1,262 research outputs found

    MFACE: A Multicast Backbone-Assisted Face Traversal Algorithm for Arbitrary Planar Ad Hoc and Sensor Network Topologies

    Get PDF
    Face is a well-known localized routing protocol for ad hoc and sensor networks which guarantees delivery of the message as long as a path exists between the source and the destination. This is achieved by employing a left/right hand rule to route the message along the faces of a planar topology. Although face was developed for the unicast case, it has recently been used in combination with multicasting protocols, where there are multiple destinations. Some of the proposed solutions handle each destination separately and lead thus to increased energy consumption. Extensions of face recovery to the multicast case described so far are either limited to certain planar graphs or do not provide delivery guarantees. A recently described scheme employs multicast face recovery based on a so called multicast backbone. A multicast backbone is a Euclidean spanning tree which contains at least the source and the destination nodes. The idea of backbone assisted routing it to follow the edges of the backbone in order to deliver a multicast message to all spanned destination nodes. The existing backbone face routing scheme is however limited to a certain planar graph type and a certain backbone construction. One of the key aspects of the multicast face algorithm MFACE we propose in this work is that it may be applied on top of any planar topology. Moreover, our solution may be used as a generic framework since it is able to work with any arbitrary multicast backbone. In MFACE, any edge of the backbone originated at the source node will generate a new copy of the message which will be routed toward the set of destination nodes spanned by the corresponding edge. Whenever the message arrives at a face edge intersected by a backbone edge different from the initial edge, the message is split into two copies, both handling a disjoint subset of the multicast destinations which are defined by splitting the multicast backbone at that intersection point

    Reliable Mobicast via Face-Aware Routing

    Get PDF
    This paper presents a novel protocol for a spatiotemporal variant of multicast called mobicast, designed to support message delivery in sensor and mobile ad hoc networks. The spatiotemporal character of mobicast relates to the obligation to deliver a message to all the nodes that will be present at time t in some geographic zone Z, where both the location and shape of the delivery zone are a function of time over some interval (tstart, tend). The protocol, called Face-Aware Routing (FAR), exploits ideas adapted from existing applications of face routing to achieve reliable mobicast delivery. The key features of the protocol are a routing strategy, which uses information confined solely to a node’s immediate spatial neighborhood, and a forwarding schedule, which employs only local topological information. Statistical results showing that, in uniformly distributed random disk graphs, the spatial neighborhood size is usually less than 20 suggest that FAR is likely to exhibit a low average memory cost. An estimation formula for the average size of the spatial neighborhood in random network is another analytical result reported in this paper. This paper also includes a novel and low cost distributed algorithm for spatial neighborhood discovery

    FAR: Face-Aware Routing for Mobicast in Large-Scale Sensor Networks

    Get PDF
    This paper presents FAR, a Face-Aware Routing protocol for mobicast, a spatiotemporal variant of multicast tailored for sensor networks with environmental mobility. FAR features face-routing and timed-forwarding for delivering a message to a mobile delivery zone. Both analytical and statistical results show that, FAR achieves reliable and just-in-time mes-sage delivery with only moderate communication and memory overhead. This paper also presents a novel distributed algorithm for spatial neighborhood discovery for FAR boot-strapping. The spatiotemporal performance and reliability of FAR are demonstrated via ns-2 simulations

    Spatiotemporal Multicast and Partitionable Group Membership Service

    Get PDF
    The recent advent of wireless mobile ad hoc networks and sensor networks creates many opportunities and challenges. This thesis explores some of them. In light of new application requirements in such environments, it proposes a new multicast paradigm called spatiotemporal multicast for supporting ad hoc network applications which require both spatial and temporal coordination. With a focus on a special case of spatiotemporal multicast, called mobicast, this work proposes several novel protocols and analyzes their performances. This dissertation also investigates implications of mobility on the classical group membership problem in distributed computing, proposes a new specification for a partitionable group membership service catering to applications on wireless mobile ad hoc networks, and provides a mobility-aware algorithm and middleware for this service. The results of this work bring new insights into the design and analysis of spatiotemporal communication protocols and fault-tolerant computing in wireless mobile ad hoc networks

    Energy efficient geographic routing for wireless sensor networks.

    Get PDF
    A wireless sensor network consists of a large number of low-power nodes equipped with wireless radio. For two nodes not in mutual transmission range, message exchanges need to be relayed through a series of intermediate nodes, which is a process known as multi-hop routing. The design of efficient routing protocols for dynamic network topologies is a crucial for scalable sensor networks. Geographic routing is a recently developed technique that uses locally available position information of nodes to make packet forwarding decisions. This dissertation develops a framework for energy efficient geographic routing. This framework includes a path pruning strategy by exploiting the channel listening capability, an anchor-based routing protocol using anchors to act as relay nodes between source and destination, a geographic multicast algorithm clustering destinations that can share the same next hop, and a lifetime-aware routing algorithm to prolong the lifetime of wireless sensor networks by considering four important factors: PRR (Packet Reception Rate), forwarding history, progress and remaining energy. This dissertation discusses the system design, theoretic analysis, simulation and testbed implementation involved in the aforementioned framework. It is shown that the proposed design significantly improves the routing efficiency in sensor networks over existing geographic routing protocols. The routing methods developed in this dissertation are also applicable to other location-based wireless networks

    Improving Routing Efficiency through Intermediate Target Based Geographic Routing

    Get PDF
    The greedy strategy of geographical routing may cause the local minimum problem when there is a hole in the routing area. It depends on other strategies such as perimeter routing to find a detour path, which can be long and result in inefficiency of the routing protocol. In this paper, we propose a new approach called Intermediate Target based Geographic Routing (ITGR) to solve the long detour path problem. The basic idea is to use previous experience to determine the destination areas that are shaded by the holes. The novelty of the approach is that a single forwarding path can be used to determine a shaded area that may cover many destination nodes. We design an efficient method for the source to find out whether a destination node belongs to a shaded area. The source then selects an intermediate node as the tentative target and greedily forwards packets to it, which in turn forwards the packet to the final destination by greedy routing. ITGR can combine multiple shaded areas to improve the efficiency of representation and routing. We perform simulations and demonstrate that ITGR significantly reduces the routing path length, compared with existing geographic routing protocols

    Efficient Topology Management and Geographic Routing in High-Capacity Continental-Scale Airborne Networks

    Get PDF
    Large-scale high-capacity communication networks among mobile airborne platforms are quickly becoming a reality. Today, both Google and Facebook are seeking to form networks among high-flying balloons and drones in an effort to provide Internet connections from the stratosphere to users on the ground. This dissertation proposes an alternative, namely using the cargo and passenger aircraft already in the skies as the principal components of such a network. My work presents the design of a network architecture to overcome the challenges of managing the topology of and routing data within these continental-scale highly-dynamic networks. The architecture relies on directional communication links, such as free-space optical communication links (FSO), to achieve high data rates over long distances. However, these state-of-the-art communication systems present new networking challenges. One such challenge is that of managing the physical topology of the network. Such a topology must be explicitly managed, ensuring that each directional data link is pointed at and connected with an appropriate neighbor (which is also pointing back) to yield an acceptable global topology. To overcome this challenge, a distributed topology management framework and associated topology generation algorithms were designed, implemented, and tested via simulation. The framework is capable of managing the topology of thousands of nodes in a continental-scale airborne network and has no communication overhead except that required to exchange position information among nearby nodes. A second component of the work concerns routing data at high data rates through a constantly changing network topology. To address this issue Topology Aware Geographic Routing (TAG), a position-based routing protocol was developed that strategically uses local topology information to make better local forwarding decisions, decreasing the number of hops required to deliver a packet, when compared with other geographic routing protocols. In addition, unlike other similar protocols, TAG is able to reliably deliver packets even when the topology changes while the packet is in flight. These protocols are tested and validated in a series of simulations where nodes trace the trajectories recorded from thousands of actual flights. These simulations indicate that the topology management framework and TAG are able to perform well in large-scale high-density conditions, over long durations, and are able to support tens of thousands of 1 Mbps flows.Doctor of Philosoph

    Comparing Features of Three-Dimensional Object Models Using Registration Based on Surface Curvature Signatures

    Get PDF
    This dissertation presents a technique for comparing local shape properties for similar three-dimensional objects represented by meshes. Our novel shape representation, the curvature map, describes shape as a function of surface curvature in the region around a point. A multi-pass approach is applied to the curvature map to detect features at different scales. The feature detection step does not require user input or parameter tuning. We use features ordered by strength, the similarity of pairs of features, and pruning based on geometric consistency to efficiently determine key corresponding locations on the objects. For genus zero objects, the corresponding locations are used to generate a consistent spherical parameterization that defines the point-to-point correspondence used for the final shape comparison

    Free Probability Theory

    Get PDF
    The workhop brought together leading experts, as well as promising young researchers, in areas related to recent developments in free probability theory. Some particular emphasis was on the relation of free probability with random matrix theory
    corecore