9 research outputs found

    Valószínűség maximalizálás = Probability maximization

    Get PDF
    Valószínűség maximalizálási problémákat oldunk meg belső közelítéssel. A megoldás módszere analóg a p-efficiens pontok klasszikus módszerével, azonban a valószínűségi függvény szinthalmazai közelítése helyett az epigráfot közelítjük. Jelen dolgozatban a megoldott tesztfeladat Matlab implementációját és az előzetes tesztelés eredményeit mutatjuk be

    Chance constrained problems: penalty reformulation and performance of sample approximation technique

    Get PDF
    summary:We explore reformulation of nonlinear stochastic programs with several joint chance constraints by stochastic programs with suitably chosen penalty-type objectives. We show that the two problems are asymptotically equivalent. Simpler cases with one chance constraint and particular penalty functions were studied in [6,11]. The obtained problems with penalties and with a fixed set of feasible solutions are simpler to solve and analyze then the chance constrained programs. We discuss solving both problems using Monte-Carlo simulation techniques for the cases when the set of feasible solution is finite or infinite bounded. The approach is applied to a financial optimization problem with Value at Risk constraint, transaction costs and integer allocations. We compare the ability to generate a feasible solution of the original chance constrained problem using the sample approximations of the chance constraints directly or via sample approximation of the penalty function objective

    Solving joint chance constrained problems using regularization and Benders' decomposition

    Get PDF
    In this paper we investigate stochastic programms with joint chance constraints. We consider discrete scenario set and reformulate the problem by adding auxiliary variables. Since the resulting problem has a difficult feasible set, we regularize it. To decrease the dependence on the scenario number, we propose a numerical method by iteratively solving a master problem while adding Benders cuts. We find the solution of the slave problem (generating the Benders cuts) in a closed form and propose a heuristic method to decrease the number of cuts. We perform a numerical study by increasing the number of scenarios and compare our solution with a solution obtained by solving the same problem with continuous distribution

    Chance Constrained Mixed Integer Program: Bilinear and Linear Formulations, and Benders Decomposition

    Full text link
    In this paper, we study chance constrained mixed integer program with consideration of recourse decisions and their incurred cost, developed on a finite discrete scenario set. Through studying a non-traditional bilinear mixed integer formulation, we derive its linear counterparts and show that they could be stronger than existing linear formulations. We also develop a variant of Jensen's inequality that extends the one for stochastic program. To solve this challenging problem, we present a variant of Benders decomposition method in bilinear form, which actually provides an easy-to-use algorithm framework for further improvements, along with a few enhancement strategies based on structural properties or Jensen's inequality. Computational study shows that the presented Benders decomposition method, jointly with appropriate enhancement techniques, outperforms a commercial solver by an order of magnitude on solving chance constrained program or detecting its infeasibility

    A multi-organisational approach for disaster preparedness and response:the use of optimisation and GIS for facility location, stock pre-positioning, resource allocation and relief distribution

    Get PDF
    From 1992 to 2012 4.4 billion people were affected by disasters with almost 2 trillion USD in damages and 1.3 million people killed worldwide. The increasing threat of disasters stresses the need to provide solutions for the challenges faced by disaster managers, such as the logistical deployment of resources required to provide relief to victims. The location of emergency facilities, stock prepositioning, evacuation, inventory management, resource allocation, and relief distribution have been identified to directly impact the relief provided to victims during the disaster. Managing appropriately these factors is critical to reduce suffering. Disaster management commonly attracts several organisations working alongside each other and sharing resources to cope with the emergency. Coordinating these agencies is a complex task but there is little research considering multiple organisations, and none actually optimising the number of actors required to avoid shortages and convergence. The aim of the this research is to develop a system for disaster management based on a combination of optimisation techniques and geographical information systems (GIS) to aid multi-organisational decision-making. An integrated decision system was created comprising a cartographic model implemented in GIS to discard floodable facilities, combined with two models focused on optimising the decisions regarding location of emergency facilities, stock prepositioning, the allocation of resources and relief distribution, along with the number of actors required to perform these activities. Three in-depth case studies in Mexico were studied gathering information from different organisations. The cartographic model proved to reduce the risk to select unsuitable facilities. The preparedness and response models showed the capacity to optimise the decisions and the number of organisations required for logistical activities, pointing towards an excess of actors involved in all cases. The system as a whole demonstrated its capacity to provide integrated support for disaster preparedness and response, along with the existence of room for improvement for Mexican organisations in flood management
    corecore