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Abstract— This paper deals with an extended framework of

the distributed asymptotic agreement problem by allowing the

presence of unilateral interactions (optimistic or pessimistic) in

place of bilateral ones, for a large class of nonlinear monotone

time-varying networks. In this original setup we firstly intro-

duce notions of unilateral optimistic and/or pessimistic interac-

tion, of associated bicolored edge in the interaction graph and

a suitable graph-theoretical connectedness property. Secondly,

we formulate a new assumption of integral connectivity and

show that it is sufficient to guarantee exponential convergence

towards the agreement subspace. Finally, we remark that the

proposed conditions are also necessary for consensuability. The-

oretical advances are emphasized through illustrative examples

given both to support the discussion and to highlight how

the proposed framework extends all existing conditions for

consensus of monotone networks.

I. INTRODUCTION

In the last decade the scientific community has devoted
considerable attention to the agreement problem (see [1],
[3] just to cite a few) formulating several criteria to assess
consensus both in discrete and continuous time (e.g. [6]),
under different classes of both nonlinear time invariant and
switching/time varying networks [5], [13], [2] or by adopting
several remarkable new instantaneous, averaged or integrated
notions of connectivity [9], [12], [11], [6], [8]. All the
above contributions assume the presence of bilateral agent
interactions, in the sense that each node with a certain state
value may feel the influence of the neighbooring agents
regardless of whether their current state is higher or lower
than its own (precise definitions to be given later). Recent
works extend the standard diffusive-type interaction scenario
by considering signed graph networks in which the edges
may assume also negative weights ([14]), or introducing
protocols where each agent is affected by the influence of
the neighbooring nodes with maximum and minimum state
value ([4]), however the interaction between agents is still
assumed to be bilateral. In some applications, however, node
interactions are likely to be unilateral or specifically designed
to be such. For example, in the opinion dynamics setting, an
agent may be willing to update its own belief on the basis
of the input from a certain neighbour only if its opinion
happens to be “optimistic” [and/or “pessimistic”] (that is
larger or smaller) when compared to his current state value.
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Additionally, in many gossip and sampling algorithms, nodes
update laws are designed so that they are influenced just by
agents carrying out higher or lower estimated or measured
values. Therefore, both from a theoretical and practical point
of view, it is of interest to qualify structural conditions on
the network topology and agents interactions which may
guarantee exponential convergence to an agreement state in
the extended scenario of unilateral node interactions.

A. Paper Contribution

In this paper we develop original tools for the study of the
agreement problem under minimal connectivity assumptions
for nonlinear time-varying monotone networks of agents
in the presence of unilateral interactions. This scenario is
challenging to be dealt with due to the presence of unilat-
eral (intrinsically nonlinear) node interactions and the fact
that connectivity becomes both state-dependent and time-
dependent: while the interplay of these two factors often
lends itself to conditions for consensus that need to be
tested along solutions of the system, our approach aims at
avoiding such a limitation. In this respect our contributions
are manifold. Firstly we introduce new notions of directed
state-frozen agents interaction, that extends the previous ones
being intrinsically unilateral and thus nonlinear. The notion
models separately (and possibly simultaneously) “optimistic”
and “pessimistic” type influences on a node from neighbour-
ing agents. Accordingly new notions of bicolored interaction
graphs and suitable associated connectivity definitions are
provided to capture the nature of information flows allowed
by unilateral interactions. Interestingly, the above notions
extend the ones for monocolored graphs and boil down to
the former in the case of standard bilateral interactions.
Secondly, based on the previous graph-theoretical concepts,
we propose novel integral connectivity conditions which
characterize exponential convergence to consensus from ar-
bitrary initial conditions of individual agents for mono-
tone time-varying networks under unilateral interactions,
thus significantly extending (and encompassing as a special
case) existing consensus criteria for (linear and nonlinear)
monotone networks. Thirdly, we highlight how our approach
avoids the circular argument by which solutions depend on
the connectivity and the latter is in turn influenced by state
evolutions. This type of circular argument normally makes
up for conditions that can hardly be tested in the case of
time-varying nonlinear agent dynamics. Moreover, for the
special case of unilateral interactions, this gives rise to a com-
binatorial explosion of possible “active” interaction graphs
as influenced by all possible orderings of state variables



which would most likely be hard to treat for large networks.
Remarkably, our conditions only entail integrals performed
in time on frozen state variables and can be related to a
seemingly weaker notion (later called Equilibrium Integral
Connectivity) which may be tested by considering consensus
states alone. We emphasize that the proposed convergence
results guarantee exponential consensus for any assignment
of initial conditions, despite adoption of unilateral interaction
as well as nonlinearity and time variance of the network.
Finally, we prove necessity of the conditions on a specific
class of models which serves as a paradigm of network with
unilateral interactions.

II. GRAPH THEORETICAL PRELIMINARIES

Abstracting the nature of information flows in networks
with unilateral interactions requires the introduction of spe-
cific graph-theoretical concepts. Since these are new, to the
best of our knowledge, and possibly deserve attention of
their own, regardless of the specific results reported in this
paper, we devote an independent Section for their detailed
explanation.
Recall that a directed graph (digraph) G(N,E) is a pair of
sets N , E, with N = {1, 2, . . . , n} the set of nodes and
E ✓ N ⇥ N the set of edges. A node j is reachable from
node i if there exists a path in a directed graph connecting
nodes i and j, namely there is a finite sequence n1, n2, ..., nk

of distinct nodes such that (n
i

, n

i+1) 2 E for i = 1, . . . , k�1
with n1 = i and n

k

= j. A digraph is quasi-strongly
connected if there exists a node (often called the ’root’)
from which every other node is reachable. Equivalently, using
the notions of subgraphs and trees, this condition can be
formulated by asking that the digraph admits a spanning tree.
A digraph is strongly connected if every node is reachable
from any other node.

Next, we define the concept of bicolored graph to deal
with the presence of two kinds of influences in the network
(optimistic and pessimistic).

Definition 1 (Bicolored graph) We say that G(N,E

o

, E

p

)

is a directed bicolored graph if N = {1, 2, . . . , n} is the set
of nodes and E

o

✓ N ⇥ N , E
p

✓ N ⇥ N are two set of
edges with, possibly, E

o

\ E

p

6= ;.

Notice that this notion is different from the usual notion
of bicolored graph ([17]) in that a single edge is allowed
to take both “colors” at the same time, namely an edge

1

2

3

Fig. 1. An example of Bicolored graph

(i, j) may belong both to E

o

and E

p

. This is needed in
order to accommodate for standard bilateral interactions
within this generalized framework. Graphically, a bicolored
graph can be represented by using circles to represent nodes
and arrows (oriented arcs) joining the nodes to represent
the elements of E

o

and E

p

by using two different colors.
A simple example of bicolored graph is shown in Fig. 1,
where the convention has been adopted to use green for
edges in E

o

and red for edges in E

p

. Notice, in this respect,
that arc (1, 2) is both an element of E

o

and E

p

.

We propose the following original notion of connectivity
for bicolored graphs:

Definition 2 (Quasi-strongly connected bicolored graph)

We say that the bicolored graph G(N,E

o

, E

p

) is quasi-
strongly connected if for any ordered pair (i, j) 2 N

2 with
i 6= j there exist at least one node r

ij

2 N , with a path
from r

ij

to i in G(N,E

p

) and a path from r

ij

to j in
G(N,E

o

) (with either path possibly being of 0 length when
r

ij

= i or r

ij

= j).

Notice that, in the example considered in Fig. 1, there
are 6 possible choices of ordered pairs (i, j), namely
(1, 2), (1, 3), (2, 1), (2, 3), (3, 1), and (3, 2), and for each
such choice the corresponding “root” node r

ij

and associated
paths in G(N,E

p

) and G(N,E

o

) can be selected as in the
table below:

(i, j) r

ij

path in E

p

path in E

o

(1, 2) 1 ; 1, 2

(1, 3) 1 ; 1, 3

(2, 1) 1 1, 2 ;
(2, 3) 3 3, 2 ;
(3, 1) 3 ; 3, 1

(3, 2) 3 ; 3, 1, 2

It is worth pointing out that for a given pair (i, j) the
choice of the root node r

ij

and associated optimistic and
pessimistic paths need not be unique. For instance, in the
example above, one could alternatively take r21 = 3, with
pessimistic path 3, 2 and optimistic path 3, 1.

A. Relation to standard notions of graph connectivity

In the following we will highlight how the proposed no-
tions of connectivity for bicolored digraphs relate to standard
ones in some special cases.

1) Optimistic only networks: E

p

= ; (or E

o

= ;): In
this case of E

p

= ; (resp. E
o

= ;), the Definiton 2 trivially
overlaps with the standard definition of strong connectivity
of the (monocolored) graph G(N,E

o

) (resp. G(N,E

p

)) [16].
Indeed, due to the absence of pessimistic edges (E

p

= ;),
the only option is to choose r

ij

= i so that the path of length
0 connects r

ij

to i in G(N,E

p

). Because of this, then, a path
of optimistic edges exists between r

ij

and j in G(N,E

o

) iff
there is a path between i and j in G(N,E

o

) for all possible
pairs of nodes. As already remarked this property is usually
referred to as strong connectivity of G(N,E

o

).



2) Bilateral interactions: E

p

= E

o

: As it will be clearer
in the following, when interactions between agents are of
bilateral nature, viz. not conditioned by the reciprocal or-
dering of the agents states, (i.e. bilateral interactions), every
edge belongs to both E

o

and E

p

. It is therefore of interest
to highlight which graph-theoretical concept underlies the
notion of bicolored quasi-strong connectedness in the special
case in which the two edge sets E

p

, E

o

coincide. This is
carried out in the Lemma given below:

Lemma 1 The bicolored quasi-strong connectivity of
G(N,E,E) is equivalent to quasi-strong connectivity of
G(N,E).

The proof is omitted for space constraints. A simpler in-
terpretation of quasi-strong connectivity of bicolored graphs
can be gained by considering the mirroring operation defined
below.

Definition 3 (Mirrored Edge set) We say that
 �
E ✓ N ⇥N

is the mirrored edge set of E if
 �
E := {(j, i) : (i, j) 2 E}.

The same operation can be applied to the edge sets of a
bicolored graph as detailed below:

Definition 4 (Mirrored Graph) We say that
 �
G is a pes-

simistic mirrored graph of G(N,E

o

, E

p

) if
 �
G =

G(N,E

o

,

 �
E

p

) (resp.
 �
G = G(N,

 �
E

o

, E

p

)).

We similarly defined the optimistic mirrored graph, replacing
E

o

by
 �
E

o

in the previous definition.
The following is an alternative formulation of quasi-strong

connectivity that makes use of the mirroring operation:

Definition 5 (Single switch Strong connectedness) We say
that the pessimistic (resp. optimistic) mirrored graph

 �
G =

G(N,E

o

,

 �
E

p

) (resp.
 �
G = G(N,

 �
E

o

, E

p

)) is strongly
connected with a single color switch if for any pair
(i, j) 2 N

2 with i 6= j, there exists a path between i

and j in the pessimistic (resp. optimistic) mirrored graph
G(N,E

o

,

 �
E

p

) (resp. G(N,

 �
E

o

, E

p

)), of the following kind:
i = n1, n2, ..., nm

= j are distinct nodes such that
(n

q

, n

q+1) 2
 �
E

p

(resp. E

p

) for q = 1, . . . , k � 1 while
(n

q

, n

q+1) 2 E

o

(resp.
 �
E

o

) for q = k, . . . ,m � 1 with
1  k  m (so as to allow “single-colored” paths as a
special case).

Equivalence to the previous definition is straightforward
when considering that ‘color’ switch happens exactly at the
node r

ij

, viz. n
k

= r

ij

. For illustration purposes we display
in Fig. 2 the pessimistic mirrored graph

 �
G = G(N,E

o

,

 �
E

p

)

relative to the example in Fig. 1.

III. PROBLEM FORMULATION AND MAIN RESULT

We are now ready to state our consensus problem,
delineating the considered class of networks equations as
well as the translation of dynamics into suitable interaction
graphs, for the analysis of consensuability. In the following,

all vectors are assumed to be column vectors and we write
x = (x1, . . . , xn

) for the column vector x 2 Rn while
the symbol |x| denotes its Euclidean norm. K ⇢ Rn is
a compact set, 1 is the vector of all ones and e

j

is the
j-th element of the canonical basis of Rn, where n should
normally be clear from the context. We recall that for a
function f(t, x) : R ⇥ Rn ! Rn, piecewise continuous in
t and locally Lipschitz continuous with respect to x, the
associated system of differential equations ẋ(t) = f(t, x(t)),
is said to be cooperative if for any i 2 {1, 2, . . . , n}, f

i

(t, x)

is non-decreasing with respect to x

j

for all j 6= i. Notice
that this condition implies (and is in fact equivalent) to
monotonicity of the flow �(t, x0) with respect to initial
conditions, namely, for all t � 0, it holds �(t, x1) � �(t, x2)

if x1 � x2 (where ”�” is meant componentwise), [15].

A network is described by a nonlinear dynamical system:

ẋ(t) = f(t, x(t)) (1)

where x(t) 2 Rn is the state, t 2 R+ is the time variable
and f is the vector field R+ ⇥ Rn ! Rn. We denote with
F (t, x) = [F

ij

(t, x)] the Jacobian matrix, when this can be
defined and with F

+
ij

(t, x) (resp. F�
ij

(t, x)) the right (resp.
left) partial derivative of f

i

(t, x) with respect to x

j

at x.
We assume: f is locally Lipschitz continuous with respect
to x uniformly in time, viz. for all compacts K 2 Rn there
exists LK > 0, such that, for all x

a

, x

b

2 K and all t � 0 it
holds |f(t, x

a

)� f(t, x

b

)|  LK|xa

� x

b

|;1
The assumptions on f , imply the local existence and the
uniqueness of the system’s solution on some maximally
extended open time interval. Additionally in the following we
will assume nonlinear networks (1) to be cooperative in the
sense stated above. For any vector x, we define the following
quantities: x

M

= max

k2N

{x
k

}; x

m

= min

k2N

{x
k

}. We
start making the following assumption to guarantee that
consensus configurations are equilibrium states of network
(1).

Assumption 1 We assume a cooperative nonlinear network
(1) with f that admits an agreement equilibrium set, that is:

E := spanR{1} ✓ {x 2 Rn

: f(t, x) = 0 8 t 2 R+}.

1This holds, for instance, if the Jacobian is uniformly bounded as a
function of time.
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3

Fig. 2. Pessimistically mirrored graph



We associate a given network (1) to a bicolored digraph
G(N,E

p

, E

o

) by letting N = {1, 2, . . . , n} (with n the
number of agents) and specifying edge sets E

p

and E

o

according to the following definitions:

Definition 6 (Pessimistic edge) We say that (j, i) 2 E

p

⇢
N

2 is a pessimistic edge connecting j to i for network (1), if
for all compacts K ✓ R, there exist "K > 0 and sufficiently
large TK > 0 so that for any t � 0, for all pairs x

i

> x

j

2
K2 it holds:
Z

t+TK

t

f

i

(⌧, x

i

1 + e

j

(x

j

� x

i

)) d⌧  �"K(xi

� x

j

). (2)

Definition 7 (Optimistic edge) We say that (j, i) 2 E

o

⇢
N

2 is an optimistic edge connecting j to i for network (1),
if for all compacts K ✓ R, there exist "K > 0 and sufficiently
large TK > 0 so that for any t � 0, for all pairs x

i

< x

j

2
K2 it holds:

Z
t+TK

t

f

i

(⌧, x

i

1 + e

j

(x

j

� x

i

)) d⌧ � "K(xj

� x

i

). (3)

Notice that in the above definitions x

i

and x

j

are local vari-
ables, being arguments of universal quantifiers. Therefore,
the subscripts i and j are merely typographical symbols.
It is worth pointing out that inequalities (2) and (3) are
an integrated measure of how much a displaced j-th agent
(with respect to an agreement configuration where all agents
are equal to x

i

) can influence, either from below (in the
pessimistic case) or above (in the optimistic one) the current
state of agent i. Notice also that integration is performed on
frozen state variables and not along solutions of (1). This
is a generalization of the conditions introduced in [2], [9],
the novelty being that influences from below and above are
separately accounted for.

Definition 8 (Bicolored interaction graph) We say that
G(N,E

o

, E

p

) is a bicolored interaction graph for (1),
where E

o

✓ N ⇥ N is the set of optimistic edges (3),
and E

p

✓ N ⇥ N is the set of pessimistic edges (2) with,
possibly, E

o

\ E

p

6= ;.

To illustrate how the new definition applies to nonlinear
networks consider the following network of 3 agents con-
nected both unilaterally and bilaterally:

ẋ1 = max{0, x3 � x1} (4)
ẋ2 = (x1 � x2) + min{0, x3 � x2}
ẋ3 = max{0, x1 � x3}

Throughout the paper an optimistic edge will be repre-
sented in Figures by an arc of green colour while pessimistic
edges will be represented in red. From the networks equa-
tions we see that agent 1 is influenced by agent 3 provided
this is supplying an ‘optimistic’ information. This translates
into an edge from 3 to 1 in green color. Symmetrically agent
3 is influenced by agent 1 only when the latter is providing
an ‘optimistic’ information. Again this is represented as a

green arc, from 1 to 3. Agent 2, instead, is influenced by
agent 1 regardless of the pessimistic or optimistic nature
of the information provided. Hence, this can be modeled
as two edges in green and red joining 1 to 2. Influence
of agent 3 towards agent 2 is of pessimistic nature only,
and this is therefore modeled as a red arc (see the scheme
in Fig 1). Notice that, if not allowing pessimistic and
optimistic influences to be accounted for separately, the
above network’s equation would only afford a single bilateral
influence from node 1 to 2, (which is clearly insufficient
for achieving consensus). In other words the actual graph
of influences between neighboring agents would be heavily
underestimated.

The following Assumption captures the appropriate con-
nectivity property for guaranteeing solutions of a network
to converge towards consensus regardless of their assigned
initial conditions.

Assumption 2 (Bicolored quasi-strong connectivity) We
say that the network (1) fulfills quasi-strong connectivity
if it admits an associated bicolored interaction graph
G(N,E

o

, E

p

) which is quasi-strongly connected, (or,
equivalently, a single switch strongly connected mirrored
graph).

We are now ready to state our main result:

Theorem 1 Consider the cooperative time-varying network
modeled by equations (1). If Assumption 2 holds, then the
equilibrium set E is uniformly exponentially stable and x(t)

converges exponentially to an agreement equilibrium state.

Additionally the following Corollary holds:

Corollary 1 Consider the network modeled by equations
(1), if Assumption 2 holds, then the equilibrium set E
is uniformly exponentially stable and lim

t!1 x

i

(t) =

max

k

x

k

(0), 8i provided for all i 6= j and all x with x

j

< x

i

it holds:
@f

i

(t, x)

@x

j

= 0 (5)

The proof is omitted for space constraints.
Notice that condition (5) (resp. @f

i

/@x

j

= 0 for all i 6= j

with x

j

> x

i

) actually implies the absence of pessimistic
(resp. optimistic) edges and Corollary 1 allows to assess the
interesting equilibrum of maximum (resp. minimum) initial
state consensus in the presence of unilateral interaction, thus
extending preliminary work on the subject formulated for the
max-min (i.e. bilateral) agents influence (i.e. [4]).

Furthermore, as in the case of bilateral interactions ([9]), it
is useful to formulate the concept of Equilibrium interaction
graph by imposing satisfaction of appropriate inequalities on
the agreement subspace only. The derivations and the related
results are here omitted for space constraints.

We point out that while in general Assumption 2 is not
necessary for exponential consensus (counterexample may be



provided, herein omitted for space constrain), it is necessary
for time-periodic models. Details are herein omitted for space
constraints and my be found in [10].

IV. DISCUSSION AND REPRESENTATIVE EXAMPLES

In this Section we will discuss illustrative examples show-
ing the merits of the proposed conditions as well as their
relation to previously available approaches.

Consider first network (4) earlier introduced in Section
III and composed of 3 agents connected both unilaterally
and bilaterally (in a time-invariant fashion, for the sake of
simplicity).

t

0 1 2 3 4 5 6 7 8 9 10

x

-4

-3

-2

-1

0

1

2

3

4

5

Fig. 3. Dynamic state evolution and convergence to the consensus equilibria
of network (4)

The associated bicolored graph is shown in Fig. 1.
Notice that the Assumption 2 is fulfilled (as already

remarked in Section II) and exponential convergence of
solutions towards consensus is guaranteed (see Fig. 3 for a
simulation with initial condition x(0) = [�4 5 2]

T ). Notice
that only 1 arc is bilateral in the above example; therefore,
a bilateral spanning tree does not exist for the considered
network and this example does not fulfill the connectivity
conditions required by previous criterions, such as [9].
Additionally, they may be of easier verification even for
time-invariant network’s scenarios as shown by the example
introduced by system (4).

Notice that, if pursuing linear time-varying embedding
approaches in order to study consensus for networks
involving unilateral interactions, one will be faced
with a challenging problem of interplay of state and
time dependence of links. Let P(n) denote the set of
permutations of the first n integers. For each permutation
of the n agents, p1, p2, . . . , pn 2 P(n), one may consider
the associated subsets of state space:

X(p1, p2, . . . , pn) = {x : x

p1 � x

p2 � . . . � x

pn}. (6)

All of these subset obviously partition the state space sinceS
p1,...,pn2P(n) X(p1, p2, . . . , pn) = Rn. For any permuta-

tion, moreover, we may induce an associated monocolored
subgraph G(p1, p2, . . . , pn) = {N,E(p1, . . . , pn)} accord-

ing to the following rule:

E(p1, p2, . . . , pn) =

{(p
i

, p

j

) 2 E

p

: i > j} [{(p
i

, p

j

) 2 E

o

: i < j} (7)

In particular, whenever x 2 X(p1, p2, . . . , pn), the corre-
sponding time-varying linear embedding will only exhibit the
links provided in G(p1, p2, . . . , pn). Next we would like to
remark that the proposed graph-theoretical connectivity con-
ditions are much weaker than asking the resulting network’s
embedding to exhibit a spanning tree for any permutation of
initial conditions.

To show this feature, let consider a simple ring topology
composed of just optimistic edges (green colour edge in the
top-left Fig. 4) that satisfies the proposed Assumption 2.

Different orderings of state variables may induce different
subgraphs of G(N,E

o

, E

p

), as shown in the Fig. 4. Notice
that, although the initial graph may fail to be connected, the
solutions eventually will switch to a region where the topol-
ogy admits a spanning tree. For instance starting from the
disconnected graph G(1, 3, 2) induced by the initial condition
x1 � x3 � x2, due to the presence of the optimistic edge
between nodes 1 and 2, x2 increases above x3 thus providing
the switch of the network graph to G(1, 2, 3) that fulfills
the conditions of [7] and guarantees consensus. Similar
considerations arise starting from the all other disconnected
graph configuration like G(2, 1, 3) and G(3, 2, 1). For these
reasons, attempting to prove consensus on the basis of linear-
like embeddings and exploiting criteria in [7], appears to be
a difficult task in general for the considered set-up.

x1 � x2 � x3

x2 � x1 � x3

x2 � x3 � x1

x3 � x2 � x1

x3 � x1 � x2

x1 � x3 � x2

1

2

3

1

2

3

1

2

3

1

2

3

1

2

3

1

2

3

1

2

3

G123

G132

G312

G213

G231

G321

Fig. 4. Bicolored graphs Gp1p2p3 = G(p1, ..., p3), induced by the
initial state conditions [xp1 (t), xp2 (t), xp3 (t)] for any permutation of
(p1, p2, p3)



A. Max-Consensus

We consider the following network’s equation (this could
be easily extended to time-varying interconnections):

ẋ1 = max{0, x3 � x1}+max{0, x2 � x1} (8)
ẋ2 = max{0, x1 � x2}
ẋ3 = max{0, x1 � x3, x2 � x3}

Notice that terms in the equation for agent 1 are of additive
nature, whereas agent 3 takes the maximum among neigh-
bours influences. Both types of interactions can be easily ac-
comodated, and the associated bicolored graph contains only
optimistic edges: E

o

= {(1, 2), (1, 3), (2, 3), (3, 1), (2, 1)}.
Moreover, the condition of Corollary 1 are fulfilled, therefore
the network achieves exponential consensus on the maximum
initial state (max-consensus). Indeed considering the same
initial state condition of example (4) (i.e. x(0) = [�4 5

2]

T ), the achieved consensus value is max

i

x

i

(0) = 5 (see
Fig. 5 for the simulation).

t
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x
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5

Fig. 5. Dynamic state evolution and convergence to the max (initial state)
consensus equilibria of network (8)

B. Basin of Consensuability

An interesting open question that is not answered by our
consensus criteria is how to asses the basin of attraction
of the agreement manifold when the proposed connectivity
assumption is not verified (in which case obviously this basin
of attraction is the whole of Rn). In other words, even if our
conditions are violated there may be sets of initial conditions
for which consensus is achieved. One promising direction for
future investigations is in this case an exhaustive procedure
to test standard weak conenctivity of G(p1, p2, . . . , pn) for
all permutations of initial condition. In general, however,
X(p1, p2, . . . , pn) regions are not invariant and may result in
transitions to more than one neighbouring set, thus rendering
the overall issue of estimating the basin of attraction much
more involved. We find rather remarkable that consensus
criteria from arbitrary initial conditions need not take into
account such complex combinatorial approaches and yield
simple conditions that can be tested a priori.

V. CONCLUSIONS

This paper presents conditions for exponential agreement
suitable for nonlinear cooperative time-varying networks
when the node interactions are unilateral. New notions
of node pessimistic and optimistic unilateral interaction,
bicolored and mirrored graph and associated connectivity
are defined, thus extending to this nonlinear scenario, the
standard graph theoretic notions well known in the literature.
The proposed integral connectivity condition has the merit to
be frozen in state variables to allow for a priori simpler verifi-
cation. The exponential convergence to the agreement space
is proved. A remark about how the proposed assumption
can be proved to be equivalent to Equilibrium weak integral
connectivity that only involves checking the condition on the
agreement solution, a consideration on the necessity of the
proposed conditions, and illustrative examples have given to
highlight how the proposed framework extends all existing
conditions for consensus of monotone networks.
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