data-path of the DP adder. However, in the

proposed adder architecture, in order to also support SP operation, extra multiplexers are

added to select between SP and DP operations. Therefore, the delay of the proposed adder

is larger than the DP+2SP architecture with the same data-path.

Compared to the DP+2SP architecture built with Altera megafunction, the proposed

adder has 11.6% faster clock frequency. In terms of area, the proposed adder has 30.2% less
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Figure 6.3: Normalized area and timing comparison of the proposed adder with
DP+2SP architectures on Stratix-III device

Table 6.12: Implementation results of the proposed adder on Virtex-7 device

LUTs FFs Frequency

Proposed Adder 1859 1509 421.2 MHz

LUTs and 2.3% more Flip-Flops.

6.2.3 Results on Xilinx Virtex-7 Device

In order to show the implementation results of the proposed adder on the latest FPGA

devices, the proposed architecture is also implemented on Xilinx Virtex-7 and Altera Arria-

10 devices.

On Xilinx Virtex-7 (xc7v585tffg1761-3) device, the proposed adder is synthesized, placed

and routed using Xiilinx Vivado 2015.2. The post place and route results are shown in

Table 6.12. On Virtex-7 devices, the proposed adder can run up to 421.2 MHz, occupying 1859

LUTs and 1509 Flip-Flops. Both SP and DP operations need 6 clock cycles to accomplish.

Similar to the proposed multiplier implemented on Virtex-7 device, the performance im-

provement compared to Virtex-5 device is due to two factors: the 28 nm technology that

Virtex-7 device is fabricated with can provide faster speed for logic circuits; the smarter

synthesis strategy that the Vivado tool uses can help reduce the routing delay.
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Table 6.13: Implementation results of the proposed adder on Arria-10 device

ALUTs Registers Frequency

Proposed Adder 1396 1487 439.56 MHz

6.2.4 Results on Altera Arria-10 Device

The proposed adder architecture is also implemented on the Altera Arria-10 device. The

proposed adder architecture only use LUT resources, therefore there is no need to modify

the architecture when implementing on Arria-10 devices.

The proposed adder architecture is synthesized, placed and routed on Altera Arria-10

(10AX090S1F45I1SG) device using Altera Quartus II 15.0. The post place and route imple-

mentation results are shown in Table 6.13. On Arria-10 device, the proposed adder can run

up to 439/56 MHz and requires 1396 ALUTs and 1487 registers. Both SP and DP operations

need 6 clock cycles to accomplish.

The improvement of performance compared to Stratix-III device can be explained with

two reasons. First the Altera Arria-10 device is fabricated with 20 nm technology that can

provide fast speed for logic circuits. The second reason is that the new Altera Quartus II

15.0 software uses smarter synthesis strategy that can better optimize the logic circuit to

reduce the routing delay and resource usage.
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Chapter 7

Conclusion and Future Work

7.1 Conclusion

In this thesis, the design and implementation of an efficient single-precision (SP) and double-

precision (DP) merged floating-point (FP) multiplier and a high performance SP and DP

merged FP adder is presented. The proposed FP multiplier and FP adder are designed in

order to efficiently support the multiplication and addition operations of multiple-precision

with unified architectures, respectively.

In the proposed FP multiplier, the iterative multiplication method is applied in order

to reduce the area of the proposed architecture. The proposed multiplier can accomplish

two parallel SP multiplications in one iteration or one DP multiplication in two iterations.

On Xilinx Virtex-5 and Virtex-7 devices, the complete SP operation needs 6 clock cycles to

finish and the DP operation needs 9 clock cycles to accomplish. Whereas on Altera Arria-10

device, the SP multiplication requires 4 clock cycles and the DP multiplication needs 7 clock

cycles. DSP blocks are used when mapping the proposed architecture on FPGA devices in

order to reduce the look-up table (LUT) usage and improve the performance. Besides, when

mapping the proposed multiplier architecture on Xilinx FPGA, the Karatsuba algorithm is

applied in order to further reduce the DSP block usage. On Virtex-5 device, compared to

the previous work of SP and DP merged FP multiplier on FPGA, the proposed multiplier

has a 33% reduction of DSP block usage with 4% faster clock frequency.

In the proposed FP adder, the two-path FP addition algorithm is applied in order

to obtain the best performance. The proposed adder supports both SP and DP addi-

tion/subtraction operations. With fully pipelined architecture, the proposed adder can ac-

complish on DP operation or two parallel SP operations with a latency of 6 clock cycles. Each
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component of the proposed adder is optimized for mapping on FPGA devices. The proposed

adder is implemented on both 65 nm process Xilinx Virtex-5 and Altera Stratix-III devices.

On both devices, compared to the combination of one DP and two SP adders (DP+2SP) built

with the same data-path, the proposed adder can save area with limited timing overhead. On

Virtex-5 device, the proposed adder runs 11.3% faster than the DP+2SP architecture built

with Xilinx FP operator. Meanwhile, the proposed adder has 11.6% faster clock frequency

than the DP+2SP architecture built with Altera FP megafunction on Stratix-III device.

The mapping solutions and implementation results of the proposed multiplier and adder

on the latest Xilinx Virtex-7 and Altera Arria-10 FPGA devices are also provided. These two

series of devices are fabricated with better semiconductor technology (28 nm technology for

Virtex-7 and 20 nm technology for Arria-10). In addition, the two latest FPGA development

tools, Xilinx Vivado 2015.2 and Altera Quartus II 15.0, use smarter synthesis strategies to im-

plement the logic design. Therefore, on these two devices, there is a significant improvement

on the performance of the proposed multiplier and adder.

By using the proposed multiplier architecture, more DSP blocks can be reserved for other

functions or operations. Therefore, the proposed multiplier architecture is especially suitable

for the low-end FPGA devices where the number of DSP blocks is quite limited. As the

proposed adder is designed for high performance operation, therefore it is also suitable for

FP applications where the performance is the first consideration.

7.2 Future Work

There are several extensions of this work that can be investigated in the future, including

the support for subnormal numbers, the support for quadruple-precision (QP) numbers, and

the multiple-precision fused multiply-add (FMA) unit design.

The FP multiplier and FP adder proposed in this thesis only support normalized numbers.

The support for subnormal numbers can be added. Subnormal numbers can ensure that the

subtraction of two close FP numbers can never be underflow and always has a representable

value. Otherwise even though the values of these two numbers are not equal, the result of

subtraction will be zero. Subnormal support is important in audio processing applications.
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In audio applications, subnormal numbers represent very quiet signal. If subnormal operation

is not supported, they will be cut to zero and the quality of the signal will be affected.

The design of unified FP multiplier and unified FP adder that also support QP opera-

tions can be investigated. In the upcoming big data era, more and more applications, such

as financial calculation and aerospace applications, require QP operations. However, the

software data processing solutions running on CPUs are not fast enough to process the big

data dataset which is measured with petabyte or even exabyte. FPGA is a good candidate

for CPU accelerator. FPGA implementation of SP, DP, and QP merged multiplier/adder is

expected to provide a good solution to the QP operations. In addition, the unified architec-

ture can be used in scientific and engineering applications where DP or SP operations are

required.

The design of a multiple-precision FMA unit can also be considered. Compared to sepa-

rate multiplier and adder units, the FMA unit has several advantages: 1) one multiplication

and addition operation is performed with only one rounding instead of two. Therefore, the

overall delay and the rounding error can be reduced; 2) the multiplier and the adder can

share components with each other. Therefore, the total area can be reduced. As a result,

in a single FPGA chip, more computing units can be placed that is expected to further

improve the computing performance. Moreover, many applications contain large amount of

A + (B × C) operations. These applications can be efficiently executed using FMA archi-

tecture. The merged-precision architecture can be explored in order to efficiently support

multiple-precision operations for various kinds of applications.

In addition to the full precision FMA unit, the approximate FMA with slightly reduced

precision can be investigated. In video and audio applications, because of human’s perception,

a slightly reduced precision will not affect the quality of service (QoS). Moreover, some

applications, such as machine learning and biological applications, can tolerate the inexact

data processing and produce acceptable results. With approximate computing architecture,

significant area and power benefit can be obtained and the performance improvement can be

expected.
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