32 research outputs found

    Consensus for nonlinear monotone networks with unilateral interactions

    Get PDF
    This paper deals with an extended framework of the distributed asymptotic agreement problem by allowing the presence of unilateral interactions (optimistic or pessimistic) in place of bilateral ones, for a large class of nonlinear monotone time-varying networks. In this original setup we firstly introduce notions of unilateral optimistic and/or pessimistic interaction, of associated bicolored edge in the interaction graph and a suitable graph-theoretical connectedness property. Secondly, we formulate a new assumption of integral connectivity and show that it is sufficient to guarantee exponential convergence towards the agreement subspace. Finally, we remark that the proposed conditions are also necessary for consensuability. Theoretical advances are emphasized through illustrative examples given both to support the discussion and to highlight how the proposed framework extends all existing conditions for consensus of monotone networks

    Just Renormalizable TGFT's on U(1)^d with Gauge Invariance

    Full text link
    We study the polynomial Abelian or U(1)^d Tensorial Group Field Theories equipped with a gauge invariance condition in any dimension d. From our analysis, we prove the just renormalizability at all orders of perturbation of the phi^4_6 and phi^6_5 random tensor models. We also deduce that the phi^4_5 tensor model is super-renormalizable.Comment: 33 pages, 22 figures. One added paragraph on the different notions of connectedness, preciser formulation of the proof of the power counting theorem, more general statements about traciality of tensor graph

    Assessing the Computational Complexity of Multi-Layer Subgraph Detection

    Get PDF
    Multi-layer graphs consist of several graphs (layers) over the same vertex set. They are motivated by real-world problems where entities (vertices) are associated via multiple types of relationships (edges in different layers). We chart the border of computational (in)tractability for the class of subgraph detection problems on multi-layer graphs, including fundamental problems such as maximum matching, finding certain clique relaxations (motivated by community detection), or path problems. Mostly encountering hardness results, sometimes even for two or three layers, we can also spot some islands of tractability

    Simultaneous Feedback Vertex Set: A Parameterized Perspective

    Get PDF
    Given a family of graphs F\mathcal{F}, a graph GG, and a positive integer kk, the F\mathcal{F}-Deletion problem asks whether we can delete at most kk vertices from GG to obtain a graph in F\mathcal{F}. F\mathcal{F}-Deletion generalizes many classical graph problems such as Vertex Cover, Feedback Vertex Set, and Odd Cycle Transversal. A graph G=(V,âˆȘi=1αEi)G = (V, \cup_{i=1}^{\alpha} E_{i}), where the edge set of GG is partitioned into α\alpha color classes, is called an α\alpha-edge-colored graph. A natural extension of the F\mathcal{F}-Deletion problem to edge-colored graphs is the α\alpha-Simultaneous F\mathcal{F}-Deletion problem. In the latter problem, we are given an α\alpha-edge-colored graph GG and the goal is to find a set SS of at most kk vertices such that each graph Gi∖SG_i \setminus S, where Gi=(V,Ei)G_i = (V, E_i) and 1≀i≀α1 \leq i \leq \alpha, is in F\mathcal{F}. In this work, we study α\alpha-Simultaneous F\mathcal{F}-Deletion for F\mathcal{F} being the family of forests. In other words, we focus on the α\alpha-Simultaneous Feedback Vertex Set (α\alpha-SimFVS) problem. Algorithmically, we show that, like its classical counterpart, α\alpha-SimFVS parameterized by kk is fixed-parameter tractable (FPT) and admits a polynomial kernel, for any fixed constant α\alpha. In particular, we give an algorithm running in 2O(αk)nO(1)2^{O(\alpha k)}n^{O(1)} time and a kernel with O(αk3(α+1))O(\alpha k^{3(\alpha + 1)}) vertices. The running time of our algorithm implies that α\alpha-SimFVS is FPT even when α∈o(log⁥n)\alpha \in o(\log n). We complement this positive result by showing that for α∈O(log⁥n)\alpha \in O(\log n), where nn is the number of vertices in the input graph, α\alpha-SimFVS becomes W[1]-hard. Our positive results answer one of the open problems posed by Cai and Ye (MFCS 2014)
    corecore