527 research outputs found

    Emerging Multiport Electrical Machines and Systems: Past Developments, Current Challenges, and Future Prospects

    Get PDF
    Distinct from the conventional machines with only one electrical and one mechanical port, electrical machines featuring multiple electrical/mechanical ports (the so-called multiport electrical machines) provide a compact, flexible, and highly efficient manner to convert and/or transfer energies among different ports. This paper attempts to make a comprehensive overview of the existing multiport topologies, from fundamental characteristics to advanced modeling, analysis, and control, with particular emphasis on the extensively investigated brushless doubly fed machines for highly reliable wind turbines and power split devices for hybrid electric vehicles. A qualitative review approach is mainly adopted, but strong efforts are also made to quantitatively highlight the electromagnetic and control performance. Research challenges are identified, and future trends are discussed

    Open-End Winding Induction Motor Drive Based on Indirect Matrix Converter

    Get PDF
    Open-end winding induction machines fed from two standard two-level voltage source inverters (VSI) provide an attractive arrangement for AC drives. An alternative approach is to use a dual output indirect matrix converter (IMC). It is well known that IMC provides fully bidirectional power flow operation, with small input size filter requirements. Whilst a standard IMC consists of an AC–DC matrix converter input stage followed by a single VSI output stage, it is possible to replicate the VSI to produce multiple outputs. In this chapter, an open-end winding induction machine fed by an IMC with two output stages is presented. Different modulation strategies for the power converter are analyzed and discussed

    A vector control strategy for five-phase drives fed by simplified split-source inverters

    Get PDF

    A vector control strategy for five-phase drives fed by simplified split-source inverters

    Get PDF

    Quasi two-level PWM operation of a nine-arm modular multilevel converter for six-phase medium-voltage motor drives

    Get PDF
    This paper proposes a hybrid converter for medium-voltage six-phase machine drive systems that mixes the operation of a traditional two-level voltage-source inverter and the modular multilevel converter (MMC) to enable operation over a wide frequency range. Topologically, the proposed converter consists of nine arms resembling two sets of three-phase MMCs with three common arms, yielding a nine-arm MMC with a 25% reduction in the number of employed arms compared to a traditional dual three-phase MMC. The multilevel property of a standard MMC is emulated in the proposed converter, however on a two-level basis, resulting in a stepped two-level output voltage waveform. The proposed converter has a reduced footprint with advantages of small voltage steps, modular structure, and ease of scalability. Further, it is able to drive high-power six-phase machines within low operating frequencies at the rated torque. The operating principle of the converter is elaborated, and its modulation scheme is discussed. The features of the proposed converter are verified through simulations and experimentally

    Advanced Electrical Machines and Machine-Based Systems for Electric and Hybrid Vehicles

    Get PDF
    The paper presents a number of advanced solutions on electric machines and machine-based systems for the powertrain of electric vehicles (EVs). Two types of systems are considered, namely the drive systems designated to the EV propulsion and the power split devices utilized in the popular series-parallel hybrid electric vehicle architecture. After reviewing the main requirements for the electric drive systems, the paper illustrates advanced electric machine topologies, including a stator permanent magnet (stator-PM) motor, a hybrid-excitation motor, a flux memory motor and a redundant motor structure. Then, it illustrates advanced electric drive systems, such as the magnetic-geared in-wheel drive and the integrated starter generator (ISG). Finally, three machine-based implementations of the power split devices are expounded, built up around the dual-rotor PM machine, the dual-stator PM brushless machine and the magnetic-geared dual-rotor machine. As a conclusion, the development trends in the field of electric machines and machine-based systems for EVs are summarized

    Modelling and indirect field‐oriented control for pole phase modulation induction motor drives

    Get PDF
    In the recent days, for the traction and electric vehicle (EV) applications, multiphase machines with pole phase modulation (PPM) technique have been proposed. The smoother operation during pole changeovers as well as steady-state operations is a significant constraint while adopting the PPM-based multiphase induction motor (PPMIM) drives for EV and traction applications. So, in this paper, the PPMIM dynamic model and associated vector control are proposed for attaining a smoother operation of the machine. The machine modelling equations and transformation matrices are implemented in an arbitrary reference frame by considering the different pole phase combinations. Based on the modelling equations, the indirect field-oriented control (IFOC) is proposed for PPMIM drives by reflecting the associated changes in parameters for different pole phase modes. In the IFOC, for regulating the d-axis and q-axis current components, single PI control loops have been implemented for all pole-phase combinations. The proposed IFOC scheme is robust and applicable for adopting any type of pulse width modulation. The experimental, as well as simulation results, are given to illustrate the potentiality of the proposed dynamic model and IFOC. The PPMIM machine performance during the steady state as well as pole changeovers in different pole phase modes are analyzed and associated. Simulation and experimental results are presented

    A multilevel converter with a floating bridge for open-ended winding motor drive application

    Get PDF
    In this thesis, a dual inverter topology is considered as an alternative to a multilevel converter for the control of high speed machines. Instead of feeding to one end of the stator with a single power converter, this topology feeds from both sides of the stator winding using two converters, thus achieving multilevel output voltage waveforms across the load. A large amount of published work in the area of open end winding power converter topologies are focused on symmetrical voltage sources. This published research recognises the advantages of the converter system in terms of increased reliability, improved power sharing capability and elimination of common mode voltages when compared to traditional single sided three phase converter solutions. However isolated DC supplies come with the price of additional components thus increase size, weight and losses of the converter system. The aim of this project is, therefore, to investigate on reducing size, weight and losses of the open end winding motor drive by eliminating the need for isolated supply as well to achieve multilevel output voltage waveform. A traditional open-end winding induction motor drive has been analysed in terms of weight and losses and it has been clearly identified that the isolation transformer not only increases the size and weight of a drive system but also includes additional losses. A modified dual inverter system has then been proposed where one of the bridge inverters is floating, thus eliminated the need for isolated supplies. An asymmetric DC voltage sources ratio of 2:1 is utilised to achieve multilevel output voltage waveform across the load. The switching sequences are also analysed to identify the charging and discharging sequences to achieve control over floating capacitor voltage. This thesis describes the theoretical derivation of the modified converter model and algorithms as well as experimental results from an 11kW laboratory prototype

    Advances in Rotating Electric Machines

    Get PDF
    It is difficult to imagine a modern society without rotating electric machines. Their use has been increasing not only in the traditional fields of application but also in more contemporary fields, including renewable energy conversion systems, electric aircraft, aerospace, electric vehicles, unmanned propulsion systems, robotics, etc. This has contributed to advances in the materials, design methodologies, modeling tools, and manufacturing processes of current electric machines, which are characterized by high compactness, low weight, high power density, high torque density, and high reliability. On the other hand, the growing use of electric machines and drives in more critical applications has pushed forward the research in the area of condition monitoring and fault tolerance, leading to the development of more reliable diagnostic techniques and more fault-tolerant machines. This book presents and disseminates the most recent advances related to the theory, design, modeling, application, control, and condition monitoring of all types of rotating electric machines
    • 

    corecore