8,239 research outputs found

    Semantic relatedness based re-ranker for text spotting

    Get PDF
    Applications such as textual entailment, plagiarism detection or document clustering rely on the notion of semantic similarity, and are usually approached with dimension reduction techniques like LDA or with embedding-based neural approaches. We present a scenario where semantic similarity is not enough, and we devise a neural approach to learn semantic relatedness. The scenario is text spotting in the wild, where a text in an image (e.g. street sign, advertisement or bus destination) must be identified and recognized. Our goal is to improve the performance of vision systems by leveraging semantic information. Our rationale is that the text to be spotted is often related to the image context in which it appears (word pairs such as Delta–airplane, or quarters–parking are not similar, but are clearly related). We show how learning a word-to-word or word-to-sentence relatedness score can improve the performance of text spotting systems up to 2.9 points, outperforming other measures in a benchmark dataset.Peer ReviewedPostprint (author's final draft

    Furniture models learned from the WWW: using web catalogs to locate and categorize unknown furniture pieces in 3D laser scans

    Get PDF
    In this article, we investigate how autonomous robots can exploit the high quality information already available from the WWW concerning 3-D models of office furniture. Apart from the hobbyist effort in Google 3-D Warehouse, many companies providing office furnishings already have the models for considerable portions of the objects found in our workplaces and homes. In particular, we present an approach that allows a robot to learn generic models of typical office furniture using examples found in the Web. These generic models are then used by the robot to locate and categorize unknown furniture in real indoor environments

    Enhancing scene text recognition with visual context information

    Get PDF
    This thesis addresses the problem of improving text spotting systems, which aim to detect and recognize text in unrestricted images (e.g. a street sign, an advertisement, a bus destination, etc.). The goal is to improve the performance of off-the-shelf vision systems by exploiting the semantic information derived from the image itself. The rationale is that knowing the content of the image or the visual context can help to decide which words are the correct andidate words. For example, the fact that an image shows a coffee shop makes it more likely that a word on a signboard reads as Dunkin and not unkind. We address this problem by drawing on successful developments in natural language processing and machine learning, in particular, learning to re-rank and neural networks, to present post-process frameworks that improve state-of-the-art text spotting systems without the need for costly data-driven re-training or tuning procedures. Discovering the degree of semantic relatedness of candidate words and their image context is a task related to assessing the semantic similarity between words or text fragments. However, semantic relatedness is more general than similarity (e.g. car, road, and traffic light are related but not similar) and requires certain adaptations. To meet the requirements of these broader perspectives of semantic similarity, we develop two approaches to learn the semantic related-ness of the spotted word and its environmental context: word-to-word (object) or word-to-sentence (caption). In the word-to-word approach, word embed-ding based re-rankers are developed. The re-ranker takes the words from the text spotting baseline and re-ranks them based on the visual context from the object classifier. For the second, an end-to-end neural approach is designed to drive image description (caption) at the sentence-level as well as the word-level (objects) and re-rank them based not only on the visual context but also on the co-occurrence between them. As an additional contribution, to meet the requirements of data-driven ap-proaches such as neural networks, we propose a visual context dataset for this task, in which the publicly available COCO-text dataset [Veit et al. 2016] has been extended with information about the scene (including the objects and places appearing in the image) to enable researchers to include the semantic relations between texts and scene in their Text Spotting systems, and to offer a common evaluation baseline for such approaches.Aquesta tesi aborda el problema de millorar els sistemes de reconeixement de text, que permeten detectar i reconèixer text en imatges no restringides (per exemple, un cartell al carrer, un anunci, una destinació d’autobús, etc.). L’objectiu és millorar el rendiment dels sistemes de visió existents explotant la informació semàntica derivada de la pròpia imatge. La idea principal és que conèixer el contingut de la imatge o el context visual en el que un text apareix, pot ajudar a decidir quines són les paraules correctes. Per exemple, el fet que una imatge mostri una cafeteria fa que sigui més probable que una paraula en un rètol es llegeixi com a Dunkin que no pas com unkind. Abordem aquest problema recorrent a avenços en el processament del llenguatge natural i l’aprenentatge automàtic, en particular, aprenent re-rankers i xarxes neuronals, per presentar solucions de postprocés que milloren els sistemes de l’estat de l’art de reconeixement de text, sense necessitat de costosos procediments de reentrenament o afinació que requereixin grans quantitats de dades. Descobrir el grau de relació semàntica entre les paraules candidates i el seu context d’imatge és una tasca relacionada amb l’avaluació de la semblança semàntica entre paraules o fragments de text. Tanmateix, determinar l’existència d’una relació semàntica és una tasca més general que avaluar la semblança (per exemple, cotxe, carretera i semàfor estan relacionats però no són similars) i per tant els mètodes existents requereixen certes adaptacions. Per satisfer els requisits d’aquestes perspectives més àmplies de relació semàntica, desenvolupem dos enfocaments per aprendre la relació semàntica de la paraula reconeguda i el seu context: paraula-a-paraula (amb els objectes a la imatge) o paraula-a-frase (subtítol de la imatge). En l’enfocament de paraula-a-paraula s’usen re-rankers basats en word-embeddings. El re-ranker pren les paraules proposades pel sistema base i les torna a reordenar en funció del context visual proporcionat pel classificador d’objectes. Per al segon cas, s’ha dissenyat un enfocament neuronal d’extrem a extrem per explotar la descripció de la imatge (subtítol) tant a nivell de frase com a nivell de paraula i re-ordenar les paraules candidates basant-se tant en el context visual com en les co-ocurrències amb el subtítol. Com a contribució addicional, per satisfer els requisits dels enfocs basats en dades com ara les xarxes neuronals, presentem un conjunt de dades de contextos visuals per a aquesta tasca, en el què el conjunt de dades COCO-text disponible públicament [Veit et al. 2016] s’ha ampliat amb informació sobre l’escena (inclosos els objectes i els llocs que apareixen a la imatge) per permetre als investigadors incloure les relacions semàntiques entre textos i escena als seus sistemes de reconeixement de text, i oferir una base d’avaluació comuna per a aquests enfocaments

    Fast PRISM: Branch and Bound Hough Transform for Object Class Detection

    Get PDF
    This paper addresses the task of efficient object class detection by means of the Hough transform. This approach has been made popular by the Implicit Shape Model (ISM) and has been adopted many times. Although ISM exhibits robust detection performance, its probabilistic formulation is unsatisfactory. The PRincipled Implicit Shape Model (PRISM) overcomes these problems by interpreting Hough voting as a dual implementation of linear sliding-window detection. It thereby gives a sound justification to the voting procedure and imposes minimal constraints. We demonstrate PRISM's flexibility by two complementary implementations: a generatively trained Gaussian Mixture Model as well as a discriminatively trained histogram approach. Both systems achieve state-of-the-art performance. Detections are found by gradient-based or branch and bound search, respectively. The latter greatly benefits from PRISM's feature-centric view. It thereby avoids the unfavourable memory trade-off and any on-line pre-processing of the original Efficient Subwindow Search (ESS). Moreover, our approach takes account of the features' scale value while ESS does not. Finally, we show how to avoid soft-matching and spatial pyramid descriptors during detection without losing their positive effect. This makes algorithms simpler and faster. Both are possible if the object model is properly regularised and we discuss a modification of SVMs which allows for doing s

    Towards robust real-world historical handwriting recognition

    Get PDF
    In this thesis, we make a bridge from the past to the future by using artificial-intelligence methods for text recognition in a historical Dutch collection of the Natuurkundige Commissie that explored Indonesia (1820-1850). In spite of the successes of systems like 'ChatGPT', reading historical handwriting is still quite challenging for AI. Whereas GPT-like methods work on digital texts, historical manuscripts are only available as an extremely diverse collections of (pixel) images. Despite the great results, current DL methods are very data greedy, time consuming, heavily dependent on the human expert from the humanities for labeling and require machine-learning experts for designing the models. Ideally, the use of deep learning methods should require minimal human effort, have an algorithm observe the evolution of the training process, and avoid inefficient use of the already sparse amount of labeled data. We present several approaches towards dealing with these problems, aiming to improve the robustness of current methods and to improve the autonomy in training. We applied our novel word and line text recognition approaches on nine data sets differing in time period, language, and difficulty: three locally collected historical Latin-based data sets from Naturalis, Leiden; four public Latin-based benchmark data sets for comparability with other approaches; and two Arabic data sets. Using ensemble voting of just five neural networks, a level of accuracy was achieved which required hundreds of neural networks in earlier studies. Moreover, we increased the speed of evaluation of each training epoch without the need of labeled data

    Methods for efficient object categorization, detection, scene recognition, and image search

    Get PDF
    In the past few years there has been a tremendous growth in the usage of digital images. Users can now access millions of photos, a fact that poses the need of having methods that can efficiently and effectively search the visual information of interest. In this thesis, we propose methods to learn image representations to compactly represent a large collection of images, enabling accurate image recognition with linear classification models which offer the advantage of being efficient to both train and test. The entries of our descriptors are the output of a set of basis classifiers evaluated on the image, which capture the presence or absence of a set of high-level visual concepts. We propose two different techniques to automatically discover the visual concepts and learn the basis classifiers from a given labeled dataset of pictures, producing descriptors that highly-discriminate the original categories of the dataset. We empirically show that these descriptors are able to encode new unseen pictures, and produce state-of-the-art results in conjunct with cheap linear classifiers. We describe several strategies to aggregate the outputs of basis classifiers evaluated on multiple subwindows of the image in order to handle cases when the photo contains multiple objects and large amounts of clutter. We extend this framework for the task of object detection, where the goal is to spatially localize an object within an image. We use the output of a collection of detectors trained in an offline stage as features for new detection problems, showing competitive results with the current state of the art. Since generating rich manual annotations for an image dataset is a crucial limit of modern methods in object localization and detection, in this thesis we also propose a method to automatically generate training data for an object detector in a weakly-supervised fashion, yielding considerable savings in human annotation efforts. We show that our automatically-generated regions can be used to train object detectors with recognition results remarkably close to those obtained by training on manually annotated bounding boxes

    Kernel and Classifier Level Fusion for Image Classification.

    Get PDF
    Automatic understanding of visual information is one of the main requirements for a complete artificial intelligence system and an essential component of autonomous robots. State-of-the-art image recognition approaches are based on different local descriptors, each capturing some properties of the image such as intensity, color and texture. Each set of local descriptors is represented by a codebook and gives rise to a separate feature channel. For classification the feature channels are combined by using multiple kernel learning (MKL), early fusion or classifier level fusion approaches. Due to the importance of complementary information in fusion techniques, there is an increasing demand for diverse feature channels. The first part of the thesis focuses on the ways to encode information from images that is complementary to the state-of-the-art local features. To address this issue we present a novel image representation which can encode the structure of an object and propose three descriptors based on this representation. In the state-of-the-art recognition system the kernels are often computed independently of each other and thus may be highly informative yet redundant. Proper selection and fusion of the kernels is, therefore, crucial to maximize the performance and to address the efficiency issues in visual recognition applications. We address this issue in second part of the thesis where, we propose novel techniques to fuse feature channels for object and pattern recognition. We present an extensive evaluation of the fusion methods on four object recognition datasets and achieve state-of-the-art results on all of them. We also present results on four bioinformatics datasets to demonstrate that the proposed fusion methods work for a variety of pattern recognition problems, provided that we have multiple feature channels
    corecore