
EFFICIENT TOPOLOGY MANAGEMENT AND GEOGRAPHIC ROUTING
IN HIGH-CAPACITY CONTINENTAL-SCALE AIRBORNE NETWORKS

Benjamin D. Newton

A dissertation submitted to the faculty of the University of North Carolina at Chapel Hill in partial
fulfillment of the requirements for the degree of Doctor of Philosophy

in the Department of Computer Science.

Chapel Hill
2017

Approved by:

Kevin Jeffay

Jay Aikat

Jasleen Kaur

Ketan Mayer-Patel

Ron Alterovitz



© 2017
Benjamin D. Newton

ALL RIGHTS RESERVED

ii



ABSTRACT

Benjamin D. Newton: Efficient Topology Management and Geographic Routing
in High-Capacity Continental-Scale Airborne Networks

(Under the direction of Kevin Jeffay and Jay Aikat)

Large-scale high-capacity communication networks among mobile airborne platforms are quickly be-

coming a reality. Today, both Google and Facebook are seeking to form networks among high-flying bal-

loons and drones in an effort to provide Internet connections from the stratosphere to users on the ground.

This dissertation proposes an alternative, namely using the cargo and passenger aircraft already in the skies

as the principal components of such a network. My work presents the design of a network architecture

to overcome the challenges of managing the topology of and routing data within these continental-scale

highly-dynamic networks.

The architecture relies on directional communication links, such as free-space optical communication

links (FSO), to achieve high data rates over long distances. However, these state-of-the-art communication

systems present new networking challenges. One such challenge is that of managing the physical topology

of the network. Such a topology must be explicitly managed, ensuring that each directional data link is

pointed at and connected with an appropriate neighbor (which is also pointing back) to yield an acceptable

global topology. To overcome this challenge, a distributed topology management framework and associated

topology generation algorithms were designed, implemented, and tested via simulation. The framework is

capable of managing the topology of thousands of nodes in a continental-scale airborne network and has no

communication overhead except that required to exchange position information among nearby nodes.

A second component of the work concerns routing data at high data rates through a constantly chang-

ing network topology. To address this issue Topology Aware Geographic Routing (TAG), a position-based

routing protocol was developed that strategically uses local topology information to make better local for-

warding decisions, decreasing the number of hops required to deliver a packet, when compared with other

geographic routing protocols. In addition, unlike other similar protocols, TAG is able to reliably deliver

packets even when the topology changes while the packet is in flight.

These protocols are tested and validated in a series of simulations where nodes trace the trajectories

iii



recorded from thousands of actual flights. These simulations indicate that the topology management frame-

work and TAG are able to perform well in large-scale high-density conditions, over long durations, and are

able to support tens of thousands of 1 Mbps flows.

iv



To my sweetheart Erin, without whom this work would not have been possible,
and to my children Libby, Emma, and Samuel, without whom this work would not have been worthwhile.

v



ACKNOWLEDGEMENTS

It is impossible for me to appropriately express my gratitude to the numerous individuals who have made

this work possible, but I will endeavor to list here some of the people who have made this work possible.

In academia, there exists an academic family tree where Ph.D. recipients can trace their academic roots.

One can search for their adviser and be presented with a line of academic forefathers stretching back in time.

Unlike most Ph.D. students, it has been my pleasure to have two academic ”parents” who have guided my

dissertation research: Kevin Jeffay and Jay Aikat. Kevin served as my adviser and Jay as my co-adviser.

Though it took some convincing initially, Kevin has always supported my cutting-edge research that is, as he

says, on the “lunatic fringe”. Kevin helped me not get too lost in the “weeds” of my research and consistently

gave great advice about how to proceed at each step of the process. His expert advice and wisdom guided

and shaped every aspect of my research.

Jay, having herself graduated as one of Kevin’s students, was able to bridge the gap between student and

adviser. She attended almost every weekly research meetings and provided needed insights, encouragement,

and support for my research. Though Kevin was appointed as the department chair, and Jay accepted a top

position at RENCI while serving as my advisers, they both always gave the highest priority to my needs

even though they had many other important duties.

The other members of my dissertation committee include: Jasleen Kaur, Ketan Mayer-Patel and Ron

Alterovitz. As I met with each of them over the course of my research they gave me ideas and suggestions

that shaped and improved my research. Thank you to each of them for their service and support. Thank you

to all the staff of the Computer Science department, especially Murray Anderegg, John Sopko, and Missy

Wood, for their help and support. Thank you also to Gary Bishop and Fred Brooks with whom I had the

privilege of meeting regularly in a Bible study group. These weekly doses of wisdom, wit, and worship are

among the highlights of my time in Chapel Hill.

I must also thank Andy Wilson and Danny Rintoul from Sandia National Labs. Andy was, like myself,

doing interesting research using aircraft trajectories when we met. We both saw an opportunity to collaborate

that couldn’t be passed up. Consequently, I spent a summer in Albuquerque working on improving the

vi



prediction capabilities of Tracktable, an open source software library for processing and analyzing trajectory

data that has become an integral part of my dissertation research.

I am grateful for my wife’s sister Amelia Robinson for her expert editing advice, and for my wife’s

parents, Brion and Deborah Robinson, for their continued support of me, my family, and our dreams. Among

many other things, they sacrificed frequent-flyer miles to enable regular visits, and drove across the continent

more than once. They even watched our kids for several days so my wife and I could attend a conference.

Thank you to them for their continued support.

It is hard to express the gratitude I feel for my parents Dave and Sandy Newton. They raised an inquisi-

tive boy and have shaped and molded him into a scholar. Without their continued support, this work would

not have been possible. Thank you, Mom and Dad, for the packages from home, for your regular visits,

and for your generous gifts! Thank you also, to my sister, Stacy Schultz, and her husband Brian for always

believing in me.

My children have given up many evenings and Saturday afternoons when they wish they could have

been with Dad. Thank you to my 11-year-old Libby, for helping find acronyms in my manuscript and for

her interest and support of my research. Thank you to my 6-year-old Emma for squealing “Daddy” and

running to give me a hug upon my arrival at home. And thank you to my 1-year-old Samuel, who always

tried to help write my dissertation by typing on the keyboard whenever I set my laptop down.

Lastly, thank you to my supportive, sincere, sensitive, steadfast, sympathetic, super, sunny, softhearted,

sweetheart Erin. She gave me the daily courage, motivation, and inspiration I needed to tackle this impossi-

ble dream. For her love and support, I will be eternally grateful.

vii



TABLE OF CONTENTS

LIST OF TABLES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xiv

LIST OF FIGURES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xv

LIST OF ABBREVIATIONS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xx

1 CHAPTER 1: INTRODUCTION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.1 Airborne Networks of Balloons, Drones, and Commercial Aircraft . . . . . . . . . . . . . . 1

1.2 Free-Space Optical Communication Links . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

1.3 Distributed Explicit Topology Management . . . . . . . . . . . . . . . . . . . . . . . . . . 4

1.4 Routing in Large-Scale Airborne Networks . . . . . . . . . . . . . . . . . . . . . . . . . . 5

1.5 Thesis Statement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

1.6 Summary of Main Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

1.6.1 Distributed Topology Management Framework . . . . . . . . . . . . . . . . . . . . 7

1.6.2 Topology Aware Geographic Routing Algorithm . . . . . . . . . . . . . . . . . . . 8

1.7 Organization of Dissertation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

2 CHAPTER 2: BACKGROUND AND RELATED WORK . . . . . . . . . . . . . . . . . . . . . . 9

2.1 Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

2.1.1 Airborne Networks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

2.1.1.1 Military Airborne Networks . . . . . . . . . . . . . . . . . . . . . . . . . 9

2.1.1.2 Civilian Airborne Networks . . . . . . . . . . . . . . . . . . . . . . . . . 10

2.1.2 The National Airspace System (NAS) . . . . . . . . . . . . . . . . . . . . . . . . . 12

2.1.2.1 ADS-B . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

2.1.2.2 Aircraft Situation Display to Industry (ASDI) . . . . . . . . . . . . . . . 14

2.1.3 Directional Communication Links . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

2.1.3.1 Directional Radio Frequency (RF) Communication Links . . . . . . . . . 16

2.1.3.2 Free-Space Optical Communication Links . . . . . . . . . . . . . . . . . 16

2.1.3.3 Hybrid Free-Space Optical Radio Frequency (Hybrid FSO/RF) Commu-
nication Links . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

viii



2.1.4 Network Topology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

2.1.4.1 Unit Disk Graph . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

2.1.4.2 Planar Graph . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

2.1.4.3 Topology Control . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

2.1.5 Routing in Mobile Ad hoc Networks . . . . . . . . . . . . . . . . . . . . . . . . . . 21

2.1.5.1 Topology-Based Routing . . . . . . . . . . . . . . . . . . . . . . . . . . 22

2.1.6 Position-Based Protocols and Geographic Routing . . . . . . . . . . . . . . . . . . 24

2.1.6.1 Localized Routing Protocols . . . . . . . . . . . . . . . . . . . . . . . . 24

2.1.6.2 Greedy Routing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

2.1.6.3 Face Routing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

2.1.6.4 Greedy-Face-Greedy Routing . . . . . . . . . . . . . . . . . . . . . . . . 29

2.2 Related Works . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

2.2.1 Topology Control . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

2.2.2 Geographic (Position-Based) Routing . . . . . . . . . . . . . . . . . . . . . . . . . 31

2.2.2.1 Greedy Forwarding Methods . . . . . . . . . . . . . . . . . . . . . . . . 31

2.2.2.1.1 Greedy Routing (GR) (Closest Distance, maximum advance) . . 32

2.2.2.1.2 Compass Routing (DIR) (Closest Angle) . . . . . . . . . . . . . 32

2.2.2.1.3 Most Forward within Radius (MFR) (Maximum Forward Progress) 33

2.2.2.2 Face Perimeter Forwarding Methods . . . . . . . . . . . . . . . . . . . . 33

2.2.2.2.1 Face Routing (FR) (FACE-1) . . . . . . . . . . . . . . . . . . . 33

2.2.2.2.2 FACE-2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

2.2.2.2.3 Bounded Face Routing (BFR) . . . . . . . . . . . . . . . . . . 35

2.2.2.2.4 Adaptive Face Routing (AFR) . . . . . . . . . . . . . . . . . . 37

2.2.2.2.5 Other Face Routing (OFR) . . . . . . . . . . . . . . . . . . . . 38

2.2.2.3 Hybrid Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

2.2.2.3.1 Greedy Face Greedy (GFG) . . . . . . . . . . . . . . . . . . . . 38

2.2.2.3.2 Greedy Perimeter Stateless Routing (GPSR) . . . . . . . . . . . 39

2.2.2.3.3 Greedy Other Adaptive Face Routing (GOAFR) . . . . . . . . . 39

2.2.2.3.4 Greedy Other Adaptive Face Routing Plus (GOAFR+) . . . . . . 39

ix



2.2.3 Cross-link Detection Protocol (CLDP) . . . . . . . . . . . . . . . . . . . . . . . . . 40

2.2.4 Greedy Path Vector Face Routing (GPVFR) . . . . . . . . . . . . . . . . . . . . . . 41

2.2.5 Airborne Network Management and Routing . . . . . . . . . . . . . . . . . . . . . 42

2.2.5.1 Using Flight Plans . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

2.2.5.2 MAToC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

2.2.5.3 AeroRP . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

2.2.5.4 Free-Space Optics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

2.2.5.5 Geographic Load Share Routing (GLSR) . . . . . . . . . . . . . . . . . . 44

3 CHAPTER 3: DISTRIBUTED EXPLICIT TOPOLOGY MANAGEMENT . . . . . . . . . . . . 45

3.1 Terminology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

3.1.1 Nodes and Links . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

3.1.1.1 Neighborhood and Neighbors . . . . . . . . . . . . . . . . . . . . . . . . 46

3.1.1.2 Community and Community Members . . . . . . . . . . . . . . . . . . . 46

3.1.2 Network Density . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

3.1.3 Network Topology and Connections . . . . . . . . . . . . . . . . . . . . . . . . . . 47

3.2 Proposed Architecture . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

3.2.1 Directional Communication System . . . . . . . . . . . . . . . . . . . . . . . . . . 50

3.2.1.1 Node Controller and Router . . . . . . . . . . . . . . . . . . . . . . . . . 50

3.2.1.2 Directional Data Link . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

3.2.2 Position Exchange System . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

3.2.3 Ground User Communication System . . . . . . . . . . . . . . . . . . . . . . . . . 53

3.2.4 Avionics System . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

3.2.5 On-board Communication Systems . . . . . . . . . . . . . . . . . . . . . . . . . . 54

3.3 Topology Management Requirements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

3.3.1 Global Topology Requirements . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

3.3.2 Requirements of Topology Management . . . . . . . . . . . . . . . . . . . . . . . . 55

3.4 Topology Management Framework . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

3.5 Topology Generation Algorithms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59

3.5.1 Degree-Constrained Planar (DCP) Kruskal . . . . . . . . . . . . . . . . . . . . . . 61

x



3.5.2 Degree-Constrained Planar Tree-based Reliable Topology . . . . . . . . . . . . . . 63

3.5.3 Degree-Constrained Gabriel Graph . . . . . . . . . . . . . . . . . . . . . . . . . . 66

3.5.4 Degree-Constrained Delaunay Triangulation . . . . . . . . . . . . . . . . . . . . . 67

3.6 Pitfalls . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69

3.6.1 Adding Longest Edges . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69

3.6.2 Locally Planar, Globally Non-planar . . . . . . . . . . . . . . . . . . . . . . . . . . 74

3.7 Topology Generation Algorithm Comparisons . . . . . . . . . . . . . . . . . . . . . . . . . 77

3.7.1 Aircraft Trajectory Data Processing . . . . . . . . . . . . . . . . . . . . . . . . . . 77

3.7.2 Visual Comparison . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78

3.7.3 Attribute Comparisons . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80

3.7.3.1 Number of Connections or Edges . . . . . . . . . . . . . . . . . . . . . . 81

3.7.3.2 Directional Data Link Usage . . . . . . . . . . . . . . . . . . . . . . . . 82

3.7.3.3 One-Way Connections . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83

3.7.3.4 Connection Lengths . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84

3.7.3.5 Connected Pairs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85

3.7.3.6 Computation Time . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86

3.7.3.7 Dynamicity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87

3.7.3.8 Shortest Path Hop Stretch . . . . . . . . . . . . . . . . . . . . . . . . . . 89

3.7.3.9 Overall Assessment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90

3.8 Simulation Results and Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90

4 CHAPTER 4: TOPOLOGY-AWARE GEOGRAPHIC ROUTING . . . . . . . . . . . . . . . . . 92

4.1 TAG Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92

4.2 Shim Header . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96

4.3 Greedy Routing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98

4.3.1 Face Routing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100

4.4 Non-planar Topologies . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105

4.5 Greedy-Face-Greedy Routing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107

4.6 Bounded Face Exploration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108

4.7 Base Protocol Implementation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112

xi



4.8 Topology Awareness Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 116

4.9 Topology-Aware Greedy Routing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 117

4.10 Topology-Aware Face Routing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 120

4.10.1 Initial Face Exploration Direction Choice . . . . . . . . . . . . . . . . . . . . . . . 120

4.10.2 Face Exploration Initial Bounding Circle Radius . . . . . . . . . . . . . . . . . . . 124

4.10.3 Implementation Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 125

4.11 Dynamic Topology Support . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 126

4.11.1 Dynamic Topology Support Approach . . . . . . . . . . . . . . . . . . . . . . . . . 127

4.11.2 Storing the Snapshot . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 128

4.11.3 Via-Points . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 128

4.12 Topologies that are not unit disk graphs . . . . . . . . . . . . . . . . . . . . . . . . . . . . 129

4.13 Simulation Results and Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 130

4.13.1 Simulation Environment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 130

4.13.2 Varied Density with a Static Topology . . . . . . . . . . . . . . . . . . . . . . . . . 131

4.13.3 Improvement Credited to Topology Awareness . . . . . . . . . . . . . . . . . . . . 133

4.13.4 Comparison with OLSR . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 133

4.13.5 Realistic Airborne Network with Mobility . . . . . . . . . . . . . . . . . . . . . . . 134

4.14 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 138

5 CHAPTER 5: AIRBORNE NETWORK SIMULATIONS AND RESULTS . . . . . . . . . . . . 140

5.1 Simulation Environment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 140

5.1.1 Aircraft Mobility . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 140

5.1.2 Wireless Point-to-Point Channel . . . . . . . . . . . . . . . . . . . . . . . . . . . . 141

5.1.3 Wireless Point-to-point Network Device . . . . . . . . . . . . . . . . . . . . . . . . 143

5.1.4 Topology Management Application . . . . . . . . . . . . . . . . . . . . . . . . . . 143

5.1.5 Steerable Directional Antenna Model . . . . . . . . . . . . . . . . . . . . . . . . . 143

5.2 Simulations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 143

5.2.1 Default Simulation Parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 144

5.2.2 Global Routing Comparison . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 144

5.2.3 Large-Scale and High-Density . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 148

xii



5.2.4 Single High-Rate Flows . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 154

5.2.5 Long Duration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 159

5.2.6 Effect of Loss . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 161

5.2.7 All Node Pairs - TCP Flows . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 164

5.3 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 171

6 CHAPTER 6: CONCLUSIONS AND FUTURE WORK . . . . . . . . . . . . . . . . . . . . . . 172

6.1 Overview of Main Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 172

6.1.1 Efficient Topology Management . . . . . . . . . . . . . . . . . . . . . . . . . . . . 172

6.1.2 Geographic Routing Protocol . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 173

6.2 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 174

6.2.1 Topology Management . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 174

6.2.2 Geographic Routing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 175

6.2.3 Airborne Network . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 175

6.3 Future Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 176

6.3.1 Trajectory Prediction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 176

6.3.1.1 Short-Term Prediction . . . . . . . . . . . . . . . . . . . . . . . . . . . . 176

6.3.1.2 Long-Term Prediction . . . . . . . . . . . . . . . . . . . . . . . . . . . . 177

6.3.2 Simulation Speed and Accuracy . . . . . . . . . . . . . . . . . . . . . . . . . . . . 177

6.3.2.1 Caching Routes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 177

6.3.2.2 Higher Fidelity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 179

6.3.3 Avoiding Cloud Occlusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 179

6.3.4 Avoiding Congestion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 180

6.3.5 Parallelization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 180

6.4 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 183

REFERENCES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 184

xiii



LIST OF TABLES

Table 3.1 - The mean number of hops for 1,000 low-rate UDP flows . . . . . . . . . . . . . . . . . 90

Table 4.1 - The fields in the additional packet header. . . . . . . . . . . . . . . . . . . . . . . . . . 96

Table 4.2 - The TAG parameters for this simulation. . . . . . . . . . . . . . . . . . . . . . . . . . . 131

Table 4.3 - A routing comparison of OLSR and TAG. . . . . . . . . . . . . . . . . . . . . . . . . . 135

Table 4.4 - The simulation parameters for the dynamic airborne network experiment. . . . . . . . . 136

Table 5.1 - A table listing the default simulation parameters. . . . . . . . . . . . . . . . . . . . . . 144

Table 5.2 - A table listing the Global Routing Comparison parameters. . . . . . . . . . . . . . . . . 146

Table 5.3 - A table listing the results of the Global Routing Comparison. . . . . . . . . . . . . . . . 146

Table 5.4 - A table listing the Large-Scale High-Density Experiment parameters. . . . . . . . . . . 150

Table 5.5 - A table listing the results of the Large-Scale and High-Density experiment. . . . . . . . 151

Table 5.6 - A table listing the Single High-Rate TCP Flow Experiment parameters. . . . . . . . . . 155

Table 5.7 - A table listing the Long Duration Experiment parameters. . . . . . . . . . . . . . . . . 159

Table 5.8 - A table listing the Effect of Loss Experiment parameters. . . . . . . . . . . . . . . . . . 163

Table 5.9 - A table listing the All Pairs Experiment parameters. . . . . . . . . . . . . . . . . . . . 166

Table 5.10 - A table listing the results of the All Node Pairs Experiment. . . . . . . . . . . . . . . . 166

xiv



LIST OF FIGURES

Figure 2.1 - A view of the number flights in the NAS over 24 hours, stratified by the company
designation in the call sign. Time on the x-axis is UTC-6 (Central Time). . . . . . . 12

Figure 2.2 - A view of the number of flights in the NAS over 7 days, stratified by the company
designation in the call sign. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

Figure 2.3 - Unit Disk Graph for the set of points given. Edges are included only for nodes whose
half unit disks intersect. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

Figure 2.4 - A Gabriel Graph Example: u and v are connected since no other vertex is within the disk. 20

Figure 2.5 - A Delaunay Triangulation Example: the triangle tuv is included since no other vertex is
within the disk. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

Figure 2.6 - A graphic showing how a network topology can be visualized as a maze. . . . . . . . . 26

Figure 2.7 - Greedy routing example: x is the node nearest the destination t of all the nodes directly
connected to s, therefore s forwards the packet to x. . . . . . . . . . . . . . . . . . . 26

Figure 2.8 - A Greedy Routing example: y is the nearest to t of x’s directly connected neighbors
therefore x forwards the packet to y, and the packet continues to be greedily routed
until reaching t. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

Figure 2.9 - A Greedy Routing local minimum example: z is the closer than any directly connected
node to t, therefore the packet cannot make greedy progress in the next hop, and
greedy routing fails. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

Figure 2.10 -A Greedy-Face-Greedy routing example. . . . . . . . . . . . . . . . . . . . . . . . . . 30

Figure 2.11 -An example showing how a packet at p may be forwarded to various different neighbors
depending on the variant of greedy forwarding used. . . . . . . . . . . . . . . . . . 32

Figure 2.12 -An image comparing the various face change point options. . . . . . . . . . . . . . . . 34

Figure 2.13 -A basic Face Routing example. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

Figure 2.14 -A FACE-2 routing example. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

Figure 2.15 -A Bounded Face Routing example. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

Figure 3.1 - An example showing how position exchange range, link range, the community, the
neighborhood, and directly connected neighbors are defined. . . . . . . . . . . . . . 47

Figure 3.2 - The unit disk graph among a set of aircraft positions. . . . . . . . . . . . . . . . . . . . 49

Figure 3.3 - A pictorial representation of the connection of aircraft into a mesh network and to
ground station gateways. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

xv



Figure 3.4 - A diagram of the system-level architecture for each airborne platform (node). . . . . . . 51

Figure 3.5 - One-Way Connection Example. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58

Figure 3.6 - The unit disk graph and the local and global graphs resulting from running the DCP-
KRUSKAL algorithm. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62

Figure 3.7 - The steps of computing DCP-TRT. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64

Figure 3.8 - The DCP-TRT topology among the sample set of nodes. . . . . . . . . . . . . . . . . . 65

Figure 3.9 - The resulting global DCP-TRT topology. . . . . . . . . . . . . . . . . . . . . . . . . . 66

Figure 3.10 -The steps to computing the local DC-GG. . . . . . . . . . . . . . . . . . . . . . . . . . 68

Figure 3.11 -The resulting global DC-GG topology. . . . . . . . . . . . . . . . . . . . . . . . . . . 69

Figure 3.12 -The unit disk graph and the local and global graphs resulting from running the DCP-
KRUSKAL algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70

Figure 3.13 -The global DC-DT Topology. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71

Figure 3.14 -The result nodes a, b, c, and d independently generating a local topology using the
DCP-KRUSKAL algorithm given each node’s community members. The dashed
circle shows the extent of the community from each node’s point of view. . . . . . . 72

Figure 3.15 -The result of these four nodes adding additional edges, longest first, to the topology graph. 73

Figure 3.16 -The resulting global non-planar topology. . . . . . . . . . . . . . . . . . . . . . . . . . 74

Figure 3.17 -Computation of the local DCP-TRT topology at node a. . . . . . . . . . . . . . . . . . 75

Figure 3.18 -The computation of the local DCP-TRT topology at node b. . . . . . . . . . . . . . . . 76

Figure 3.19 -The resulting global non-planar topology using DCP-TRT. . . . . . . . . . . . . . . . . 77

Figure 3.20 -A boundary ˜200 km offset from the continental United States border and coastline. . . . 78

Figure 3.21 -A visual comparison of the global continetal-scale topology resulting from each algorithm. 79

Figure 3.22 -An analysis of the number of connections. . . . . . . . . . . . . . . . . . . . . . . . . . 82

Figure 3.23 -An analysis of the data links used and connected by each algorithm. . . . . . . . . . . . 83

Figure 3.24 -An analysis of one-way connections. . . . . . . . . . . . . . . . . . . . . . . . . . . . 84

Figure 3.25 -The mean length of a connection across algorithms. . . . . . . . . . . . . . . . . . . . . 85

Figure 3.26 -An analysis of the connected node pair metrics. . . . . . . . . . . . . . . . . . . . . . . 86

Figure 3.27 -The per-node computation times for the various algorithms. . . . . . . . . . . . . . . . 87

xvi



Figure 3.28 -The mean ratio of the number of edges added or removed in consecutive topologies, to
the number of edges in the topology. . . . . . . . . . . . . . . . . . . . . . . . . . . 88

Figure 3.29 -An analysis of link dynamicity. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88

Figure 3.30 -The ratio of the number of hops in the shortest path for each algorithm’s computed
topology to the number of hops in the shortest path in the unit disk graph. . . . . . . 89

Figure 4.1 - An example of how face routing works with internal and external faces. . . . . . . . . . 93

Figure 4.2 - An example of using an adaptive bounding circle to mitigate worst-case Face Routing
situations, assuming there were many hops between c and y. . . . . . . . . . . . . . 94

Figure 4.3 - An example topology used for several examples in this chapter. . . . . . . . . . . . . . 99

Figure 4.4 - An example of greedy routing in the example topology. . . . . . . . . . . . . . . . . . . 99

Figure 4.5 - A depiction of the bearing calculations. . . . . . . . . . . . . . . . . . . . . . . . . . . 101

Figure 4.6 - An example of face routing in the example topology. . . . . . . . . . . . . . . . . . . . 103

Figure 4.7 - An example of face routing when the destination is unreachable. . . . . . . . . . . . . . 104

Figure 4.8 - An example of face routing motivating the need for the first edge to be included in the
header. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105

Figure 4.9 - An example of a non-planar topology that thwarts face routing. The arrows trace the
path of a packet starting at s and using the right-hand rule in an attempt to get to t. . 106

Figure 4.10 -An example of a non-planar topology where face routing fails to forward a packet to a
reachable destination. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106

Figure 4.11 -An example of Greedy-Face-Greedy Routing. . . . . . . . . . . . . . . . . . . . . . . . 107

Figure 4.12 -An example of a topology where the face exploration direction makes a difference. . . . 108

Figure 4.13 -An example of Adaptive Face Routing. . . . . . . . . . . . . . . . . . . . . . . . . . . 109

Figure 4.14 -A depiction of the notion of routing within an annulus centered at the destination. . . . . 110

Figure 4.15 -An example motivating the advantages adding topology awareness to the normal Greedy
mode. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 118

Figure 4.16 -An example that motivates the need for the next topology-aware greedy hop to make
progress toward the destination. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 119

Figure 4.17 -Examples demonstrating selecting the face exploration direction based on the local
topology. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 122

Figure 4.18 -An example showing how the radius of the bounding circle is determined. . . . . . . . . 125

xvii



Figure 4.19 -An example motivating the need for TAG to support fully dynamic topologies. . . . . . 127

Figure 4.20 -An example of a topology that violates the Unit Disk Graph assumption. . . . . . . . . 130

Figure 4.21 -A comparison of hop stretch values as node density increases. . . . . . . . . . . . . . . 132

Figure 4.22 -A comparison of path stretch values as node density increases. . . . . . . . . . . . . . . 134

Figure 4.23 -A comparison of the hop stretch values with and without topology awareness. . . . . . . 135

Figure 4.24 -The network of aircraft used for the dynamic node simulation. A subset of 200 aircraft
over the United States at 1:00 p.m. July 9, 2015. . . . . . . . . . . . . . . . . . . . 137

Figure 4.25 -The network of aircraft used for the dynamic node simulation. A subset of 673 aircraft
over the United States at 1:59:59 p.m. July 9, 2015. . . . . . . . . . . . . . . . . . 137

Figure 4.26 -A plot of the CDF of the mean numbers of hops in an airborne network including hun-
dreds of aircraft. (1 low-rate UDP flow per experiment, 1,000 experiments, 3 links
per node, 1 hour simulated per experiment) . . . . . . . . . . . . . . . . . . . . . . 138

Figure 5.1 - Diagram showing the relationship of the components that enable simulating wireless
point to point links. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 142

Figure 5.2 - The network of aircraft used for the global routing comparison. A subset of 609 aircraft
spread across the United States at 9:00 a.m. July 9, 2015. Density: 9.47 nodes per
unit disk. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 145

Figure 5.3 - The CDF of the mean delay over all the packets in each flow. . . . . . . . . . . . . . . 147

Figure 5.4 - The CDF of the mean number of hops per packet in each flow. . . . . . . . . . . . . . . 148

Figure 5.5 - A snapshot of the network of aircraft used for the Large-Scale High-Density Experi-
ment. A composite of the air traffic on July 16, 2015, at 12:00 noon and July 17,
2015, at 1:00 p.m. central time. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 149

Figure 5.6 - The CDF of the mean one-way delay per packet for each flow in the Large-Scale High-
Density simulations. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 152

Figure 5.7 - The CDF of the mean number of hops per packet for each flow in the Large-Scale High-
Density simulations. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 153

Figure 5.8 - A scatter plot showing the correlation between the mean number of hops and the mean
one-way delay. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 154

Figure 5.9 - A snapshot of the initial network of aircraft used for the single high-rate flow experi-
ments and the all pairs experiments. The 264 nodes shown here span a large portion
of the United States at 1:00 p.m. on Thursday, July 9, 2015. . . . . . . . . . . . . . 155

Figure 5.10 -The throughput and number of hops for a one minute single high-rate UDP flow exper-
iment. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 156

xviii



Figure 5.11 -The throughput and number of hops for a one minute single high-rate UDP flow exper-
iment with a drop in throughput. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 157

Figure 5.12 -A simulation showing how TAGs ability to begin sending packets over shorter paths can
cause TCP to react negatively, decreasing the throughput potential for a high-rate flow.157

Figure 5.13 -The throughput and numbers of hops encountered after changing the duplicate ACK
threshold to 10. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 158

Figure 5.14 -A snapshot of the network of aircraft at the start of the long duration experiment. July
16, 2015 at 10:00:00 central time. . . . . . . . . . . . . . . . . . . . . . . . . . . . 160

Figure 5.15 -A snapshot of the network of aircraft after 2 hours of the long duration experiment, July
16, 2015 at 12:00:00 central time. . . . . . . . . . . . . . . . . . . . . . . . . . . . 160

Figure 5.16 -A plot of the throughput over the course of the long duration experiment. . . . . . . . . 161

Figure 5.17 -A snapshot of the network of aircraft used to analyze the effect of loss. . . . . . . . . . 162

Figure 5.18 -The CDF of the throughput at various bit error rates (BER). . . . . . . . . . . . . . . . 163

Figure 5.19 -The CDF of the packet delivery rate (PDR) at various bit error rates (BER). . . . . . . . 165

Figure 5.20 -The CDF of the throughput for the All Node Pairs simulations. . . . . . . . . . . . . . . 167

Figure 5.21 -The CDF of the packet delivery ratio for the All Pairs Experiment. . . . . . . . . . . . . 168

Figure 5.22 -The CDF of the mean number of hops per packet for each flow in the All Pairs Experiment.169

Figure 5.23 -The CDF of the mean one-way delay per packet for each flow in the All Pairs Experiment.170

xix



LIST OF ABBREVIATIONS

ACK acknowledgment

AODV Ad-hoc On-demand Distance Vector

AFR Adaptive Face Routing

AO Adaptive Optics

ASDI Aircraft Situation Display to Industry

ATM Air Traffic Management

ATC Air Traffic Control

AAL American Airlines

ADS-B Automatic Dependent Surveillance - Broadcast

BER Bit Error Rate

BFR Bounded Face Routing

CPU Central Processing Unit

CT Central Time

DIR Compass Routing

CBTC Cone Based Topology Control

CBR Constant Bit Rate

CLDP Cross-link Detection Protocol

CDF Cumulative Distribution Function

CTR Critical Transmitting Range

dBmW decibels-milliWatts

DARPA Defense Advanced Research Projects Agency

DC-DT Degree-Constrained Delaunay Triangulation

DC-GG Degree-Constrained Gabriel Graph

DCP-KRUSKAL Degree-Constrained Planar Kruskal

DCP-TRT Degree-Constrained Planar Tree-based Reliable Topology

DT Delaunay Triangulation

DAL Delta Airlines

DoD Department of Defense

xx



DSDV Destination Sequenced Distance Vector

DSR Dynamic Source Routing

ECEF Earth-centered Earth-fixed

EIGRP Enhanced Interior Gateway Routing Protocol

ERAST Environmental Research Aircraft and Sensor Technology

ENY Envoy

FR Face Routing

FAA Federal Aviation Administration

FCC Federal Communications Commission

FEC Forward Error Correction

FSO Free-Space Optics

FSOC Free-Space Optical Communication

FOENEX Free-space Optical Experimental Network Experiment

GG Gabriel Graph

GLSR Geographic Load Share Routing

Gb Gigabit

Gbps Gigabits per second

Gb/sec Gigabits per second

GB Gigabyte

GIG Global Information Grid

GPS Global Positioning System

GPSR Greedy Perimeter Stateless Routing

GR Greedy Routing

GFG Greedy-Face-Greedy

GOAFR Greedy Other Adaptive Face Routing

GOAFR+ Greedy Other Adaptive Face Routing Plus

GPVFR Greedy Path Vector Face Routing

ID Identifier

INS Inertial Navigation System

xxi



IP Internet Protocol

Kbps kilobits per second

KB Kilobyte

km kilometer

LED light-emitting diod

LOS line of sight

LTE Long-Term Evolution

LLCD Lunar Laser Communications Demonstration

LMST Local Minimum Spanning Tree

LTRT Local Tree-based Reliable Topology

MTU maximum transmission unit

MAC media access control

Mb Megabit

Mbps Megabits per second

MB Megabyte

ms Millisecond

MST Minimum Spanning Tree

MANET mobile ad-hoc network

MFR Most Forward within Radius

MPR Multipoint Relay

MPLS Multiprotocol Label Switching

NASA National Aeronautics and Space Administration

NAS National Airspace System

NCO Network Centric Operation

OPVFR Oblivious Path Vector Face Routing

OSPF Open Shortest Path First

OAGC Optical Automatic Gain Control

ORCA Optical RF Communications Adjunct

OLSR Optimized Link State Routing

xxii



OAFR Other Adaptive Face Routing

OBFR Other Bounded Face Routing

OFR Other Face Routing

PT Pacific Time

PDR Packet Delivery Ratio

PER Packet Error Rate

PVEX Path Vector Exchange Protocol

PAT Position Acquisition and Tracking

PIF power in the fiber

RF radio frequency

RNG Relative Neighborhood Graph

RERR Route Error

RREP Route Reply

RREQ Route Request

s Second

SINR Signal to Interference and Noise Ratio

SWA Southwest Airlines

TAG Topology Aware Geographic Routing

TCP Transmission Control Protocol

TRT Tree-based Reliable Topology

TTL Time to live

UDT Unit Delaunay Triangulation

UDG Unit Disk Graph

UK United Kingdom

UPS United Parcel Service

UTC Coordinated Universal Time

UAV Unmanned Aerial Vehicle

UDP User Datagram Protocol

xxiii



CHAPTER 1: INTRODUCTION

As wireless digital communication networks mature and advance, their reach has been extending into

previously unimaginable regions, including outer space [BSM+09], under water [DSSM15], and under-

ground (where the propagation medium is the soil) [CaRCR15]. Yet even more fascinating has been the re-

cent surge of interest in forming networks in the Earth’s stratosphere, that has propelled the field of Airborne

Networking from its origins inside military research labs out onto the center stage. Well-known companies

like Google and Facebook are making huge investments in their own large-scale airborne networks as they

race to define and control these futuristic networks in the skies.

An airborne network is a digital communication network which includes nodes, such as balloons, blimps,

or fixed-wing aircraft, that are airborne. Among the many challenges associated with these highly-dynamic

networks is that of forming long-range high-bandwidth connections between them, and efficiently routing

data over those connections in a manner that is scalable to potentially tens of thousands of nodes. Directional

data links are data links which focus their transmissions in a certain direction. These links can facilitate the

required high-rate connections over long ranges, but their use violates many of the assumptions made by

traditional networking protocols. Further, these directional data links require explicit management of the

network topology, so that it can quickly adapt and evolve as nodes join, swiftly move within, and leave the

network. These frequent changes to the network topology induce large amounts of routing overhead and

packet loss even in routing protocols designed for mobile networks. This dissertation details a distributed

topology management framework and a geographic routing algorithm capable of efficiently routing high-

bandwidth traffic in a large-scale airborne network connected by directional data links. The effectiveness of

these algorithms is demonstrated through a series of experiments that simulate the formation of an airborne

network of commercial aircraft tracing the paths of actual flights in the United States airspace.

1.1 Airborne Networks of Balloons, Drones, and Commercial Aircraft

Thirty-four million Americans (10% of the United States population) have no access to high-speed In-

ternet at home [FCC16]. No provider is able or willing to provide high-rate connections to these people’s

homes, most of which are in very rural areas. The situation is much worse in developing countries, where

1



it is estimated that 31% of the population do not even live within range of a 3G mobile network [Fac16].

Building the traditional infrastructure required to connect these users to the Internet is an extremely expen-

sive and slow process; land rights must be purchased, cables must be laid or towers erected, and costly

communications equipment must be installed. These barriers may be one of the reasons that Facebook and

Google are looking to the stratosphere for a creative solution to the problem of connecting more users (and

customers) to the Internet.

In June 2013 Google announced their plans to create an airborne network of high-flying balloons to

provide internet service to users on the ground throughout the world [TP13], [DTBW13]. Facebook quickly

followed suit, purchasing UK-based Ascenta [Gar14], a maker of solar-powered drones, and announcing

that they were working on ways to beam Internet to people from the sky [Kel14]. Since that time both com-

panies have made significant progress toward their goals, with Google launching balloons in New Zealand,

California, and Brazil [Sim16], and Facebook testing its full-scale solar-powered Internet drone that may

one day stay aloft for three to six months[New16].

Although both approaches are unique (each with its own challenges), the fundamental idea is the same:

form a high-capacity backbone network between airborne nodes, connect it to ground station gateways, and

provide Internet connections from each node to users on the ground (using an additional communication

system). A common challenge to either proposal, however, is the sheer scale of such a network. According

to Google, each of the balloons in their proposed architecture can provide coverage to a ground area with

a diameter of about 40 km [Mur15]. This means that to actually provide Internet connections to just the

continental United States, Google would need over 6,000 precisely-positioned balloons.

A fundamentally different approach than that being pursued by Google and Facebook is the idea of using

the existing fleet of passenger and cargo aircraft as the principal components of an airborne network. Doing

so would alleviate the need to send so many drones or balloons into the stratosphere and would have the

added benefit of enabling high-speed Internet on board the aircraft, with connections far superior to the low-

rate and latency prone services offered today. However, regardless of whether drones, balloons, commercial

aircraft, or perhaps some mixture of all three are used as nodes in a future airborne network, the fundamental

challenge remains effectively managing the topology of the network and efficiently routing data within that

dynamic network topology.

2



1.2 Free-Space Optical Communication Links

Free-space optical communication (FSO) is expected to be an essential technology in achieving the high-

bandwidth connections over long distances required for the airborne network backbone. Google is investi-

gating the use of ultra-bright light-emitting diodes (LEDs) for communication between balloons [DTBW13],

and Facebook claims to have developed free-space laser transceivers that improve upon the state-of-the-

art by an order of magnitude, yielding data rates in the tens of Gbps [Mag]. The United States Armed

Forces are also linking aircraft together with low-power infrared lasers. A recently completed Defense

Advanced Research Projects Agency (DARPA) program demonstrated air-to-air connections with ranges

up to 200 km and air-to-ground connections with slant ranges (line-of-sight distance between data links at

different altitudes) up to 130 km while maintaining data rates from 3 to 9 Gb/sec using a hybrid FSO/RF

link [DOD13], [SPM+11], [APC+12].

Conveniently, free-space optical communication links do not require a Federal Communications Com-

mission (FCC) license or spectrum allocation, and are smaller, lighter, more secure, and more power efficient

than high-bandwidth radio frequency (RF) links. FSO links, however, are very sensitive to atmospheric tur-

bulence, and line-of-sight obstructions (such as clouds). It has been shown that a combination of Adaptive

Optics (AO), Optical Automatic Gain Control (OAGC), and Forward Error Correction (FEC) can overcome

the effects of the severe atmospheric turbulence which impacts these links [SPM+11]. Other techniques

such as link layer retransmissions can further improve the link quality. Note, also, that atmospheric turbu-

lence and cloud obstructions are less prominent at high altitudes where it is anticipated that the bulk of the

airborne network connections will be formed. In addition, the topology management framework (discussed

next) could take cloud positions into account, and route around them as in [JRO+09].

Unlike standard omnidirectional wireless RF links, that transmit in all directions and connect to all nodes

within range, FSO links focus their transmission in a specific direction. Thus, a pair of FSO links must be

pointed at one another to form a point-to-point wireless connection. An aircraft that has exactly three FSO

links must determine which three aircraft to point its links at and connect with, among the dozens that may

be within range. Somehow the topology of the network must be explicitly managed so that nodes know

which FSO links should be pointed at one another to form the network’s connections.

3



1.3 Distributed Explicit Topology Management

In traditional wireless networks, where omnidirectional communications are the norm, topology control

involves coordinating the transmission power of network nodes to generate a topology with certain prop-

erties [San05]. Topology control employed on a sensor network, for example, may be used to manage a

network such that connectivity to all nodes is maintained, but power consumption is minimized. The use

of directional FSO links drives the need for a topology management framework which is related to topol-

ogy control, but which explicitly determines which nodes should point to and connect with one another. In

addition, when using directional links, the degree, or number of incident edges at a node in the topology,

is limited to the number of physical directional data links at that node. Thus, the topology management

framework must also guarantee that degree constraints are met while seeking to form a desirable global

topology.

Imagine a centralized topology management framework where, once connected, all nodes would send

their position and connection information through the network to a selected control node. This special

control node could determine the best global topology for the network and then command each node to make

appropriate connectivity changes to realize that topology. This design, however, has several disadvantages

besides the fact that it presupposes the connectivity of the nodes. First, it creates a single point of failure

at the control node for the network. Next, significant amounts of extra overhead would be required to send

the position information of all nodes to the control node, potentially causing congestion on links near the

control node. Further, this design places much of the computational burden on the single control node,

requiring it to compute a global topology that includes all the nodes. Lastly, and implicit in each of the

previous disadvantages, is the issue of scalability. As the number of nodes in a network managed by such

a scheme increase, the bandwidth would eventually be completely consumed in just managing the topology

of the network. Clearly, a distributed solution is warranted, especially when networks of tens of thousands

of nodes are desired.

If, instead, nodes could exchange their position information with only nearby nodes, and each node

could use only that local information to compute and implement a local topology, the result would be an

efficient and much more scalable management of the topology. The computation load would be spread

across the network. There would no longer be a single point of failure, and there would be no need for some

handshaking procedure to explicitly negotiate connections between the nodes. The only communication

4



overhead of such a scheme, in fact, would be the cost of exchanging position information with nearby nodes

(something already done by commercial aircraft using a separate system). In addition, the only associated

“costs” could be a slight decrease in the number of connections formed, leaving some links unused, and

an increase in the frequency of connection changes. Could the topology actually be managed in this way?

One of the main contributions of this work is a topology management framework which operates exactly

as described above. The design of this distributed management framework and the topology generation

algorithms it requires are detailed in Chapter 3.

1.4 Routing in Large-Scale Airborne Networks

A network formed by connecting aircraft using a limited number of directional data links is necessarily

highly-dynamic. Frequent changes to the topology are required as nodes join, move within, and leave the

network. Nodes that are not directly connected in this dynamic topology must communicate by relaying their

messages through a series of intermediate nodes, each acting as a router. A routing protocol or algorithm is

needed to determine, at each node along that path, where the message should be forwarded next.

Mobile Ad-hoc network (MANET) routing protocols are designed to support networks formed among

mobile nodes, but even these protocols often fail to efficiently route packets in highly-dynamic, large-scale

networks [NAJ15]. Consider, for example, a network of ten thousand mobile nodes, and two nodes on

opposite edges of this network attempting to communicate. A reactive MANET routing protocol (one that

seeks to establish routes “on demand”), will need to buffer packets until it can find a path through the

network to the distant node. Once a path is found packets may begin flowing. However, unless the nodes

along the path are essentially stationary, there is a high probability the path will quickly become invalid. All

it takes to make the path obsolete is one node along the path to leave the network or move out of range of

an adjacent node supporting the path. Packets must then be delayed or dropped while the path is repaired,

requiring extra management packets be sent, and increasing overhead.

A proactive routing protocol, that seeks to always maintain routes between every pair of nodes, could be

used instead, but this only exacerbates the situation, with the protocol generating what has been described as

“torrents” of link status change messages in an effort to recover from any failure on any path [KK00]. The

overhead associated with these messages can quickly saturate the available network bandwidth for large

networks with a frequently changing topology. Despite the high cost, only a fraction of the packets may

5



actually arrive at their intended destinations because the routing information so quickly becomes stale. In

contrast, geographic routing protocols don’t actively maintain routes, and never need to determine or repair

paths through the network.

Geographic routing protocols (or position-based routing protocols) forward packets based on the geo-

graphic position of the destination, not by identity or address. The nodes supporting a geographic routing

protocol need only store minimal information about other nearby nodes, and never global topology or path

information. There is no need to set up a path because hop-by-hop decisions are made about where the

packet should be forwarded next. This allows the protocols to quickly adapt to changes in the network while

avoiding stale information.

There are two main approaches to geographic routing: greedy routing and face routing. In greedy

routing the packet is forwarded at each hop to whichever directly connected neighbor is nearest the packet’s

destination [Fin87]. Unfortunately, if the packet reaches a node whose neighbors are all further away from

the destination than it is, the packet has reached a dead end (local minimum), and cannot make greedy

progress.

Face Routing (Compass Routing II) is the other main geographic routing approach [KSU99]. Face

routing makes use of the right-hand rule that states that the entire boundary of any face of a planar graph can

traced by, at each vertex proceeding along the incident edge that is sequentially counterclockwise about the

vertex from the arrival edge (aka at each vertex/roundabout always take the immediate right turn). Various

face routing methods utilize the right-hand rule to traverse individual faces and then switch to the next face

along a path of faces from the source to the destination.

Greedy and face routing are often combined producing so-called greedy-face-greedy protocols. These

protocols start routing greedily until a local minimum is reached, at which point face routing is used to route

around the face between the local minimum and the destination. Greedy routing then resumes.

Unfortunately most geographic greedy-face-greedy routing methods: (1) assume that a node is directly

connected to all other nodes within some maximum range (unlike directional links), (2) assume that the

topology does not change while a packet is being routed, and (3) assume that the topology graph is planar

(has no edges that cross). The third assumption can be satisfied by making a minor adjustment to the

topology management framework, that explicitly controls the topology. However, the first two assumptions

are not realistic for a routing protocol in a large-scale airborne network where directional data links are

used. What is needed is a geographic routing algorithm that can quickly respond to changes in the network,

6



even while a packet is in flight, and can work with topologies formed by directional links. Such a routing

algorithm could also benefit from the local topology information available at the nodes as a by-product of

topology management.

1.5 Thesis Statement

A topology management framework and a routing algorithm can be developed that are capable of con-

necting thousands of commercial aircraft, flying normal routes, into a large-scale airborne network sufficient

to support tens of thousands of 1 Mbps data flows.

1.6 Summary of Main Contributions

In support of this thesis, two algorithms are designed that are sufficient to connect thousands of airborne

nodes into a topology which is actively managed over time and route large amounts of data between those

airborne nodes. In addition, these algorithms are implemented and tested via simulation. The results of

these simulations, where nodes follow actual aircraft trajectories, demonstrate the effectiveness of these

algorithms and the capability of the airborne network. A summary of each of these contributions is given

below.

1.6.1 Distributed Topology Management Framework

The first contribution of this work is a topology management framework and associated topology gener-

ation algorithms that can operate in a distributed manner on a large set of nodes. The topology management

framework periodically runs on each node, using a topology generation algorithm to compute a local topol-

ogy graph given only the positions of nearby nodes. If any local connections have changed since the last

iteration, the framework makes the appropriate connection changes (re-pointing its links) and then waits for

the next iteration. Although there are instances where nodes disagree, and connections do not form, a good

topology generation algorithm can minimize the impact of this. There are numerous topology generation

algorithm variants that could be used, but the best algorithms have low computation time, and compute

topologies that are robust, inclusive, and contain short paths between pairs of nodes. The Degree Con-

strained Gabriel Graph (DC-GG) and Degree Constrained Delaunay Triangulation (DC-DT) perform best

among several algorithms designed and tested.

7



1.6.2 Topology Aware Geographic Routing Algorithm

Routing within large mobile networks is challenging, especially at high data rates and when node move-

ment is highly dynamic. The next contribution of this work is Topology Aware Geographic Routing (TAG),

a position-based routing algorithm that strategically uses local topology information to make better local

forwarding decisions, decreasing the number of hops required to deliver a packet when compared with other

geographic routing protocols, while essentially guaranteeing delivery, and sending no overhead packets. In

addition TAG is able to reliably deliver packets even in topologies that violate the often used but unreal-

istic unit disk graph and quasi-static assumptions. A variety of simulations support the claim that TAG

outperforms GOAFR+, GFG, and OLSR in both theoretical environments and in a simulated, real-world,

continental-scale airborne network.

1.7 Organization of Dissertation

The remainder of this dissertation is organized as follows.

Chapter 2 gives an in-depth look at several pertinent topic areas and provides an overview of related

research that has been conducted.

Next, in Chapter 3, the new distributed topology management framework is detailed, and experiment

results that compare various topology generation algorithms are presented.

Chapter 4 then details the design of a new topology aware geographic routing protocol that is able

to route packets in the highly-dynamic airborne network topology while using local topology information

(obtained as by-product of topology management) to improve its efficiency. Results of simulations compar-

ing this new protocol to other state-of-the-art geographic routing protocols in an airborne network are also

presented.

The results of a variety of simulations demonstrating the effectiveness of the resulting airborne network

system are then presented in Chapter 5. These simulations utilize actual flight path data collected by the

FAA to replay realistic node movements.

Finally, in Chapter 6, several areas of future work are described and the contributions of and main

conclusions from this work are summarized.

8



CHAPTER 2: BACKGROUND AND RELATED WORK

This chapter begins by introducing the reader to the burgeoning field of airborne networking, then briefly

introduces various topics pertinent to understanding this dissertation. A discussion of works related to this

research follows, where specific implementations of many of the topics covered in the background section

are described.

2.1 Background

2.1.1 Airborne Networks

An airborne network has been loosely defined as an infrastructure that provides communication trans-

port services through at least one node that is a platform capable of flight [USA07]. Until recently, most

airborne networking research was conducted by military research facilities and defense contractors. Many

of these military “airborne networks” included only a single airborne node, and simulated networks often

included only a couple dozen nodes. The last few years, however, have seen a huge increase in both the scale

of proposed airborne networks and the level of interest in airborne networking. This surge can be largely

attributed to Google and Facebook who have allocated large amounts of time and money in an attempt to

build the first large-scale civilian airborne network. The airborne networks being designed by these com-

panies include not dozens, but thousands or even tens of thousands of nodes spread around the globe. The

following sections provide more detail about these two main types of airborne networks, namely Military

Airborne Networks and Civilian Airborne Networks.

2.1.1.1 Military Airborne Networks

The United States Department of Defense (DoD) has pioneered Network Centric Operation (NCO), and

Network-centric Warfare theory [DOD05a]. This theory advocates for a robustly networked military force,

suggesting that such a network will lead to increased information sharing among troops, commanders and

support personnel, better situational awareness, more collaboration, and faster decision making; ultimately

yielding a decisive warfighting advantage. The notion is that future wars will be won, not necessarily by

might, but by forces that can quickly and effectively disseminate information.

9



To achieve this vision, the Global Information Grid (GIG) [DOD05b] was proposed. The GIG is an

all-encompassing communications plan, that includes everything needed to collect, process, manage, and

disseminate information to warfighters, decision makers, and support personnel. The GIG includes a space

backbone layer, with communication satellites, a terrestrial network layer, providing surface connectivity,

and an airborne networking layer, connected to both space and surface networks. Airborne networks are

thus an integral part of the grid and a fundamental component of the network-centric vision.

Military airborne networks can be further divided into two broad classes: airborne subnets, and backbone

networks. Airborne subnets include several existing tactical and sensor networks. These various networks

connect a small set of airborne platforms together to support a specific task. In contrast, backbone airborne

networks form a high-bandwidth backbone Internet Protocol (IP) network to interconnect satellite networks,

airborne subnets, sea and ground based mobile ad-hoc networks, and fixed terrestrial networks into a single

network. Besides enabling communication between forces, these backbone networks are also a key to

operating under satellite denied conditions, a current concern of the Pentagon.

2.1.1.2 Civilian Airborne Networks

As mentioned previously, both Google and Facebook are progressing their own the massive civilian

airborne networks that they hope will expand the reach of the Internet without the need of costly terrestrial

infrastructure. These companies, however, were not the first inspired by the vision of providing high-speed

internet from semi-permanent relay nodes in the stratosphere. Several companies have previously attempted

to bring similar ideas to market.

Around 1998 SkyStation International began marketing what they called Stratospheric Telecommunica-

tions Service. They planned to sail large airships (blimps), that could stay aloft for a period of years, in the

skies above large cities. These blimps would provide users on the ground with broadband service at what

was then a high rate of 2 to 10 Mbps. At about the same time Raytheon and Angel Technologies Corporation

similarly made an attempt to provide Internet access via manned high altitude aircraft circling over major

cities [MC98] [MC00]. They promised consumers 24-7 access to video data and Internet at rates from 1 to 5

Mbps. The aircraft would act as a relay between a terrestrial gateway and a special “self-pointing” antenna

mounted on a customer’s roof. Their testing resulted in the first successful commercial wireless broadband

link between a moving aircraft and the ground. Both companies, however, failed to “take off”. Several

factors are likely to blame for the failures including deficient communications and aircraft technology, the

10



rapid expansion of terrestrial wired and wireless networks leading to a failure of their business models, and

the impact of the terrorist attacks on September 11, 2001, on the aviation industry and the economy.

Over the next decade, similar projects continued to make small advances in delivering telecommunica-

tions from high-altitude airborne platforms, including projects in Japan, Korea, and Europe, and the United

States. AeroVironment Inc., for example, worked with the National Aeronautics and Space Administra-

tion (NASA) in the Environmental Research Aircraft and Sensor Technology (ERAST) program to develop

Helios, a high-altitude unmanned aerial vehicle (UAV) that was intended to perform atmospheric research

tasks and serve as a communications platform. Unfortunately, the Helios Prototype broke up and fell into

the ocean in 2003, and the entire NASA ERAST program was terminated [NBPD+04].

A decade later (2013) Google Inc. announced its intent to form an airborne network of high-altitude

balloons that would provide Internet service to users on the ground, including those living in remote ar-

eas [Sim16]. These balloons would float freely in the stratosphere, circling the globe, while forming a

network among themselves. The balloons would provide communication services to every corner of the

globe, including places with no current communications infrastructure. Project Loon, as it is called, has

performed tests in New Zealand, Brazil, and Australia. Patent documents reveal that Google plans to create

a hierarchy of balloons, with super-node balloons forming a backbone using free-space optical links, and

sub-nodes connecting to the backbone and the ground antennas using radio frequency (RF) [DTBW13].

Another patent also reveals that Google anticipates clumping balloons over certain areas to meet expected

historical demand, or to facilitate advance requests for service during special events [TP13]. Project Loon

is currently battling for permits to run test flights over the United States. It is quite possible that Google will

actually bring this seemingly “Loon-y” idea to fruition.

Not to be outdone, less than a year after Google’s announcement, Facebook announced its own ambitious

Airborne Networking project. Rather than relying on balloons, Facebook is instead banking on high-altitude

long-endurance solar-powered drones [Kel14]. These drones will circle high above commercial aircraft

traffic and form high-capacity free-space optical connections with terrestrial gateways and other drones. In

July 2016, Facebook conducted the first flight test of their full-scale prototype drone named Aquila [Guy16].

The drone is designed to eventually be able to remain aloft for up to six months at a time. With the wingspan

rivaling that of a 747, Aquila flies while using only 5,000 watts of power, about as much as a high-end

microwave. In addition to long-endurance drones, Facebook is also investing in Free-Space Optics (FSO)

research. Its researchers recently reported significant progress in obtaining multi-gigabit per second rates

11



using proprietary laser transceivers [Mag].

2.1.2 The National Airspace System (NAS)

This dissertation focuses on large-scale high-capacity airborne networks. One such network could be

formed among commercial aircraft that are already flying in the skies every day. To simulate a realistic

large-scale airborne network, that is large-scale both in numbers of nodes and geography, our simulations

play back the actual flight paths of air traffic within the United States. This section gives an overview of the

air traffic within the United States and how these data were obtained.

Figure 2.1: A view of the number flights in the NAS over 24 hours, stratified by the company designa-
tion in the call sign. Time on the x-axis is UTC-6 (Central Time).

The United States National Airspace System (NAS) includes the airspace, facilities, services, regula-

tions, equipment, and personnel required to ensure safe air travel for an average of 50,000 flights that use

the NAS each day. The NAS includes over 19,000 airports, 71,000 pieces of equipment, 14,000 air traf-

fic controllers, and serves nearly 600,000 active certified pilots operating over 280,000 aircraft [FAA16].

The NAS is administered by the Federal Aviation Administration (FAA), which reports that on most days

around 7,000 aircraft are constantly in the air over the United States. Figure 2.1 shows the number of flights

in the NAS over 24 hours. The bands represent the portion of air traffic attributed to various companies

and categories. Notice that for the given day the maximum number of flights in the air is just under 6,000.

It is important to note that the data set these numbers are derived from does not include flights of military

aircraft or flights of aircraft whose owners have requested to have their flight tracking information blocked.

The second band from the top represents the general aviation flights (those using their aircraft registration

number, also called the tail number, as their call sign). The share of flights by major United States air car-

12



riers can be seen in the bands starting at the bottom with American Airlines (AAL), followed by Southwest

Airlines (SWA), then Delta Airlines (DAL), etc. Other airline abbreviations may not appear as familiar such

as ENY, the symbol for Envoy Airlines. Envoy is a regional air carrier that operates under the American

Eagle brand. The “other” band at the top combines all the remaining airlines together whose fraction of

flights is too small to plot individually. This includes international airlines, small charter airlines, etc. One

other interesting feature to note is the contribution of the cargo airlines. This can be seen on the left-hand

side of the figure around 4 a.m. Notice the two bands that widen as the most others shrink. These are

the hundreds of FedEx and United Parcel Service (UPS) flights that dominate the early morning air traffic,

ensuring that packages are ready to be sent out on trucks at the crack of dawn. If a large percentage of the

commercial aircraft flying in the early morning hours (including cargo aircraft) participate in the airborne

network, most of the nodes will be able to remain connected to the network. However, it is unlikely that

the sparse commercial air-traffic in these early-morning hours will be sufficient to provide reliable network

connections to areas far removed from the busiest air-traffic routes. For this reason, it may be beneficial to

also employ a set of drone aircraft to fill gaps in the network coverage during these times.

Figure 2.2 shows a similar view of the air traffic, but over the course of a week (July 1 to July 7, 2015).

The diurnal variation (daily cycle) is quite evident, with much fewer flights during the early morning hours.

Minor variations can be seen from day to day, but the general patterns are consistent. Notice also, the smaller

number of flights on the July 4th weekend.

Figure 2.2: A view of the number of flights in the NAS over 7 days, stratified by the company desig-
nation in the call sign.

13



2.1.2.1 ADS-B

An important part of the topology management scheme introduced in Chapter 3 is the exchange of po-

sition information with nearby nodes. Automatic Dependent Surveillance - Broadcast (ADS-B) essentially

already performs this function for commercial aircraft, a fact we capitalize on.

ADS-B is a new Air Traffic Management and Control (ATM/ATC) surveillance system that has been

certified as a viable replacement for the FAA’s traditional radar-based systems. In the new system, each air-

craft broadcasts a radio transmission containing its current position, ground speed, identification, and other

air traffic management information approximately once a second [FAA05]. These messages are received by

ATC ground stations and other ADS-B equipped aircraft within a 100 to 200 nautical mile range (185 to 370

km or 115 to 230 statute miles) [SLM15][FAA05].

The new system provides data faster and at a higher resolution than traditional radar systems, enabling

closer spacing of aircraft and decreased congestion. It also has the added benefit of improving the situa-

tional awareness of pilots, who can now learn the positions of nearby aircraft and view the air traffic on an

integrated display. Further, ADS-B decreases the reliance on a ground infrastructure, and ADS-B ground

station receivers are easier and less expensive to deploy than radar stations. Because of these benefits, the

FAA has mandated that most aircraft operating in the controlled United States airspace must be equipped to

send ADS-B messages by January 1, 2020. [FAA10]

2.1.2.2 Aircraft Situation Display to Industry (ASDI)

In order to replay aircraft trajectories for airborne network simulations, Federal Aviation Administration

(FAA) Aircraft Situation Display to Industry (ASDI) data is used.

The FAA grants to some industry and research partners, access to 5 minute delayed aircraft position

information for most aircraft in the United States National Airspace System (NAS). This data, called Aircraft

Situation Display to Industry (ASDI) [Vol00], includes not only position, velocity, and aircraft identification

information, but also the flight plan information for most aircraft. Thus, rather than relying on some mobility

model for the movement of aircraft in the simulations in this work, each node instead follows the real path

of an actual flight tracked by the FAA. The simulations conducted for this dissertation make use of 1 month

of collected ASDI data from July 2015. This 63 Gigabyte data set includes over 160 million flight position

reports, and well over 1 million separate aircraft trajectories.

14



2.1.3 Directional Communication Links

As mobile users consume higher and higher amounts of network bandwidth, cost effective alternatives

to legacy wireless links are needed. Traditional ground-based wireless RF networks are bound by provable

limits of per-node throughput [GK00], and will likely not scale to meet future demands. The directional

communication links described in this section are key to enabling high-capacity airborne networks.

An antenna that radiates uniformly in all directions in a plane is called an omnidirectional antenna.

Omnidirectional antennas are commonly used in radios, cell phones, wireless networks, etc. In contrast,

an antenna that radiates or receives power more efficiently in some directions than in others is called a

directional antenna. Directional antennas can both improve the transmission and reception of communica-

tions and reduce interference from extraneous sources. The improved transmission and reception allow for

signals to be sent over longer distances, with fewer errors, or at higher rates. In addition, directional links

provide increased security, significantly limiting the potential for communication detection and interception.

This is a double-edged sword, however, as protocols that rely on overhearing their neighbor’s transmissions

(snooping) won’t function well in a network of directional links.

The measurement used to describe the efficiency of an antenna is called the antenna’s power gain or sim-

ply gain. Transmit antenna gain measures how well an antenna converts input power into radio waves, while

receive antenna gain measures how well the antenna converts radio waves into electrical power. Most direc-

tional antennas exhibit maximum transmit and receive gain in a single direction. These antennas are called

unidirectional antennas. Antennas that can change the direction of their focused transmission are called

steerable directional antennas. These types of antennas can be either mechanically steered or electronically

steered. Mechanically steered antennas are mounted on a gimbal or similar construction, that can turn the

antenna, effectively rotating the antennas radiation pattern relative to the platform. Electronically steered

antennas (also called steerable beam directional antennas, phased array antennas, smart beam-steering an-

tennas, or smart antennas) can be steered to point in different directions by independently controlling the

phases of each antenna in an array of antennas, such that constructive interference causes more power to

radiate in certain directions and destructive interference attenuates the signal in other directions.

Directional communication links can be further divided based on which portion of the electromagnetic

spectrum they operate in. Below, directional RF links that send signals using radio waves are first described.

Then, new free-space-optical communication links, that communicate using pulses of light are introduced.

15



2.1.3.1 Directional Radio Frequency (RF) Communication Links

Directional RF links are generally characterized as being extremely reliable, even in the presence of

clouds, fog, or atmospheric turbulence. They can operate over long ranges (e.g. 200 km), and at fairly

high rates (e.g. 274 Mbps). Armed forces from various countries use (mechanically and electronically)

steerable directional radio frequency (RF) links [BRMD07] to create high-bandwidth connections among

aircraft, and between aircraft and ground stations. The Mini-T2 system [L3:11], for example, can achieve

data rates up to 274 Mbps at ranges up to 150 nautical miles (278 km, 173 statute miles). Also, DARPA is

currently developing an RF link that can enable communication between an aircraft and ground station over

long ranges at 100 Gb/s [Kel15]. Unfortunately, however, high-frequency RF links can suffer substantial

attenuation from rain, depending on the rain drop size distribution and the rain field characteristics. Also,

since radio frequency bands are regulated by governments, the operation of RF links requires a spectrum

allocation. In the United States, the Federal Communications Commission (FCC) manages and regulates

spectrum use. Because of the scarcity of available spectrum, it can be extremely difficult and costly to secure

the large allocation needed for a new high-rate RF system.

2.1.3.2 Free-Space Optical Communication Links

Free-Space Optical Communication (FSO) links use pulses of light emitted from an infrared laser to

form a wireless optical communication channel (like fiber-optics without the fiber). The main advantage of

these types of links is their high capacity. Data rates up to 1.28 Tbps (Terabits per second) have been demon-

strated over a short distance of 200 meters [CAC+09]. However, other advantages abound, including full

duplex operation, low interference, no Federal Communications Commission (FCC) license requirement, no

spectrum scarcity. Further, the extremely narrow beamwidth of the laser makes interception of transmissions

by a third party very difficult, yielding a highly secure link. FSO links are also generally lighter, smaller, and

require less power than RF links. Interestingly, since the propagation speed through fiber is slightly slower

than in air, FSO links can actually send data faster than fiber-optics links.

Naturally, these links come with a set of limitations and new challenges that must be overcome. First,

atmospheric turbulence can cause the intensity of the optical radiation traversing the atmosphere to fluctuate

randomly. This is called scintillation [APH01] and is analogous to the fading experienced by RF systems.

The optical links are also sensitive to atmospheric absorption and scattering. Further, the links require an

16



unobstructed line-of-sight (LOS) between FSO links, and thus their optical signals are severely attenuated by

fog, haze, and clouds. Finally, the narrowness of the laser beam requires extremely accurate pointing. FSO

links attached to or tracking mobile platforms (such as aircraft) must be mounted on a precision gimbal, and

employ a sophisticated Pointing Acquisition and Tracking System (PAT) [RED13] to acquire connections

and to continuously adjust their pointing to maintain a lock on their target.

Despite these limitations, Free-Space Optical Communication links are seen by many to be an “essential

enabler” of airborne networks [BRSS12]. Many of the limitations of these links disappear or are reduced at

high altitudes, making FSO links a natural choice for connecting a high-capacity airborne network or even

a space network. In fact, NASA is already using laser communications in space. The recently completed

the Lunar Laser Communications Demonstration (LLCD) [BSM+09] proved that it is possible to receive,

through a transportable ground terminal, high-rate laser communications from a satellite in lunar orbit over

a quarter million miles away.

2.1.3.3 Hybrid Free-Space Optical Radio Frequency (Hybrid FSO/RF) Communication Links

There is a natural synergy between directional RF and FSO links that can be exploited by using them

in tandem [DTS05]. RF links generally have a smaller capacity than FSO links but are generally more

dependable. FSO links have a huge capacity, but are not as dependable, especially in the face of excessive

atmospheric turbulence. By combining an FSO and an RF link into a Hybrid link the benefits of both

technologies can be enjoyed. The FSO link can transmit large amounts of data when available, and the

dependable RF channel can be used for critical control messages, acknowledgments, or for exchanging data

or dropped packets if the FSO link is momentarily down. Adding to the synergy, the link types complement

one another where weather effects are concerned. High-capacity directional RF links perform poorly in

rain, but in the same conditions, FSO links experience only a moderate attenuation. Similarly, FSO link

performance is severely impacted by fog or haze, but RF link performance is not. Interestingly, the reason

fog impacts an FSO connection is that the radii of the water droplets in fog are about the same size as the

infrared wavelength, causing the infrared light to scatter [GW02]. Similarly, RF links perform poorly in

rain, because the sizes of the raindrops are close to the wavelengths of microwave signals.

The United States military is actively pursuing hybrid FSO/RF link technology. DARPA recently

demonstrated a hybrid FSO/RF link capable of providing 10 Gbps of bandwidth over ranges greater than

200 km. Specific tests show an air-to-ground connection maintaining a data rate of nearly 9 Gbps at ranges

17



from 90 km to 130 km, and an air-to-air connection maintaining a data rate of 6 Gbps at ranges from 50

to 212 km [YHSJ15][DOD13]. These ranges and rates are possible because of the use of cutting-edge

adaptive optics (AO) and optical automatic gain control (OAGC) demonstrated by DARPAs Optical RF

Communications Adjunct (ORCA) and Free-space Optical Experimental Network Experiment (FOENEX)

projects [SPM+11]. Adaptive optics corrects optical distortions caused by atmospheric turbulence, while

OAGC helps to keep the incoming signal levels consistent. Performance is further improved using a link

layer retransmission scheme, that detects the onset of scintillation events and quickly retransmits dropped

packets over the RF link.

Many of the experiments conducted as a part of this research use simulated links that emulate the fun-

damental characteristics of these hybrid FSO/RF links, but generally in pristine environments.

2.1.4 Network Topology

A network topology indicates the arrangement of communication links between nodes in a network. For

traditional wired networks, the network topology is determined by the physical cables connecting network

nodes, and it is generally fairly static. In contrast, most wireless networks use omnidirectional antennas to

transmit their messages in all directions to all nodes within some maximum range. If nodes are mobile, the

topology is dynamic and is implicitly determined by the environment, the transmission ranges (affected by

the transmission power), and the node movement. In directional networks (networks that utilize steerable

directional communication links, such as FSO links) a topology must be explicitly determined and managed

as nodes move. Nodes have a finite number of links, and therefore a finite number directly connected

neighbors. Each directional antenna or free-space optical terminal for these links must be commanded to

point at its intended neighbor, who also must point one of its links back. More importantly, each node must

determine which of its potentially many neighbors it should directly connect with.

This following sections explore some concepts relating to the network topology graph and controlling

the topology.

2.1.4.1 Unit Disk Graph

The region of a plane bounded by a circle is called a disk. For theoretical analysis, the topology of a

wireless network is often modeled as a unit disk graph (UDG), where an edge exists between any two nodes

whose separation distance is less than 1 unit (the maximum range). A unit disk graph can be visualized

18



using disks with a radius of one unit, in which case the graph would include edges between a node and any

node within its disk. Alternatively, the graph can be visualized using disks with a radius of half a unit (0.5),

in which case the graph would include edges between any nodes whose disks intersect. Figure 2.3 shows a

simple unit disk graph for a set of nodes that uses the latter visualization convention (half unit disks). Notice

that the graph includes an edge between any two nodes whose half unit disks intersect (e.g. nodes x and y),

and does not include an edge between nodes whose disks do not intersect (e.g. nodes y and z). Formally

a unit disk graph can be defined as follows. Given P, a set of points in a plane, the unit disk graph U(P)

includes a vertex for each point and an edge (u,v) between a pair of vertices if and only if dist(u,v) ≤ 1,

where dist(u,v) is the Euclidean separation distance between u and v. Notice, that the unit disk graph places

no constraint on the degree of each node. In a unit disk graph, a node is always connected to all other

nodes within the maximum transmission range (that has been normalized to 1 unit), and is never connected

to any node outside that range [KWZ03a]. The unit disk graph is an accurate model of a 2-dimensional

broadcast wireless network if: (1) all nodes have the same transmission power and the same receive gain,

yielding the same maximum transmission radius, (2) every node’s transmission pattern is a perfect circle

(each node transmits and receives equally in every direction), and (3) there are no radio-opaque obstacles

and no multipathing to interfere with this perfect transmission. While convenient for theoretical analysis,

unit disk graphs rarely match real-world wireless network topologies [KWZ03a], [KGKS05b], [KGKS05a].

In this research, the Unit Disk Graph will be utilized to represent all of the connections that could potentially

be formed among a set of nodes. Since not all of these connections can actually be formed simultaneously,

an appropriate degree-constrained subgraph of the unit disk graph must be determined.

x y
z

Figure 2.3: Unit Disk Graph for the set of points given. Edges are included only for nodes whose half
unit disks intersect.

19



2.1.4.2 Planar Graph

Some techniques (e.g. face routing) used in this research require graphs that are guaranteed to be planar.

A planar graph is a graph that can be drawn in a plane without any of its edges crossing. If the positions of

vertices of a non-planar graph are fixed in a 2-dimensional plane, a planar subgraph can be generated from

the original graph by removing an edge for each pair of edges that intersect. There are many algorithms for

generating a planar subgraph. One such algorithm is the Gabriel Graph (GG). Remember that a disk is the

region of a plane bounded by a circle. A closed disk includes points on the circle (includes all points ≤ the

radius). Let disk(u,v) be a closed disk that has the line segment uv as a diameter. Given a set of points P,

the Gabriel Graph includes an edge (u,v) if and only if disk(u,v) contains no other points in P. Figure 2.4

displays the edge (u,v), for example, since node w (and all other nodes in P) are located outside of the disk

of which the line segment between u and v is a diameter. If w were located inside the disk, the edge (u,v)

would not be included in the Gabriel Graph.

u v

w

Figure 2.4: A Gabriel Graph Example: u and v are connected since no other vertex is within the disk.

Delaunay Triangulation is another algorithm that can be used to generate a planar subgraph of an input

graph. Delaunay Triangulation creates a triangulation for an input set of points. A circumcircle is a circle

that passes through all the vertices of a given polygon. Given a set of points P, the Delaunay Triangulation

includes a triangle tuv if and only if the circumcircle of that triangle contains no other points in P. Figure

2.5 shows that the resulting triangulation would include triangle tuv, since w (and all other nodes in P) are

located outside of the circumcircle. The Gabriel Graph is a subgraph of Delaunay Triangulation.

t

u v

w

Figure 2.5: A Delaunay Triangulation Example: the triangle tuv is included since no other vertex is
within the disk.

A planar graph consists of a set of regions, called faces, bounded by edges. There may be many interior

20



faces, that make up a graph, but always also one extra unbounded exterior face that encompasses all other

space.

2.1.4.3 Topology Control

Topology Control in wireless ad hoc network and sensor networks has been studied extensively. How-

ever, the main focus has been on networks using standard omnidirectional antennas. In these networks,

topology control involves adjusting the transmission power of nodes to achieve a global topology that is

connected and optimized for some metric, such as minimal energy use. In [San05] Santi gives a thorough

overview of Topology Control research, dividing the field into Homogeneous and Nonhomogeneous meth-

ods, where the homogeneity refers to the transmit power or range of the nodes. In homogeneous topology

control, the Critical Transmitting Range (CTR) is the common minimum range at which all nodes will

transmit, such that the network remains connected. Nonhomogeneous methods allow for each node to be

assigned a unique transmit range and associated transmission power, enabling even more specific control

of the topology. Santi further divides nonhomogeneous methods into Location-Based, Direction-based, and

Neighbor-based distributed protocols. In Chapter 3 a distributed topology control method is introduced that

explicitly controls the topology of a network of mobile nodes connected using directional links.

2.1.5 Routing in Mobile Ad hoc Networks

Delivering messages between nodes in an ad hoc network is an important and difficult problem. In the

routing problem, a source node s and a destination or target node t are elements of a set of points P, and the

node s is to send a message to the node t.

Mobile ad-hoc networks typically employ nodes that act as both routers and end-users. Nodes that are

not within mutual transmission range of one another must communicate by relaying their messages through

a series of intermediate nodes, each acting as a router. A routing protocol is needed to determine at each

node in the series, where the message should be forwarded next. Traditional routing protocols (such as

link state or distance vector based protocols) are not well suited for routing in networks where the topology

changes frequently [EM04]. Mobile Ad-hoc network (MANET) routing protocols are designed to support

networks of mobile nodes, but even these protocols can fail to efficiently route packets in highly-dynamic,

large-scale networks [NAJ15]. Mobile ad hoc routing protocols can be partitioned into two main classes:

topology-based protocols and position-based (geographic) protocols.

21



2.1.5.1 Topology-Based Routing

Topology-based routing protocols use link information that exists in the network to make forwarding

decisions. Topology-based protocols for mobile ad hoc networks can be further divided into three groups:

(1) Proactive protocols, (2) Reactive (On Demand) protocols, and (3) Hybrid protocols.

Proactive MANET routing protocols use traditional routing algorithms to maintain paths (routes) be-

tween every pair of nodes in a network. Routes are proactively maintained between every pair of nodes,

ensuring that packets flowing over a previously unused path can begin flowing without delay. Unfortunately,

proactive protocols require that numerous control messages be sent to update the routing tables. These con-

trol messages, or overhead messages, may occupy an unacceptably large fraction of the network bandwidth,

actively maintaining paths between nodes that never directly communicate. This overhead for proactive pro-

tocols, however, generally remains fairly constant as node mobility increases. Optimized Link State Routing

Protocol (OLSR) [JMC+01] and Destination-Sequenced Distance Vector (DSDV) [PB94] are examples of

proactive MANET routing protocols. OLSR is a version of the classical link state algorithm that has been

optimized for mobile networks. In OLSR each node selects Multipoint relays (MPRs) and uses only these

nodes to broadcast control traffic to the network, significantly reducing the number of transmissions when

compared with traditional flooding. In addition, link state information is only generated by MPRs, mini-

mizing the number of OLSR control messages. DSDV, on the other hand, is based on the distance vector

algorithm but it adds sequence numbers to each table entry to avoid routing loops as the network topology

changes.

In an effort to improve efficiency, reactive MANET routing protocols only manage network paths that

are currently in use. However, when a reactive protocol receives a packet destined for a node to which no

path exists, the protocol must first perform route discovery to find a path through the network to the new

destination. Only after a full end-to-end path to the destination is determined, can packets begin to flow. This

leads to a potentially long delay for the first packet transmitted. Further, when the topology changes after the

initial route discovery, a route must be repaired. Until the new path is discovered, packets must be buffered

or dropped. To establish or repair a path through the network reactive protocols send overhead packets in

the form of route request, route reply, and route error messages. Even though routes are only maintained

for connections currently in use, a huge number of overhead packets may still be needed to handle frequent

or sizable topology changes. Examples of reactive routing protocols include Ad-hoc On-demand Distance

22



Vector routing (AODV) [PR99] and Dynamic Source Routing (DSR) [JM96]. AODV determines a route

to a new destination by broadcasting a route request (RREQ) throughout the network. When the request

reaches the destination or a node with a route to the destination, it sends a route reply (RREP) back to

the originator. As the RREP makes its way back to the originator, intermediate nodes update their routing

tables to accommodate forwarding packets along the path. Once the originator receives the RREP it may

begin sending packets to the destination. If at some point AODV detects a broken link, route error (RERR)

messages are sent to the impacted nodes, and nodes can then reestablish a route by sending a new RREQ.

Similarly, DSR uses route request and route reply messages to find a route to a destination, however, instead

of storing route entries at the intermediate nodes along a path, DSR includes the full routing path with

each data packet sent. In addition to the standard network layer (IP) header, transport layer (TCP/UDP)

header and link layer headers, DSR adds its own header that includes the full routing path to the packet’s

destination. Intermediate nodes need only look at the path in each packet’s header to determine where to

forward the packet. Unfortunately, the scalability of DSR is limited, and long paths would quickly consume

all the space in a packet, leaving no room for data. In Chapter 4 a new routing protocol is detailed that

also uses an extra header in addition to the standard transport and network headers. Unlike DSR’s header,

however, the size of this header does not increase with the routing path length.

Hybrid ad hoc routing protocols seek to obtain the best of both worlds, by using proactive routing

locally, and reactive routing globally. Packets destined for nearby nodes or nodes within the same “group”

are routed using a proactive approach, while packets heading for distant nodes are routed with a reactive

strategy. These complex protocols still suffer from large amounts of overhead when the topology changes

frequently.

To better understand how the scale of a network can affect these protocols, consider a network of ten

thousand mobile nodes, with two nodes on opposite edges of this network trying to communicate. A reactive

protocol will need to buffer packets at the sender until it can find a path through the network to the distant

node. Once a path is found packets may begin flowing. However, unless the nodes along the path are

essentially stationary, there is a high probability the path will quickly become invalid. All it takes is one

node along the path to leave the network or move out of range of an adjacent node supporting the path,

to make the path obsolete. Packets must then be delayed or dropped while the path is repaired. Extra

management packets will also likely need to be sent, incurring overhead.

Using, instead, a proactive routing protocol only exacerbates the situation, generating what has been

23



described as “torrents” of link status change messages in an effort to recover from any failure on any

path [KK00]. The overhead associated with these messages can quickly saturate the available network

bandwidth for large networks with a frequently changing topology. Also, despite the high cost, only a frac-

tion of the packets may actually arrive at their intended destinations because the routing information can so

quickly become stale.

2.1.6 Position-Based Protocols and Geographic Routing

Geographic routing protocols [CCSM13] may be a solution to routing in large-scale highly-dynamic

mobile networks. They forward packets based on the geographic position of the destination, not by identity

or address. The nodes supporting a geographic routing protocol need only store minimal information about

other nearby nodes, and never global topology or path information. There is no need to set up a path because

hop-by-hop decisions are made about where the packet should be forwarded next. This allows a geographic

routing protocol to quickly adapt to changes in the network while avoiding stale information.

Each node in a network using a geographic routing protocol is assumed to be aware of its own physical

location and the positions of nearby nodes. Further, geographic routing protocols require that a sending

node knows the position of a packet’s intended destination. This information is often obtained using a

separate location service protocol [LJDC+00]. As described previously, in our example airborne network

application, the positions of nearby nodes are fortuitously already being exchanged via ADS-B [FAA10].

We call nodes that are within transmission range of a node its neighbors, and nodes that are within position

exchange (ADS-B) range its community members. To avoid confusion in directional networks, a neighbor

to which a connection currently exists is called a directly connected neighbor.

2.1.6.1 Localized Routing Protocols

Some geographic routing protocols are localized. Localized routing protocols make decisions based

only upon local information, which is information that already exists at the node or can be “efficiently”

obtained by the node generally by communicating with nodes within one or two hops. A routing protocol

is classified as localized if each node forwards packets based solely on: (1) a small amount of information

stored in a packet’s header (i.e. source position, destination position, etc), and (2) local information (i.e.

positions of neighbors). These restrictions imply that in general no node has knowledge of the full topology,

and unlike source routing protocols, a full path cannot be included in the small packet header. Protocols may

24



further be classified as memory-less or stateless if a packet is not allowed to change or store information at

a node. This restriction ensures that nodes need not store per-packet state information. The result is that if a

packet arrives at a node that it has previously visited, it won’t know it has already visited that node unless it

has stored the node’s identifier in its packet header (the size of which is limited).

There are many similarities between this type of routing and maze solving. The edges of the graph can

be imagined as corridors of a maze, and the vertices as small rooms with a doorway leading to a corridor for

each of the potentially many adjacent edges. Figure 2.6 shows such a maze for a network topology, and the

equivalent topology graph. Efficiently traveling through such a maze from a starting room to an ending room

is essentially the same task as routing a packet from the source node to the destination node. For geographic

routing protocols, those traveling through the analogous maze can be imagined to have a limited Global

Positioning System (GPS) receiver. They essentially know their current position, the maze end position,

and perhaps the positions of the rooms reached by each of the corridors leaving a room. Unlike many maze

solving techniques, however, no breadcrumbs can be left along the way. The algorithms are “ecologically

friendly”, and there is no way to mark a certain room or corridor as visited. Also, the imaginary GPS is

limited in that it may only store a finite number of previously visited rooms. It cannot store an entire path or

necessarily detect that a user is “going in circles”.

2.1.6.2 Greedy Routing

In greedy routing (also called greedy forwarding and before that also known as Cartesian routing) each

node a packet visits attempts to greedily forward the packet so that it makes maximum progress toward its

destination [Fin87]. At each hop the packet is forwarded to whichever directly connected neighbor is nearest

the packet’s destination. Figure 2.7 shows an example of a packet being greedily routed from a source node

s to a destination or target node t. The dashed circle centered at t shows that x is the node nearest t of all the

nodes directly connected to s. Therefore s greedily routes the packet to x. Figure 2.8 displays the remaining

greedy hops for this example. Notice that upon receiving the packet node x greedily forwards the packet to

node y because y is the directly connected neighbor closest to t. The packet then continues to make greedy

hops until reaching its destination t.

Greedy routing is generally efficient, but unfortunately, it alone cannot guarantee delivery in arbitrary

networks. Consider, for example, the same network topology used in the previous examples, but with a

different source node s, as shown in Figure 2.9. In this case, s forwards the packet to z, but z has no directly

25



a

b

c
d

e

h

g

fstart

end

F1

a

b

c
d

e

h

g

fsrc

dest

F1

Figure 2.6: A graphic showing how a network topology can be visualized as a maze.

s

t

y
x

Figure 2.7: Greedy routing example: x is the node nearest the destination t of all the nodes directly
connected to s, therefore s forwards the packet to x.

connected neighbor closer to the destination t than itself. When a packet reaches a node whose neighbors

are all further away from the destination than it is, the packet has reached a dead end, also known as a local

minimum, and cannot make greedy progress. If local minima exist in a topology, greedy routing must either

drop the packet or employ some other method to assist in backtracking and routing around the void (or hole)

26



s

t

y
x

Figure 2.8: A Greedy Routing example: y is the nearest to t of x’s directly connected neighbors there-
fore x forwards the packet to y, and the packet continues to be greedily routed until reaching t.

in the topology.

s

t

z

local
minimum

Figure 2.9: A Greedy Routing local minimum example: z is the closer than any directly connected
node to t, therefore the packet cannot make greedy progress in the next hop, and greedy routing fails.

2.1.6.3 Face Routing

Face routing is another class of geographic routing protocols. In face routing a packet explores the

boundaries of a sequence of faces between the source and destination. Crossing edges in a topology graph

confuse the traversal of face boundaries. To ensure that face boundaries can be explored, face routing proto-

cols require a topology graph to be planar. As described in Section 2.1.4.2, a planar graph is a 2-dimensional

graph where no two edges cross, or in other words, where all edge intersections occur at vertices. Planar

27



graphs partition the plane into a set of faces, regions bounded by the edges of the graph. A series of faces

separate a source node from a destination node. Face routing traverses these faces, exploring the bound-

ary of each, and eventually finds the destination on the boundary of the last face. While exploring a face

boundary, face routing protocols identify the next face to traverse. The face routing protocol then performs

a face change; what was the next face becomes the current face, and the procedure repeats, exploring each

new face until the destination is reached. A maze-solving rule says that any 2-dimensional maze can always

be exited (and solved assuming the finish/goal is on the boundary of the maze) if upon entering the maze,

one places her right hand on the right wall of the entrance corridor, and always when confronted by an

intersection, turns right, always keeping the right hand on the wall. [O’B89]. This right-hand rule can also

assist in exploring the boundary of a face in a planar graph. Refer back to the maze analogy of our topology

graph, and assume that the immediate goal is not to reach the maze end, but rather to travel around a face

in the matching planar graph. If one places a right hand on the right wall when entering a corridor and

always takes immediate right turns, keeping the right hand on the wall, eventually they will always arrive

back where they began, having traced the boundary of a face in the equivalent planar graph. In Figure 2.6,

for example, if one were at node a and entering the corridor toward b, and if they placed their right hand

on the right wall and walked always keeping it there, they would visit nodes b, c, d, e, f , and finally arrive

back at node a. The path traces the boundary of face F1. The boundary of any face in a static planar graph

can be traced in this manner. Alternatively, the left hand could instead be used. and immediate left turns

taken, allowing a face boundary to be traced in a counterclockwise direction. Various face routing methods

utilize the right-hand and/or left-hand rules to traverse the faces of a planar graph and arrive at the desti-

nation. The general concept is to have a packet travel around one face until some face change condition is

met. The algorithm then changes faces, and repeats the process, exploring the boundary of the new face.

This continues until the destination is found on the boundary of the last face explored. Various face change

conditions exist, and each must guarantee that progress is made toward the destination. If a face boundary

is being explored starting from a certain starting point, one basic face change condition is to change faces

once a boundary edge is reached that intersects the line segment from the starting point to the destination at

a point closer to the destination than the starting point. Another face change condition is to change faces at

the node on the boundary nearest the destination. If this face change condition is used, the topology graph

must also be a unit disk graph. If the topology graph is static, planar, and node locations are accurate, face

routing guarantees that one of two things will eventually happen: (1) the destination is encountered while

28



exploring a face boundary, in which case the packet can be delivered, or (2) an entire face boundary is ex-

plored and the face change condition is never met. In the second case, the destination is always unreachable

given the assumptions above. However, the above assumptions are not always easy to guarantee [FS10] as

mobile networks almost never naturally have a static or planar topology, and techniques used to planarize

topology graphs often encounter errors in real-world networks. Face routing has two main disadvantages.

First, the requirement that the graph be planar complicates the topology formation, and also generally leads

to a less-optimal topology, since non-planar edges must be removed. Second, when exploring the boundary

of a face, face routing can proceed in a clockwise or counterclockwise direction. A poor choice of direction

could lead to a much longer path.

2.1.6.4 Greedy-Face-Greedy Routing

Greedy and face routing are often combined producing so-called hybrid greedy-face routing protocols,

or greedy-face-greedy protocols. These protocols start routing greedily until a local minimum is reached, at

which point face routing is used to route around the face between the local minimum and the destination.

Once some condition is met, greedy routing takes back over, efficiently routing the packet until another

dead end is reached. Figure 2.10 shows an example of Greedy-Face-Greedy Routing. The packet is greedily

routed from node s to z, which is a local minimum. The packet then changes to face routing mode, in an

attempt to route around the void between z and t. The right-hand rule is used to enable the packet to travel

around the boundary of the face in a clock-wise manner. Upon reaching x the packet has made progress

toward t and is now closer to t than when it started face routing. The packet reverts to greedy mode, and

is greedily forwarded until it reaches t. Many geographic routing protocols employ this greedy-face-greedy

cycle but in a variety of different ways [KK00], [KWZ03b], [BMSU99]. Several of these protocols are

described in Section 2.2.2.3.

2.2 Related Works

2.2.1 Topology Control

As described in Section 2.1.4.3, many different Topology Control algorithms exist. In this section, a few

of the most applicable algorithms to this dissertation are described.

Local Minimum Spanning Tree (LMST) [LHS03] is a topology control algorithm that builds a Mini-

mum Spanning Tree-like (MST-like) topology in a fully distributed manner. The algorithm requires that

29



s

t

z

x revert to
greedy

Figure 2.10: A Greedy-Face-Greedy routing example.

each node must know the positions of nodes within transmission range. This position information is called

local information since it can be efficiently obtained by each node by simply periodically exchanging po-

sitions information with neighboring nodes. Each node then, using only this local position information,

independently builds a local MST, spanning all nodes in its neighborhood. Each node then adjusts its trans-

mission power such that only those nodes to which it is directly connected in the resulting graph are within

transmission range. Similarly, for networks using directional links, each node adjusts where its links are

pointing such that it is connected to only those nodes to which it is directly connected in the resulting graph.

The outcome is a topology graph that has a low nodal degree, short link lengths, and is connected (un-

less physically impossible given the maximum range). Communication graphs with small nodal degrees

are beneficial because they minimize interference, allow efficient bandwidth utilization, and reduce access

contention in the network. LMST guarantees a nodal degree that is less than six. The link length is the

distance between a transmitting node and its directly connected neighbor. Short link lengths are desirable to

maintain low levels of packet loss. Finally, a connected network is necessary to enable any pair of nodes in

the network to communicate.

Since LMST generates a global topology that is MST-like, the result is a topology that is not very

robust as there is generally only a single path between any two nodes in the topology. When a link goes

down there is often no alternate path in place, and thus the reliability of the network is decreased. Local

Tree-based Reliable Topology (LTRT) [MNAK09] uses LMST as a subroutine to generate a more “reliable”

topology. LTRT and its predecessor, TRT [ACK04] (that requires global information), are able to maintain

30



a k-connected topology, where at least k paths exist between every node in the network. LTRT has been

shown to perform well even in large dense networks [TNAK10] and performs better than several other

similar protocols in terms of average nodal degree and average link length. However, LTRT does not allow

the degree of nodes to be arbitrarily limited, which is desirable for our application since a node may bear

fewer than six directional links.

Neither LMST or LTRT are designed for use in networks connected with directional antennas. Many

of the standard topology control protocols cater to sensor networks, where power efficiency is a prominent

concern, and where accurate position information may be unavailable. Some Topology control research

has been conducted using directional antennas, but often sectorized directional antennas are assumed, as

in [HSSJ02], where a Cone-Based Topology Control (CBTC) method is detailed for use by switched direc-

tional antennas. The basic idea of CBTC is to divide up a circular area centered at a node into equal slices

called cones. Each node then selects a transmission power such that every cone around the node contains at

least one neighbor reachable at that power.

2.2.2 Geographic (Position-Based) Routing

A large number of geographic routing protocols exist, each with their own strengths and weaknesses.

The algorithms can be split into three classes: Greedy Forwarding Methods, Face Perimeter Forwarding

Methods, and Hybrid Methods. Note that herein xy represents the line between points x and y, |xy| represents

the distance between points x and y, ~y represents the vector extending from the origin to the point y, ]xyz

represents the measure of ∠xyz, and ∠xyz is the angle at vertex y created by the two rays that extend from y

through points x and z.

2.2.2.1 Greedy Forwarding Methods

Greedy forwarding methods attempt to advance a packet toward the destination by making a greedy

choice at each hop. Several different greedy forwarding variants exist, depending on the metric used to

determine the greedy choice. A packet could be forwarded, for example, to the neighbor that is nearest

the destination (the one that maximizes the advance toward the destination). Instead, however, it could be

forwarded to the neighbor that minimizes the angular separation between two rays; one extending from the

node toward the final destination and the other extending toward the neighbor. These and other variants are

described below. Some of the variants ensure loop-free operation, while others cannot.

31



2.2.2.1.1 Greedy Routing (GR) (Closest Distance, maximum advance) The most commonly used

forwarding method is the basic greedy routing method [Fin87], where a packet is forwarded to whichever

neighbor is nearest the destination. If a packet is destined for a node at point t and is at a node with two

directly connected neighbors at points a and b, the packet would be forward next to the node at point a,

if |at| < |bt|. Minimizing the distance to the destination is equivalent to maximizing the gain toward the

destination or advance (where advance is calculated as |pt| − |at|). If a packet arrives at a node that is

the closer to the destination than any of its directly connected neighbors, the packet has reached a dead

end (local minimum) and must be dropped. Greedy Routing is loop free, but cannot guarantee delivery in

arbitrary networks. In the example shown in Figure 2.11, p is deciding to which of its directly connected

neighbors (c, g, and f ) a packet, destined for t, should be forwarded. When greedy forwarding using this

variant, the packet would be forwarded to node g because it is the nearest of all p’s neighbors to t. Choosing

g yields the maximum advance toward the destination.

t

p

f

c
g

ad
v

fp

Figure 2.11: An example showing how a packet at p may be forwarded to various different neighbors
depending on the variant of greedy forwarding used.

2.2.2.1.2 Compass Routing (DIR) (Closest Angle) In compass routing [KSU99] the direction of the

destination, relative to the current node, is determined. Then, the packet is forwarded to whichever neighbor

has the relative direction nearest that of the destination. More specifically, a packet at a node at point p

destined for a node at point t with two directly connected neighbors at points a and b would forward the

packet to the node at point a if ]t pa < ]t pb. A packet being forwarded from node p would next visit node

c in the example shown in Figure 2.11 if Compass Routing were used. This is because the ray toward node c

from p has a smaller angle relative to the ray from node p toward the destination than the rays from p toward

any of the other neighbors. It should be noted, however, that compass routing does not guarantee loop-free

32



operation and some complex graphs have been shown to contain loops.

2.2.2.1.3 Most Forward within Radius (MFR) (Maximum Forward Progress) In the Most Forward

within Radius (MFR) method [MM96] a packet is forwarded to whichever node maximizes the forward

progress of the packet. Forward progress differs from advance, in that it is measured along a line between

the current node and the destination, where locations of nodes have been projected. A packet at a node

at point p, destined for a node at point t, with two directly connected neighbors at points a and b would

forward the packet to a if (~a−~p) · ~t−~p|~t−~p| < (~b−~p) · ~t−~p|~t−~p| (the projection of the vector from p to a onto the

vector from p to t is less than the projection of the vector from p to b onto the same vector from p to t). In

Figure 2.11, a packet at p would be forwarded to f using this greedy forwarding variant since its progress

along the line segment between p and t is greater than any other neighbor. Node g is actually closer to the

destination than f , but f makes more progress along the line towards the destination. Like Greedy Routing,

MFR is loop-free, but not as commonly used.

2.2.2.2 Face Perimeter Forwarding Methods

Greedy forwarding methods cannot guarantee the delivery of a packet, but in some cases, face perimeter

forwarding methods can. These methods seek to deliver a packet in a planar topology graph or subgraph by

advancing across (traversing) a set of faces, forwarding the packet around the perimeter of each face. This

section describes some of the many face routing variants.

2.2.2.2.1 Face Routing (FR) (FACE-1) The first and most basic Face Routing algorithm was initially

published under the name Compass Routing II in a seminal work by Kranakis, Singh, and Urrutia [KSU99].

In this algorithm, to route a packet from s to t, the face F0 incident to s and intersected by the line st would

first be identified. The packet would then begin exploring the boundary of F0 using the right-hand rule. As

the boundary is explored, the point p0 where st intersects an edge of the face is identified. For concave

faces, this can happen multiple times, and the intersection point that minimizes the distance to t is recorded

in the packet. Upon returning to s, having traced the entire boundary of F0, the packet again traces the face

boundary until the packet is about to traverse the edge on which p0 lies. At this point, p0 takes the place of

s and we repeat the process, finding and exploring the boundary of F1 incident to p0 and intersected by st.

The packet continues traversing faces and advancing toward the destination until one of two events occur:

33



(1) the destination t is encountered while exploring the boundary of the last face, in which case the packet

is delivered, or (2) the packet explores the entire boundary of a face without finding an intersection point

closer to the destination, indicating that the destination is unreachable, in which case the packet is dropped.

s

t

first
intersection

closest
intersection

closest
node

closest
point

Figure 2.12: An image comparing the various face change point options.

Each Face routing technique employs a rule to determine at what point a packet should change faces.

This basic face routing method uses the closest intersection rule. The intersection point of st with the

boundary of the current face that is closest to t is selected as the face change point. Figure 2.12 shows this

and a variety of other face change point rules.

s

t

y

x

z

F0

F1

F2

p0

p1

Figure 2.13: A basic Face Routing example.

Figure 2.13 shows an example of using this face routing method to forward a packet from node s to node

t in a topology connecting several nodes. The packet begins at node s and explores the entire boundary of

34



face F0, recording in the packet header the point, nearest t, where the line between s and t intersects the

face boundary. In this case, the intersection point is p0 on the line segment between nodes y and z. Once

this intersection point is found, however, the entire boundary must still be explored in case an even closer

intersection point exists. Upon returning to node s the packet is then forwarded until it reaches a node (y)

attached to the edge containing p0. At this point the packet transitions to tracing the face F1, the face with p0

on its boundary that intersects the line segment p0t. The procedure is repeated, exploring the entire boundary

of F1 and identifying p1 as the intersection point. The packet is then forwarded around the boundary to node

x, where it begins exploring face F2. The destination is discovered on the boundary of this face and the

packet is successfully delivered.

An optimization can be employed in this and similar face routing methods. The packet header may store

information as it travels around the face about the number of hops before and after the chosen intersection

point. When forwarding around the boundary back to the intersection point, an informed decision may

then be made about whether it would be better to forward the packet in a counter-clockwise or clockwise

direction. This optimization, for example, would have reduced the number of hops needed to forward the

packet back to p1 on face F1 from four hops to a single hop.

2.2.2.2.2 FACE-2 Bose et al. [BMSU99] propose FACE-2, a more efficient form of face routing where

a face F is traversed beginning at a point p until reaching an edge (u,v) that intersects the line pt at some

point p′ 6= p. Figure 2.14 shows an example of this face routing method. A packet begins forwarding around

the boundary of face F0 and upon reaching node g determines that its next hop along the boundary would

intersect st at p0 (the first intersection point on the boundary of F0). The packet then changes faces and

begins exploring the boundary of F1, until reaching node y and changing faces back to F0. F0 is briefly

explored finding p2 and the packet then changes faces to F2. The boundary of this face is explored until

reaching node x, and once again the packet switches faces to F3 and then delivers the packet to t as it

explores the boundary of this final face. The face change point rule used for FACE-2 is the first intersection

rule, as depicted in Figure 2.12. This variant of face routing is important to the GFG method described in

Section 2.2.2.3.1.

2.2.2.2.3 Bounded Face Routing (BFR) In [KWZ02] Kuhn et al. began their quest for a geographic

routing protocol that could be analytically analyzed and proven to be asymptotically optimal and average-

35



s

t

y

x

z

g

F0

F1

F2

F3

p0

p1

p2

p3

Figure 2.14: A FACE-2 routing example.

case efficient. Their initial algorithm builds upon Face Routing but attempts to overcome one of the main

disadvantages of face routing; the possibility of tracing face boundaries in a non-optimal direction. Bounded

Face Routing (BFR) employs an ellipse whose foci are the positions of a packet’s source and destination.

If an upper bound is assumed on the length of the shortest route from a source to a destination, then an

ellipse can be drawn whose boundary is all points whose distances from the source and destination sum

to that upper bound (by definition of an ellipse, the sum of the distances to the foci is constant for every

point on the ellipse). It can be shown that a path through any point outside of the ellipse would have a length

greater than the upper bound, thus guaranteeing that if the upper bound is correct, the shortest path lies either

completely inside of or on the ellipse. BFR adds this bounding ellipse to face routing, causing the packet

to turn around and explore a face boundary in the opposite direction if the next hop would have crossed the

ellipse. If the ellipse boundary is reached while traveling around the face in the opposite direction, BFR

fails, and there is no path to the destination within the ellipse (and no path shorter than the assumed upper

bound).

Figure 2.15 shows an example of bounded face routing forwarding a packet through a slightly different

topology than previous examples. The bounding ellipse with foci at s ant t is shown. A packet leaves s and

travels around the boundary of F0 until reaching node f , recording the intersection point p0. The packet

cannot progress past f because doing so would cause the packet to cross the bounding ellipse. The packet is

the forwarded back past s and on to node c in a counter-clockwise direction. The packet once again would

need to cross the bounding ellipse to progress further, and the packet’s direction is reversed and it arrives

36



s

t

c

f
y

F0

F1

F2

p0

Figure 2.15: A Bounded Face Routing example.

at node s. Since an intersection point (p0) was identified, the packet is forwarded around the face to node

y, where the packet changes faces and begins exploring F1. The packet attempts to route the packet in a

clockwise direction, but doing so would cause it to cross the ellipse boundary, so it explores instead in a

counter-clockwise direction until reaching node f , at which point it must reverse direction and returns to

node y, since progressing further would require crossing the boundary. Bounding Face Routing has failed,

and there is no path within the ellipse to the destination.

2.2.2.2.4 Adaptive Face Routing (AFR) Since the upper bound needed by BFR is not generally known,

Adaptive Face Routing (AFR) [KWZ02] is used to adaptively determine an acceptable upper bound. AFR

first selects an estimate for the upper bound (for example, twice the distance from source to destination),

and then runs BFR. If BFR fails (i.e. there is no path to the destination within the ellipse), the upper bound

(ellipse size) is increased (for example, doubled), and BFR is run again. This continues until eventually the

ellipse becomes large enough that the packet is able to traverse the current face and move on to the next, or

traces the entire boundary of the face (returning to the node where it began tracing the face) indicating that

there is no path to the destination. Kuhn et al. prove that if the shortest path has cost c, AFR finds a route

with cost O(c2). They further prove, using a worst case geometric construction, that since geometric routing

algorithms don’t store routing information at the nodes, any geometric routing protocol applied on a Unit

Disk Graph has worst-case cost Ω(c2). Therefore, AFR is asymptotically optimal.

37



2.2.2.2.5 Other Face Routing (OFR) In [KWZ03b] the same researchers who developed AFR intro-

duce an alternative version of Face Routing called Other Face Routing (OFR). The only difference with

this new algorithm is that when tracing the boundary of a face, rather than recording the point on st that

intersects the face boundary nearest the destination, OFR instead finds the point anywhere on the boundary

of the face that is nearest the destination. In Figure 2.12 this face change point rule is labeled closest point.

Notice how using this rule in the example topology of the figure would only require the packet to route

around the boundaries of two faces, rather than three or more. In the basic face routing method, the packet

comes very near the destination while exploring F0, but must backtrack to explore F2. This minor change

preserves the headway made by a packet toward the destination, but more importantly, it allows face routing

to be combined with Greedy routing without losing its asymptotic optimality. This version of face routing

may traverse a different set of faces than FR, and the face change points are no longer all on st.

Kuhn et al. further note that when routing with OFR on a Gabriel Graph one may instead record the

vertex (node) on the face boundary nearest to t rather than the point nearest t (in many cases they are the

same). In Figure 2.12 this face change point rule is labeled closest node. Other Bounded Face Routing

(OBFR) and Other Adaptive Face Routing (OAFR) are derived by applying this small change to BFR and

AFR respectively. Use of this face change point rule, however, requires that the topology graph be a unit

disk graph.

2.2.2.3 Hybrid Methods

Combining the strengths of both Greedy and Face methods has proven very effective, and this section

describes just a handful of the most common hybrid greedy-face methods in the literature.

2.2.2.3.1 Greedy Face Greedy (GFG) Greedy Face Greedy (GFG) is briefly described in [BMSU99].

The notion is to support two modes while routing: a greedy mode and a face routing mode. Until a local

minimum is reached, greedy routing is used. To overcome the local minimum FACE-2 is employed to route

around a “hole” in the graph. Once the packet reaches a node that is strictly closer to the destination than

the local minimum, the packet reverts to greedy mode. GFG combines the efficiency of greedy routing with

the (conditional) delivery guarantees of face routing, yielding a very effective geographic routing protocol.

Figure 2.10 shows an example of the Greedy Face Greedy protocol routing a packet on a sample topology.

38



2.2.2.3.2 Greedy Perimeter Stateless Routing (GPSR) The most frequently cited geographic routing

protocol is Greedy Perimeter Stateless Routing (GPSR) [KK00]. GPSR differs only slightly from GFG.

One difference is that GPSR introduces the notion of constructing and maintaining, at each node, a planar

logical local topology subgraph. The Relative Neighborhood Graph (RNG) and the Gabriel Graph (GG)

(see Section 2.1.4.2) are two methods for generating such a planar local topology given only local topology

information. Use of this logical subgraph when face routing overcomes potential issues with crossing edges.

Though a node may be able to communicate with many neighbors, when in face routing mode, a packet

is only forwarded to nodes directly connected in the node’s planar topology subgraph. The rules used to

determine how to change from one face to the next and when to revert to greedy mode also differ between

GPSR and GFG. Karp et al. also make a substantial contribution by presenting the results of several simula-

tions demonstrating the effectiveness of the GPSR protocol in realistic mobile ad hoc networks, employing

hundreds of mobile nodes in a high-fidelity simulation environment.

2.2.2.3.3 Greedy Other Adaptive Face Routing (GOAFR) Another geographic routing protocol is

Greedy Other Adaptive Face Routing (GOAFR) [KWZ03b] (pronounced “gopher”). GOAFR adds Greedy

Routing to OAFR (a geographic routing protocol that adds a small OFR change to AFR). A bounding ellipse

is first initialized to contain all paths between s and t of length at most twice the distance from the source

to the destination. Greedy steps are then taken (each forwarding to a node closer to the destination), until a

local minimum is reached (or the destination is reached). While greedily forwarding, the bounding ellipse is

expanded if the next greedy hop taken would intersect with the ellipse. When encountering a local minimum,

OAFR is run to traverse just the next face, at which point the packet transitions back to Greedy mode, and the

cycle repeats until the packet arrives at the destination, or the destination is deemed unreachable. Kuhn et al.

show through analytical analysis, that GOAFR is asymptotically optimal, and through simulation, that it is

average-case efficient. They also empirically show that GOAFR on average outperforms GPSR, producing

shorter paths for all but the least dense scenarios and yielding lower latency and higher throughput.

2.2.2.3.4 Greedy Other Adaptive Face Routing Plus (GOAFR+) The last iteration of the GOAFR

family of protocols is Greedy Other Adaptive Face Routing Plus (GOAFR+) [KWZZ03]. This version of the

protocol encompasses two main improvements. First, an early fallback technique is introduced, that enables

changing back to efficient greedy routing as soon as possible while in the face routing mode. Second, a circle

39



centered at the destination is used instead of an ellipse to bound the search. To enable early fallback without

losing asymptotic optimality, GOAFR+ adds two counters to each packet. The first counter, p, records, as

the face boundary is explored, the number of nodes visited that are located closer to the destination than

the last local minimum. Similarly, q records the number of nodes visited that are located further from the

destination than the last local minimum. Once a packet has visited more nodes closer to the destination

than the product of a constant factor (σ ) and the number of nodes further from the destination (p < σq), it

forwards the packet to the visited node that is closest to the destination and reverts to greedy routing.

The geographic routing protocol designed as a part of this dissertation borrows the bounding circle

concept from GOAFR+. However, unlike GOAFR+, the circle applies only in the face routing mode, and

the circle’s size is never reduced. However, the initial circle size is intelligently selected when face routing

begins. The GOAFR protocols assume routing to take place much faster than node movement. The purpose

of this assumption is to ignore movement and topology changes, imagining instead that the algorithm is

executing on temporarily stationary nodes. This is an unrealistic assumption, however, as eventually some

packet will be in flight when there is a change in the network due to mobility. The geographic routing

protocol described in Chapter 4 overcomes the need for this assumption.

2.2.3 Cross-link Detection Protocol (CLDP)

Many of the issues encountered when trying to utilize geographic routing in the real world, where topol-

ogy graphs rarely match perfect Unit Disk Graphs, are classified in [KGKS05b]. In particular, planarization

errors, and the causes of incorrect face changes are investigated. In real-world networks, the existence of

radio-opaque obstacles may inhibit the communication between two nodes that are otherwise within com-

munication range of one another. These radio-opaque obstacles in the environment may lead to topologies

that violate the unit disk graph assumption. Methods that rely on the distributed generation of a planar sub-

graph, generally assume the network topology graph is a unit disk graph, and are affected adversely by these

violations, leading to topology graphs with disconnected nodes and crossing edges.

Kim et al. also identify four different face change rules used by geographic routing protocols. When the

best intersection rule is used, the intersection points of the face boundary and a line between the source and

destination are determined, and the intersection point nearest the destination is used as the face change point

(as in FR). Alternatively, the first point encountered while exploring a face boundary where the face bound-

ary intersects a line between the source and destination can be used as the face change point. This is referred

40



to as first intersection (used by FACE-2) and differs from the best intersection for concave faces. Another

option is choosing the closest node on the face boundary as the face change point, called closest-node

other face routing and used by OFR and GOAFR+ when routing on a Gabriel Graph. Finally, closest-point

other face routing selects the point (not necessarily a node) on the boundary that is nearest the destination

(also can be used by OFR and GOAFR+). Examples are given that show how the first intersection and

closest-node other face routing rules do not always work correctly in real-world wireless networks. Storing

a representation of a point in space in the packet header requires a fair number of bits, and leads to extra

per-packet overhead. The routing protocol described in Chapter 4 overcomes the issues described above

without needing to store intersection points in the packet header, while still enabling short efficient paths

through the network. Motivated by the issues described above, Kim et al. introduce the Cross-link Detection

Protocol (CLDP) in [KGKS05a]. In CLDP the faces incident at each node are probed to determine if they

include crossing links (planarity violations). Messages are then exchanged between nodes and violating

links are removed from consideration for use when face routing. CLDP involves extra overhead to probe

and negotiate with neighbor nodes. It also has the possibility of introducing errors when nodes move and

probed information becomes stale. The topology management protocol described in Chapter 3 solves these

planarity violation issues by explicitly controlling the topology of a network of mobile nodes in a distributed

fashion, and ensuring that it is planar.

2.2.4 Greedy Path Vector Face Routing (GPVFR)

One way to improve the performance of geographic routing is to give nodes more information about

the network topology. In [LML05] Leong et al. seek to do just that with Greedy Path Vector Face Routing

(GPVFR). The idea of GPVFR is to allow nodes to exchange Path Vector information, and use this infor-

mation to make better geographic routing decisions. Path Vector Exchange Protocol (PVEX) is introduced

to allow nodes to share path vector information with one another, such that every node knows the nodes

on the boundary of each face it is incident to (up to some maximum face size). GPVFR begins routing a

packet in greedy mode. Upon encountering a local minimum, GPVFR switches to Oblivious Path Vector

Face Routing (OPVFR) mode that uses the path vector information in an attempt to find a node on one of

the current node’s face boundaries that is closer to the destination. If such a node is found, it is recorded as

the OPVFR target and the packet is forwarded along the associated face boundary. If no such node is found,

the protocol reverts to a version of face routing that uses the path vector information to select a direction

41



in which to trace the face boundary. In either case, once a neighboring node is found that is closer to the

destination than the position of the last local minimum, the packet reverts to greedy mode.

The geographic routing protocol described in Chapter 4 also utilizes topology information to improve

the geographic routing efficiency. It similarly searches for the connected node nearest the destination and

seeks to route toward it, using the topology information to select an appropriate direction for exploring

the face boundary. Unlike, GPVFR, however, it does not use extra overhead to exchange the topology

information, and its view can extend beyond the currently incident faces. GPVFR may not function well

in highly-dynamic networks if stale path vector information causes packets to be routed incorrectly, and

the paper assumes the network graph is “quasi-static”, and that “it does not change for the duration of a

particular routing activity”; an assumption that will not be true in our networks.

2.2.5 Airborne Network Management and Routing

2.2.5.1 Using Flight Plans

In [TGK+09], Tiwari et al. consider the use of flight plans to better manage a network of connected

aircraft (an airborne network). Regardless of whether the network is commercial or military, the paths

of most airborne nodes are pre-planned. The authors describe the advantages of using mission plans to

improve communication planning, with airborne networks as their motivating example. They also describe

FPE, a protocol for exchanging flight path information. The same group of authors detail MARP/MDP,

a Mobility Aware Routing Protocol designed for airborne networks in [TGS+08]. Their protocol routes

packets based on a time-dependent topology pre-computed using the expected flight paths of all nodes. A

time-indexed routing table that can route packets given different sets of rules at different times is then pre-

computed. In addition, they introduce a protocol to disseminate information on deviations from pre-planned

behavior. Simulations [KST+10] indicate that their protocol performs better than Optimized Link State

Routing (OLSR). This solution, however, assumes there will not be large variations from the planned routes

in terms of both the path followed and the timing. This solution, also, doesn’t appear to explicitly handle

topology control. Further, this paper only considers the elliptical flight paths (“racetrack orbits”) of small

military networks, whereas the protocols developed in this dissertation seek to accommodate thousands of

nodes generally flying point-to-point routes.

42



2.2.5.2 MAToC

MAToC, a system for topology management in airborne networks, is justified and outlined in [KGT+09].

In MAToC, each node generates an optimized time-dependent topology from flight path information shared

among nodes. The topology includes the assignment of optimal power, channel, and pointing direction for

each antenna such that the worst case Signal to Interference and Noise Ratio (SINR) is maximized. MAToC

then interacts directly with existing routing protocols (such as OLSR and AODV) to reduce overhead. A

reactive component additionally handles links failures and forms backup links. The authors report the results

of simulating their protocol in a simple scenario. Unfortunately, many of the details of the system are left

out of the paper, and it is unclear, for example, how the flight plans are shared or utilized. The system does

utilize directional antennas but considers only a small number of nodes flying military elliptical flight paths

(“racetrack orbits”).

2.2.5.3 AeroRP

Researchers at the University of Kansas developed the ANTP (airborne network and transport protocols)

suite to enable reliable transmission of data in highly-dynamic military airborne networks [CRJ+12]. The

suite’s routing protocol is called AeroRP [JS09][NGUS12], and it is designed to support aircraft flying close

to one anther at Mach 3.5. It is a proactive routing protocol that uses location information and limited updates

to build a forwarding table. Omnidirectional links are assumed, and nodes determine their neighbors, and in

some modes their neighbors’ positions, by snooping.

2.2.5.4 Free-Space Optics

Epstein and Mehta simulate an airborne network supported by Free-space Optical communication links

(FSO) in [EM04]. They compare two standard routing protocols, Open Shortest Path First (OSPF) and

Enhanced Interior Gateway Routing Protocol (EIGRP), in an airborne network where two separated ground

stations communicate through a network of airborne nodes. The importance of fast response to link outages

is emphasized, and OSPF is shown to not perform well due to its limited maximum update frequency of

once per second. These routing protocols, however, would not function in dynamic large-scale commercial

airborne networks.

43



2.2.5.5 Geographic Load Share Routing (GLSR)

Medina studied connecting the aircraft flying in the North Atlantic Corridor into an airborne mesh net-

work in [Med11][MHRR12][MHRR10]. The result of his efforts was Geographic Load Share Routing

(GLSR). While Medina solves a slightly different problem than this dissertation, many of the principles

and concepts are relevant. GLSR is essentially a greedy forwarding strategy, but instead of focusing solely

on the greedy path, the transmission queue lengths are also considered. The node seeks to simultaneously

maximize the packet’s advance toward the destination and minimize the packet’s queuing delay when deter-

mining where to forward each packet. The chosen next hop is said to maximize a packet’s speed of advance

(taking into account the possible delay on the transmission queue). This tends to load balance the link use

and helps avoid bottleneck links. Long-range Omnidirectional links are assumed by Medina, and the den-

sity and traffic patterns of nodes in the network are assumed to be such that encountering local minima (or

communications voids) while greedy routing is “extremely unlikely”. A similar load sharing optimization

could likely be applied to the routing protocol described in Chapter 4.

44



CHAPTER 3: DISTRIBUTED EXPLICIT TOPOLOGY MANAGEMENT

In this chapter a new distributed topology management framework is described that is capable of man-

aging a degree-constrained topology of an extremely large-scale network of mobile nodes while requiring

no overhead or control messages except for the exchange of position information between nodes that are

nearby one another. The chapter starts by introducing some terminology and explaining the expected sys-

tem architecture. Next, the requirements of the topology management framework and the global topologies

it generates are summarized. The details of the topology management framework are then given, followed

by the details of several topology generation algorithms that can be used within the framework. Some po-

tential pitfalls to avoid in designing further algorithms are described next. Finally, a detailed comparison of

the topology generation algorithms and their attributes is presented.

3.1 Terminology

The description of this work is more clear with the addition of a few concepts and terms. In this section,

these terms are defined and described.

3.1.1 Nodes and Links

A node is a single network entity. For airborne network applications, a node is an airborne platform

(such as a manned fixed-wing aircraft, a drone, or a balloon). Each node bears a static number of directional

data links, sometimes referred to just as links. These directional data links include a directional antenna that

is mounted on a precision gimbal. Each directional data link can point, focusing its transmission energy in

a specific direction. A link (a transceiver attached to a node) should not be confused with a connection that

is formed when two directional data links point at and synchronize with one another such that data can be

exchanged. Because of the unique qualities of directional data links, a few new terms are useful to more

efficiently describe the relationships between nodes. These terms are described in the following sections.

45



3.1.1.1 Neighborhood and Neighbors

The neighborhood of a node is the space around a node within which the node is able to form a direct

connection with another node. The maximum distance over which two nodes can connect or remain con-

nected is called the link range, or maximum transmission range, and is assumed in this work to be the same

for every pair of network nodes. For simplicity, all distances can be normalized by this maximum range

such that the normalized maximum transmission range between any pair of nodes is 1 unit. In this work, it

is assumed that any pair of nodes separated by a normalized distance less than 1 unit can directly connect

and communicate. On land, where radio-opaque obstacles are prevalent, this assumption is not very realis-

tic. However, at the cruising altitude for commercial aircraft (above even most clouds) this assumption is

more realistic. The neighborhood of a node, then, is assumed to be a unit disk (with radius 1 unit) centered

at the node, in 2-dimensions (see Section 2.1.4.1), or a unit sphere (with radius 1 unit) centered at the node

in 3-dimensions.

Naturally, any other node in a node’s neighborhood is called a neighbor. Any node x that is within the

link range of node t, is considered a neighbor of t. If the topology of the network is explicitly controlled

only some of the potentially many neighbors of t are actually directly connected to t. For this reason, a

separate designation is needed. A directly connected neighbor is a neighbor of a node to which it has a

direct connection (i.e. their links are pointed at one another).

3.1.1.2 Community and Community Members

Another aspect of this work is the exchange of position information between nearby nodes. To better

conceptualize this, the new term community is used. The community of a node is the space within which

the node is able to exchange position information with other nodes. Just as in a city a neighborhood is

a part of a larger community, so also in this definition a community generally includes more nodes than

the neighborhood. The distance over which position information may be exchanged is called the position

exchange range or community range. The position exchange range will generally be longer than the link

range because a different transmission scheme using an omnidirectional antenna and a lower bandwidth is

assumed. As with the neighborhood, the community is approximated as a circle in 2-dimensions, though in

reality, the shape will differ depending on what omnidirectional antenna is used. Lastly, any other node that

is in a node’s community is called a community member.

46



Figure 3.1 illustrates these relationships and those discussed in the previous section. The smaller circle

represents the link range for node t. Nodes x and w are neighbors of node t. In addition node x is currently a

directly connected neighbor of node t, as indicated by the edge between them in the figure. The dotted outer

circle represents the boundary of the community. Nodes y, x, and w are members of t’s community but y is

not its neighbor. Node z is neither a member of t’s community nor a neighbor of t.

t

x

yw

z position
exchange
range

link
range

Figure 3.1: An example showing how position exchange range, link range, the community, the neigh-
borhood, and directly connected neighbors are defined.

3.1.2 Network Density

One fundamental attribute of the network is its node density. The node density affects nearly every

aspect of the network, including the network topology, the length of routing paths, whether nodes are able

to remain connected, etc. The metric used in this work to describe the density of the network is the average

number of nodes per unit disk. Remember that the neighborhood is approximated by a unit disk, where

all distances have been normalized such that 1 unit is the maximum transmission range for all links. For

a given snapshot of a topology, the nodes per unit disk metric, then, is the mean number of nodes present

in the network in an area the size of the unit disk. In a network with a density of 10 nodes per unit disk, a

node, on average will have 9 other nodes within its transmission range with which it could potentially form

connections.

3.1.3 Network Topology and Connections

Using directional data links can lead to some unique situations and new terms. For example, a directional

data link may be pointed at a neighbor, but that neighbor may not have (yet) reciprocated and pointed back.

47



This is labeled a one-way connection in this work.

A topology is a set of connections between nodes at a certain point in time. If only connections between

nodes within a node’s community are included in the topology, and it was computed using only informa-

tion already available at each node, it is a local topology, whereas the global topology includes all of the

connections in the network at a specific point in time. If the topology among a set of nodes changes over

time, it is a dynamic topology. A topology graph is a representation of a topology where the connections

are viewed as the edges between vertices in a 2-dimensional plane representing the nodes at the ends of the

connections. As described in Section 2.1.4.2, a two-dimensional topology graph whose edges intersect only

at vertices is a planar graph. A topology graph is connected if there is a path between every pair of vertices.

If a topology graph is not connected, it is made up of a set of connected components, where each component

is a connected subgraph of the topology graph.

In the network topology, the maximum degree of a node refers to the number of data links it has, or in

other words, the number of connections it can be a part of at any one time. Similarly, the degree of a node

or vertex in a graph is the number of edges currently incident at the node in the graph.

The set of potential connections for a node is the set of connections to each neighbor. As described

in Section 2.1.4.1, the topology of a wireless network is often theoretically modeled as a unit disk graph

(UDG), where edges exist only between all pairs of vertices whose separation distance is less than some

threshold (i.e. the maximum transmission range). Figure 3.2 shows a unit disk graph or potential connections

graph for a set of nodes that will be used to compare several topologies in the remainder of this chapter.

3.2 Proposed Architecture

Before diving into topology management, this section describes the architecture of the proposed network

that motivates this work and that will be simulated for testing the protocols designed.

Tens of thousands of airborne platforms could simultaneously participate in a network. These airborne

platforms could consist of fixed-wing aircraft, drones, balloons, or any mixture of those platforms. These

platforms will be connected together with high-capacity connections into a mesh network, where each plat-

form serves as both a user of the network and as a network router. This airborne network could also be

tied to ground station gateways, connecting it to the Internet or other networks. Some nodes would use one

of their links to point t a stationary ground station rather than another node. Figure 3.3 shows a high-level

48



Fi
gu

re
3.

2:
T

he
un

it
di

sk
gr

ap
h

am
on

g
a

se
to

fa
ir

cr
af

tp
os

iti
on

s.

49



Figure 3.3: A pictorial representation of the connection of aircraft into a mesh network and to ground
station gateways.

pictorial view of such a network, but obviously on a much smaller scale in terms of numbers of nodes.

For this work, the simulated nodes are commercial aircraft, but the algorithms and protocols are adapt-

able to other platform types or a mixture of platform types. Rather than implementing prototype networks

with actual data links and platforms, the focus of this work is to design and simulate protocols for these

large-scale airborne networks. Understanding the expected architecture of the network nodes, however, is

beneficial. The architecture of each network node (airborne platform) can be divided into five different

systems: a directional communication system, a position exchange system, a ground user communication

system, an avionics system, and optionally an on-board communication system. Figure 3.4 shows each of

these sub-systems and their connections. The following sections will detail each of these systems.

3.2.1 Directional Communication System

The Directional Communication System is responsible for forming the mesh network and routing data

within it. The protocols and algorithms developed in this work support this system. The other systems

provide needed data to this system or use the network it forms. The Directional Communication System

consists of a node controller, a router, and some number of directional data links. Each of these components

is described below.

3.2.1.1 Node Controller and Router

The node controller consists of the processor and software needed to control the directional communi-

cation system on a node. The controller receives the positions of nearby nodes from the Position Exchange

50



Figure 3.4: A diagram of the system-level architecture for each airborne platform (node).

System, and also receives this node’s position information from the Avionics System. Using this position

information the node controller can make informed decisions about which nodes it should connect with. The

node controller explicitly manages the edges of the network topology incident at that node. When changes to

theses incident edges in the network topology are desired, the controller communicates with the directional

data links on the node, commanding them to change their pointing direction. The node controller is also

tightly coupled with the router. As packets of data arrive from the data links, the router and the node con-

troller work together to correctly route the packets. Each packet is either forwarded out another directional

data link on its way to its destination or delivered to one of the other systems that connect to the router.

3.2.1.2 Directional Data Link

Since high data rate communications are desired between nodes separated by long distances, some sort

of directional data link is needed. The use of directional data links is a fundamental assumption of this

work and motivates the need for the topology management framework. This work also assumes the links

are mechanically steerable, though other Smart antennas (such as phased arrays) could be considered. The

directional data links could be radio frequency (RF) data links, free-space optical communication (FSO)

links, or hybrid FSO/RF data links (see Section 2.1.3). Each node is assumed to be outfitted with some

number of these directional data links.

51



Each directional data link has a directional antenna. This is the physical component, mounted on the

exterior of the airborne platform, that ultimately sends and receives the communication signals. In the case

of RF directional data links, the directional antenna may be a small parabolic dish, similar to a satellite dish.

In the case of FSO data links, the antenna would be an optical antenna, that is essentially a laser combined

with a telescope and a specialized detector.

Each antenna is mounted on a precision gimbal that is able to, with an extremely high level of accuracy,

point the directional data link at a target. The United States military has done this type of pointing for years

with directional RF and FSO data links [CFG+09].

Each gimbal is controlled by an integrated Position Acquisition and Tracking (PAT) system. The PAT

system connects with the air platform’s Inertial Navigation System (INS) (in the Avionics System) so that it

can move to counteract the motion of the platform and constantly point at the target. The PAT system allows

the antenna to (1) point at a new target based on input from the node controller, (2) acquire a connection

with a remote node (that is pointing back), and (3) once connected, make minor corrections to the antenna

pointing. In this way the remote node is tracked by the link, ensuring a consistent connection.

Each directional data link also has the necessary hardware and software to receive the stream of out-

put from the antenna and translate it back into network packets. This is the role if the Data Link System

component. This component would handle all of the modulation/demodulation, coding, amplification, pro-

cessing, etc. The Data Link System is also responsible for exchanging signal strength values with the remote

data link and constantly making minor corrections to “zero-in” on the pointing direction that yields the best

connection.

For simplicity, it is assumed that each node has the same number and same type of directional data

links. The topology management protocol, however, can support nodes with different numbers and types of

directional data links. To support this, either a database associating each node’s capabilities with its unique

node ID would need to be available at each node, or this information would need to be exchanged with

nearby nodes in the same fashion as position information is exchanged.

For most of the simulations and experiments conducted for this work, three directional data links per

node are assumed. If each node had only two data links, the network topology would essentially be one long

“snake” that interconnected the nodes. In such a topology, packets sent between the head and tail nodes

would have to visit every node in the network before reaching their destination (though routing would be

greatly simplified). If each node is instead equipped with three data links, network topologies become much

52



more interesting. A complex topology interconnecting all the nodes can generally be formed assuming an

adequate node density.

Equipping the airborne platforms with more than three directional links can lead to diminishing returns

in terms of link utilization. The extra weight, expense, and power needed for more data links is difficult to

justify. For these reasons, the simulations in this work have been restricted to the use of only three directional

data links per node.

3.2.2 Position Exchange System

Each node is assumed to have a separate system that can exchange positions with nearby nodes. On

commercial aircraft, the existing ADS-B system fills this role. Essentially the Position Exchange system

consists of an omnidirectional antenna and a data link system. The omnidirectional antenna is able to

broadcast ADS-B messages to nearby nodes in any direction. Similarly, ADS-B messages from other nearby

aircraft (within about 288km) are received by the antenna. On other platform types, some system must

enable the exchange of position information with nearby nodes. The Data Link System of the Position

Exchange System connects to the antenna, and handles all the processing to obtain the position data from

the transmissions. The Data Link System also shares the position information with the Node Controller.

3.2.3 Ground User Communication System

The Ground User Communication System is a separate system, the purpose of which is to provide data

services to users on the ground. This System would connect to the Directional Communication System

router to gain access to the backbone network. Once the backbone network is connected to ground station

gateways and the Internet, the Internet is then reachable from the Ground User Communication System

as well. The design and simulation of this system is not the goal of this work, and it is instead seen as a

“customer” of the high-bandwidth communication link provided by the Directional Communication System.

One can imagine various designs for such a system. It could use proprietary communication protocols and

communicate with special hardware attached to homes or buildings, or it could operate much like a cell

tower, providing 4G LTE connectivity to users devices. Companies like Facebook, Google and SpaceX are

actively working on designing these types of systems.

53



3.2.4 Avionics System

The avionics system allows the Directional Communication System access to the Node’s positioning and

navigation systems. The Global Positioning System (GPS) and the Inertial Navigation System (INS) provide

updated position and orientation information needed to maintain the correct pointing of the directional links.

They also allow the node controller to know the node’s current position and allow it to more accurately

predict the node’s future positions.

3.2.5 On-board Communication Systems

Lastly, the On-board Communication Systems are all other systems on the airborne platform that could

use a high-bandwidth connection to other airborne platforms or to the Internet. Wireless routers to which

passengers connect while on-board an aircraft are one example. Any other system on the airborne platform

that needs to communicate command, control, or status information could also use this data path. On

commercial aircraft, for example, non-emergency engine status information could be sent using the airborne

network. Flight attendant and pilot communications with the ground or with other aircraft (even those out

of radio range) could also be facilitated within the airborne network as an on-board communication system.

3.3 Topology Management Requirements

With new terms defined and the architecture described, the topology management framework can be

explored. First, the goals of the global topology and this management framework are detailed.

3.3.1 Global Topology Requirements

As mentioned in Section 3.1.3, the global topology of a network is the topology at a specific point in time

that includes all of the connections between any of the nodes in the network. With free-space optical links

or the mechanically steerable RF links, it is assumed that each link can only connect with one other node.

Because of this, and because each node is fitted with a small number of directional data links, the degree

of each node (or vertex) in the network topology must necessarily be constrained in the global topology

graph. In other words, if an aircraft has only three lasers to point and communicate with, it can have at most

3 incident edges in the global topology graph. Therefore, one of the most important requirements of any

candidate global topology is that it must be degree constrained such that no vertex in the topology graph has

more incident edges than the number of data links at that node (assuming one connection per link).

54



Next, two nodes separated by a greater distance than the maximum transmission range, will be unable to

connect and communicate. Therefore, an obvious requirement of the global topology graph is that no edge

be longer than the maximum transmission range. If distances are normalized by the maximum transmission

range, and all links have a uniform range, this requirement can be satisfied by ensuring that the global

topology graph is a subgraph of the unit disk graph (UDG) of all nodes in the network.

Also, the global topology graph connecting nodes in the network should connect as many nodes as

possible into a single connected component. This objective will help guard against partitions in the network.

Limiting network partitions will help ensure that any node is reachable from any other node and that data

can be routed efficiently between nodes.

Lastly, it is desirable that the global topology be planar, ensuring that there are no crossing edges in the

topology graph. This optional requirement is desirable to benefit the routing protocol described in Chapter 4.

Ensuring that a topology meets all these requirements is tricky, and doing so in a distributed manner is

even more onerous.

3.3.2 Requirements of Topology Management

Once a topology has been generated meeting the requirements described above, it must be actively

managed over time as nodes join the network, leave the network, and move about. This section describes

the requirements of this management of the topology.

First, the topology management framework must be scalable. It is estimated that Google would need

at least 6,000 balloons, perfectly positioned in the stratosphere, just to provide coverage to the entire conti-

nental United States. The number of aircraft in the skies above the United states is even greater, at around

7,000 aircraft, including general aviation traffic. However, the United States is just a portion of the potential

worldwide coverage desired by such a network. The network would need to expand to tens or even eventu-

ally hundreds of thousands of airborne nodes. One hundred to four hundred thousand nodes would not be

unheard of. Whatever system is used to manage the topology of this vast network and its ground stations

would need to be highly scalable.

To enable this scalability, the topology management should be distributed, avoiding the bottlenecks and

headaches of having a single centralized manager of the topology. Airborne networks that use a centralized

scheme for managing the physical topology of the network are not able to react as quickly to changes in the

network. Nodes would need to report their status to the centralized controller, and then wait for commands

55



from the controller before acting. Also, these centralized topology management schemes would either

require a separate channel for communicating control messages or would suffer from the possibility that

unplanned changes to the network could cause control messages to fail to reach their destinations. Further,

these control messages would consume greater amounts of the bandwidth provided by the connections they

are managing as the network scaled to support larger numbers of nodes.

If instead, a distributed topology management scheme were employed, each node could make its own

decisions about the connections it forms in the topology. Such a management scheme would ensure agility,

but with low (or no) control message overhead at the cost of leaving some data links unconnected.

Another requirement relates to the required computational resources of such a management scheme.

While the computational resources available at the nodes are anticipated to be much greater than those

of most sensor network nodes, they are still limited. Therefore, the topology management scheme must

be computationally efficient. If, for example, the management framework were designed to recompute

a topology once a second, the algorithm must obviously be able to compute a topology in less than one

second for the expected node densities.

Lastly, it would be desirable and impressive if the management scheme could operate with absolutely no

communication overhead on the high-capacity links between the nodes. If the topology could be managed

with no control messages, and no extra information exchanged between the nodes, it would leave the entire

link bandwidth for customer communications. To accomplish this, a node would need to use only the

information already available locally to manage the network topology. In the following sections, we will

detail a topology management scheme that meets all of these requirements, even this one.

3.4 Topology Management Framework

This section describes a framework sufficient to manage the topology while satisfying the requirements

described above. The framework operates in the following manner. First, nodes periodically broadcast

their position information (via a separate omnidirectional system) such that each node knows the position of

every other node with some position exchange range of itself. Next, each node periodically uses a topology

generation algorithm to compute a topology connecting the nodes for which it has positions. Finally, each

node attempts to form its incident connections in the generated topology. The remainder of the section gives

more details on this simple procedure.

56



As mentioned above, to facilitate the topology management each node regularly exchanges position

information with every other node in its community (every node within a given range). This is the only

communication overhead of the proposed topology management method. This does not violate our goal of

operating with no extra communication overhead in applications where the position information is already

exchanged by nearby nodes. In our example application of commercial aircraft, the FAA’s new ADS-B

systems already takes care of exchanging aircraft position information between nearby aircraft.

With this position information, each node periodically and independently uses a specific topology gen-

eration algorithm to compute a local topology that connects the nodes in its community into a network. This

local topology is essentially an “opinion” of what the local node feels would be the best topology among the

nodes in its community, given its limited view of the world. Next, each node in the network seeks to form

the connections of which it is a part, in its local “opinion” topology.

If nodes run the same topology generation algorithm, in theory, nodes located geographically close to

one another will share nearly the same set of community members. Therefore, there is a high probability

that their computed topologies (their opinions) will be very similar, if not identical. If one node believes

it should connect to the other, the other will likely reciprocate. Thus, the connections can be established

without any handshake or extra communication overhead.

However, if nodes are further apart, it is more likely that differences in the communities of the two nodes

will lead to a difference of opinion as to what the local topology should look like. In these situations it is

possible for a local node to attempt to establish a connection, while the remote node intentionally points at

different neighbors (as specified by its local topology), yielding a one-way connection. Figure 3.5 shows

an example of a one-way connection in a topology graph connecting aircraft flying over the Northern Utah

area of the United States on July 9, 2015, at 11:00 a.m. CT. Figures 3.5a and 3.5b each show the local

topology among the community nodes for the node highlighted with a second (yellow) circle. Node a is

flying over the Great Salt Lake (lake shown in gray), and node b is flying just northeast of there. Notice that

there is disagreement between these two nodes about the direct connection they could share. Node a’s local

topology includes the connection, while node b’s does not. Because of this disagreement, node a points one

of its links at node b but a connection isn’t formed since node b is pointing its three links elsewhere. Figure

3.5c shows the resulting global topology for the same area. One-way connections are displayed as thick

(red) edges that span only half of the distance between the nodes. As second one-way connection can be

seen in the upper-right of Figure 3.5c. Even though nodes do not explicitly communicate to determine which

57



a

(a) Local Topology at a.

b

(b) Local Topology at b.

(c) Resulting Global Topology.

Figure 3.5: One-Way Connection Example.

connections to form, there is generally good agreement between all the nodes, and a minimum number of

one-way connections result.

These errors are the ‘cost’ of the distributed topology management. The choice of topology generation

algorithm affects how often these errors occur, and how often nodes are disconnected from the network.

Our results will show that if an appropriate topology generation algorithm is employed, and the density

of nodes is high enough, the result is an acceptable global topology. Most importantly, this method of

topology management is scalable, easily coping with tens of thousands of nodes. It is also adaptable; able

58



to rapidly respond to joining, leaving, or fast moving nodes. Other non-distributed topology management

schemes would likely be less agile since communication latency and synchronization would likely delay a

node’s response.

To know when to compute the next topology, nodes are assumed to have a synchronized time source,

such as that provided by a GPS. Each node computes its local topology periodically at about the same time

as all other network nodes. In this way, nodes will simultaneously break old connections and form new

connections. For the simulations in this work, the topology computation interval is generally assumed to be

one second.

3.5 Topology Generation Algorithms

The effectiveness of the topology management method outlined above hinges on the selection or design

of an appropriate topology generation algorithm. The topology generation algorithm takes a set of nodes

and their positions and generates a set of connections between the nodes. A candidate topology generation

algorithm, when used with the distributed topology management framework, must yield a global topology

graph that satisfies the requirements described above. The global topology graph is not directly computed,

but rather is the topology resulting from each node forming the local connections specified by its local

topology graph. In the global topology graph, the number of incident edges at any vertex must not be

greater than the number of directional data links on the node it represents. It is also desirable that the global

topology graph be planar such that edges meet only at vertices. Ensuring that a node computing its local

topologies never violates its own degree constraint is sufficient to ensure that the global graph will always

be degree-constrained. However, requiring that each local topology be planar is not sufficient to ensure that

the global topology is planar (see Section 3.6.1).

Remember also that in addition to these requirements, there are also several desirable properties of a

candidate topology generation algorithm. The topology generation algorithm should strive for high inclu-

sion, connecting as many of the nodes as possible in the global topology into a single connected component.

In general, when each local topology connects all of the node’s community members, the global graph will

have high inclusion. However, in rare circumstances, it is possible for a node to be disconnected from the

global topology, though every node produced a local topology including every community member.

In addition, a suitable candidate local topology generation algorithm should induce a global topology

59



that allows for short routing paths through the network, minimizing the number of hops between every pair

of nodes. This is a difficult desire to satisfy given the degree and planarity constraints.

Finally, to the extent possible, the algorithm should form robust topologies where multiple paths exist

between pairs of nodes, where one-way connections are few, and where link utilization is high. The node

density can impact the performance of a topology generation algorithm, but the algorithm itself can also

control to an extent these desired attributes. One algorithm, for example, may prioritize using all of the

available links, but this could also lead to a larger number of one-way connections.

As mentioned before, designing an algorithm that meets all these constraints can be tricky. One may

initially consider using Kruskal’s or Primm’s algorithm to compute a minimum spanning tree (MST) among

the nodes, that would lead to a high level of inclusion, but the lowest level of robustness, as removing

any edge would disconnect the graph. More importantly, the traditional minimum spanning tree problem

is not degree-constrained, and adding a degree constraint makes it NP-hard [GJ79]. Tree-based reliable

Topology (TRT) [ACK04] is a topology generation algorithm that preserves connectivity and robustness,

but unfortunately, it also does not constrain the degree. In general, effective topology generation algorithms

must balance the trade-offs among these characteristics. For example, including long edges in the topology

graph results in topologies with lower average hop counts when routing in the network, but long edges

also lead to a higher occurrence of one-way connections. Similarly, better connectivity could sometimes

be obtained but at the cost of an increase in computational complexity. The goodness of a topology has an

impact on the efficiency of routing packets through it, and seemingly insignificant changes to an algorithm

can transform a network, with relatively short paths between pairs of nodes, into one where paths don’t even

exist between most pairs of nodes.

We have designed and experimented with several topology generation algorithms that meet the require-

ments described above. Each candidate algorithm will be discussed below. The main input to each of these

algorithms is a potential connections graph or unit disk graph. In potential connections graphs, connections

exist between any two nodes whose separation distance is less than some maximum range. Figure 3.6a

shows such a graph for a set of nodes that will be used to study the topology generation algorithms. The

positions for these nodes are obtained from an FAA Aircraft Situation Display to Industry (ASDI) dataset

and represent the positions of actual aircraft on July 9, 2015, at 13:45 CT flying over the great lakes region of

the northern United States. The connected nodes are all within 288 km (the position exchange or community

range) of the node that is calculating the topology for this set of nodes.

60



3.5.1 Degree-Constrained Planar (DCP) Kruskal

The first topology generation algorithm described is called Degree-Constrained Planar Kruskal (DCP-

KRUSKAL). Figure 3.6b shows the result of using DCP-KRUSKAL to form a topology among the given set

of nodes. DCP-KRUSKAL is not a great topology candidate by itself because of its lack of robustness to

link failure. Since the global topology is much like a spanning tree a single link failure can in some cases

partition the network or at least lead to very long paths stretching around large faces. DCP-KRUSKAL is,

however, a useful subroutine for the other candidate algorithms, where, for example, it can be used to find

a degree-constrained spanning tree within a planar subgraph of the potential connections. This algorithm

is an augmented version of Kruskal’s original Minimum Spanning Tree algorithm. It has been modified so

that when edges are added to the resulting graph they do not violate planarity or degree constraints. To the

original algorithm are added conditions to ensure that the resulting graph is planar (no crossing edges) and

degree-constrained (number of incident edges limited). Initially, a vertex set is created for each vertex in the

input graph, where each set initially contains a single item, called the associated vertex. In addition, an array

is created to hold the number of incident edges (degree) at each vertex, and each value is initialized to 0. The

input to the algorithm is a graph, and the output is expected to be a subgraph of the input graph. The edges

of the input graph are first sorted by length (or weight), such that the smallest are first. For each edge in the

sorted list, if (1) the vertices it connects are not already in the same set, (2) both vertices it connects have

fewer than the maximum number of incident edges, and (3) the edge being considered does not intersect

any edge in the current list of edges in the resulting graph, then the edge is in the DCP-KRUSKAL graph.

Specifically, the following happens for each edge meeting the above conditions (1) the edge is added to the

list of edges in the resulting graph, (2) the sets of both vertices are combined, and (3) the number of incident

edges at the vertices is incremented.

This seemingly minor change of honoring planarity and degree constraints is detrimental to the proper-

ties of the minimum spanning tree, and the resulting graph no longer always spans a connected input graph,

nor is the resulting graph always the minimum (in terms of the total sum of edge lengths) of the graph’s

spanning trees. Despite these facts, we find DCP-KRUSKAL to be a helpful and computationally efficient

subroutine used by other topology generation algorithms.

The attributes of each of the algorithms will be analyzed and compared in Section 3.7.

61



(a) Unit disk graph

(b) Local DCP-KRUSKAL (c) Global DCP-KRUSKAL

Figure 3.6: The unit disk graph and the local and global graphs resulting from running the DCP-
KRUSKAL algorithm.

62



3.5.2 Degree-Constrained Planar Tree-based Reliable Topology

The Degree-Constrained Planar Tree-based Reliable Topology (DCP-TRT) algorithm is an adapted

version of the Local Tree-based Reliable Topology (LTRT) algorithm [MNAK09]. The algorithm has been

modified to ensure degree and planarity constraints are honored. The result is DCP-TRT, that forms robust

topologies by carefully concatenating two spanning trees. An initial spanning tree is constructed, and then

the second spanning tree is constructed such that it does not use any edge that is a part of the initial spanning

tree. This forces the second spanning tree to introduce spanning edges not considered by the first, thereby

increasing the robustness of the resulting combined topology.

Figure 3.7 shows a simple example of computing a DCP-TRT topology among 10 nodes. First DCP-

KRUSKAL is called on the input potential connections graph or unit disk graph G, producing a degree-

constrained spanning graph T. Next, T’s edges are removed from the input graph (yielding G-T), and with

these edges removed, the graph is passed to DCP-KRUSKAL again. The result is another degree-constrained

spanning tree U. Notice that in this example since shorter edges are added to the spanning tree first, there

is no way to connect to the highlighted local node in U. Finally, each edge of U is then added to T, longest

first, unless adding the edge would cause a vertex to have more than the prescribed number of incident

edges (violating the degree constraint), or the edge would cross one of the edges already in T (violating the

planarity constraint).

Note that if a vertex in the resulting topology graph has a degree less than the maximum degree, either

the topology generation algorithm didn’t use all the viable edges, or it is impossible to add an edge to the

node without the edge (1) raising another node’s degree above the maximum degree, or (2) crossing an edge

already in the graph (making the graph non-planar). Unfortunately, there are rare situations where the use of

this topology generation algorithm can produce a globally non-planar topology, though every local topology

is planar. This is undesirable when a geographic routing protocol is used in the network, since, as explained

in Section 4.4, a topology that is not globally non-planar can cause packets to get stuck in routing loops.

Figure 3.8 shows a more complicated example where DCP-TRT is used to construct a topology among

the same set of aircraft flying over the great lakes region seen in the previous example. Remember that a

planar graph divides the plane into a set of faces, each bounded by the edges of the graph. Notice that this

algorithm generates a topology that has multiple paths between most pairs of nodes, but generally creates a

planar graph with large faces.

63



(a
)G

(b
)T

(c
)G

-T

(d
)U

(e
)T

+U
(D

C
P)

Fi
gu

re
3.

7:
T

he
st

ep
so

fc
om

pu
tin

g
D

C
P-

T
R

T.

64



(a) DCP-KRUSKAL Graph (b) DCP-KRUSKAL of result of edge removal

(c) Final Local DCP-TRT Graph

Figure 3.8: The DCP-TRT topology among the sample set of nodes.

65



Figure 3.9 shows the final global topology obtained by having each node compute its local topology and

then having each node attempt to form the connections represented by the edges incident to the node in the

resulting graph. Thick (red) lines represent one-way connections in the figure.

Figure 3.9: The resulting global DCP-TRT topology.

3.5.3 Degree-Constrained Gabriel Graph

As described in Section 2.1.4.2 the Gabriel Graph can be constructed for a set of points in the Euclidean

plane. In a Gabriel Graph, an edge exists between a pair of points (a,b) if a disk, centered at the midpoint

between a and b, with points a and b on its perimeter, contains no other points in the set. In other words,

to determine the Gabriel Graph for an input set of points, for each pair of points (a,b), determine the circle

whose diameter is the same as the length of the line segment ab, where a and b are on the circle, and check

if any other point in the input set is inside of or on the boundary of that circle. If so, the edge should not

appear in the graph, otherwise, it should.

The Gabriel Graph can be shown to be planar by the following reasoning. According to Thales’ theorem,

the diameter of a circle always subtends a right angle to any point on a circle. Therefore, for any point, c, on

the circle of which ab is a diameter, the measure of the angle ∠acb is always 90°. By extension, if a vertex

c is inside of the circle, the ∠acb is always obtuse (greater than 90°). Similarly, if a vertex, c lies outside

the circle, the measure of the angle ∠acb is always acute. We can prove that any Gabriel Graph is planar,

by first assuming that a Gabriel Graph contains two edges ab and cd that do intersect. Note that the sum

of the angles ∠acb, ∠cbd, ∠bda, and ∠dac must equal 360° according to the quadrilateral interior angle

sum formula. This implies that at least one of those angles, say ∠acb, for example, is at least 90°. If that

66



is true, however, the edge ab should not exist in the graph since c is either on the boundary of or inside of

the circle for which ab is a diameter given the measure of the angle. Therefore, the edge ab should not be

in the Gabriel Graph, a contradiction. As a consequence, no two edges of the Gabriel Graph may intersect,

and thus every Gabriel Graph is planar.

While Gabriel Graphs are planar, they are not degree constrained (see Figure 3.10a for an example). DC-

GG is, therefore, introduced as a new degree-constrained version of the Gabriel Graph algorithm that works

well for distributed topology management. Figure 3.10 shows the steps followed in computing DC-GG

among the same set of aircraft seen in previous examples. Note that rather than starting with a set of nodes

(points), the DC-GG actually starts with the potential connections or unit disk graph for the community

nodes, and generates a subgraph of this input graph. The Gabriel Graph of the potential connections graph

can also be called the Unit Gabriel Graph, as it includes all edges in the standard Gabriel Graph except

those that are longer than the maximum transmission range. The Gabriel Graph is computed from the local

node’s potential connection graph, yielding the unit Gabriel Graph shown as GG in Figure 3.10a). Next,

the DCP-KRUSKAL algorithm is used to find a degree-constrained spanning tree (K in Figure 3.10b) within

the Gabriel Graph. Doing this for all nodes ensures that whenever possible, the final combined graph will

span the nodes in the network. Finally, the unused edges in the original Gabriel Graph are transferred to the

spanning tree graph, longest first, until no more edges can be added without violating the degree constraints.

The result is the Degree-Constrained Gabriel Graph which can be seen in Figure 3.10c. Adding the longest

edges first tends to create a topology where paths have shorter numbers of hops, a desirable quality for

routing purposes.

Figure 3.11 shows the global topology resulting from each node independently computing their local

topologies, and forming connections accordingly.

3.5.4 Degree-Constrained Delaunay Triangulation

The Delaunay Triangulation can be similarly employed as a subroutine in the generation of a network

topology. As described in Section 2.1.4.2, Delaunay Triangulation is a triangulation of a set of points such

that a triangle exists in the graph if and only if the candidate triangle’s circumcircle (that passes through all

the triangle’s vertices) contains no other point in the set of input points. The Gabriel Graph is a subgraph of

Delaunay Triangulation and Delaunay Triangulation is the dual graph of the Voronoi diagram.

The Degree-Constrained Delaunay Triangulation (DC-DT) is produced by first generating the Delaunay

67



(a) Unit Gabriel Graph (GG) (b) DCP-Kruskal (K)

(c) DC-GG

Figure 3.10: The steps to computing the local DC-GG.

68



Figure 3.11: The resulting global DC-GG topology.

Triangulation (DT) of the local node’s community nodes. Next any edges in the triangulation that are not

in the Unit Disk Graph (edges longer than the maximum range) are removed, yielding the Unit Delaunay

Triangulation (UDT). Next, DCP-KRUSKAL produces a spanning tree (K) within the triangulation, ensuring

the resulting graph will span all the nodes. To this graph are transferred additional edges, longest first, from

the Delaunay Triangulation, until each node’s degree constraint is met (where possible). Figure 3.12a shows

the Delaunay Triangulation, Figure 3.12b the Unit Delaunay Triangulation, and Figure 3.12d resulting local

DC-DT topology for the set of nodes.

Figure 3.13 shows the resulting global topology resulting from each node independently computing its

local topology using DC-DT and forming its incident connections accordingly.

3.6 Pitfalls

The algorithms described are effective at generating acceptable global topologies. There are many other

candidate algorithms, however, that fail to form an acceptable topology using the topology generation frame-

work. This section describes some of the pitfalls to avoid when designing the algorithms.

3.6.1 Adding Longest Edges

Some topology generation algorithms do not fully utilize the directional data links in the network. They

do not form viable connections and instead leave links idle. For example, DCP-KRUSKAL forms a tree-like

topology for which most nodes use only one or two of their three links. These algorithms form a topology

but leave, unused, data links that are within range of other nodes that also have available links. The degree

69



(a) DT (b) UDT

(c) K (d) Local DC-DT

Figure 3.12: The unit disk graph and the local and global graphs resulting from running the DCP-
KRUSKAL algorithm

70



Figure 3.13: The global DC-DT Topology.

of both nodes in such situations is less than the number of links on the nodes. In these cases, it is tempting

to augment the topology generation algorithm with a final pass that will add edges to the topology.

One such algorithm is Degree-Constrained Kruskal Plus Long (DCP-Kruskal+L). This algorithm first

forms a planar degree-constrained minimum spanning tree (DCP-Kruskal) among the nodes, and then adds

additional edges, longest first (+L), to the topology as long as each edge doesn’t violate the degree or local

planarity constraints. The spanning tree tends to ensure that all nodes in the network stay connected to one

another, while the additional long edges enable shorter paths to the destination.

Unfortunately, this algorithm cannot guarantee a globally planar network. Even though each local topol-

ogy is guaranteed to be planar, the global network topology, implicitly generated by the distributed topology

management framework, is not guaranteed to be planar. Figures 3.14-3.16 gives an informal proof of this

fact using a simple example where a topology is generated connecting simulated aircraft retracing the routes

of actual aircraft whose trajectories over the Southern United States were recorded.

Figure 3.14a-d shows the local topology calculated independently by four different nodes using the

DCP-KRUSKAL algorithm to connect the nodes in their community. In each case the node computing the

topology is highlighted with a second (yellow) circle around the node. In each image only the nodes in

the community of the node computing the local topology are plotted. For example, node e does not appear

in Figure 3.14c, since it is not in node c’s community. Each node has a slightly different set of nodes

(community members) of which it is aware. To this base topology, a topology generation algorithm could

now add as many edges as possible (starting with the longest) until no more edges can be added without

71



e d

a

b
c

(a) a’s DCP-KRUSKAL

e d

a

b
c

(b) b’s DCP-KRUSKAL

d

a

b
c

(c) c’s DCP-KRUSKAL

e d

a

b
c

(d) d’s DCP-KRUSKAL

Figure 3.14: The result nodes a, b, c, and d independently generating a local topology using the DCP-
KRUSKAL algorithm given each node’s community members. The dashed circle shows the extent of
the community from each node’s point of view.

violating the degree or local planarity constraint. The result of adding these longest edges to each local

topology are shown in Figures 3.15a-d. From node a’s point of view, the edge between nodes e and d is

the longest potential connection in the community not already included in the DCP-KRUSKAL graph that

doesn’t violate degree constraints. It is added to the topology first. Notice also that assuming there are three

links per node, node d is now using all its links in the topology. The edge between nodes c and d is the next

longest, but it cannot be added because node d is already at maximum degree. Therefore, the edge between

72



a and b is added instead, such that a will point one of its links at b. From node b’s point of view, nearly the

same conditions exist, and b chooses to point one of its links at a, forming a connection.

Node c, however, is not aware of node e and therefore does not add the edge from e to d to its topology.

This leaves node d with an available link. The longest potential connection not already in the graph is

between d and c. Finally, even tough d knows about node e, its DCP-KRUSKAL graph is such that node e

is already using all three of its links. Therefore the connection between d and c is instead established.

e d

a

b
c

(a) plus longest edges a

a

b

(b) plus longest edges b

d c

(c) plus longest edges c

e d c

(d) plus longest edges d

Figure 3.15: The result of these four nodes adding additional edges, longest first, to the topology
graph.

73



Figure 3.16 shows the resulting global topology that is implicitly generated by each node computing its

local topology and attempting to form its local connections as specified by the topology. The outcome is a

graph that is non-planar even though every local topology was planar.

e d

a

b
c

Figure 3.16: The resulting global non-planar topology.

3.6.2 Locally Planar, Globally Non-planar

Even without adding the longest edges to a topology graph, it is possible to end up with a graph that is

locally planar at every node, but globally non-planar. This pitfall is exemplified by the Degree-constrained

Planar Tree-Based Reliable topology generation algorithm (DCP-TRT). As described in Section 3.5.2,

DCP-TRT is a topology generation algorithm that forms a more robust topology by making multiple calls

to DCP-KRUSKAL. Figure 3.17a-e shows the steps taken in computing the local topology given node a’s

local view. First, DCP-KRUSKAL is run on the potential connections (or unit disk) graph shown in Figure

3.17a to form a degree-constrained spanning tree among the nodes in that graph (Figure 3.17b). Next, these

edges are removed from the original potential connections graph, leaving the subgraph shown in Figure

3.17c. None of the edges in Figure 3.17b appear in the graph in Figure 3.17c (though some edges are hard

to distinguish from other edges between nearly collinear neighbors). Next, DCP-KRUSKAL is called again

on this resulting subgraph, yielding a slightly more awkward-looking degree-constrained spanning tree as

seen in Figure 3.17d. Finally, the edges in Figures 3.17b and 3.17d are combined into the single local graph

shown in Figure 3.17e. Notice that the final local graph includes an edge between a and c. Figure 3.18a-e

74



a

b

(a
)U

ni
tD

is
k

G
ra

ph

a

b
c

(b
)D

C
P

-K
R

U
SK

A
L

1

a

b

(c
)e

dg
es

re
m

ov
ed

a

b
c

(d
)D

C
P

-K
R

U
SK

A
L

2

a

b
c (e
)l

oc
al

D
C

P-
T

R
T

Fi
gu

re
3.

17
:C

om
pu

ta
tio

n
of

th
e

lo
ca

lD
C

P-
T

R
T

to
po

lo
gy

at
no

de
a.

75



a

b

(a
)U

ni
tD

is
k

G
ra

ph

a

b
c

d

(b
)D

C
P

-K
R

U
SK

A
L

1

a

b

(c
)e

dg
es

re
m

ov
ed

a

b
c

d

(d
)D

C
P

-K
R

U
SK

A
L

2

a

b
c

d

(e
)l

oc
al

D
C

P-
T

R
T

Fi
gu

re
3.

18
:T

he
co

m
pu

ta
tio

n
of

th
e

lo
ca

lD
C

P-
T

R
T

to
po

lo
gy

at
no

de
b.

76



a

b
c

d

Figure 3.19: The resulting global non-planar topology using DCP-TRT.

shows a similar progression in the computation of the DCP-KRUSKAL topology graph from node b’s per-

spective. Notice that since the original spanning tree (3.18b) includes edges ab and bc, and these cannot

be a part of the spanning tree in Figure 3.18d. The shortest edge that can be added to incorporate b into

the degree-constrained spanning tree is the edge bd. Note, however, that this edge crosses the edge ac that

is included in the local topologies for both a and c. This leads to the global non-planar topology shown in

Figure 3.19 (edges ac and bd cross).

3.7 Topology Generation Algorithm Comparisons

3.7.1 Aircraft Trajectory Data Processing

The bulk of the simulations and experiments for this work use real aircraft trajectory data. Before this

data can be used some filtering and processing is necessary. The raw data is a list of entries that include a call

sign (such as DAL213 for Delta Airlines flight number 213), a timestamp, and position information. First,

these entries must be grouped into flights. This can be tricky, since there are cases where data is missing

from a specific call sign for a couple of minutes, and there are also cases where only a couple of minutes

separate the landing of a flight with a certain call sign, and the takeoff of a different aircraft at a different

airport with the same call sign.

For most simulations in this work, we constrain the nodes to be within the boundary shown in Fig-

ure 3.20. The boundary is approximately a 200km offset from the border of the continental United States.

77



Figure 3.20: A boundary ˜200 km offset from the continental United States border and coastline.

Constraining the trajectories in this way enables simulations to be concentrated on a well-known geographic

region, while avoiding situations where an aircraft would need to join and leave the network multiple times

as it flew along a coastline.

In this section, the topology alogrithms introduced above are compared both visually, empirically.

3.7.2 Visual Comparison

This section presents a visual comparison of the global topologies of a continental-scale networks. Fig-

ure 3.21 displays the result of applying each topology generation algorithm on a set of 1387 aircraft spread

across the United States at 13:45 CT on July 9, 2015.

Notice that for DCP-KRUSKAL (Figure 3.21a), although every local topology is a tree, the global topol-

ogy is not a tree but contains several very large faces. This happens because each node has a limited view

of the world when determining its local topology, and cannot guarantee the global topology is a tree. Notice

also, that DCP-KRUSKAL has fewer edges in its topology compared with the other topologies, and relatively

few one-way connections (shown as thick (red) edges that terminate at the midpoint). The topology also has

many nodes that only have a single active link. These leaf nodes act like “dead ends” when the topology is

viewed as a maze that the packet is trying to solve to get to the destination. A greater number of “dead ends”

can make geographic routing more difficult. Finally, DCP-KRUSKAL generates a topology that is not very

robust to link outages, as there are few paths between any two points.

As seen in Figure 3.21b, DCP-TRT has more redundancy, more faces, and more one-way connections

than DCP-KRUSKAL. This algorithm tends to form topologies containing many groups of nodes that are

well connected, with multiple paths between one another, and longer connections that join these groups

together. DCP-TRT is more robust to connection failures, and there are multiple paths between most pairs

78



(a
)L

ar
ge

G
lo

ba
lD

C
P-

K
ru

sk
al

(b
)L

ar
ge

G
lo

ba
lD

C
P-

T
R

T

(c
)L

ar
ge

G
lo

ba
lD

C
-D

T
(d

)L
ar

ge
G

lo
ba

lD
C

-G
G

Fi
gu

re
3.

21
:A

vi
su

al
co

m
pa

ri
so

n
of

th
e

gl
ob

al
co

nt
in

et
al

-s
ca

le
to

po
lo

gy
re

su
lti

ng
fr

om
ea

ch
al

go
ri

th
m

.

79



of nodes. Notice also that the one-way connections are more prevalent in the areas with lower densities

(more in the west than the east, for example).

Figure 3.21c displays the global topology resulting from using the DC-DT local topology generation

algorithm. Visual inspection reveals that DC-DT generates a topology with more faces than DCP-KRUSKAL

or DCP-TRT. Further, it can be seen that there are a greater number of paths between any two nodes in the

topology generated by DC-DT than in the topology generated by DCP-KURSKAL (more robustness), but

DC-DT’s topology has a higher number of one-way connections.

Finally, Figure 3.21d shows the result of using the DC-GG algorithm on the same set of nodes. Like

DC-DT, visual inspection indicates that DC-GG produces a topology with many smaller faces and in gen-

eral more path options (robustness) than DCP-KRUSKAL. It appears to have, however, fewer one-way

connections than DC-DT.

Note also, that none of the topologies are able to connect the node flying over central North Dakota (top

middle of the figures). This is not a deficiency of the topology generation algorithms, but rather a physical

limitation. This node is further than the maximum transmission range (200 km) from any other node and is,

therefore, unable to connect to the network regardless of the topology generation algorithm. Similarly, the

two nodes flying near the Canadian border in northern North Dakota and Montana are physically unable to

connect to any other nodes due to link range restrictions. They are, however, able to connect to one another,

as specified by every topology. Nodes near the boundary of the network or in areas with lower densities

of nodes are more prone to being disconnected from the largest connected component in the topology. In a

real-world network, having ground stations at these lower density locations would alleviate this problem.

3.7.3 Attribute Comparisons

To gain an understanding of the performance of these algorithms a detailed empirical analysis of sev-

eral key properties or attributes of the topology graphs for many sets of nodes of various densities is now

presented. For each experiment, a date and time are selected at random within the 31-day time period of

July 2015. Aircraft (excluding general aviation flights) flying above 10,000 feet and within ˜200km of the

continental United States at the selected time are then randomly selected until a target mean density value is

reached. If there are not enough aircraft (nodes) available at the chosen time, a new random time is selected

and the process repeats. Each node (in the set of potentially thousands of nodes) then determines which

nodes are in its community (within 288 km) and the potential connections graph (unit disk graph) for this

80



set of nodes is determined. The nodes then independently run each of the candidate topology generation

algorithms on the potential connections graph to obtain a local topology graph at this node for each algo-

rithm. Once all of the nodes have computed their local topology graph using a given algorithm, all the local

graphs are combined together, simulating each node forming the connections of which it is a part in its local

topology graph. The result is a global topology graph for each candidate algorithm, that was generated by

local decisions at each node.

Continuing with the experiment, after the global topology is determined, 100 pairs of nodes are randomly

selected, and the shortest path (in hops) between them (if a path exists) is measured. Finally, the positions

of the same set of nodes one second later are determined and these positions are used to re-compute all the

topologies and analyze another 100 shortest paths. We run this experiment 775 times (25 random samples

per day) so that each point is the mean of 1550 topologies of that density (2 topologies, 1 second apart per

experiment) or 155,000 paths through topologies of that density.

The following sections analyze several attributes of the computed topologies and paths.

3.7.3.1 Number of Connections or Edges

First, the number of connections in each algorithm’s topologies are analyzed. Figure 3.22a shows how

the number of connections increases as the density increases. In the figure, the x-axis represents the den-

sity of the simulated networks in nodes per unit disk (see Section 3.1.2). For these various densities, the

mean number of connections (edges in the topology graph) included in the global topologies for the various

algorithms are plotted. Also, for comparison, a line representing the theoretical maximum number of con-

nections given the degree constraint is also included (DC-Max). This is the theoretical maximum number of

connections possible if every node was able to connect each of its directional links to another node that also

has an unused directional link. The planarity constraint restricts link usage to some even lower upper-bound.

Remember that a density of value of 10 nodes per unit disk (disk with a 200 km radius) in the continental

United States equates to about 643 nodes, while a density value of 35 nodes per unit disk equates to about

2250 nodes. As the number of nodes increases, there is a linear increase in the number of edges in the

topologies. DC-DT consistently produces topologies with the most edges. DCP-Kruskal, as would be

expected, yields topologies with the fewest edges because of its spanning tree-like topologies. On average

DC-GG includes slightly fewer edges in its topologies than DC-DT. This make sense, since the Gabriel

Graph is a subgraph of Delaunay Triangulation. The number of edges in the topology graph is a helpful

81



performance metric because it correlates with the number of hops needed to route a packet through the

topology and with the robustness of the topology.

Figure 3.22b compares the number of connections in the unit disk graph with the degree-constrained

maximum also shown in Figure 3.22a. Note how the degree constraint severely limits the number of con-

nections, when compared to the actual number of potential connections. The UDG essentially represents

the connectivity of an omnidirectional link with the same range as the directional link. The disparity in the

number of connections helps to illustrate the limiting factor imposed by the use of directional links.

5 10 15 20 25 30 35 40
network density (nodes per unit disk)

0

500

1000

1500

2000

2500

3000

3500

4000

nu
m

 c
on

ne
ct

io
ns

DC-Max
DCP-Kruskal
DCP-TRT
DC-GG
DC-DT

(a) The mean number of connections (edges) in
each topology.

5 10 15 20 25 30 35 40
network density (nodes per unit disk)

0

10000

20000

30000

40000

50000

60000

nu
m

 c
on

ne
ct

io
ns

DC-Max
UDG

(b) A comparison of the mean number of connec-
tions in the Unit Disk Graph with the degree con-
strained maximum number.

Figure 3.22: An analysis of the number of connections.

3.7.3.2 Directional Data Link Usage

A good topology generation algorithm will generally try to avoid allowing links to go unused. However,

an algorithm can make poor use of a link by just pointing it randomly at any neighbor. Two metrics, then,

are important when considering link usage. First, the number of links used (commanded to point) by the

topology generation algorithm, and second, the number of links actually connected by the algorithm (dis-

counting one-way connections). The first metric allows one to see how many links an algorithm tries to use,

and the second metric gives an indication of how many of those links are actually able to form connections.

Figure 3.23a shows the fraction of directional data links used by each of the topology generation algorithms

across networks of various densities. The numbers reported here include directional data links that are a part

82



of a one-way connection. DCP-KRUSKAL uses less than 70% of the data links available, which is expected

since it is only seeking to form a spanning tree among the nodes. The remaining algorithms all use more

than 85% of the data links for networks with densities above about 10 nodes per unit disk. DC-DT makes

use of the highest percentage of directional data links, however, it should be noted that DC-DT also creates

the highest percentage of one-way connections (as detailed in the following section).

Figure 3.23b plots the same information, but without including one-way connections. In other words,

it plots the fraction of directional data links actually connected by each algorithm. Notice that despite

generating the highest percentage of one-way connections, DC-DT always connects the highest fraction of

data links. Also, note that DC-GG outperforms DCP-TRT for all but the lowest densities when one-way

connections are excluded.

5 10 15 20 25 30 35 40
network density (nodes per unit disk)

0.60

0.65

0.70

0.75

0.80

0.85

0.90

0.95

fra
ct

io
n 

of
 d

ire
ct

io
na

l d
at

a 
lin

ks
 u

se
d

DCP-Kruskal
DCP-TRT
DC-GG
DC-DT

(a) The fraction of directional data links used by
each algorithm.

5 10 15 20 25 30 35 40
network density (nodes per unit disk)

0.60

0.65

0.70

0.75

0.80

0.85

0.90

0.95
fra

ct
io

n 
of

 d
ire

ct
io

na
l d

at
a 

lin
ks

 c
on

ne
ct

ed

DCP-Kruskal
DCP-TRT
DC-GG
DC-DT

(b) The fraction of directional data links actually
connected by each algorithm.

Figure 3.23: An analysis of the data links used and connected by each algorithm.

3.7.3.3 One-Way Connections

Figure 3.24a shows the raw number of one-way connections in the topology graphs produced by the

various algorithms. As the density increases, the number of one-way connections levels off, and in some

cases even decreases. DC-GG has substantially fewer one-way connections that DC-DT. When DC-DT adds

edges, longest first, it is essentially taking a risk. It hopes that the node at the other end of a long connection

will have a view of the world close enough its own view, that it will come to the same conclusion about the

need for the connection, and point back to form the connection. The benefit of these long edges is shorter

83



paths, on average, but the cost is a higher incidence of one-way connections. DC-GG has fewer edges

to consider for addition, and thus fewer long edges, yielding fewer one-way connections, but also longer

average shortest paths than DC-DT.

Figure 3.24b shows the percentage of one-way connections among the directional data links “used” by

the algorithm, where any directional data link that is commanded to point is considered “used” whether or

not a connection is formed. At a density of 32 nodes per unit disk (˜2090 aircraft above the United States),

the occurrence of one-way connections is a little over three percent for DC-DT. This equates to a data link

forming a one-way connection for about 2 minutes (119.74 seconds) of each hour. Compare that with 91.18

seconds for DCP-TRT, 42.29 seconds for DC-GG, and 12.70 seconds for DCP-KRUSKAL.

5 10 15 20 25 30 35 40
network density (nodes per unit disk)

0

50

100

150

200

250

nu
m

 o
ne

 w
ay

DCP-Kruskal
DCP-TRT
DC-GG
DC-DT

(a) The number of one-way connections.

5 10 15 20 25 30 35 40
network density (nodes per unit disk)

0

1

2

3

4

5

6

%
 o

ne
 w

ay
 c

on
ne

ct
io

ns

DCP-Kruskal
DCP-TRT
DC-GG
DC-DT

(b) The percentage of one-way connections among
used data links.

Figure 3.24: An analysis of one-way connections.

3.7.3.4 Connection Lengths

Figure 3.25 plots the mean length of a connection using each of the algorithms across a variety of

densities. For every algorithm except DC-DT, the mean length is always below half the maximum length

of 200 kilometers, even for the lowest densities. DC-DT produces mean connection lengths just over half

the maximum length for only the lowest density tested. All other mean connection lengths measured were

also under 100 km (half the maximum transmission range). The mean connection length decreases with

increasing density because maintaining the degree and planarity constraints requires that new nodes added

to the network must generally join by breaking an existing, longer, connection, replacing it with two shorter

84



connections, thus decreasing the mean connection length.

DC-DT produces the longest connections on average, followed by DC-GG and the DCP-TRT. Since

Gabriel Graph is a subgraph of Delaunay Triangulation, DC-GG will, in general, have fewer edges to con-

sider for addition to the spanning tree than DC-DT does. With fewer edges to consider it is natural to assume

that when adding edges, longest first, DC-GG will add fewer long edges, on average, than DC-DT. DCP-

Kruskal is an approximation of the minimum spanning tree, and is therefore near the lower bound for the

mean connection length required to span all the nodes at each density.

5 10 15 20 25 30 35 40
network density (nodes per unit disk)

30

40

50

60

70

80

90

100

110

m
ea

n 
co

nn
ec

tio
n 

le
ng

th
 (k

m
)

DCP-Kruskal
DCP-TRT
DC-GG
DC-DT

Figure 3.25: The mean length of a connection across algorithms.

3.7.3.5 Connected Pairs

Figure 3.26a shows the mean fraction of pairs of nodes tested, between which there exists a path in

the unit disk graph. Note that on this plot the y-axis begins at 0.4. The curve closely approximates the

upper-bound for the ratio of connected pairs over the given densities. No algorithm can connect pairs of

nodes better than the unit disk graph without violating the maximum communication range constraint. For

densities above 24 nodes per unit disk (˜1543 aircraft across the United States) the ratio of connected pairs

of nodes stays above .99 for the unit disk graph. All of the algorithms’ curves match or come very close to

this curve, such that it is impossible to compare them on this plot. Next, the nearness of the other algorithms’

curves to that of the unit disk graph is analyzed.

Figure 3.26b essentially shows how close each algorithm comes to meeting the upper-bound curve

shown in Figure 3.26a. Specifically, Figure 3.26b plots the mean ratio of the number of sampled node

85



pairs connected with a path in the given topology to the number of node pairs for which a path exists in

the unit disk graph. Notice that on this plot that y-axis begins at 0.975. A perfect topology generation

algorithm would always provide a path when one exists (giving a mean ratio of 1.0), however, the added

degree constraint and planarity constraint make this difficult (if not impossible) to achieve. Note that above

a density of about 9 nodes per unit disk (˜579 aircraft), the number of nodes disconnected is less than 1%

for all of the algorithms. DCP-KRUSKAL performs worst since its focus is on short edges and the resulting

low robustness causes it to miss opportunities to maintain connectivity with nodes that are otherwise dis-

connected. DC-GG performs slightly worse than the DCP-TRT, and DC-DT is the obvious best choice for

lower densities. DC-DT also performs consistently as good as, and often better than, the other algorithms at

the higher densities as well, though it is difficult to see that in this plot.

5 10 15 20 25 30 35 40
network density (nodes per unit disk)

0.4

0.5

0.6

0.7

0.8

0.9

1.0

fra
ct

io
n 

of
 c

on
ne

ct
ed

 s
ou

rc
e 

de
st

 p
ai

rs

UDG

(a) The mean fraction of pairs of nodes connected
by a path in the Unit Disk Graph.

5 10 15 20 25 30 35 40
network density (nodes per unit disk)

0.975

0.980

0.985

0.990

0.995

1.000
ra

tio
 o

f c
on

ne
ct

ed
 p

ai
rs

 v
s 

un
it 

di
sk

 g
ra

ph

DCP-Kruskal
DCP-TRT
DC-GG
DC-DT

(b) The mean ratio of the number of sampled node
pairs connected with the given topology genera-
tion algorithm to the number connected in the
unit disk graph.

Figure 3.26: An analysis of the connected node pair metrics.

3.7.3.6 Computation Time

Figure 3.27 shows the mean computation time per node for each local topology computed. The mean

times were derived by measuring the total time required to generate all of the local topologies for each

network tested, and then dividing by the number of nodes in that network. As the density increases, the

computation also increases substantially. The exact cause of the change in the trend for all algorithms at

about a density of about 30 nodes per unit disk is unknown, but it is likely caused by the fact that as the

86



density increases there are fewer input data files that have random samples of the required density. Note

also, that the implementation of Gabriel Graph used here is a non-optimized version, whereas DC-DT uses

an optimized library method to compute the Delaunay Triangulation. It is expected that the execution cost

of DC-GG, once optimized, would more closely match that of DC-DT, since DC-GG is a sub-graph of

Delaunay Triangulation, and can be quickly calculated given the Delaunay Triangulation of a set of nodes.

For a density of 30 nodes per unit disk (˜1930 nodes across the United States), all of the algorithms are

able to compute a topology in less than 22 milliseconds on average1. DC-DT has the fastest computation

time. All of the computation times, however, are sufficiently low as to enable multiple current and future

topologies to be computed during each iteration, if desired. Computing future topologies based on positions

extrapolated several seconds into the future could enable topology changes to be predicted and anticipated

(see Section6.3.1.1 for more on this future work).

5 10 15 20 25 30 35 40
network density (nodes per unit disk)

0

5

10

15

20

25

30

35

40

45

co
m

pu
ta

tio
n 

tim
e 

(m
ill

is
ec

on
ds

)

UDG
DCP-Kruskal
DCP-TRT
DC-GG
DC-DT

Figure 3.27: The per-node computation times for the various algorithms.

3.7.3.7 Dynamicity

Figure 3.28 plots the percentage of edges that change (are added or removed) when the topology is

recomputed after 1 simulated second. We call this metric the dynamicity of the network topology. It is

anticipated that this metric may be important once the time required to physically slew antenna and establish

connections is accounted for in the simulation, whereas for the simulations in this work it is assumed that

links can instantly re-point and connect. DCP-TRT has the highest level of dynamicity. This is another

1 on an Intel Xeon CPU (E5-2637 v2) at 3.50GHz

87



5 10 15 20 25 30 35 40
network density (nodes per unit disk)

0

1

2

3

4

5

ed
ge

 d
yn

am
ic

ity
 (%

 o
f e

dg
es

 c
ha

ng
ed

 p
er

 s
ec

on
d)

UDG
DCP-Kruskal
DCP-TRT
DC-GG
DC-DT

Figure 3.28: The mean ratio of the number of edges added or removed in consecutive topologies, to
the number of edges in the topology.

reason to prefer the other algorithms over DCP-TRT. Notice also, DC-GG has lower edge dynamicity than

DC-DT.

5 10 15 20 25 30 35 40
network density (nodes per unit disk)

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

da
ta

 li
nk

 d
yn

am
ic

ity
 (%

 o
f l

in
k 

ch
an

ge
d 

pe
r s

ec
on

d)

DCP-Kruskal
DCP-TRT
DC-GG
DC-DT

Figure 3.29: An analysis of link dynamicity.

In Figure 3.29 the data link dynamicity is plotted for each of the algorithms. The data link dynamicity is

the percentage of data links in the network starting a new connection or terminating a connection during an

average second. Notice that a data link that re-points is included twice in this metric; once for terminating

a connection and once for starting a new connection. For DC-DT at a density of 30 nodes per unit disk

(˜1930 aircraft) the data link dynamicity is 2.8%. This means that using this algorithm at this density, a data

link would be expected to connect or disconnect approximately once every 36 seconds (1/.028). However,

88



if good link utilization is assumed, then most link changes will be re-pointing commands, such that one

connection will end and another will start, as opposed to one connection just ending and the link not being

used during the next iteration. This assumption would nearly cut the percentage in half and extend the time

between re-pointing events to over a minute. Notice that a small change in the dynamicity percentage can

produce a large change in the estimated average link lifetimes. For DC-GG, at a density of 30 nodes per

unit disk, the link dynamicity is 2.08% (.72% lower than DC-DT). Using this algorithm one would expect

the time between re-pointing events to be about a minute and a half (2*(1/.0208) = 96 seconds), nearly 35%

longer than when using DC-DT. If link establishment times were on the order of 1 second, these link lifetime

numbers would seem reasonable. A link could form and then on average send data for a minute or more

before re-connecting. Since the dynamicity is growing with density, however, this is likely one attribute that

will ultimately limit the scalability of the system, since at extreme densities the may be too much churn in

the link pointing.

3.7.3.8 Shortest Path Hop Stretch

Figure 3.30 plots the ratio of the length (in hops) of the shortest path between the random pairs of nodes

simulated for each algorithm to the shortest possible path (in the unit disk graph). From our experience the

number of hops can have a significant impact on the routing efficiency of the network. Notice that DC-

DT consistently forms the shortest paths in terms of numbers of hops. The intuition about why this ratio

continues to rise as the density increases is that because density, node degree, and maximum transmission

5 10 15 20 25 30 35 40
network density (nodes per unit disk)

1

2

3

4

5

6

7

8

sh
or

te
st

 p
at

h 
ho

p 
st

re
tc

h

DCP-Kruskal
DCP-TRT
DC-GG
DC-DT

Figure 3.30: The ratio of the number of hops in the shortest path for each algorithm’s computed
topology to the number of hops in the shortest path in the unit disk graph.

89



range are held constant, new nodes that join the network often have no choice but to break an existing

connection to join. This essentially adds an extra hop to any path that used the initial connection. Note also

from the graph that DCP-KRUSKAL performs the worst given that it generates a tree-like global graph, with

minimal, if any, redundancy.

3.7.3.9 Overall Assessment

There is no absolute overall best algorithm. While DC-DT forms the highest numbers of connections,

makes use of the most data links, has the longest links, the highest ratio of connected node pairs, and the

fastest computation time, it also has a high dynamicity and produces a lot of one-way connections. DC-GG

also performs relatively well for most of the attributes and has a smaller dynamicity. Some these differences

are explained by the fact that DC-GG generally generates fewer edges than DC-DT. DC-TRT suffers from

high dynamicity and longer shortest paths, though it has connectivity that approaches that of DC-DT.

3.8 Simulation Results and Evaluation

We now present the results of simulating each of the topology generation algorithms in a network of

hundreds of aircraft flying real routes. Using ns-3 [RH10] we simulate 1000 simultaneous low-rate flows

through our simulated airborne network that grows as aircraft join over the course of one hour, to over 500

aircraft. These nodes were selected to ensure that they were connectable throughout the simulation by all of

the studied topology generation algorithms. For the simulation, we assume that links can instantaneously re-

point, and that nodes have a synchronized time source. The Topology Aware Geographic Routing protocol

(TAG) [NAJ16], that is able to route within these highly dynamic network topologies, is used to route the

packets through the managed topology. A topology update interval, and position exchange interval of once

per second is assumed. Further a 200 km maximum link transmission range and a 288 km position exchange

range are used, and each node is assumed to have 3 directional data links. Low-rate UDP flows between

1000 pairs of nodes are simulated for an hour, transmitting a total of 1.87 Gigabytes of data.

TABLE 3.1: The mean number of hops for 1,000 low-rate UDP flows

mean hops median hops
DC-DT 24.039 21
DC-GG 23.291 20

DCP-TRT 31.309 26
DCP-KRUSKAL 56.585 42

90



Table 3.1 lists the mean and median numbers of hops traveled by the 3 million packets routed during

each of the 1-hour simulations (one per algorithm). We find that surprisingly DC-GG performs best with

the lowest number of hops. This is not consistent with our analysis above and has to do with the fact that the

geographic routing protocol (TAG) does not always find the shortest path. Therefore DC-DT may generate

the shortest paths, but the geographic routing protocol has slightly better performance when topologies are

generated using DC-GG.

91



CHAPTER 4: TOPOLOGY-AWARE GEOGRAPHIC ROUTING1

This chapter describes the Topology-Aware Geographic Routing Protocol (TAG), a new geographic

routing protocol suitable for dependably routing packets through a large-scale, highly-dynamic network

topology. First, an overview of the protocol is given. Next, the protocol’s header and its contents are

presented, and a base version of TAG is detailed. Optimizations of this base protocol are then presented as

well as implementation details. Finally, the results of experiments conducted with the protocol in realistic

airborne network simulations are presented and analyzed.

4.1 TAG Overview

This section gives a high-level overview of the Topology-Aware Geographic Routing Protocol (TAG).

Details about each of the components and optimizations are included in the remaining sections.

At its base, TAG is a greedy-face-greedy geographic routing protocol (see Section 2.1.6.4). As with

most other geographic routing protocols, TAG requires that a small additional header containing minimal

state information be added to each packet. Among other values, this extra header in each packet contains a

mode field that specifies the routing mode. Each new packet introduced to the network starts in GREEDY

mode. In this mode, each forwarding node attempts to greedily forward the packet to whichever directly

connected neighbor is nearest the destination, in terms of linear (straight line) distance. This continues until

either the packet is delivered, or a local minimum is encountered. A local minimum occurs at a node that

has no directly connected neighbor that is closer to the destination than it is.

At every local minimum, there exists a face (internal or external) formed by the edges of the planar

2-dimensional network topology that is incident to the local minimum node and is intersected by the line

segment between the local minimum node and the destination. Figure 4.1 shows two examples of this, one

for an internal face and the other for an external face where the local minimum is the source node s and

the destination is t. In either case, the incident face occludes the packet’s advance towards the destination.

1The contents of this chapter includes material from an article published in the proceedings of the IEEE International Symposium
on Modeling, Analysis and Simulation of Computer and Telecommunication Systems (MASCOTS). The citation of this related
original source is as follows: B. Newton, J. Aikat, and K. Jeffay, ”Geographic Routing in Extreme-Scale Highly-Dynamic Mobile
Ad hoc Networks”, in Proceedings of IEEE 24th International Symposium on Modeling, Analysis and Simulation of Computer and
Telecommunication Systems (MASCOTS), London, September 2016.

92



s

t

a
b

c

e

f

d

g

h

(a) If the destination (t) is reachable and the topol-
ogy is a planar static graph, there is a point (not
necessarily a node) on the boundary of the face in-
cident to the face start node (s) and intersected by
the line segment st, that is closer to the destination
than s. This figure shows the case where the face
is an internal face.

s

t

a
b

c

e

f

d

g

h

(b) This figure shows the case where the face in-
tersected by the line segment (st) from the face
start node to the destination intersects an exter-
nal face, and the point closer to the destination on
the boundary of that face is the destination itself.

Figure 4.1: An example of how face routing works with internal and external faces.

However, if the destination is reachable, there must be a point (not necessarily at a node) on the boundary of

that face that is closer to the destination than the local minimum node (or is the destination). Upon reaching

a local minimum the packet switches to FACE mode and face routing is used to either find such a point or

demonstrate that none exists. In face routing (see Section 2.1.6.3), the boundary of a face is explored using

93



the right-hand rule. The packet will either encounter a point on the boundary of the face that is closer to the

destination or it will arrive back at the local minimum, having explored the entire face. In the latter case,

the packet is dropped because, as will be shown, there is currently no route to the destination. In the former

case, when a node determines that a packet has now made progress towards the destination, it reverts the

packet’s mode to GREEDY and attempts to again greedily route the packet. If another local minimum has

been reached, face routing is initialized again, and the boundary of the next face occluding the packet from

advancing towards the destination is explored. This greedy-face-greedy cycle continues until the packet is

delivered or is deemed undeliverable.

s

t

a

z

g

h

bc

y f

...

Figure 4.2: An example of using an adaptive bounding circle to mitigate worst-case Face Routing
situations, assuming there were many hops between c and y.

When a packet arrives at a local minimum it may choose to explore the face boundary in a clockwise

direction, using the right-hand rule, or instead in a counter-clockwise direction, using the left-hand rule. In

extreme cases, exploring a face in search of a point closer to the destination in one direction may require

many more hops than exploring in the opposite direction. To mitigate these worst-case situations, an adaptive

bounding circle (as in GOAFR+ [KWZZ03]) is added to the greedy-face-greedy foundation. This circular

boundary ensures that when a packet attempts to explore one direction around a face, it only goes so far

before retreating and attempting to advance in the opposite direction. If the packet is unable to reach a point

closer to the destination within the bounding circle in either direction, the circle is expanded, and the process

is repeated. Figure 4.2 shows an example of the bounding circle restricting the exploration of the face in a

direction that would take more hops to reach the destination.

When in greedy mode, a packet is routed to whichever directly connected neighbor is nearest the des-

tination. It is possible, when using this standard greedy algorithm, for a packet to be greedily routed down

a dead-end path since a node does not use multi-hop connectivity information to make the forwarding de-

cisions (it is generally assumed that a node using geographic routing does not know which nodes its di-

94



rectly connected neighbors are connected to). Note, however, that one by-product of the topology manage-

ment protocol described in Chapter 3 is that each node has computed its “opinion” of what the topology

should look like among the nodes of which it is aware. TAG introduces a modified greedy algorithm, called

topology-aware greedy routing, that utilizes this local topology information to make better routing decisions

when in greedy mode.

Similarly, nodes may use this local topology information to make better forwarding decisions when a

local minimum is reached, and face routing is started. By analyzing the local topology, a node is able to

suggest the best direction (clockwise or counter-clockwise) for a packet to begin exploring the boundary

of the face. In addition, the radius of the circle bounding the exploration can be strategically set to avoid

unnecessary exploration of the face boundary and expansion of the bounding circle. Note, however, that the

local topology information is only an “opinion” of what the topology should be, and occasionally differs

from the actual topology. This information, therefore, is only used to give hints of bounding circle size and

exploration direction to the underlying algorithm.

If the topology changes while a packet is exploring the boundary of a face, the packet can get caught in

a routing loop. Unlike most other geographic routing protocols, TAG is also designed to gracefully handle

situations where the topology changes while a packet is exploring the boundary of a face. To enable this,

nodes store the time-stamped previous connection for each data link. Whenever the topology changes, each

affected node for each of its affected data links stores the ID of the node previously connected to and the

time of the associated change in the topology. When packets reach a local minimum and begin exploring a

face boundary, a time stamp indicating the time at which the packet began exploring the face, is added to

the header. This time stamp combined with the stored previous connection information effectively enable

a distributed ’snapshot’ to be taken of the face boundary at the time a packet commenced routing around a

face. At each hop, nodes forward the packet around the face boundary as it existed at the time given in the

header, not the current face boundary. Doing so avoids routing loops resulting from a dynamic topology, but

requires special handling for situations where an edge of the original face no longer exists in the topology,

and requires that nodes store a small amount of extra data for each of their data links (the ID of the node

previously connected with and the time the connection ended).

The next several sections give more details about the TAG header, the TAG algorithms, and how each of

the optimizations introduced here actually work.

95



4.2 Shim Header

Before delving into the algorithm details, this section describes the contents of the small header added

by TAG to each packet in addition to the standard network headers. This “shim header” is similar to those

used in Dynamic Source Routing (DSR) [JM96], and Multiprotocol Label Switching (MPLS) [RVC01]. In

contrast to protocols such as DSR, however, the size of the header does not grow with the length of the

path or the size of the network. As described in Section 2.1.2.1, commercial aircraft are already required by

the FAA to exchange position information with nearby aircraft using the ADS-B system. Assuming such

a system is used to exchange positions, and assuming that the destination position is known by the sender,

the bytes in the TAG’s headers are the only overhead bytes that must be transmitted by TAG. No control,

update, or beacon messages are required. Table 4.1 lists and describes the contents of the header.

TABLE 4.1: The fields in the additional packet header.

Symbol Description Size (bytes) Size (bytes)

low-resolution higher-resolution

M Mode: GREEDY, FACE-FWD, 1 1

FACE-REV, or FACE-RETURN

D Destination Location (x, y) 2x16 bits = 4 2x32 bits = 8

d Destination Node ID 1 2

s Source Node ID 1 2

f Face Start Node ID 1 2

e first edge traversed (ID of 2nd node visited) 1 2

f d Distance from face start position to destination 2 2

cw Direction (clockwise or counter-clockwise) 1 1

r Radius of the bounding circle 2 2

tfaceStart time started face 2 4

total size (bytes) 16 26

The header first includes a mode flag, M. This value enables each packet to independently store which of

four modes it is operating in (greedy mode or one of three face routing modes that will be discussed shortly).

Next, the header includes the destination location D. Both greedy routing and face routing modes must know

the approximate destination location to be able to route the packet correctly. Each node is assumed to have

a single unique node identifier or node ID. This value could be the IP-address associated with one of its

interfaces, or it could be any other node unique value. The header next includes four node IDs: a destination

96



node ID, d, a source node ID, s, the ID of the node where the packet last began tracing the boundary of a

face (face start node ID), f , and e, the node ID of the second node visited (or to be visited) while tracing

the boundary of a face (the node visited directly after f ). In conjunction with f , e essentially encodes the

first edge traversed on the current face. Next, the packet includes f d, the distance from the latest face start

position to the destination position. Using this value a packet in face routing mode can determine when it

has advanced towards the destination. The Boolean cw value facilitates the choice of tracing a face boundary

in either a clockwise (right-hand rule) or a counter-clockwise (left-hand rule) direction. The radius of the

packet’s current bounding circle is stored in r. Finally, tfaceStart stores the time at which this packet began

tracing the boundary of a face.

Only the first three values are needed for greedy routing, and the remainder of the values are used only

for the face routing mode. The destination node ID is also optional, but helpful. When packets include the

destination ID it is possible to update the destination location when the packet visits a node which knows

the current position of the destination node (given the destination node ID). Also, the destination node ID

can be used to confirm that the packet has indeed arrived at the expected destination (not some other node

at that position).

The source node ID is only needed to support dynamic topologies or to support notifying the source

node of errors. f and e must be stored in the packet in order to accurately detect when a packet has traced

the entire boundary of the face separating the face start node from the destination. The tfaceStart value is also

only needed to support dynamic topologies.

The current implementation of the header used for simulation also includes two additional values. The

first value stores the node ID of the previous hop. It is assumed this information could be obtained in a real

system by querying the data link associated with the incoming interface. It is, therefore, not included in

Table 4.1. The second value stores the position of the face start node. It is needed only if the intersection

test described in Section 4.12 is enabled (and even then, only in rare cases). The packet need not store this

position for default operation when using the DC-GG topology generation algorithm, and it is not included

in the header for the simulation results presented in Chapter 5.

Assuming 16-bit values suffice for the radius value and location components (3 16-bit values per loca-

tion), and the time value also requires only 16 bits, 256 nodes could be supported with a 16-byte header, as

indicated in the low-resolution size column in Table 4.1. With an additional 4 bytes (20 bytes total), 65,536

nodes can be supported. The simulations in this work use a higher-resolution version of the packet where

97



26 bytes are used (also shown in Table 4.1).

As will be explained later, TAG’s shim header must sometimes become a stack of headers which is

generally limited to a depth of 2 headers. The maximum size of the header for all situations is then 26 bytes

for each of 2 headers plus a single 8-bit value to encode the number of headers in the stack. This gives a

maximum size of 33 bytes for the low-resolution header and 53 bytes for the higher-resolution header. To

overcome an implementation issue, the size of the stack of headers used in the simulations for this work is

73 bytes total. In addition to the 26 bytes described above, the implemented version of the header contains a

2-byte field storing the identifier of the previous hop. Further, each header in the implementation includes 8

bytes of unused space. The total size of each header is then 36 bytes, and the stack of headers then occupies

72 bytes plus an additional byte representing the number of headers, for a total of 73 bytes.

4.3 Greedy Routing

Greedy routing is the most basic component of TAG, therefore it is detailed first. Greedy routing requires

only knowledge of the positions of directly connected neighbors, and the position of the final destination.

As described in Section 2.1.6.2, the algorithm for determining a packet’s next hop in standard greedy mode

is simple; the packet is forwarded to the directly connected neighbor that maximizes the packet’s advance

towards the destination (minimizes the remaining distance to the destination). If the forwarding node is

closer to the destination than all of its directly connected neighbors, the packet has encountered a local

minimum and cannot make greedy progress. In this case, there is a void or hole in the topology that inhibits

greedy routing. When relying solely on greedy routing, packets reaching a local minimum such as this must

be dropped. If, however, other routing modes are supported (such as face routing), these modes must now

be employed to route the packet around this void. The packet must backtrack as necessary and then progress

until it reaches a point that is closer to the destination than where the local minimum was encountered. At

this point, greedy routing can again be attempted.

Assuming N represents the set of a node’s directly connected neighbors, t represents the target node and

dist() is a method that returns the linear (straight line) distance between two nodes, the function, g(N, t),

computes the greedy choice for the next node visited and is defined as:

g(N, t) = {n ∈ N | dist(n, t) is a minimum} (4.1)

98



s

t

a
b

c

e

f

d

g

h

Figure 4.3: An example topology used for several examples in this chapter.

Figure 4.3 shows a topology that will be used to investigate various conditions of the geographic routing

protocols. The topology is not necessarily derived from realistic aircraft positions, or produced with the

topology management framework, but it is designed to compactly exhibit several characteristics that do

occur in real topologies. In the figure, node s is the source node for a flow of packets and t is the target node

or destination for these packets.

s

t

a

d

g

(a) Greedy routing hop s to d.

s

t

e

d

(b) Greedy routing hop d to e.

t

e

d

(c) Greedy routing dead end.

Figure 4.4: An example of greedy routing in the example topology.

Figure 4.4 shows an example of greedy routing in this example topology. Each image shows the decision

process for a single hop as the packet makes its way toward the destination. Only the destination position

and the local information available to the greedy algorithm are displayed in each step. This local information

includes the local node’s position and the positions of directly connected neighbors. This local information

99



combined with the position of the destination (part of the state information contained in the special shim

header) is enough to enable greedy routing. In 4.4a the dashed circle centered at t and intersecting d shows

that d is clearly closer to t than a or g. Therefore the packet is forwarded to d. Notice that node s is

essentially unaware of node e when deciding to forward the packet to node d. The new local view at d is

shown in Figure 4.4b. Since e is the closest node to t that is directly connected d, the packet is forwarded to

e. Again note that in this case node d need not know anything about node g to greedily route the packet to

node e. After arriving at node e one could imagine that if e were directly connected to t the packet would

reach the destination on the next hop. The more interesting example, however, is to assume that e is only

directly connected to d, as shown in Figure 4.4c. In this case, the packet has reached a dead end or local

minimum, and cannot make greedy progress.

As described in Section 2.1.6.2, greedy routing is extremely efficient, but cannot reliably, by itself,

always deliver packets to their destinations. Greedy routing in a static topology requires only the destination

position value from the shim header. In dynamic topologies, the destination node ID is also needed to ensure

that a packet has reached the correct node and to update the destination position while the packet is en route.

4.3.1 Face Routing

Unlike greedy routing, face routing can generally deliver packets to their destinations reliably, but not as

efficiently. As described in Section 2.1.6.4, when greedy routing and face routing are combined, a synergy is

produced, resulting in a protocol that is both efficient and reliable. The basic face routing method described

here seeks to forward a packet from a local minimum, around the boundary of a face in the planar topology

graph, until a node closer to the destination is reached, or the packet explores the entire boundary of the face

and returns to the local minimum node. The boundaries of the faces that are explored are implicit, such that

an individual node need not be aware of the entire network topology that forms the boundaries of the faces

to which the node is adjacent. It is sufficient for nodes to store the positions of directly connected neighbors,

and for each packet to store minimal state information such as the node and position at which face routing

started, and the direction in which the face should be explored.

The face boundary is explored using the right-hand rule. This rule says that upon reaching a node y

having just visited a node x the next edge traversed should be the next edge sequentially counter-clockwise

about y from edge xy. Another way to think about the right-hand rule is to imagine that the edges are roads

and the vertices are traffic circles or roundabouts, where drivers drive on the right-hand side of the road. At

100



each roundabout, the packet is forwarded as if it were a car that always takes the first right exit from every

roundabout encountered.

The right-hand and left-hand rules can be formally defined as follows. Assuming a and b are directly

connected neighbors and pos() returns the 2-dimensional position of a node, the bearing θab (at a toward b)

is given by

θab = π + atan2(pos(b)y−pos(a)y,pos(b)x−pos(a)x) (4.2)

The atan2 function is an arctangent function that takes two arguments (y, x) that specify a point in

the plane and returns the measure of the angle between the positive x-axis and the given point. Unlike

arctangent, atan2 is able to determine the correct quadrant for the result and is able to correctly produce

a result of ±π/2, where arctangent breaks down (requiring a divide by zero). Using atan2 the angle at a

toward b can be computed. The result has π added to it to yield a bearing angle with a range between 0 and

2π .

Making use of equation 4.2, the difference in bearing angle at node k between incident edges from nodes

j and l can be computed using the following formula:

∆θ jkl =


θk j−θkl, if θkl < θk j

2π +(θk j−θkl), otherwise
(4.3)

This formula essentially computes the absolute value of the difference between two bearings. If the

result of the subtraction would yield a negative number, 2π is added to the value.

p

n1

c

n2

θcp

θcn1

θcn2

∆θpcn1

∆θpcn2

Figure 4.5: A depiction of the bearing calculations.

Figure 4.5 shows an example of the bearing calculations at node c for neighbor nodes p (the previously

visited node), n1, and n2. The arcs labeled θcp, θcn1 , and θcn2 indicate the bearing angles relative to the

101



negative x-axis. The arcs labeled ∆θpcn1 and ∆θpcn2 indicate the change in bearing between the given node

pairs relative to node c.

Assuming N is the set of the forwarding node’s directly connected neighbors, and that θcp is the incoming

bearing (at the current node toward the previous), then the next node in face routing mode using the right-

hand rule ( fr(N,θcp)) is given by:

fr(N,θcp) = {n ∈ N | ∆θpcn is a minimum} (4.4)

The right-hand rule essentially chooses the next hop that minimizes the change in bearing from the

incoming edge. If the left-hand rule is instead used, the next node visited is given by:

fl(N,θcp) = {n ∈ N | ∆θpcn is a maximum} (4.5)

In the example shown in Figure 4.5, a packet arriving at node c from node p would proceed to node n1

when using the right-hand rule.

An initial incoming bearing value must be determined before the first hop around a face boundary can

be computed. Since the face that the packet will explore is the face between the local minimum node and

the destination, an appropriate incoming bearing can be calculated by imagining that the packet just arrived

from the direction of the destination node, and calculate the incoming bearing as usual. If t is the destination

node and s is the source node, the initial incoming bearing (θsp) can then be given by:

θsp = θst (4.6)

Like greedy routing, face routing makes use of the destination position stored in the packet header. In

addition, the distance between the destination and the node where the current face began being explored

must be stored in the packet. This enables a packet to determine when it has reached a point closer to the

destination than where it began routing around the face. The packet must also store the first edge visited on

the face boundary. This information allows a packet to determine when it has explored the entire boundary

of a face.

An example of face routing is shown in Figure 4.6. This figure shows the decision process at each hop as

a packet is routed through the topology shown in Figure 4.3. This is the same topology used to demonstrate

102



t

e

d

(a) Face routing hop e to d.

s

t

e

d

(b) Face routing hop d to s.

s

t

a

e

d

g

(c) Face routing hop s to a.

s

t

a
b

e

(d) Face routing hop a to b.

t

a
b

c

e

(e) Face routing hop b to c.

Figure 4.6: An example of face routing in the example topology.

greedy routing. In this example, the packet transitions to face routing mode at node e, where the greedy

routing example encountered a local minimum. Note that each image shows only the local information

and header information used to make each forwarding decision. The dashed curve is a portion of the circle

centered at t. If this circle is crossed, progress has been made toward the destination.

In figure 4.6a, face routing commences for the packet. There is only one possible outgoing edge from

node e, so determining the next hop, in this case, is trivial. In general, however, to determine which edge

of the face a packet should visit first, imagine that the packet has just arrived from the direction of the

destination node, and forward the packet using the same logic used to explore the remainder of the face

boundary. That is, forward the packet over the next edge counter-clockwise about the current node from

the incoming edge (where the incoming edge is an imaginary edge from the destination node to the current

103



node, when starting face routing). At node d the packet the proceeds across the only other adjacent edge to

node s, as shown in Figure 4.6b.

At node s the packet can either be forwarded to a or to g as shown in Figure 4.6c. Node a is chosen

as the next hop since it is the first edge encountered while sweeping in a counter-clockwise direction (from

the perspective of the node) from the incoming edge. Another way to visualize this is to think of s as

an American-style roundabout, and the edges as roads. To follow the right-hand rule, upon entering the

roundabout a packet should always take the first exit. In this case, that first exit, after entering the roundabout

from the road to d, is the road (edge) that leads to a.

Note that the dashed line from e to d represents the first edge explored on this face boundary. This edge

is implicitly stored in the packet header by including the node ID of nodes e and d. The packet continues to

b and then c as shown in Figures 4.6d and 4.6e. At each hop, the right-hand rule is followed.

The packet has now reached a node that is closer to the destination than the node at which this face

began being explored. If face routing is combined with greedy routing, the packet can now attempt to revert

to greedy routing mode.

s

t

a
b

c

e

f

d

g

h

Figure 4.7: An example of face routing when the destination is unreachable.

Suppose that the topology was instead like that in Figure 4.7 such that b was connected to e instead of

c, and there was no edge from s to g, making the destination unreachable. In this case, if the left-hand rule

were used instead, face routing would proceed exactly as the previous example except that the packet would

proceed towards e after visiting b. Upon returning to e the packet would again apply the left-hand rule and

determine that the next edge explored would be that toward d. Since this next edge matches the edge first

explored by the packet (and stored in the header), the packet has certainly explored the entire face boundary,

104



and it can be shown that there is currently no route to the destination. At this point, the packet is dropped.

Note that if the right-hand rule were used, the result would be the same, but the nodes would be visited in

the opposite order.

s

t

a

b c

d

e

Figure 4.8: An example of face routing motivating the need for the first edge to be included in the
header.

Knowing the node where face routing started is not sufficient to determine that the entire face boundary

has been visited. For example, the topology shown in Figure 4.8 shows a situation where a packet enters the

network at node s and explores the boundary of the face visiting nodes a, b, c, and d, and then returning to

s. If the packet only used the starting node (and not the first edge explored) to determine if the entire face

boundary had been visited, the packet would be dropped upon returning to s, without visiting node e and

delivering the packet to node t. For this reason, each packet must also include the first edge visited. This

will ensure that situations like that shown in Figure 4.8 are handled appropriately, and the entire boundary

of a face is actually explored before the packet is ever dropped.

Using face routing as described here introduces a problem in topologies that are not unit disk graphs. In

such graphs there may be cases where no node is closer to the destination than the local minimum, however

the packet does reach a point on one of the edges that is closer to the destination. This situation will be

analyzed and fixed in Section 4.12.

4.4 Non-planar Topologies

Why must a topology be planar to support face routing? This section attempts to answer that question

by presenting a couple of pathological cases where a non-planar topology can cause face routing to fail to

deliver a packet to a reachable destination. This is, however, not intended to be an exhaustive coverage of

all pathologies.

Figure 4.9 shows a topology where the links between nodes a and e and nodes b and d cross, creating

a non-planar physical topology. When any greedy-face-greedy protocol is used to route a packet starting at

node s and heading to node t, the packet would immediately switch to face routing mode, since it has no

105



s t
a

b

e

d h

Figure 4.9: An example of a non-planar topology that thwarts face routing. The arrows trace the path
of a packet starting at s and using the right-hand rule in an attempt to get to t.

directly connected neighbor closer to the destination than itself. Using the right-hand rule (taking the first

right exit at the roundabout at each vertex) the path traced would be s, d, b, e, a, d, s, as indicated by the

arrows in the figure. Notice that although there is a path to t, face routing fails to find it, and drops the

packet.

The network topology could be made planar by adding a single node at the point of intersection of the

crossing connections. Face routing would succeed in this case since the packet would now advance from d

to the added node, and then on to e, h, and finally t.

s

t

a

b c

d

e

Figure 4.10: An example of a non-planar topology where face routing fails to forward a packet to a
reachable destination.

In Figure 4.10 another pathological case is displayed. Here the destination is on the interior of a face

but is not connected to the boundary of that face. The edge from e to t crosses the edge from a to b, making

the topology non-planar. Assume a packet starts at s and has t as its target or destination. Since s is closer to

the destination than either a or d, a packet using any greedy-face-greedy routing scheme would immediately

switch to face routing mode and would visit the nodes s, a, b, c, d, and then finally arrive back at node s.

The packet would be dropped and it would be assumed that the destination was unreachable, but there is a

path to the destination. Notice again, that the addition of a single vertex at the point of intersection of the

crossing links would allow the packet to be easily delivered (via the path s, a, t).

These examples emphasize the need for the topology used for face routing to be globally non-planar. If

this is not the case packet drops can be expected when these and other pathologies are encountered.

106



4.5 Greedy-Face-Greedy Routing

Combining Greedy and Face routing together yields a protocol that is efficient and reliable, as described

in Section 2.1.6.4. Efficient greedy routing is used whenever possible, and face routing is used to route

around “holes” or voids in the network topology when local minima are reached. In order to support both

greedy and face routing, a mode value is needed in the shim header.

The greedy-face-greedy algorithm works by first greedily advancing until either reaching the destination

or a local minimum. If the destination is reached, the packet is delivered, and TAG’s job is done. Otherwise,

upon reaching a local minimum, the packet changes to face routing mode and begins tracing, in a clockwise

direction (and only clockwise in Greedy-Face-Greedy routing), the boundary of the first face encountered

by a line segment extending from the local minimum node to the destination.

Greedy-face-greedy routing would follow the greedy path described in Figure 4.4, and then, by face

routing, the path described in Figure 4.6. After reaching a node located closer to the destination than where

face routing began, the packet would revert to the greedy routing mode. Figure 4.11 shows the final greedy

steps resulting in delivery of the packet. In Figure 4.11a the packet is forwarded from c to f , its directly

connected neighbor that is closest to the destination. Then finally in Figure 4.11b, the packet is forwarded

to the destination.

t

b

c

f

(a) Greedy routing hop c to f .

t

c

f

(b) Greedy routing hop f to t.

Figure 4.11: An example of Greedy-Face-Greedy Routing.

107



4.6 Bounded Face Exploration

A face can be explored in either a clockwise direction, using the right-hand rule or a counter-clockwise

direction, using the similar left-hand rule. However, for basic face routing packets are always routed in the

same direction. With the addition of a flag in the header indicating the direction a face is being explored,

packets can be routed in either direction. In general, however, there is no local information available to

determine which direction would be more optimal.

In some cases, the choice of which direction to explore a face can have a significant impact on the

efficiency of face routing. Take the topology in Figure 4.12, for example. In this topology the ellipsis

indicates some large number of hops between nodes c and y. Reaching the destination by exploring the

face between the source and destination in a counter-clockwise direction would require only 4 hops, while

exploring in a clockwise direction could require tens or even hundreds of hops. This is the worst case

scenario for face routing. Given only the local information at node s, it is generally impossible to determine

which direction will minimize the number of hops required to reach the destination.

s

t

a

z

g

h

bc

y f

...

Figure 4.12: An example of a topology where the face exploration direction makes a difference.

As described in 2.2.2.2.4 Adaptive Face Routing minimizes the impact of these worst case scenarios.

Adaptive Face Routing uses a boundary within which the packet will be face routed. If this boundary is

crossed while exploring the face in one direction, the packet returns to the local minimum node and then

explores the face in the opposite direction. If traveling around the face boundary in this direction would

also cause the packet to cross the boundary, the boundary is too small. The packet returns again to the local

minimum node and the boundary size is increased. This entire process is repeated until progress can be

made toward the destination or the entire boundary is explored. Like GOAFR+, TAG uses a circle centered

at the destination to bound the face exploration.

Figure 4.13 shows an example of adaptive face routing for the example worst case topology. The source

node is itself a local minimum, thus packets switch to the face routing mode immediately. When face routing

108



s

t

a

z

g

h

bc

y f

...

(a) The initial bounding circle radius does not allow progress in either direction.

s

t

a

z

g

h

bc

y f

...

(b) An expanded bounding circle allows the packet to reach the destination without having to visit all
the nodes along the clockwise face boundary exploration path.

Figure 4.13: An example of Adaptive Face Routing.

starts, a bounding circle is defined as indicated by the dashed line in Figure 4.13a, and the packet starts being

forwarded in a clockwise direction. The packet is forwarded to node a, but at this node it is determined that

continuing to explore the face boundary in this direction (toward b) would require crossing the bounding

circle. The direction in which the packet is exploring the face boundary is flipped to counter-clockwise,

and the packet returns to node s. The packet then continues to node f , where again exploration is stopped

because the next hop would cross the bounding circle. The exploration direction is again flipped and the

packet is returned to node s. The bounding circle is now expanded, as shown in Figure 4.13b, and the packet

visits nodes a and b before encountering the new boundary. The direction is again flipped, and the packet

makes its way back to s and then to nodes f , g, h, and finally to the destination node t. Although this path

required 8 hops more than the optimal path, it is much more efficient than exploring the numerous hops

along the clockwise path.

To support adaptive face routing, the packet must now include a flag to indicate in which direction the

face is currently being explored, and a value indicating the current radius of the bounding circle. In addition,

109



the face routing mode must now be split into three face routing mode values: FACE-FWD, FACE-REV, and

FACE-RET. Other parameters and formulas are needed to compute the initial radius and expanded radii of

the bounding circles.

One way to think about the face routing mode, when adaptive face routing is employed, is to imagine

that the packet is being routed around the face inside of an annulus (a ring-shaped object) centered at the

destination. Figure 4.14 shows an example of an annulus and a topology. The space inside the inner circle of

the annulus is closer to the destination than the local minimum node where this packet started (or re-started)

face routing. The radius of this inner circle is equal to the distance from the local minimum position to the

destination. The outer circle is the bounding circle whose radius was set when switching to face routing

mode. In Figure 4.14, a packet could route around the face boundary within the annulus from node a to b

to c and then to node d. If the packet crosses the inner circle, however, and the packet is forwarded to e, it

has made progress, and is now closer to the destination than when it began face routing. It may now safely

attempt to switch back to greedy mode. If, on the other hand, the packet would cross the outer circle on its

next hop, as is the case with node f , the exploration direction is flipped and the network nodes then forward

the packet such that it backtracks and explores the boundary in the opposite direction.

t

ab

c

d
e

f

Figure 4.14: A depiction of the notion of routing within an annulus centered at the destination.

As mentioned above, additional mode values are required to support adaptive face routing. Initially,

the packet begins face routing in the FACE-FWD (face forward) mode. If the boundary is encountered,

the direction is reversed and the mode changes to FACE-REV (face reverse) mode. The packet eventually

arrives at the node where it began face routing and continues tracing the face in the opposite direction. As

before, if the packet crosses the inner circle of the annulus it transitions to GREEDY mode. However, if

instead, on its next hop it would cross the outer bounding circle, the direction is again flipped, and the packet

110



transitions to the FACE-RET (face return) mode. This will cause the packet to backtrack all the way to the

node where it started face routing. Finally, the radius of the outer bounding circle is increased by multiplying

it by a configurable bounding circle increase factor (generally a value ranging from 1.4 to 1.5). Finally, the

packet begins the entire face routing procedure again, starting in the FACE-FWD mode.

While face routing, if the packet ever encounters the destination, it is delivered. If however, while in

FACE-FWD mode, the packet detects that it has traced the entire boundary of a face, then there is no path

to the destination and the packet is intentionally dropped. Dropping the packet at this point is actually a

critical benefit of Face Routing, for if the packet were allowed to continue trying to reach the unreachable

destination, it would waste valuable resources while looping indefinitely.

The following explanation gives some reasoning about why packets should be dropped after having

explored the entire boundary of a face. If, while exploring the boundary of a face in a globally planar static

graph, a packet returns to the node where it started routing around the face, and its next hop, according to the

right-hand rule (or left-hand rule if exploring in the opposite direction) would take it to the first node visited

while exploring the boundary (the entire boundary has been traced), and the packet never encountered any

location (at a node or along an edge between nodes) that is closer to the destination than where it started

routing around the face, then there is no path to the destination in the graph, and the packet should be

dropped. Consider that in a planar graph the edges segment the 2-dimensional space into a set of faces,

perhaps several internal faces and one external face which encompasses all other space in the plane. Face

routing attempts to explore the boundary of the face incident to the face start node and intersecting the line

segment from it to the destination. If the face whose boundary the packet is exploring is an internal face and

none of the points on the boundary come closer to the destination than the face start node, then the destination

must be inside of and disconnected from the face whose boundary was explored. If the destination node had

been connected to the graph there would have to have been some point on the boundary of the face that came

closer to the destination. The other possibility is that the face between the source and destination nodes is

the external face. In this case, the packet would explore the entire outside boundary of the entire connected

component. If the packet never advanced towards the destination around this external face, then it is clear

that the destination lies outside of and disconnected from the entire connected component.

If the packet attempts to find a node (not just a point) that is closer to the destination than the face start

node, this logic no longer always applies. In arbitrary planar graphs (such as graphs that are not unit disk

graphs) there can be situations where no node on a face boundary is closer to the destination than the face

111



start node. See Section 4.12 for more on how this situation can be handled.

Face routing assumes that the topology is static while the packet is in flight. When the topology changes,

packets can get stuck in routing loops. TAG is designed to deal with dynamic topologies as described later

in Section 4.11.

4.7 Base Protocol Implementation

This section includes the implementation details for the base version of TAG described thus far.

Before each packet begins its journey, the position of its intended destination must be determined. De-

pending on the type of network and destination node, the destination position may need to be obtained from

a separate location service such as [LJDC+00]. If the destination is a static gateway node, however, the

destination’s constant position may already be known by every node. It should be noted, as well, that TAG

is able to handle stale destination positions for distant nodes. These stale destination positions are updated

by TAG once the packet is within the position exchange range of the destination.

The STARTPACKET function initializes the shim header for a new packet at a source node. For each new

packet to be routed, the destination position and ID (D and d) are added to the shim header, along with the

source node (current node) ID. Every packet starts in GREEDY mode (M= GREEDY). The shim header is

attached to the packet and then the TAGFORWARD function, shown below, is called.

1: function STARTPACKET

2: h.M = GREEDY
3: h.s = self.id
4: h.D = destination position
5: h.d = destination id
6: TAGFORWARD(h)
7: end function

TAGFORWARD is the main routing function and is called at each hop along the path. If the packet has

reached its destination, the packet is delivered. Otherwise, various methods are called depending on which

mode the packet is in, with each method returning the ID of the node to which the packet should be sent

next. For packets in GREEDY mode, the GREEDYORREVERTTOFACE function is called to either send the

packet to the neighbor that is nearest the destination, or revert to face routing if the current node is a local

minimum. If the packet is in the FACE-FWD or FACE-REV mode, the FACECOMMON method is simply

called (detailed later). Lastly, for packets in the FACE-RETURN mode (in which the packet is returning to

112



the face start node), the next node to be visited while backtracking to the face start node is determined by

the RIGHTHANDFORWARD function. If, however, the packet has reached the face start node, the boundary

circle is expanded and face routing is restarted by (EXPANDANDRESTARTFACE).

1: function TAGFORWARD(h, incomingIf)
2: if h.d == self.id then
3: deliver packet
4: else
5: switch h.M
6: case GREEDY
7: next = GREEDYORREVERTTOFACE(h)
8: case FACE-FWD
9: next = FACECOMMON(h, incomingIf)

10: case FACE-REV
11: next = FACECOMMON(h, incomingIf)
12: case FACE-RETURN
13: if h. f == self.id then
14: next = EXPANDANDRESTARTFACE(h, IncomingIf)
15: else
16: next = RIGHTHANDFORWARD(h, false)
17: end if
18: drop packet on failure, otherwise forward to next and call TAGFORWARD

19: end if
20: end function

1: function GREEDYORREVERTTOFACE(h)
2: next = GREEDYFORWARD(h)
3: if next == failure then
4: next = STARTFACE(h)
5: end if
6: return next
7: end function

1: function EXPANDANDRESTARTFACE(h, incomingIf)
2: h.r = h.r * ρ

3: return REVERSETHEDIRECTION(h, incomingIf)
4: end function

The FACECOMMON method first determines the proposed next node to be visited according to the right-

hand rule. If the packet is (1) in FACE-FWD mode, (2) at the face start node f , and (3) expected to

visit node e next, the packet has made a full loop around the face, and it is dropped because there is no

route to the destination. If instead, the packet reaches a node that is nearer the destination than the face

113



1: function GREEDYFORWARD(h)
2: N = self.directlyConnectedNeighbors + self.id
3: nearest = g(N,h.D) . see Equation 4.1
4: if nearest == self.id then
5: return failure
6: end if
7: return nearest
8: end function

1: function RIGHTHANDFORWARD(h, starting)
2: if starting == true then
3: previous = h.D
4: else
5: previous = position of node at previous hop
6: end if
7: current = self.position
8: N = self.directlyConnectedNeighbors
9: incomingBearing = π + atan2(previous.y-current.y, previous.x-current.x) . see Equation 4.2

10: if h.cw == clockwise then
11: return fr(N, incomingBearing) . see Equation 4.4
12: else
13: return fl(N, incomingBearing) . see Equation 4.5
14: end if
15: end function

1: function REVERSETHEDIRECTION(h, incomingIf)
2: if h.cw == clockwise then
3: h.cw = counter-clockwise
4: else
5: h.cw = clockwise
6: end if
7: return node connected to incomingIf
8: end function

114



start node, GREEDYORREVERTTOFACE is called. This method starts greedily routing unless this node is

found to be another local minimum, in which case face routing is started on the face between this node

and the destination. Ignoring, for now, the highlighted code, if the proposed next node lies outside the

bounding circle, then we REVERSETHEDIRECITON in which the packet is traveling (changing directions,

for example, from clockwise to counter-clockwise). If the packet had been in FACE-FWD mode the mode

is changed to FACE-REV mode. If instead, the packet is already in FACE-REV mode the mode is changed

to FACE-RETURN. In some cases, the packet is already at the face start node so the FACE-RETURN mode

is skipped and the bounding circle is immediately expanded (by multiplying it by a bounding circle increase

factor) and face routing is restarted with EXPANDANDRESTARTFACE.

Other pseudocode methods are provided for completeness, but are not detailed here.

1: function FACECOMMON(h, incomingIf)
2: next = RIGHTHANDFORWARD(h, false)
3: if h.M == FACE-FWD and self.id == h. f and next == h.e then
4: return failure . No route to destination, drop
5: end if
6: if DIST(self.position,h.D) <DIST(h.F ,h.D) then
7: return GREEDYORREVERTTOFACE(h) . Fall back to greedy
8: end if
9: if INTERSECTS(F, D, self.position, next.position) then . only if intersection mode is enabled

10: return STARTFACE(h)
11: end if
12: if DIST(next.position, h.D) >h.r then
13: next = REVERSETHEDIRECTION(h, incomingIf)
14: if h.M == FACE-FWD then
15: h.M = FACE-REV
16: return next
17: end if
18: if h. f == self.id and h.e == next then
19: return EXPANDANDRESTARTFACE(h)
20: end if
21: h.M = FACE-RETURN
22: return next
23: end if
24: return next
25: end function

115



1: function STARTFACE(h)
2: h.M = FACE-FWD
3: h. f = self.id
4: h. f d = DIST(h.D, self.position)
5: h.F = self.position . used only if intersection mode is enabled
6: nearest = FINDCONNECTEDNODENEARESTPOSITION(h.D) . only if topology-aware enabled
7: h.cw = RIGHTWAYTOREACH(nearest) . if not topology-aware, always clockwise
8: h.r = SMARTRADIUS(nearest, h.D) . if not topology-aware, DIST(F ,D) * ρ0

9: next = RIGHTHANDFORWARD(h, true)
10: h.e = next
11: h.t f aceStart = time.Now()
12: return next
13: end function

4.8 Topology Awareness Overview

When a packet initiates face routing, it can proceed in a clockwise direction (right-hand), or decide

instead to travel in a counter-clockwise direction. If topology information is available, it can be used to

make a better choice of the face boundary exploration direction. Similarly, if some topology information

is available, the initial radius of the bounding circle can be set intelligently. Topology information can

also assist in the selection of the next hop for greedy routing, enabling a more optimal greedy choice. A

topology-aware greedy hop, however, must always make progress towards the destination.

To enable this enhancement local topology information could be exchanged periodically via some other

protocol. This would incur an overhead penalty. However, as described previously, in the case where a

topology management protocol is employed, the local topology information may already be known by each

node. In protocols such as LTRT [MNAK09] nodes use the positions of their neighbors to compute their own

view of the local topology and make local transmission power decisions, ultimately controlling the network

topology. Similarly, networks supported by directional links (where nodes share position information) can

use a similar distributed topology management protocol to determine where to point their directional links.

The nodes in these networks already have the local topology information necessary to benefit from this

enhancement without any extra overhead.

Since this local information is essentially only used to provide “hints” to the geographic routing con-

structs, it doesn’t need to match the actual global topology. If a packet starts face routing in a direction that

looked promising given the local topology but is found to be bad, it will eventually turn around and go the

other way. If a chosen bounding circle size is too small, it will eventually be increased. This is important

116



because in the case where local topology management protocols are used, the local topology information

does not always match the global topology.

4.9 Topology-Aware Greedy Routing

Enhancements to the base algorithm that utilize the local topology information are described in this and

the following section (Section 4.10). One form of this local topology information is the by-product of the

topology management protocol described in Chapter 3.

This local topology information can be used to make greedy routing more efficient. In some cases “pure”

greedy routing will route a packet down a dead end. If the topology or an opinion of the topology, among

nearby nodes is available, these extra hops can be avoided.

To determine the next topology-aware greedy hop for a packet, a forwarding node determines the set of

nodes to which there is a path in the local topology. Next, the forwarding node determines which node in this

set is nearest the destination (or is the destination), and computes the shortest path to this waypoint node. If

the first hop along the computed path would advance the packet, causing it to move closer to the destination,

then the packet is forwarded across that first hop. Otherwise, if the first hop doesn’t advance toward the

destination, the forwarding node removes the connected node nearest the destination from consideration

and determines which node from the set is now nearest the destination (the second nearest overall). This

continues until a next hop is found that makes progress, or it is determined that the local node is the nearest

to the destination of all the nodes in its community to which it has a path in the local topology. In the latter

case, the packet has reached a local minimum, and face routing takes over.

Figure 4.15 shows the decision process for the first topology-aware greedy hop taken in the same topol-

ogy shown in Figure 4.3 and analyzed previously. Figure 4.15a shows the local view at the source node s

for the example set of nodes. This local view includes only the topology connections incident at s and the

positions of nodes in its community. When using “pure” greedy routing, only the positions of the directly

connected neighbors are used to make the forwarding decision. In this example, it is easy to see that node d

is closer to t than node a and would, therefore, be the greedy choice for the next hop. Unfortunately, as seen

previously, forwarding toward d would lead the packet down a dead end, that would have to be retreated

from, ultimately requiring four extra hops to reach the destination.

Consider, however, if topology-aware greedy routing were instead used. If the positions of other nearby

117



s

t

a
b

c

e

d

g

(a) The local view at node s, including the posi-
tions of nodes of which it is aware (in its commu-
nity), and the direct connections to s.

s

t

a
b

c

e

d

g

(b) Local topology among the community nodes.
c is the community node nearest to t, that has a
path to s in the local topology. The arrow shows
the shortest path from s to c. The dashed lines
represent topology connections not incident to the
forwarding node.

s

t

a
b

c

e

d

g

(c) The first hop along the shortest path to c.

Figure 4.15: An example motivating the advantages adding topology awareness to the normal Greedy
mode.

nodes were available, this position information could be used to construct an “opinion” of what the global

topology likely looks like in the local area. This local topology is already frequently computed at each

node when using the topology management framework. If a different topology management scheme were

instead used, the local topology could be easily computed given the positions of nearby nodes. Figure 4.15b

shows this forwarding decision process at node s. Notice that the topology connections not incident to the

118



forwarding node (s) are dashed, indicating that they are only an opinion of the topology, and the actual

topology could differ. Generally, however, the local topology matches the global topology fairly well, and it

can be used to strategically make better greedy routing decisions.

The forwarding node first determines which of all the nodes to which it has a path in the local topology,

is nearest to (or is) the destination. In this example, node c (highlighted in the figure) is the node nearest the

destination to which there is a path from node s. Next, the shortest path to this waypoint node is calculated

and found to be {s, a, b, c}. Since a is closer to t than s, this hop satisfies the advancement requirement, and

the packet is forwarded to a, as shown in Figure 4.15c. If the first hop towards c did not advance towards the

destination, then the first hop on the shortest path to the 2nd nearest node to the destination would be tested.

Then the 3rd closest would be tested, and so forth until the first hop on the shortest path advances toward

the destination.

s

t

a

b

c

e

d

g

(a) The result if the next topology-aware greedy
hop was not required to make progress. It would
be routed toward a.

s

t

a

b

c

e

d

g

(b) If the edge between a and b didn’t exist, then a
would have to forward the packet back to s, caus-
ing the packet to entered a routing loop.

Figure 4.16: An example that motivates the need for the next topology-aware greedy hop to make
progress toward the destination.

The requirement that the next greedy topology-aware hop is to a node that advances the packet toward the

destination is important since the actual global topology of the network can differ from the local topology.

Figure 4.16 shows a case where not requiring the next hop to advance towards the destination can result in

a routing loop. In this example, node a is further from the destination than node s. Also, for some reason,

assume that the connection between a and b is not actually a part of the global topology, though, as shown in

119



Figure 4.16a, node s thought it should be and it was a part of s’s local topology. If the next topology-aware

greedy hop was not required to advance the packet toward the destination, the chosen next hop would be

toward a, since c is the nearest connected node to the destination t, and a is the first hop on the path to c.

Once the packet arrives at a, the local topology would not include the edge to b, and a would now attempt

to use topology-aware greedy routing to route the packet given its local view of the network. According to

a, node e is the node nearest the destination to which it has a path in the local topology. The first hop in the

shortest path toward e is back to s. However, no state has changed at either node or in the packet header.

Therefore, s forwards the packet right back to a, and the packet has entered a routing loop.

Assuming that M is the set of nodes in the same connected component as the forwarding node, and t is

the destination node, the equation for the waypoint node or the connected node in the local topology nearest

the destination is:

w(M, t) = {m ∈M | dist(m, t) is a minimum} (4.7)

4.10 Topology-Aware Face Routing

The local topology information can also be used to improve the performance of forwarding a packet in

face routing mode. The node forwarding the packet can use its “opinion” of what the topology among nodes

in its community should be, to determine the best direction to begin forwarding the packet around a face,

and to determine the best initial radius for the circle bounding the exploration of the face boundary.

4.10.1 Initial Face Exploration Direction Choice

Remember, as shown in Figure 4.12, there can be cases where the choice of face boundary exploration

direction can make a huge difference in terms of routing efficiency. Remember also that adaptively bound-

ing the face exploration helps us avoid the worst case scenarios, but at a cost of often having to backtrack

multiple times, increasing the number of hops in the average path. Without using extra information, upon

reaching a local minimum, packets must still essentially guess the direction in which it is best to begin ex-

ploring the bounded face. Also, the initial bounding circle radius must likely be set based only on the current

distance of the node from the destination. This leads to inefficiencies in the forwarding paths as sometimes

the default initial circle radius is too small and must be expanded multiple times. The available local topol-

ogy information can offer information to make better decisions about the initial exploration direction and

120



the bounding circle radius.

To determine whether a packet should be forwarded in a clockwise or counter-clockwise direction

around a face boundary, the forwarding node identifies the set of nodes in its community to which there

is a path in the local topology. This set of nodes can also be thought of as the set of nodes in the same con-

nected component as the forwarding node in its opinion of what the local topology among the community

nodes should be. Just as in the greedy topology-aware mode, the node in this set nearest the destination is

identified, and the shortest path to that node in the local topology is determined (using Dijkstra’s algorithm).

The forwarding node then attempts to determine which direction around the face best matches this shortest

path. If one direction matches the identified shortest path better than the other, face routing proceeds, routing

around the face in that direction. Otherwise, the packet defaults to routing in a clockwise direction.

To determine which direction best matches the shortest path, the forwarding node reverses the prede-

cessor list created by computing the shortest path to the node nearest the destination, yielding a successor

list. This list allows the hops along the shortest path to be analyzed one at a time. Starting at the forwarding

node, the options for the next node to be visited are determined. The nodes that would be visited going in

both a clockwise direction and a counter-clockwise direction around the current face are considered. If the

next hop along the shortest path computed matches the next hop around the face in a clockwise direction

then the face routing direction is set to the clockwise direction. If, however, the next hop along the shortest

path matches the next hop around the face in a counter-clockwise direction, the face routing direction is set

to counter-clockwise.

Figure 4.17 shows examples of some of the cases possible when using this strategy. Figure 4.17a shows

an example local topology similar to others studied in previous sections. Node c (highlighted) is the node

nearest the destination of which s is aware and to which there is a path in the local topology. The shortest

path to c is shown by the curved arrow. The line between s and t is there only for reference and does not

represent an actual connection. When determining the first face routing hop, one can imagine that the packet

has just arrived across this imaginary connection to the destination, and use the right-hand rule as normal. In

this case, using the right-hand rule (clockwise) the packet would next visit a. However, using the left-hand

rule (counter-clockwise) the packet would next visit node g. The first hop on the shortest path is a. This

matches the first hop when exploring the face in the clockwise direction, thus the exploration direction is set

to clockwise and the packet is forwarded to node a.

In contrast, if node h and its connection to g were added, as shown in Figure 4.17b, a different result

121



s

t

a
b

c

g

(a) An example topology where a packet would
begin routing around the face in a clockwise di-
rection, given the topology information. The lines
between s and t in these figures do not represent
connections between the nodes, but are there only
for reference.

s

t

a
b

c

g

h

(b) An example topology where a packet would
begin routing around the face in a counter-
clockwise direction, given the topology informa-
tion.

s

t

a
b

c

j

d

g

(c) An example topology where the first hop in
both the clockwise and counter-clockwise direc-
tions around the face leads to the same next hop
node d.

Figure 4.17: Examples demonstrating selecting the face exploration direction based on the local topol-
ogy.

122



would be obtained. Node h is now the nearest node to the destination that is also reachable along a path

from s in s’s local topology. The shortest path to h is shown by the curved arrow. Since the first hop along

the shortest path matches the first hop while exploring the face boundary in the counter-clockwise direction,

the direction of face boundary exploration for this phase of face routing is set to counter-clockwise.

It is possible, also, that both the counter-clockwise and clockwise directions around the face will visit

the same node in the next hop. In this case, the second hops exploring the face in both directions in the

forwarding node’s local topology are compared with the second hop in the shortest path. If these too are the

same, the third hops are compared, and so forth. This continues until either the destination is reached, or

there is a divergence in the paths exploring the face in both directions. In the former case it doesn’t matter

which direction is taken, the result will be the same. In the latter case there are three possible outcomes:

(1) the divergent hop in the shortest path matches the clockwise exploration path, (2) the divergent hop in

the shortest path matches the counter-clockwise exploration path, and (3) the divergent hop in the shortest

path matches neither direction’s exploration path. In the first two cases, the direction is set equivalent to the

direction in which the paths ultimately matched. In the last case, the shortest path does not go around the

face, in which case the packet defaults to traveling in a clockwise direction.

Figure 4.17c shows an example where there is no difference between the path taken exploring the face

boundary in a clockwise and counter-clockwise direction until the 3rd hop. The line segment from s to t is

again just for reference and is not an actual edge in the network topology. Node s would first compute the

shortest path to c (the nearest node to the destination to which s has a path in the local topology). Since the

first face routing hop when exploring the face in either direction from s is d, the forwarding node must look

farther along the path to develop an exploration direction preference. The next hop from node d exploring

the face in either direction is j. The forwarding node still can deduce no preference for face exploration

direction. The third hop exploring the face in both directions is determined, and finally, there is a difference.

If the clockwise direction is used, the third hop around the face is to node a, as is the third hop in the shortest

path to c. Therefore, the clockwise direction is likely the best direction in which to explore this face.

There is still one other case to cover, and that is if the node is the nearest node to the destination among

all the nodes in its community. This situation will most likely only occur when the node density is low.

In this case, one more heuristic is employed that has shown a small decrease in the mean number of hops

between pairs of nodes. The forwarding node counts the number of nodes in the community to which there

is no path in the local topology from the forwarding node. The number of such nodes on either side of the

123



line from the forwarding node to the destination is determined. If there are more disconnected nodes to the

left side of this line (from the point of view of the forwarding node facing the destination), then the packet

is forwarded in a clockwise direction. Otherwise, the counter-clockwise direction is used.

4.10.2 Face Exploration Initial Bounding Circle Radius

The bounding circle radius is the other parameter controlling the face routing phase that can be intelli-

gently set by making use of the available local topology information. Remember that the circle bounding

the face exploration helps eliminate worst-case scenarios where there is a large disparity in the number of

hops required to explore the face boundary in one direction versus the other. If the initial radius is set too

small, the face boundary would be explored partially in both directions, and then the radius would have to be

increased and the process repeated. If the radius were set too large, a larger portion of a face boundary may

be inefficiently explored before hitting the boundary. Upon exploring in the opposite direction it is possible

the packet may find it is able to reach the destination in only a small number of hops.

To determine the appropriate radius of the bounding circle, the forwarding node uses the same shortest

path to the nearest connected node that was derived for computing the best exploration direction. The node

along this shortest path that is furthest from the destination is identified, and the radius of the bounding circle

is set to that node’s distance from the destination plus some small safety factor. This safety factor seeks to

ensure that even if the node is moving away from the packet’s destination, the node will remain within the

boundary until the packet has passed.

Figure 4.18 shows an example of how this works on an example topology. Having started at a local

minimum at node s, the packet must now route around a face (that is only partially visible in the local

topology). As in previous examples, node c is determined to be the nearest node of which s is aware, and

to which it is connected. The shortest path to c is determined, and node j (highlighted) is determined to be

the node furthest from the destination along the computed shortest path. The radius of the bounding circle

for the packet starting face routing is then set to a distance slightly longer than the distance from t to j. The

result is a bounding circle (shown just below j at the bottom of the figure) that includes the entire anticipated

path of the packet around the face, as shown in the figure.

124



s

t

a
b

c

j

d

g

Figure 4.18: An example showing how the radius of the bounding circle is determined.

4.10.3 Implementation Summary

This section provides an overview of how the principles described above can be incorporated into the

base implementation pseudocode presented in Section 4.7.

The topology-aware aspects can are inserted into the face routing function using the STARTFACE func-

tion. This function is called any time a packet is to begin routing around a face. Its purpose is to set up

the header values correctly for face routing. The highlighted lines of pseudocode are the only lines added

or changed to support topology awareness. As a reminder, two nodes are considered connected if the local

topology graph contains a path between them, and two nodes are considered directly connected if they are

connected with a path of length one hop. The FINDCONNECTEDNODENEARESTPOSITION function uses

the available local topology graph to find and return the ID of the node nearest the destination to which there

is a path from this node.

An additional function, RIGHTWAYTOREACH takes the nearest node ID and determines which direction

(counter-clockwise or clockwise) face routing should proceed to efficiently reach the nearest node. This

is far better than the base protocol, where faces boundaries were always initially traced in a clockwise

direction. Lastly, the SMARTRADIUS function determines the appropriate radius value for the bounding

circle. Previously, as in GOAFR+ this value was set to the product of an initial radius factor and the distance

from the face start location to the destination location. The SMARTRADIUS function determines which node

on the path to the “nearest” node is furthest from the destination and uses that distance (plus a small safety

factor) as the radius value, ensuring that expected path can be traveled without increasing the radius. In cases

125



where the “nearest” node is the current node, the radius is set such that the bounding circle encompasses the

entire area within which the local topology is known (the community).

1: function SMARTRADIUS(nearest, h.D)
2: if nearest != self.id then
3: return GREATESTDISTANCEFROMDESTONPATHTO(nearest, h.D)
4: end if
5: return DIST(self.position,h.D) + communityRange
6: end function

4.11 Dynamic Topology Support

Standard face routing can fail miserably when the movement of nodes causes changes in the topology.

The example in Figure 4.19 shows how this can happen. Figure 4.19a shows a snapshot of the example

topology at an initial point in time. Note that unlike some previous examples, here the entire global topology

is plotted, though nodes aren’t aware of the global topology. A packet began face routing at node s and has

explored the boundary of the face in the clockwise direction, visiting nodes d, and j. While the packet is at

node j a new edge between nodes a and d is added to the topology as shown in Figure 4.19b. As the packet

continues routing around the face it will visit node a, and then, blindly following the right-hand rule (taking

the first right at the roundabout at a), it will travel across the new edge in the topology back to node d, as

shown in Figure 4.19c. Since the packet doesn’t store a list of nodes it has visited, the packet is unaware that

it has already visited this node. The packet would continue on to node j and then to a and would continue

in this routing loop. Assuming there were no Time-to-Live (TTL) field associated with the packet, it would

continue in this loop until the topology changed sufficiently and/or the nodes moved significantly.

Most other geographic routing protocols assume a static or quasi-static network topology, suggesting

that the routing is so fast compared to the node movement that no topology changes happen while a packet

is in flight. This is obviously not realistic in a network with high link utilization, as there will always be

packets flowing, some of which will be affected by a topology change. To our knowledge this work is

the first to propose a greedy-face-greedy style geographic routing protocol that can operate correctly on

topology graphs that are changing rapidly.

126



s

t

a
b

c

j

f

d

g

h

(a) A packet is forwarded from s to d and then j
as it explores the boundary of the face.

s

t

a
b

c

j

f

d

g

h

(b) The connection from a to d is added to the
topology while the packet is at node j.

s

t

a
b

c

j

f

d

g

h

(c) The packet then is forwarded toward a, and
then over the new connection, toward d, following
the right-hand rule. The packet is now stuck in a
routing loop.

Figure 4.19: An example motivating the need for TAG to support fully dynamic topologies.

4.11.1 Dynamic Topology Support Approach

As mentioned, TAG is able to overcome the issues with using face routing in dynamic topologies. The

idea is to essentially take a snapshot of a face, in a distributed manner, each time a packet begins tracing a

face boundary. The snapshot, not the potentially changed current topology, could then be used to determine

how to forward the packet around the face even when the topology changes.

Consider again the example in Figure 4.19b. If node a had such a snapshot, it could determine that the

new connection between a and d did not exist when the packet began face routing. The packet could instead

be forwarded to node b as if the new connection didn’t exist.

127



What if, however, instead of the link between a and d being added to the graph, it was instead taken

away? Assume that Figure 4.19b shows the topology of the network at the time a packet starts routing

around the face, and that Figure 4.19a shows the topology shortly thereafter. Assume further that the packet

starts at node s, where it takes a virtual “snapshot” of the face that includes the connection from a to d.

While the packet is in flight toward node d, assume the link from a to d goes away. In this case, the packet is

unable to explore the original boundary. What is needed is a way to get the packet to node a and allow it to

continue to traverse the face from there. Unfortunately, the direct path no longer exists. However, the packet

could instead, take an indirect path to node a, traveling through node j. Section 4.11.3 gives the details on

how this is done, but first the procedure to store the snapshot of the face boundary is described.

4.11.2 Storing the Snapshot

How can this virtual snapshot of a face boundary be implemented in a distributed manner? First, a time

field (tfaceStart) is added to the TAG header that corresponds to the time at which the current face boundary

began being traced. Second, every node maintains a table containing the time-stamped position and ID of

the last node each of its links were directly connected to. The amount of storage required for this table is

minimal and is limited by the maximum degree of each node. When a node needs to determine where to

forward a packet as it travels around a face, it need only use the time stored in the packet to look up the

IDs and positions of the nodes it was connected to at the given time. The forwarding node can then make

the routing decision it would have made at the time the face routing began, and the virtual “snapshot” was

taken.

4.11.3 Via-Points

The proposed method works until the rare situation is encountered where a node is no longer directly

connected to the next node on the face snapshot. This is overcome by noting that the routing protocol allows

a packet to be routed to any node whose position and ID are known. Since the position and ID of the next

node along the boundary of the snapshot face are known, the ultimate destination is overridden, briefly, and

the new focus of the packet becomes reaching the next intended stop along the face, called the “via-point”.

The shim header becomes a stack of shim headers, and a new header whose destination is the via-point is

pushed on the stack. The packet is now forwarded like any new packet, toward the via-point. Once the

via-point is reached, the header is popped off, and the packet is ready to continue routing around the original

128



face, having “virtually” traced the face edge that no longer exists.

4.12 Topologies that are not unit disk graphs

Previously it was mentioned that TAG’s implementation had a flaw when topologies are non-unit disk

graphs and certain topology generation algorithms are used. In this section, the strategy for overcoming

this flaw is explained. Remember that a unit disk graph contains an edge between any pair of nodes whose

separation distance is lower than some maximum range. Topologies facilitated by omnidirectional data links

can be theoretically modeled by a unit disk graph, however, in reality, such assumptions of connectivity

are flawed because they discount real-world effects, such as physical blockages attenuating the signal and

breaking the connection between a pair of nodes. Similarly, the topologies produced by the Topology

Management framework described in Chapter 3 are not unit disk graphs.

The face routing algorithm described above assumes that at some point while traveling around any face

one of three events will occur: (1) the packet will arrive at the destination, (2) the packet will arrive at a

node that is closer to the destination than the node at which face routing began, or (3) only if there is no

route to the destination, the packet will arrive back at the node at which it started, having explored the entire

face boundary. The implied assumption in these cases is that either there is a node closer to the destination

on the face that stands between the start node and the destination, or the destination is unreachable. This

assumption is true in a unit disk graph, but what of the scenario shown in Figure 4.20 where s is the source

of a packet, t is the destination, and the plotted circle encompasses the space that is closer to t than s? Note

that b and c are both outside the large circle, and both are further from t than s. If this were a unit disk

graph, the fact that b is connected to t would imply that s should also be connected to t since it is closer (by

definition of unit disk graph). Note also that s is a local minimum. Since this topology is not a unit disk

graph, tracing the boundary of the face from s to b to c brings the packet back to s without finding any node

that is closer to t. This violates the assumption of the proposed routing scheme since there is a route to the

destination through b or c.

To overcome this issue three lines of code are added to the FACECOMMON function (10-12 highlighted

in pseudo code shown previously in Section 4.7). As the packet moves around the face, the line segment

representing the next edge to be traversed is intersected with the line segment extending from the face start

position to the destination position in a manner similar to basic face routing [KSU99]. If an intersection

129



s

t

b

c

Figure 4.20: An example of a topology that violates the Unit Disk Graph assumption.

is detected, face routing is simply restarted at the current node. The packet will then seek to navigate the

face between the current node and the destination. Depending on the geometry of the graph, the next face

traversed may not be the next face encountered by the line that intersected the edge, however, progress

towards the destination has been made. This very simple change to the algorithm allows it to conquer the

potential issues with non-unit disk graphs. This technique ensures that even if no nodes around a face

boundary are closer to the destination than the face start node, the packet will not be dropped incorrectly,

but will instead appropriately transition to the next face.

This feature can be enabled or disabled in TAG, depending on whether or not the chosen topology

generation algorithm generates topologies with these pathologies. For most of the simulations in this work,

this feature was disabled and the DC-GG topology generation algorithm was used.

4.13 Simulation Results and Evaluation

To evaluate TAG, the results of a few simulations are presented here that demonstrate the advantages of

TAG compared with other geographic and MANET routing protocols. More simulation results of various

experiments using the topology management framework and TAG are presented in Chapter 5. In this chap-

ter, first, the results of simulating the protocol in a theoretical square field (as in [KWZ03b]) are reported,

randomly placing static nodes on a plane in a square measuring 20 units on each side. Next, a study com-

paring TAG and OLSR is described. Finally, results from a more realistic simulation are presented, where

mobile nodes trace the paths traveled by over 600 actual aircraft moving at hundreds of miles per hour.

4.13.1 Simulation Environment

The ns-3 [RH10] network simulator (version 3.23 and 3.26) is used for the evaluation experiments. The

default ns-3 implementation of OLSR is used. Since these protocols are not included in ns-3, a custom

130



implementation of GFG and GOAFR+ developed for this work are used. Since the goal at this stage is to

measure the performance of the routing protocol without interference from the environment or other layers

of the stack, perfect wireless links and a collisionless MAC layer are assumed. Perfect links imply that no

packets are dropped at the link layer and that the directional links are able to re-point and reconnect instantly.

Instant re-connection could essentially be accomplished by doubling the number of links and allowing one

to remain connected while its counterpart prepared to establish the next connection. A collisionless MAC

layer is also not so unrealistic for directional links where interference is less common given the directional

nature of the connections. Further, it is assumed (as in [KWZ03b]) that all position information required

by the geometric routing protocol is available without extra communication overhead. This includes a

node’s knowledge of its position and the positions of nearby nodes (nodes within the position exchange

range of 288 km or 1.44 units), as well as each source node’s knowledge of the destination positions of its

flows. Remember, for the airborne network application, the positions of nearby nodes are already regularly

updated via an independent FAA-required system. Finally, all nodes are assumed to have a synchronized

time reference, such as that available via GPS.

Table 4.2 lists the pertinent input parameters and simulation default values.

TABLE 4.2: The TAG parameters for this simulation.

ρ0 Initial Bounding Circle Radius 1.4

(non-topology-aware version only)

ρ radius increase factor
√

2

c position exchange range 1.44 or 288 km

l maximum link range 1.0 or 200 km

n links per node (degree) 3

u topology update rate once per second

4.13.2 Varied Density with a Static Topology

First the performance of TAG, GOAFR+(ρ0=1.4, σ= 1
100 ), and GFG are compared on a static topology

using the hop stretch and path stretch metrics [LML05]. Hop stretch is the ratio of the number of hops

required by a routing protocol to reach the destination t to the number of hops on the shortest path (in terms

of hops) between s and t. Similarly, path stretch is the ratio of the Euclidean length of the path taken by a

packet to the Euclidean length of the shortest path between s and t. Lower path and hop stretch values imply

131



better performance for the geographic routing protocol.

For this experiment the number of nodes is increased from a density value of 1 to a density value of

20 nodes per unit disk. As a reminder, a density value of 5 implies that on average each node will have

4 other nodes within communication range (within its unit disk). For reference, in this experiment, the

density values 1 and 20 correspond to 128 and 2547 total nodes, respectively. For each run, a source node,

s, and a destination node, t, were randomly selected from the simulated nodes. A single UDP packet was

then sent from the selected source node towards the destination node. The number of hops taken by the

simulated routing protocol was recorded, as were the number of hops in the shortest path from the source to

the destination. Figure 4.21 shows a plot of the resulting hop stretch values for the various protocols.

5 10 15 20
network density (nodes per unit disk)

0

1

2

3

4

5

6

7

8

9

ho
p 

st
re

tc
h

connectivity
GFG
GOAFR+
TAG

0.0

0.2

0.4

0.6

0.8

1.0

co
nn

ec
tiv

ity

Figure 4.21: A comparison of hop stretch values as node density increases.

Each point on the figure represents the mean value for 2,000 trials (each with a random set of node

positions and source, destination pair). Also plotted on the right y-axis is the connectivity of the network at

the given densities. The results can be divided into three separate regions. The first region is that below a

critical density of about five nodes per unit disk. In this region, less than half of the random node pairs have

a path between them. Nodes that are able to connect to one another at these densities generally are within

132



a few hops of one another. Hop stretch values for disconnected source/destination pairs are not included,

yielding low hop stretch values for the lower densities. The second region spans from about 5 to 8 nodes

per unit disk. In this region, a majority of source/destination pairs are connected, but the hop stretch values

spike. This is because, although the nodes are connected, any path connecting them must wind its way

through the “nearly disconnected” network. As the density increases, the hop stretch values rapidly decline

as more and better paths become available. Finally, in the third region, the hop stretch values basically level

off. TAG makes a slight improvement on the performance state-of-the-art GOAFR+ protocol and performs

significantly better than the basic Greedy-Face-Greedy protocol (GFG). At a node density value of 20 nodes

per unit disk, the hop stretch for TAG is 1.45, compared with 1.59 for GOAFR+ and 2.05 for GFG. This

improvement is credited to the effective use of the local topology information at each node.

Figure 4.22 shows the path stretch results for the same experiments. The plot resembles the hop stretch

plot, but GFG has an even larger spike near the critical density, so the range of the y-axis has been limited.

The mean path stretch values at a density of 20 nodes per unit disk are 1.32, 1.45, and 3.14 for TAG,

GOAFR+, and GFG respectively. At this density packets being routed with TAG can expect to travel 32%

further than the optimal path.

4.13.3 Improvement Credited to Topology Awareness

How much impact does having an opinion of the local topology have on the hop stretch? To answer

this question a version of TAG is simulated, but in this case, the topology aware feature has been disabled.

Figure 4.23 allows the hop stretch for these two versions of TAG to be easily compared. Note the significant

improvement that can be credited to the topology awareness aspects of TAG. At a density of 20, TAG-

NoTopoAware has a mean hop stretch of 2.15, compared to 1.45 for TAG.

4.13.4 Comparison with OLSR

A simple experiment is now described comparing the TAG routing and Optimized Link State Routing

(OLSR) [JMC+01]. Remember, as described in Section 2.1.5.1, OLSR is a proactive MANET routing

protocol and as such, it attempts to maintain routes between every pair of nodes in the network. To be fair

to OLSR a small network is created in which flows are simulated between every pair of nodes.

Twenty-four mobile nodes tracing the actual paths taken by aircraft on July 9, 2015, are simulated. The

topology management protocol described in Chapter 3 is used to form a network topology assuming that

133



0 5 10 15 20
network density (nodes per unit disk)

0

1

2

3

4

5

pa
th

 s
tr

et
ch

GFG
GOAFR+
TAG

Figure 4.22: A comparison of path stretch values as node density increases.

three directional links are mounted on each aircraft each having a maximum air-to-air link range of 200 km.

The node movement and topology management are such that there always exists a topological path between

every pair of nodes in the network. A low-rate (10 Kbps) UDP flow between every pair of mobile nodes in

the network is simulated for 1 hour. The default Hello interval of 2.0 seconds is used for OLSR.

The results are summarized in Table 4.3. TAG successfully delivers every packet achieving a PDR of

1.0, while OLSR is only able to successfully deliver 94.2% of the packets (a PDR of 0.942). In addition,

OLSR sends over 281,000 overhead packets (a total of 53 Megabytes). Tag has no overhead outside of the

small additional header attached to each packet. Similar OLSR experiments with about 600 nodes have

yielded PDRs as low as 0.44.

4.13.5 Realistic Airborne Network with Mobility

Results are now presented for another experiment which simulates data flowing through a network of

hundreds of simulated aircraft, whose positions and movements match those recorded from actual commer-

cial aircraft flying above the United States on July 9, 2015. The performance of several geographic routing

134



5 10 15 20
network density (nodes per unit disk)

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

4.5

ho
p 

st
re

tc
h

connectivity
TAG-NoTopoAware
TAG

0.0

0.2

0.4

0.6

0.8

1.0

co
nn

ec
tiv

ity

Figure 4.23: A comparison of the hop stretch values with and without topology awareness.

TABLE 4.3: A routing comparison of OLSR and TAG.

protocol packet delivery ratio (PDR) routing management packets

(overhead packets)

OLSR 0.942 281,000

TAG 1.0 0

(assuming nearby nodes exchange position info)

protocols are compared in this environment.

Table 4.4 shows the simulation parameters for this experiment. Since the objective is to simulate a

network of commercial aircraft in the United States that join the network after take-off, we first remove

from the data set all general aviation aircraft, all aircraft position samples below 10,000 feet, and all aircraft

position samples further than about 200 km from the border of the continental United States. Next, since

the goal is to test the routing protocol, not necessarily the connectivity of the topology protocol, a set of

nodes are selected that are guaranteed to remain connected (with a path between every pair of nodes) during

the duration of each simulation, given that the topology management framework is used with a maximum

135



link range of 200 km and 3 links per aircraft. Nodes are allowed to join the network over the course of the

simulation, but are not allowed to leave. If nodes were allowed to leave, packets queued at a departing node

could be lost. The largest subset of aircraft meeting these conditions are selected from the 1 hour period

between 1:00 p.m. and 2:00 p.m. Central time on July 9, 2015. The subset contains 200 nodes at 1:00

p.m. and an additional 473 nodes are added during the 1 hour simulation, yielding 673 total nodes when the

simulation ends. Thus, the density of the network increases as the simulation progresses from 3.11 to 10.47

nodes per unit disk (note, however, that the density metric calculation generally assumes aircraft are spread

across the country, which is not the case here, such that the actual density is greater). Figure 4.24 shows the

network at the beginning of the one-hour simulation, and Figure 4.25 shows that expanded network which

covers over half of the country at the end of the 1-hour time period.

TABLE 4.4: The simulation parameters for the dynamic airborne network experiment.

routing params
Routing Protocols TAG, GOAFR+, GFG, and

TAG without topology awareness
TAG radius increase factor

√
2

network device params

Network Device Type wireless point-to-point
maximum link range 200 km

links per node (degree) 3
air-to-air link rate 10 Gbps
propagation speed speed of light

topology management params

position exchange range 288 km
(community range)

topology update rate once per second
topology generation algorithm DC-TRT

Internet Protocol (IP) prams time-to-live (TTL) disabled
flow params flow style 1 flow each per 1,000 simulations

node mobility params

mobility model actual aircraft trajectories (ASDI)
start date/time July 9, 2015, 01:00 p.m. CT

duration 1 hour
number of nodes 200 growing to 673 nodes

density 3.11 to 10.47 nodes per unit disk

application params
application type UDP Constant Bit Rate (CBR)

flow rate 10 kbps

In striving for perfect PDR, the number of hops each packet may take is not limited (the IP TTL count-

down is deactivated). Figure 4.26 shows the cumulative distribution function (CDF) of the mean numbers

of hops for each flow. One thousand flows are simulated, each in a separate experiment, to rule out the pos-

sibility of one flow interfering with another during the simulations. The curve for the optimal route (given a

136



Figure 4.24: The network of aircraft used for the dynamic node simulation. A subset of 200 aircraft
over the United States at 1:00 p.m. July 9, 2015.

Figure 4.25: The network of aircraft used for the dynamic node simulation. A subset of 673 aircraft
over the United States at 1:59:59 p.m. July 9, 2015.

137



global view of the network) is also plotted for comparison. TAG performs better than GOAFR+, especially

in the tail of the distribution, with the worst performing flow requiring only 111 hops on average for TAG,

but over 2,000 hops for GOAFR+ and nearly 3,000 hops for GFG. The high numbers of hops are a result of

either situations where a packet gets stuck in a loop until the topology changes allowing progress, or cases

where the basic geographic protocols make bad choices or must backtrack several times while expanding

the bounding circle. Also notable is the fact that many flows using GOAFR+ were unable to guarantee de-

livery, with some achieving PDRs lower than 0.96. The large numbers of hops, in the worst case, highlight

how helpful a small amount of local topology information can be, and the importance of fully supporting

dynamic network topologies.

10 100 1,000 10,000
mean number of hops

0.0

0.2

0.4

0.6

0.8

1.0

pr
ob

ab
ili

ty

optimal
TAG
TAG-NoTopoAware
GOAFR+
GFG

Figure 4.26: A plot of the CDF of the mean numbers of hops in an airborne network including hun-
dreds of aircraft. (1 low-rate UDP flow per experiment, 1,000 experiments, 3 links per node, 1 hour
simulated per experiment)

4.14 Summary

TAG is a new geographic routing protocol that advances the state of the art by (1) supporting topologies

that are not unit disk graphs, (2) using local (potentially unreliable) topology information to make better

138



geographic forwarding decisions, and (3) fully supporting dynamic topologies without the risk of forming

routing loops. In this chapter, the routing protocol was detailed, and then simulated comparisons of TAG in a

theoretical network and a real-world large-scale mobile airborne network were presented. TAG outperforms

GOAFR+, GFG, and OLSR in the simulations.

139



CHAPTER 5: AIRBORNE NETWORK SIMULATIONS AND RESULTS

Having now examined the topology management framework and topology aware geographic routing

in the previous chapters, this chapter presents the results of a series of simulations that demonstrate the

capabilities of these protocols working together to manage and route traffic through the airborne network.

In addition, this chapter gives an overview of the implementation of the simulation models developed in the

ns-3 simulator to simulate these airborne networks and the supporting protocols.

5.1 Simulation Environment

The simulations described in Chapter 4, and those to be discussed in this chapter, use the ns-3 network

simulator. Ns-3 is an open-source discrete event network simulation tool used for education and research.

Several new ns-3 models had to be designed and implemented to support the simulation of airborne net-

works. In this section, the various components added to ns-3 to support our airborne network simulations

are described.

5.1.1 Aircraft Mobility

Most other mobile networking simulations use some sort of mobility model to determine the movements

of nodes in a simulation. Rather than use such a model to simulate aircraft mobility, the simulations in this

work use previously collected flight path data to model the movements of aircraft in the network. This

makes the simulations all the more realistic but also requires that on solve all the issues accompanying the

use of real-world data. To accommodate incorporating this data into our simulations a new ns-3 model was

created.

As mentioned in Section 2.1.2.2, the Federal Aviation Administration (FAA) makes available to some

industry and research partners, aircraft position information for most of the aircraft in the United States

National Airspace System (NAS). This data, called Aircraft Situation Display to Industry (ASDI) [Vol00],

includes not only the position and velocity of each aircraft but also other information such as the flight call

sign and flight plan information. The simulations in this work make use of the ASDI data recorded during

the month of July 2015. The ASDI data set includes position updates about once per minute for each aircraft,

140



though more precision is available in real-time. Since the time resolution required for networking is much

finer (milliseconds or less), linear interpolation is used to obtain the expected positions of aircraft between

position samples in the data set.

The Tracktable open-source library [RW15] is used in a new aircraft mobility model to read and parse

the ASDI data files. These files contain a list of trajectories each of which is made up of a list of potentially

many trajectory points. Each trajectory point contains at least an aircraft’s call sign, a time stamp (including

the date), and the geodetic position of the aircraft (latitude, longitude, altitude) at the given time. This

geodetic position is also translated into a Cartesian coordinate system called Earth-centered Earth-fixed

(ECEF).

The ECEF coordinate system has its origin (0,0,0) at the center of the earth’s mass and is fixed to the

earth (rotating with the earth as it spins). Calculating and storing the ECEF positions allows for quickly

determining the distance between two aircraft, using normal Cartesian methods. When determining the

distance between nodes in the simulation, the ECEF positions are used, but when computing the topology,

the latitude and longitude values are used.

The mobility model uses ns-3’s existing constant velocity mobility model to schedule the mobility of

the nodes. It first sets appropriate initial positions for each aircraft. Then, as a pre-processing step before a

simulation begins, the mobility model schedules velocity changes at the appropriate times. Ns-3’s constant

velocity mobility model handles efficiently determining the interpolated node positions as the simulation

runs. To accurately determine what velocity to set when the aircraft arrives at waypoint n, waypoint n+1

is used. The velocity (including both speed and direction) required to travel from waypoint n and reach

waypoint n+1 at exactly the time associated with waypoint n+1 is determined. An event is then scheduled

at the time associated with the arrival at waypoint n that updates the node’s velocity to the calculated value.

The velocities are computed and scheduled in this way for each waypoint of each flight. The aircraft mo-

biltiy model also handles the extra processing required to accommodate nodes that enter and/or leave the

simulation.

5.1.2 Wireless Point-to-Point Channel

Ns-3 has built-in support for wired point-to-point links and for various wireless link types, but not

necessarily for directional wireless data links. These links have some attributes of wireless links. For

example, they may communicate with any other node within range (assuming they are pointed correctly).

141



However, they also share attributes with point-to-point connections in that network devices (links) are paired

and communication is generally limited such than only paired network devices may exchange data. What

is needed is a wireless point-to-point link type combining some of the characteristics of both point-to-point

links and wireless links.

For this work, a new model was added to ns-3 to simulate the unique characteristics of these directional

wireless connections. Unlike omnidirectional channels that send packets to all the Network Devices attached

to the channel, this new channel model need only send a packet to the Network Device whose antenna is

connected with, and pointing at, this device. To accomplish this, the channel stores a connection map that

indicates which Network Devices are connected at the current time.

Figure 5.1: Diagram showing the relationship of the components that enable simulating wireless point
to point links.

Each time a packet enters the channel it determines which network device, if any, is connected with

(pointing at) the source Network Device. The receipt of the packet is then scheduled on the destination

network device at some future time, where the future time accounts for the transmission time and the prop-

agation delay. Figure 5.1 shows a diagram of how these components work together. Many wireless point-

to-point network devices can be connected to a single wireless point-to-point channel. When two network

devices are connected (as net devices A and B or C and D are in the figure), packets sent from one device

arrive at the other, and vice versa. This mapping can change over time as commanded by the topology

management application (described shortly), with network devices disconnecting and re-connecting in the

channel as the network evolves. Packets sent by network devices that are not connected to another network

device are dropped. For these simulations, the topology management application explicitly controls the con-

142



nection map in the wireless point-to-point channel. A more realistic model could be employed in the future

where the current antenna pointing direction could be taken into account, and packets could be dropped

unless antennas are correctly aligned.

5.1.3 Wireless Point-to-point Network Device

The wireless point-to-point network device model is much the same as ns-3’s traditional point-to-point

network device except that the wireless point-to-point protocol header contains two extra fields. These fields

are the sending and receiving media access control (MAC) addresses. When sending a packet the network

device enqueues the packet in the transmit queue. Then, if there are no other packets in the queue, the

network device begins simulating the transmission of the packet, sending it to the channel for distribution to

the connected network device, if any. When receiving a packet the network device determines whether the

packet was corrupted, given the error model (bit error rate). If the packet was corrupted it is discarded, and

otherwise, it is forwarded to the next level in the stack.

5.1.4 Topology Management Application

The topology management application is run on each node to control the topology of the network in a

distributed manner. Each node periodically, but in sync with other nodes, generates an opinion topology and

points its links accordingly, as described in Chapter 3.

5.1.5 Steerable Directional Antenna Model

Steerable directional antennas often employ a tracking system to automatically adjust the pointing of

the antennas once connected. These simulations assume the existence of such a tracking system. Upon

creation of a connection between two nodes, where the connection did not exist in the previous iteration,

each node explicitly informs the channel of its intention to connect to the remote node. Once both nodes

have connected, the connection table in the channel is updated to reflect the connection, and allow packets

to flow.

5.2 Simulations

In the remainder of this chapter details a variety of experiments that use the topology management

framework described in Chapter 3 and the geographic routing protocol (TAG) described in Chapter 4. These

143



experiments test the ability of the protocols to deal with high-density scenarios, high rate flows, and long

durations, just to name a few. Since the amount of computation and memory required in the simulation

for a single long duration, very high-rate, very large-scale, high-fidelity experiment is prohibitive, one goal

of these simulations is to test these various aspects independently such that confidence can be built in the

effectiveness of the full-functioning system without being able to simulate it explicitly.

5.2.1 Default Simulation Parameters

Table 5.1 lists the default simulation parameters. The following parameter values should be assumed in

the simulations described below unless otherwise stated.

-

TABLE 5.1: A table listing the default simulation parameters.

routing params
routing protocol/algorithm TAG
TAG radius increase factor 1.5

network device params

Network Device Type wireless point-to-point
maximum link range 200 km

links per node (degree) 3
transmit queue type drop tail queue

transmit queue max size 100 packets
air-to-air link rate 10 Gbps

maximum transmission unit (MTU) 1500 bytes
propagation speed speed of light

topology management params
position exchange range (community range) 288 km

topology update rate once per second
topology generation algorithm DC-GG

Internet Protocol (IP) params time-to-live (TTL) enabled, 255

Unless otherwise stated, the aircraft trajectories used in these simulations have been filtered to remove

trajectories for aircraft with general aviation call signs and to avoid portions of trajectories that are below

10,000 feet elevation, or outside of the established continental United States boundary (about 200 km off

the coast).

5.2.2 Global Routing Comparison

This experiment compares the performance of the Topology Aware Geographic Routing protocol (TAG)

to that of an ideal routing protocol, in a static network topology formed among real aircraft positions at

some point in time. The ideal routing protocol used for the experiment is ns-3’s Global Routing protocol.

144



It computes shortest path unit cost routes between every pair of nodes in the network before the simulation

begins and adds the appropriate static route entries to the routing table at each node. The experiment consists

of two simulations. In the first simulation, the topology management framework is initially used to establish

the static network topology and TAG is then used to route traffic among the set of aircraft. For the second

simulation, however, the wireless-point-to-point links in the topology are replaced by normal point-to-point

links and ns-3’s Global Routing model is used to pre-compute static routes between every pair of nodes

in the static network topology. At run-time, the packets follow these shortest path routes that are stored

in the routing table associated with each node. The intent of the experiment is to be able to gauge TAG’s

performance in terms of delay and numbers of hops, compared with the ideal routing protocol’s performance.

Figure 5.2: The network of aircraft used for the global routing comparison. A subset of 609 aircraft
spread across the United States at 9:00 a.m. July 9, 2015. Density: 9.47 nodes per unit disk.

The positions of 609 aircraft spread across the United States at 9:00 a.m. on Thursday, July 9, 2015,

and a DC-GG topology among them are shown in Figure 5.2. The density of this network is 9.47 nodes per

unit disk. Table 5.2 lists the simulation parameters specific to this experiment. One thousand flows between

random pairs of nodes are simulated, with each flow sending application data at a constant rate of 100 kbps.

The experiments is run for 60 simulated seconds, during which node positions remain fixed.

In Table 5.3 the overall results from the experiment are compared. Notice that both TAG and global

145



TABLE 5.2: A table listing the Global Routing Comparison parameters.

flow params
flow style flows between random node pairs

number of flows 1,000

node mobility params

mobility model actual aircraft trajectories (ASDI)
start date/time July 9, 2015, 09:00 a.m. CT

duration 1 minute
number of nodes 609 nodes

density 9.47 nodes per unit disk

application params

application type TCP Constant Bit Rate (CBR)
flow rate 100 kbps

TCP congestion avoidance algorithm NewReno
TCP send and receive buffer size 400,000

routing params routing algorithm/protocol TAG and GlobalRouting

routing have a packet delivery ratio of 1.0, no packets are dropped by either protocol. Both protocols

transmit over 1.5 million packets and over 800 megabytes of data. However, because TAG has a shim

header, it ultimately transmits more bytes in total and has a slightly higher throughput. On average, TAG

packets must travel almost 9 hops more (37% more) than the globally routed packets, with TAG packets

traveling almost 32 hops on average compared to just over 23 hops for global routing. There is a direct

correlation between these higher numbers of hops for TAG, and the one-way packet delay experienced by

TAG’s packets. The globally routed packets, on average, reached their destinations 1.28 ms (15.6%) faster

that those routed with TAG (8.2 ms compared with 6.9 ms).

TABLE 5.3: A table listing the results of the Global Routing Comparison.

TAG Global Routing
tx packets 1,589,253 1,589,253
rx packets 1,589,253 1,589,253
rx bytes 934,877,270 818,861,801

aggregate throughput 124.65 Mbps 109.182 Mbps
PDR (packet delivery ratio) 1.0 1.0

mean one-way delay 8.20298 ms 6.92499 ms
mean hops per packet 31.9284 23.2758

Figure 5.3 shows the cumulative distribution function (CDF) for the mean one-way delay, averaged over

all the packets routed from the source to the destination (excluding the ACK flows) in each of the 1,000

flows. Note that for both TAG and global routing, for nearly 30% of the flows the delay is less than about

5 milliseconds. Global routing has a median one-way delay of 6.45 ms and a maximum one-way delay of

17.91 ms. Comparing this to TAG’s median one-way delay of 7.06 ms (9.5% more) and maximum one-way

146



Figure 5.3: The CDF of the mean delay over all the packets in each flow.

delay of 39.98 ms, it is easy to see that a small percentage of packets are delayed twice as long when TAG

is used. Note that the propagation time alone for a packet traveling at the speed of light directly from Seattle

to Miami would be 15 ms. Since the speed of light is slower through fiber-optic cables (approximated

at 2x108), however, the propagation time for communicating through a single very long fiber-optic cable

stretched between the same cities would be closer to 22 ms. In comparison, a maximum one-way delay

(including transmission time and non-optimal paths) of under 40 ms is quite good. As will be seen next, at

these low rates this delay can largely, if not completely, be attributed to the higher numbers of hops traveled

by these packets. These flows with long mean delays are likely ones where packets must route around a

big face to advance towards the destination. With global topology information, the global routing protocol

is able to avoid these situations. TAG, however, must explore using only local information attempting to

make progress towards the destination. This causes an increase in the delay but allows TAG to be very agile,

responding immediately to changes in the dynamic network. Because TAG requires no overhead packets

and uses only local information, it is inherently scalable. These benefits, however, must be weighed against

the increase in delay and a potential increase in network congestion.

147



Figure 5.4: The CDF of the mean number of hops per packet in each flow.

In Figure 5.4 the cumulative distribution function (CDF) for the mean number of hops traveled by the

packets in each flow (excluding ACK flows) is presented. The plot is similar in form to that of the delay

CDF. As expected, global routing performs better, but TAG doesn’t lag too far behind with a median of 27

hops compared with global routing’s 21 hops. A small percentage of TAG’s flows must travel over many

more hops on average with a maximum of 125 hops, more than double global routing’s maximum of 60

hops. As mentioned above, this is one of the costs of using geographic routing.

These simulations show that, as expected, in a static network TAG performs worse than global routing

in terms of throughput and one-way delay. But, for a significant percentage of the flows, TAG is able to

remain fairly competitive with global routing.

5.2.3 Large-Scale and High-Density

In this experiment, the scalability of the topology management and geographic routing are showcased.

One thousand simultaneous flows between random pairs of nodes are simulated in a network of nearly 8,000

nodes. It is estimated that there are often around 7,000 aircraft in the skies over the United States; including

148



general aviation aircraft, military aircraft, passenger aircraft, and cargo aircraft. This simulation seeks to

form a network and route data among even more aircraft than that. The simulation is not intended to validate

the capacity of the network, but rather ensure that packets are able to be routed effectively despite the large

scale. For this reason, low-rate flows are simulated. Because the ASDI data set (aircraft mobility data) does

not contain enough data to reach this high node density by itself, a composite data set was generated for

these simulations. The aircraft trajectory data from July 16, 2015, starting at noon central time is augmented

with the aircraft trajectory data from July 17, 2015, starting at 1:00 p.m. central time. The time stamp for

each position update from the July 17th data has 25 hours subtracted from it such that the times for these

position updates overlap with those of the July 16th data. The call signs for the flights are also augmented

to avoid issues where multiple flights with the same call sign exist at the same time. The 25-hour offset is

chosen to avoid the potential situation where regular daily flights could essentially overlap with one another,

making the simulation less realistic.

Figure 5.5: A snapshot of the network of aircraft used for the Large-Scale High-Density Experiment.
A composite of the air traffic on July 16, 2015, at 12:00 noon and July 17, 2015, at 1:00 p.m. central
time.

Figure 5.5 shows a snapshot of the nodes and topology at the start of the simulation (July 16, noon

central time). Notice that the density is much higher than the other simulations in this chapter, and there are

149



many nodes clustered at busy airports. The number of nodes initially is 7846, and over the first minute the

number of nodes varies between 7837 and 7851 nodes, which corresponds to densities of 121.88 and 122.10

nodes per unit disk.

Table 5.4 shows the simulation parameters for this experiment. Three different simulations are run, one

using TCP as the transport protocol, another using UDP, and a third using UDP and a smaller community

range of 100 km (about one-third the default range of 288 km). One thousand flows each sending TCP

messages at a constant rate of 10.984 kbps are simulated in the first simulation. In the other simulations,

1,000 UDP flows are simulated, each sending data at a constant rate of 11.192 kbps. These rates equate

to the sending of one packet per flow per second. This essentially allows the simulation to test the path

between each of the 1,000 node pairs once a second. The aircraft in this simulation are dynamic, with the

nodes following real aircraft trajectories from the dates indicated.

TABLE 5.4: A table listing the Large-Scale High-Density Experiment parameters.

flow params
flow style flows between random node pairs

number of flows 1,000

node mobility params

mobility model composite actual aircraft trajectories (ASDI)
start date/time July 16, 2015, 12:00 p.m. CT combined with

July 17, 2015, 1:00 p.m. CT
duration 1 minute

number of nodes 7837 to 7851
density 121.88 to 122.10

application params
application type TCP constant bit rate (CBR) and

UDP constant bit rate (CBR)
flow rate 10.984 kbps (TCP) and 11.192 kbps (UDP)

topology management params position exchange 288 km and 100 km
(community) range

An overview of the simulation results is contained in Table 5.5. The simulations only route a relatively

small number of packets and send a total of about 78 to 91 megabytes (MB) of data during the 1-minute

simulation yielding an aggregate throughput of about 10 to 12 Mbps. Notice that even with the high density

and the large number of hops on average, only 18 TCP and 8 UDP packets are dropped in the first two simu-

lations, maintaining packet delivery ratios (PDRs) in the three 9’s range (0.999847 and 0.999856). There are

a high number of hops on average, but relatively low one-way delays. This is because the propagation time

dominates the delay, and although the packets must travel over many hops, each hop is over a short distance.

In both simulations using the default community range, all the dropped packets were discarded because the

150



number of hops exceeded the time-to-live (TTL) value of 255. The impact of using a smaller community

range can be seen in the higher mean one-way delay and the larger number of mean hops per packet in the

third simulation. In addition, in the third simulation where a smaller community range is used, there were

3,706 packets dropped resulting in a lower PDR of 0.933415. The benefit of the smaller community range,

however, is nearly an order of magnitude decrease in the computational load, indicated by the simulation

completing almost 7 times faster than the same UDP simulation using the default community range. Ad-

justment of the position exchange range allows for a trade-off between delivery accuracy and delay, and

computational load.

TABLE 5.5: A table listing the results of the Large-Scale and High-Density experiment.

TCP and TCP ACKs UDP UDP 100 km community range
tx packets 117,341 55,658 55,658

dropped packets 18 8 3,706
rx bytes 91,104,166 83,475,000 77,928,000

aggregate throughput 12.15 Mbps 11.13 Mbps 10.39 Mbps
PDR (packet delivery ratio) 0.999847 0.999856 0.933415

mean one-way delay 9.21735 ms 9.26088 ms 9.68679 ms
mean hops per packet 83.2585 83.2315 110.155

In Figure 5.6 the cumulative distribution function (CDF) for the mean one-way delay per packet for each

of the 1,000 flows is shown. For TCP, the reverse stream of ACKs is separated from the TCP data stream and

analyzed and plotted separately, since the forward and reverse streams often travel different paths. Excluding

the simulation using a smaller position exchange range, all the CDFs are very similar, and each varies only

slightly from the other. Each value used to generate the CDF is the mean one-way delay among all of the

packets transmitted in the given flow. The maximum of these values is 25.84 ms, 26.79 ms, and 25.64 ms

for TCP, UDP, and TCP ACKs respectively. Although it is often the case that ACK packets flowing from the

receiver to the data source may travel a different path than the data packets, on average the path lengths and

delays are essentially the same. Notice also, as would be expected, the TCP and UDP packets experience

essentially the same one-way delay. The median one-way delay is 8.27 ms for the TCP flows, 8.18 for UDP

flows, and 8.32 ms for the TCP ACK flows. In many respects, the topology management framework and

geographic routing actually function better at these higher densities. This is likely because with a higher

density of nodes there are fewer large faces, on average, and therefore fewer local minima. This allows

greedy routing to succeed more often, avoiding the need to resort to potentially costly face routing. When

151



Figure 5.6: The CDF of the mean one-way delay per packet for each flow in the Large-Scale High-
Density simulations.

a larger community range is used there is a noticeable impact on the delay. However, the median one-way

delay is still just 8.73 ms and the maximum one-way delay is 29.92 ms for the delivered packets.

Figure 5.7 is a plot of the cumulative distribution function (CDF) for the mean number of hops per packet

for the 1,000 flows in each experiment. As with delay, there is very little difference in the distributions for

the mean number of hops experienced by the TCP, UDP, and TCP ACK flows using the default position

exchange range. The median number of hops is 76.64 for TCP, 76.11 for UDP, and 76.39 for TCP ACKs.

The maximum number of hops experienced by the average packet in a flow is 219.38 for TCP, 221.24 for

UDP, and 223.10 for TCP ACKs. In both of these experiments, the handful of packets that were dropped

were all dropped due to IP time-to-live (TTL) expirations. These packets are dropped once they have traveled

over 255 hops (with the TTL set to its maximum allowable value). In these rare circumstances, the path taken

by the packet is so long that it is dropped by the Internet Protocol. When the smaller community range is

used there is an increase in the average number of hops in a packet’s path. The median number of hops

increases to 90, with a maximum of 247 hops. With the decreased position exchange range each node has a

152



Figure 5.7: The CDF of the mean number of hops per packet for each flow in the Large-Scale High-
Density simulations.

smaller local view, and therefore makes less optimal forwarding decisions, thus increasing the average hop

count.

This last figure, Figure 5.8, presents a scatter plot showing the correlation between the mean number

of hops and the mean one-way delay for the TCP experiment. Each sample is presented as a light disk.

Darker areas indicate areas where many disks overlap. The fact that most of the samples lie in a diagonal

line indicates that, as expected, the delay is tightly coupled to the numbers of hops. For flows with shorter

delays and shorter numbers of hops, there is less variance, and the samples are packed tightly. For larger

numbers of hops and longer delays, there is more variance and the samples are spread out. This spreading

is a result of queuing on the links and/or the diversity of lengths of hops in the paths.

This experiment demonstrates that the topology management framework and TAG are capable of oper-

ating in high-density, large-scale simulated networks of well over 7,000 dynamic nodes, while successfully

routing nearly all of the packets, and without incurring large amounts of delay in an uncongested condition.

Additionally, this experiment gives a glimpse at how decreasing the position exchange range can impact

153



Figure 5.8: A scatter plot showing the correlation between the mean number of hops and the mean
one-way delay.

flows in the network.

5.2.4 Single High-Rate Flows

The simulations presented thus far have only simulated low-rate flows. What about high-rate flows?

In this experiment single high-rate flows are simulated in an airborne network of hundreds of simulated

aircraft flying real aircraft trajectories. Table 5.6 shows the simulation parameters, in addition to the default

parameters, used for this experiment.

Figure 5.9 shows a snapshot of the network of simulated nodes as they exist at the start of these experi-

ments. One pair of nodes is selected for the high-rate experiments. The pair of nodes was selected such that

the mean path length, in hops, between them approximates the mean overall path length experienced by one

thousand flows simulated in the same network topology.

For the first experiment, a 9.5 Gbps UDP constant bit rate (CBR) flow is simulated for 1 minute. Figure

5.10 shows the resulting throughput and numbers of hops for the experiment. Notice that the throughput

stays steady at just under 10 Gbps (including header/overhead bytes). The number of hops also remains

154



TABLE 5.6: A table listing the Single High-Rate TCP Flow Experiment parameters.

flow params flow style single flow

node mobility

mobility model actual aircraft trajectories (ASDI)
start date/time July 9, 2015, 13:00 CT

duration 22 seconds, 60 seconds, and 7 minutes
number of nodes 264 to 304 (growing)

density 4.11 to 4.73 nodes per unit disk

application params

application type TCP Bulk Send and UDP constant bit rate
TCP congestion avoidance NewReno

algorithm
TCP send and receive 60 MB

buffer size

network device params
Maximum Transmission Unit 1500 and 9000

(MTU)

Figure 5.9: A snapshot of the initial network of aircraft used for the single high-rate flow experiments
and the all pairs experiments. The 264 nodes shown here span a large portion of the United States at
1:00 p.m. on Thursday, July 9, 2015.

fairly steady averaging just under 40 hops per packet. The path taken by the packets, however, varies

substantially over the 1-minute simulation.

Unfortunately, flows between pairs of nodes are not always this perfect. Figure 5.11 shows the results of

a 1-minute simulation of a 9 Gbps UDP constant bit rate (CBR) flow. The figure also shows the throughput

155



and number of hops as the simulation of this flow progresses. Note that except for a 7 second time period

(just before the 40-second mark), the network was able to maintain a consistent UDP throughput. At the

39 second mark, there is a change in the path taken by the packets and about a 60% drop in throughput,

to about 3.5 Gbps. This is likely the result of the flow encountering a condition where packets must travel

over a link multiple times in attempting to overcome a local minimum. Notice that the issue causing the

drop in throughput is not the number of hops, since there are more hops along the path for nearly half of

the simulation without any throughput issues. The throughput is negatively impacted until the packets begin

taking a better path due to a change in the network topology or a change in the relative positions of the

nodes.

Figure 5.10: The throughput and number of hops for a one minute single high-rate UDP flow experi-
ment.

Next, a similar experiment is performed, but this time using TCP as the transport protocol instead of

UDP and using New Reno as the congestion control algorithm. A single Bulk Send application sends data

as fast as possible from the source node to the destination node. A maximum transmission unit (MTU) of

9000 bytes, the maximum jumbo frames size, is used for this experiment instead of the default 1500 byte

value. Changing the MTU enables the congestion window to ramp up more quickly for this experiment.

Figure 5.12 shows the resulting throughput and numbers of hops over the 21-second simulation. Note

that the time resolution of the plot is finer than in the previous experiment. The various stages of the TCP

congestion control algorithm can be seen including slow start, and the ramping up of the congestion window

156



Figure 5.11: The throughput and number of hops for a one minute single high-rate UDP flow experi-
ment with a drop in throughput.

Figure 5.12: A simulation showing how TAGs ability to begin sending packets over shorter paths can
cause TCP to react negatively, decreasing the throughput potential for a high-rate flow.

size during congestion avoidance. Notice that the instantaneous throughput is much less than that of UDP,

with TCP never reaching above about 3.4 Gbps, though the link capacity is 10 Gbps. About 19 seconds into

the simulation there is a sharp decrease in the number of hops traversed by each packet. The topology of the

network or the positions of the nodes changed such that TAG now found a path that was 6 hops shorter. The

unintended consequence here, however, is that the packets traveling the shorter path arrive at the destination

before the packets that just missed taking advantage of the new shorter path. When TCP starts receiving the

packets taking the shorter path, it sends acknowledgments of the last received packet before the gap where

the remaining in-flight packets should be. On the other end of the connection, TCP unwittingly assumes that

the packets, that are still traveling on the original (slower) path, must have been dropped, and upon receiving

157



a triple duplicate ACK enters the fast retransmit phase. TCP reduces the congestion window causing a

substantial drop in throughput, requiring the congestion window and throughput to be slowly scaled back

up. TCP is unaware of TAG’s ability to find and use better paths instantaneously. Even though no actual

packet loss occurred after the first few seconds of this simulation, TCP limited the throughput, assuming

there was congestion along the paths. TAG’s agility leads to low throughput, in general, for high-rate flows

even though the network has the capacity to support more throughput.

Figure 5.13: The throughput and numbers of hops encountered after changing the duplicate ACK
threshold to 10.

Tuning the TCP parameters can yield somewhat improved performance. Figure 5.13 shows the result

of simulating a single TCP bulk send flow through the same airborne network. In this simulation, however,

the duplicate ACK threshold is set to 10, meaning that 10 duplicate ACKs must be received before the fast

retransmit state is entered. The MTU is also reset to the default of 1500 bytes. The familiar saw-tooth pattern

is evident in the graph as TCP attempts to estimate the capacity of the links. The throughput, however, is far

below the desired throughput of 8 to 9 Gbps. A different congestion control algorithm or transport protocol

may be needed to efficiently support high-rate TCP-like flows in the proposed airborne network architecture.

This simulation demonstrates the following:

• The network topology management and TAG are capable of handling high-rate UDP flows, but there

can be cases where the throughput is drastically cut due to changes in the paths taken by packets.

• TCP can punish TAG for finding shorter paths in the network, causing packets to arrive out of order.

• It may by necessary to use a different congestion control algorithm or a different transport protocol if

158



high-rate TCP-like flows are to be supported by the airborne network.

5.2.5 Long Duration

This experiment tests the network with a large number of low-rate UDP flows over a long simulation

time in a dynamic network. During the simulation, thousands of flows are simulated sending data between

random pairs of nodes whose in-flight times overlap during the simulation. Each of the flows is a low-rate

UDP flow sending at a rate of 10 kbps. Simulating at these low rates certainly does not shed any light on

the effect of congestion in the network, but that is not the purpose of this experiment. The intent, rather,

is to demonstrate that data is able to be consistently routed through this medium-density network over long

periods of time. Table 5.7 gives the pertinent simulation parameters for this experiment.

TABLE 5.7: A table listing the Long Duration Experiment parameters.

flow params
flow style flows between random node pairs

number of flows ˜200-300 at a time, 4,000 (in a full 8-hour experiment)

node mobility params

mobility model actual aircraft trajectories (ASDI)
start date/time July 16, 2015 9:00 a.m.

duration ˜5.25 hours
number of nodes 2032 to 2262

density 31.60 to 35.17

application params
application type UDP constant bit rate (CBR)

flow rate 10 kbps

Figure 5.14 shows a snapshot of the network 1 hour into the 5-hour simulation, and Figure 5.15 displays

a similar snapshot, but 3 hours into the simulation, when the network is more dense. The density of the

nodes increases from about 31 to over 35 nodes per unit disk (2032 to 2262 nodes total) over the course of

just over five hours. In this experiment, there has been no attempt made to ensure that the aircraft are always

able to form a global topology that is not partitioned. This means that this is a more realistic experiment

than the Single High-Rate experiments, where destinations were guaranteed to be reachable.

Figure 5.16 shows a plot of the throughput over the course the long duration experiment. Also plotted

(lighter) against the right y-axis is the number of flows active during the experiment. Notice that the number

of flows active at any one point in time in the simulation varies over the course of the experiment because

the flows are initialized such that packets are only transmitted during the time that both the source and

destination aircraft for the flow are in-flight. The throughput changes in response to changes in the number

of flows, and on no occasion does the throughput drop significantly without a similar drop in the number

159



Figure 5.14: A snapshot of the network of aircraft at the start of the long duration experiment. July
16, 2015 at 10:00:00 central time.

Figure 5.15: A snapshot of the network of aircraft after 2 hours of the long duration experiment, July
16, 2015 at 12:00:00 central time.

160



of flows. The minimum throughput experienced during the experiment is 1.68 Mbps and the maximum

throughput is 4.02 Mbps, with a mean of 2.38 Mbps.

This experiment gives one confidence that the topology of a medium-density network is able to be

managed successfully, for hours on end, and that TAG is able to route data consistently over long periods of

time.

Figure 5.16: A plot of the throughput over the course of the long duration experiment.

5.2.6 Effect of Loss

The experiments described to this point have assumed that the data links have no loss, but this is an

unrealistic assumption. This experiment intends to shed some light on how the network will operate when

different bit error rates are applied to the connections. The bit error rate is simulated by having the network

device at each hop essentially roll a die to determine whether or not to actually receive the packet. Packets

that aren’t correctly received are dropped. The determination of whether or not to drop the packet is made

by first translating a given bit error rate (BER) into a packet error rate (PER), taking into account the size of

the packet and assuming uniformly distributed bit errors. A random number is then generated and compared

with the packet error rate to determine whether or not to drop the packet.

This simulation is run on a medium-density set of nodes as seen on July 16, 2015, at 7:00 a.m. CT. Figure

5.17 shows a snapshot of what the network looked like at this time. There are 1479 to 1483 nodes active at

any one point during the simulation, producing a node density of about 23 nodes per unit disk. The aircraft

trajectories for this simulation have only been filtered to remove aircraft position updates outside of the

continental United States and to remove aircraft position update below 10,00 feet altitude. No attempt has

161



Figure 5.17: A snapshot of the network of aircraft used to analyze the effect of loss.

been made to ensure that paths exist between the source and destination node pairs for the flows. Therefore,

some of the delivery errors in these simulations may come as a result of there being no path between the

nodes.

The parameters of the experiment are displayed in Table 5.8. One thousand flows between random pairs

of nodes are simulated for 1 minute. Each flow sends TCP messages such that 1 megabit of application data

is sent every second. Five bit error rates are compared: 1x10−6, 1x10−7, 1x10−8, 1x10−9, and 1x10−10.

Bagley et al. report on a United States Department of Defense (DoD) demonstration where hybrid

RF/FSO links are used to exchange data at just over 10 Gbps between an aircraft and a surface terminal on

a mountain top [BHJ+12]. They report power at the detector, also called power in the fiber (PIF) values, for

the hour-long experiment. The experiment indicates that except for a few short periods where the connection

appears to have been lost, the PIF values approach -20 decibels-milliWatts (dBmW) always staying above

-30 dBmW when the link range is about 100 km. As the link range approaches 200 km the PIF values

decrease to just above -40 dBmW. According to the authors, their system must maintain a PIF above -

40 dBmW to maintain a reliable link. The same work presents a graph showing the tested bit error rates

(BERs) given various system configurations assuming a 10 Gbps link rate. With optical automatic gain

control (OAGC) and forward error correction (FEC) enabled, PIF values down to -39 dBmW yield a BER

162



TABLE 5.8: A table listing the Effect of Loss Experiment parameters.

flow params
flow style flows between random node pairs

number of flows 1,000

node mobility params

mobility model actual aircraft trajectories (ASDI)
start date/time July 16, 2015, 7:00 a.m. CT

duration 1 minute
number of nodes 1479 to 1483

density 23.00 to 23.06

application params
application type TCP constant bit rate (CBR)

flow rate 1 Mbps
network device params bit error rate (BER) 1x10−6, 1x10−7, 1x10−8, 1x10−9, and 1x10−10

of 1x10−12. With no OAGC and no FEC at -20 dBmW, a link can still achieve a BER of just better than

1x10−8. These results were presented nearly 5 years before this writing, and today’s systems are expected

to perform even more reliably.

Figure 5.18 shows the CDF for mean throughput for each of the 1,000 flows (excluding ACK flows), and

for various bit error rates. Notice that a small percentage of flows are unable to send any data (the curves are

Figure 5.18: The CDF of the throughput at various bit error rates (BER).

163



offset from the x-axis). This is because the network at this early hour (5 a.m. PT) is partitioned and several

nodes, especially those in the California area, are disconnected from the rest of the network. This would

not be an issue if ground stations were used to link the entire network together even if the air network were

partitioned.

The graph indicates that flows in this medium density network can pass 1 Mbps data with little or no

impact when the bit error rates are below 1x10−9. Bit error rates above 1x10−8 begin to significantly impact

the throughput of the network. With a bit error rate of 1x10−6 over ˜90% of the flows are able to send at

rates less than 200 kbps. This is not an issue that needs to be addressed, however, since the demonstration

described above indicates that bit error rates well below 1x10−8 are achievable over long ranges especially

if error correction and optical gain control are employed.

Similarly, Figure 5.19 confirms the above findings, looking specifically at packet delivery ratio for the

same flows. Notice, again, that for a small percentage of the node pairs the PDR is zero because the nodes

are in separate parts of the partitioned network. As with the throughput results, these results indicate that a

bit error rate of 1x10−9 in this network won’t have a severe impact on the network, but a bit error rate above

1x10−8 would.

This experiment demonstrates a medium-sized airborne network’s ability to cope with bit error rates as

high as 1x10−9. Further, the experiment shows that once the bit error rate reaches 1x10−6, the network is

essentially no longer able to function.

5.2.7 All Node Pairs - TCP Flows

The next experiment is one where a constant bit-rate (CBR) TCP flow is generated between every pair

of nodes in a dynamic network of 270 aircraft. It demonstrates the ability of the network to handle large

numbers of flows and gives a glimpse into how congestion affects the network when aggregate throughput

is high. Two different simulations are run; one with a bit rate of 100 kbps and another with a bit rate of 1

Mbps. The flows are one-way flows, in that they send application data only in one direction, though there

is also a stream of TCP acknowledgment (ACK) packets flowing in the opposite direction for each one-way

flow.

The average number of seats on a domestic aircraft in the United states was projected to be 128.2 in

2015, and is steadily increasing [FAA15]. It is assumed that before long there will be 135 seats per aircraft,

on average. This experiment assumes that every aircraft has that exact number of seats and that all those

164



Figure 5.19: The CDF of the packet delivery rate (PDR) at various bit error rates (BER).

seats are occupied. It then simulates each passenger sending and/or receiving two TCP data streams to/from

two passengers on different aircraft, at the given rate. Each passenger is the endpoint for two flows. Some

passengers are the source for both flows, others are the destination of both flows, and some are the source for

one flow and the destination of another. The purpose of this experiment is to show that the routing protocol

and topology management framework are sufficient to handle large numbers of medium-rate flows. Table

5.9 lists the parameters for this experiment in addition to, or that differ from, the default parameters listed

previously.

Three different simulations are run at various rates and durations. One-minute simulations at a rate of

100 kbps and 1 Mbps are run, as well as a 10-minute simulation at the 100 kbps rate. The number of nodes

active in the network when the simulation starts is 264, a density of 4.11 nodes per unit disk. At the 1 minute

mark there are 269 nodes active, and at the 10-minute mark 304 nodes are a part of the network, yielding

density values of 4.18 and 4.73 nodes per unit disk respectively. Over 42,000 flows are generated by the

1-minute experiment, and the 10-minute experiment generates over 54,600 flows.

Figure 5.9 (shared with a previous simulation) shows the topology of the network at the start of the

165



TABLE 5.9: A table listing the All Pairs Experiment parameters.

flow params
flow style all pairs (a flow between every pair of nodes)

number of flows 41,905 and 54,615 (10 minutes)

node mobility params

mobility model actual aircraft trajectories (ASDI)
start date/time July 9, 2015 13:00 CT

duration 1 minute and 10 minutes
number of nodes 264 to 269 (at 1 minute) to 304 (at 10 minutes)

density 4.11 to 4.18 (at 1 minute) to
4.73 nodes per unit disk (at 10 minutes)

application params
application type TCP constant bit rate (CBR)

flow rate 100 kbps and 1 Mbps

simulation. The network spans a good portion of the middle of the United States and the East Coast. The

nodes in the simulated network follow the paths of actual aircraft flying on Thursday, July 9, 2015 at 1:00

p.m. The entire set of aircraft in flight at the given time was filtered to achieve the desired connectivity

and density for this experiment. The nodes simulated represent only a small fraction of the total number of

aircraft in the skies at the given time. The aircraft for this simulation were filtered to ensure that aircraft join

but do not leave the network and that the network is able to maintain all of the aircraft in a single connected

component using the DC-GG topology generation algorithm with the topology management framework.

The purpose of this filtering is to (1) obtain a medium-density network where the all-pairs experiment could

run in a reasonable amount of time, and (2) to ensure that any drop in PDR could be attributed to the routing

protocol or congestion and not connectivity issues or node departures.

TABLE 5.10: A table listing the results of the All Node Pairs Experiment.

1 minute, 100 kbps 10 minutes, 100 kbps 1 minute 1 Mbps
transmitted packets 28,798,648 330,958,751 287,920,595

dropped packets 113 27 2,274,666
received bytes 29,757,841,609 344,042,181,888 293,952,719,180

(29.8 GB) (344.0 GB) (294.0 GB)
aggregate throughput 3.96771 Gbps 4.58723 Gbps 39.1937 Gbps

PDR (packet delivery ratio) 0.999996 0.999999918 0.992097
mean one-way delay 7.80229 ms 7.07133 ms 8.09107 ms
mean hops per packet 28.1276 25.753 27.7813

Table 5.10 gives a summary of the results of these simulations. In the 1 minute, 100 kbps simulation

nearly 28 million packets were transmitted and only about 113 were dropped, yielding a packet delivery ratio

of 0.999996. The PDR remains above 0.99 for the other two simulations as well, even though the 1 Mbps

166



simulation encounters some congestion. Aggregate throughput is the total number of bytes successfully

received divided by the simulation time. The 1 Mbps simulation had an aggregate throughput of over 39

Gbps and simulated the transmission of nearly 294 gigabytes (GB) of data. The mean one-way delay for the

simulations ranged from about 7.07 to 8.09 ms. Note that this is the mean delay for all of the flows, some

of whose packets traveled from Arizona to Maine, over many hops, and others whose packets traveled over

only the single hop to a directly connected neighbor.

Figure 5.20: The CDF of the throughput for the All Node Pairs simulations.

Figure 5.20 shows the cumulative distribution function (CDF) for the throughput of the flows for the

three simulations. The throughput analyzed here is also the receive bitrate. It is the number of bits suc-

cessfully received in a flow divided by the number of seconds that elapsed from the time the first packet

was received until the last packet was received. It should be noted that only the flows carrying application

data are considered here. The reverse flows carrying only the stream of acknowledgment (ACK) packets

are ignored for this and the next 3 plots. Both simulations sending application data at 100 kbps result in

a throughput of 109 kbps. The throughput is over 100 kbps because it includes the transmission of the

overhead bytes in the TCP and IP headers, and the additional TAG header.

167



The throughput of the 1 Mbps flows is much more interesting. Notice that 30.9% of the flows have a

throughput lower than 1090 kbps. The other 69.1% of the flows consistently have a throughput of about

1178 kbps. This is evidence of the fact that there is congestion in the network when the 1 Mbps flow rate is

used for the tens of thousands of flows. Notice that these flows are still able to send and receive data, but at

slightly lower rates. Because of the higher probability of visiting bottleneck links over long paths, the flows

affected by the congestion are more likely to be those sending data over long distances.

Figure 5.21: The CDF of the packet delivery ratio for the All Pairs Experiment.

In Figure 5.21 evidence of congestion can also be seen when looking at the packet delivery ratio (PDR).

Note that the x-axis here has been shortened to show only PDRs of 0.91 and higher. For the 100 kbps

simulations, the PDR is consistently 1.0 except for a small percentage of flows, most of which also have

a PDR above 0.99. This is evidence that the topology management framework and geographic routing

protocol are dependably routing the hundreds of millions of packets. However, when the rate is increased to

1 Mbps some of the links become congested and packets are dropped. For 41.9% of the flows, the PDR is

less than 0.999. One factor contributing to this congestion is the fact that the network is sparse and spread

out with a few critical links that connect the left half of the network the right half. A more dense network

168



Figure 5.22: The CDF of the mean number of hops per packet for each flow in the All Pairs Experi-
ment.

with more interconnections and fewer bottlenecks would likely yield better results.

A comparison of the cumulative distribution functions (CDFs) of the mean number of hops for each

of the flows can be seen in Figure 5.22. Notice that there is little difference in the distribution for any of

the simulations under about 15 hops. Notice also that the 10 minute 100 kbps rate simulation has a higher

probability of having fewer hops after that point. This is likely due to the fact that more aircraft are added

to the network during the extra 9 minutes in this simulation leading to more connections and better paths

on average. The number of hops reported here includes only the hops for successfully received packets.

Since in the 1 Mbps simulation, many of the packets are dropped, and there is a higher probability that those

traveling over many hops will be dropped, there is an apparent improvement in the mean number of hops

for the 1 Mbps simulation over the 100 kbps simulation.

Finally, figure 5.23 plots the cumulative distribution function of the mean one-way delay per packet

for each of the simulations. Here, once again, the 10-minute simulation performs best and has a higher

probability of having fewer average hops in its flows. This is again likely because of the introduction of new

169



Figure 5.23: The CDF of the mean one-way delay per packet for each flow in the All Pairs Experiment.

nodes joining the network, increasing the network density, and creating shorter paths through the network.

Because of the large numbers of packets queued in the congested simulation where tens of thousands of

flows are trying to send at a rate of 1 Mbps, the mean one-way delay for the 1 Mbps simulation is higher

than the delay for the 100 kbps 1-minute simulation.

This experiment demonstrates the following:

• The topology management framework and TAG are capable of handling over 40,000 flows and hun-

dreds of millions of packets.

• Despite frequent changes in the network topology TAG is able to route the packets with near perfect

packet delivery ratio.

• In the simulated network, congestion is experienced when a 1 Mbps flow is generated between every

pair of nodes. However, even in this congested state, data is able to flow, though at decreased rates.

170



5.3 Summary

This chapter described the simulation models added to ns-3 enabling these large-scale networks to be

simulated, and then detailed a sequence of experiments investigating various aspects of the airborne net-

work’s performance. The topology management framework and TAG protocol are able to perform well

in large-scale high-density conditions, over long durations, and are able to support tens of thousands of

medium-rate flows. In addition, the network is able to cope with bit error rates as high as 1x10−9.

171



CHAPTER 6: CONCLUSIONS AND FUTURE WORK

The field of airborne networking is just in its infancy, and this work has only touched on the many

captivating questions that must be answered, and the many problems that must be understood and solved

to make these networks functional and efficient. In the first section of this chapter, the contributions and

conclusions of this work are listed. The remainder of the chapter introduces several areas of future work and

presents ideas for improving the airborne networking architecture.

6.1 Overview of Main Contributions

This work advances the state-of-the-art in the areas of efficient distributed topology management and

geographic routing. An overview of each of the two main contributions of this work is given in the following

sections.

6.1.1 Efficient Topology Management

When a small number of steerable directional communication links, that focus their transmissions in a

single direction, are used to connect nodes in a dense network, it becomes necessary to explicitly manage the

physical topology of the network. A scalable framework for managing such a physical topology has been

presented. The only inter-node communication necessary to enable this topology management is the periodic

exchange of position information between nearby nodes. The effectiveness of the topology management

framework relies on a specialized topology generation algorithm meeting a certain set of requirements. Most

existing topology generation algorithms are unable to generate the degree-constrained planar topologies

desired. Therefore, several novel topology generation algorithms were designed and compared. To manage

the topology of the network each node uses the positions of nearby nodes and computes an opinion of what

the topology should be among these nodes by using the topology generation algorithm. It then forms the

connections of which it is a part in the opinion topology. There is no explicit communication between the

nodes negotiating the forming of connections. The cost of this distributed management framework is that

some of the nodes will point at a node that has a differing opinion of what the topology should be, causing

it to not point back. This can happen when the sets of nearby nodes differ for the two nodes attempting

172



to connect. However, with an appropriate topology generation algorithm and enough node density, these

one-way connections don’t have a significant impact on the network.

6.1.2 Geographic Routing Protocol

The topology of the airborne network is highly dynamic, changing as nodes join the network, leave the

network, and move about at high velocities. This constant topological change makes it extremely challeng-

ing to route packets through the large-scale network. Proactively updating routing tables to deal with the

topology changes requires that numerous overhead packets be sent, and can result in many packets being

dropped while waiting for a routing table to be updated. On the other hand, finding full-length paths through

the network to a destination, on demand, causes the first packets sent to a node to be delayed, and also

requires that many overhead packets be sent to establish the path and to repair it whenever there is a change

in the topology along the path. Any time the path is being repaired packets must be buffered (delayed) or

dropped.

Instead of either of these approaches, this work introduces a new geographic routing protocol that is able

to route data without the need to exchange any routing overhead packets, while ensuring the packets virtually

always arrive at their destinations when a path to the destination exists. This is accomplished by using the

position information of the nodes to make forwarding decisions at each hop along a path. Each packet has

a small shim header added to it. This header includes information such as the approximate latitude and

longitude of the destination node, the packet’s mode, etc. Nodes then use only the information in the packet

header and information locally available at the node to determine where to forward the packet next. Existing

state-of-the-art geographic routing protocols greedily route the packet and use face routing to recover from

local minima.

The second main contribution of this work is a geographic routing protocol called Topology Aware

Geographic routing (TAG). TAG advances the state-of-the-art of geographic routing in 1) its ability to cope

with topology changes while a packet is in flight, and 2) its use of local topology information to make better

geographic routing decisions. TAG is agile and able to instantaneously respond to changes in the network

and not drop or delay packets while a new path is formed. In addition, TAG does not require numerous

overhead packets to be generated and exchanged. The cost of this type of routing is the small extra header

attached to each packet, and a small number of extra hops, on average, in the path to the destination.

173



6.2 Conclusions

This section lists the conclusions that are drawn from this work.

6.2.1 Topology Management

• It is possible to manage the topology of a large-scale network of nodes (connected by directional data

links), in a distributed manner with no communication between the nodes except for the exchange of

position information between nearby nodes.

• Aircraft that already use a separate system (ADS-B) to exchange position information with nearby

nodes can manage the network with absolutely no new overhead and no topology management over-

head messages on the data links, leaving the entire link capacity available for use by other applications

and protocols.

• The distributed management of the network topology can be realized by having each node track the

current position of nearby nodes, and allowing each node to use this information to periodically and in-

dependently compute, using a topology generation algorithm, an opinion of what the topology should

be among its nearby nodes. Then, given this local topology, forming or attempting to form the con-

nections of which it is a part in the computed topology.

• A topology generation algorithm that works well, in practice, at connecting nodes into an acceptable

network topology is degree-constrained Gabriel graph (DC-GG). This graph is generated by first

finding the Unit Gabriel Graph among a set of nodes, then finding a degree-constrained spanning tree

that is a sub-graph of the Unit Gabriel Graph, and finally adding edges from the Unit Gabriel Graph,

longest first, until no more edges can be added without violating degree constraints.

• Using DC-GG to form a global topology in a distributed manner yields topologies where less than

2% of the data links that were commanded to point result in one-way connections, for networks with

densities greater than about 17 nodes per unit disk (1093 nodes in the continental United States).

• In a topology managed by the distributed topology management framework and using DC-GG as the

topology generation algorithm 2.08% of the edges will be added or removed each iteration, assuming

an update interval of 1 second. This means that on average the time between re-pointing events will

be about 96 seconds.

174



• When DC-GG is used with the topology management framework with node densities greater than

20 nodes per unit disk (1286 nodes in the continental United States), the shortest path in the global

topology will be at least three times as long as the shortest path in a topology where each node has an

unlimited degree and where no planarity constraint exists.

6.2.2 Geographic Routing

• Packets can be routed in fewer hops, on average, by a geographic routing protocol, if that protocol

makes use of the opinion topology generated as a by-product of the topology management.

• Unlike the other state-of-the-art geographic routing protocols, TAG is able to route packets that are

in-flight when the topology changes without risk of them being trapped in a routing loop.

• TAG routes packets in fewer hops than GOAFR+ or GFG in a simulated medium-scale airborne

network.

6.2.3 Airborne Network

• In a static medium-density network TAG packets must travel through 37% more hops, on average,

than globally routed packets.

• The topology management framework and TAG are able to successfully route low-rate TCP and UDP

traffic through a network of over 7,800 nodes (122 nodes per unit disk).

• TAG’s ability to quickly adapt to changes in the network topology can cause packets to arrive out

of order and cause TCP to unwittingly assume there is congestion in the network when there is not.

Because of this, high-rate TCP flows generally suffer from low throughput with TAG.

• The topology framework and TAG are able to cope with bit error rates as high as 1x10−9 with minimal

impact on the throughput.

• The topology management framework and TAG are able to handle over 40,000 flows sending data

between all pairs of nodes in a network of 270 aircraft at per-flow rates of 100 kbps and 1 Mbps,

although some congestion is experienced at the 1Mbps rate.

175



6.3 Future Work

6.3.1 Trajectory Prediction

Commercial aircraft are unique when compared to many other types of mobile nodes, in that both their

future short-term and long-term positions can be predicted fairly accurately. This section describes how this

fact could be used to improve the algorithms and protocols supporting an airborne network.

6.3.1.1 Short-Term Prediction

Unlike people or cars, in-flight aircraft cannot in an instant change their direction of travel. Also, exclud-

ing maneuvers immediately after takeoff or while preparing to land, most commercial aircraft essentially fly

straight-line paths between departure and destination airports with occasional gentle turns or infrequent de-

viations from a planned route. This means that predicting where a commercial aircraft will be 10 seconds,

30 seconds, or even a minute into the future can be done with relatively high accuracy. This fact can help

nodes anticipate topology changes or better deal with the realities of imperfect systems, such as missed

position updates.

Suppose, for example, that a local node was only able to successfully receive half of the position updates

sent by a distant node. The position of the remote node could be extrapolated given the sparsely received

information (including velocity info), and lessen or eliminate the impact of these losses.

Using short-term prediction, a node could compute not only the current local topology but also predicted

future topologies among the nodes in its community. During each iteration of the topology management

framework, a node could extrapolate the positions of its community nodes 5 seconds, and 10 seconds into

the future, and compute topologies for these anticipated node positions. This would essentially provide a

prediction of the topology changes over the next 10 seconds. The resolution and range of these predictions

could obviously be changed, assuming computational resources were available. In this way, a node would

essentially be able to predict changes in the topology, and link resources could be managed more efficiently.

For example, if a critical change in the topology was expected to occur two seconds in the future, and it

was anticipated that it would take two seconds to re-point and form that connection, the node could begin

the process now, breaking a redundant connection early. One could imagine many similar optimizations

facilitated by knowing where nodes will be and what the topology will look like some number of seconds in

the future.

176



6.3.1.2 Long-Term Prediction

Commercial aircraft also are highly predictable in the long-term. All civilian aircraft must file a flight

plan before take-off. For commercial air traffic, these flight plans generally include an ordered list of way-

points. These waypoints are selected from a standard pre-defined set of geographical points spread across

the globe. In addition, a custom waypoint can be defined as an offset from a pre-defined point, and used in a

flight plan. This basic flight plan data is exchanged between nodes by the ADS-B system and is maintained

in an FAA database. By making assumptions about the departure times and travel velocities, one can deter-

mine where all of the aircraft will be for hours into the future. These predictions would be fairly accurate

except when flight plans change, aircraft deviate significantly from the flight plan, or flights are canceled.

This very accurate forecasting would allow for detailed analysis of the expected network coverage and

anticipated networks topology hours into the future. Some have suggested that each node could even pre-

compute its time-dependent topology before it takes off[TGS+08]. Once in flight, at pre-defined times, the

aircraft would change where its directional links were pointing. This scheme would not allow for changes

after the pre-computation phase and would rely on assumptions about aircraft velocity. My distributed

framework requires no communication overhead on the directional links but is able to respond to velocity or

flight plan deviations and changes.

6.3.2 Simulation Speed and Accuracy

6.3.2.1 Caching Routes

The geographic routing protocol does not maintain any type of a routing table at the nodes. Packets

make independent decisions at each hop of their path. This has the benefit of enabling packets to immediately

respond to changes in the network topology. However, the cost of this agility is that similar calculations must

be made at a node by each packet traveling the same path. This is wasteful, and it seems this information

could be cached in some type of routing table. However, just storing off a route and associating it with

some future time (a constant offset from the current time) after which it will no longer be valid would likely

destroy the ability of the protocol to quickly respond to changes in the network. Consider that the mobile

nodes in the network likely have some maximum velocity. For example, commercial aircraft don’t travel

faster than about 700 miles per hour. This physical limit can assist with intelligently caching the forwarding

decisions, allowing significant savings in computation time, without sacrificing the ability to quickly react

177



to changes in the network topology.

The following example describes how this intelligent caching could work. For simplicity, consider just

the basic greedy routing mode for now. In greedy mode, packets are simply forwarded toward the directly

connected node nearest the destination, unless the current node is nearest, in which case a local minimum

has been reached. Suppose that a node has two directly connected neighbors: node a and node b. Suppose

also that a is currently closer to the destination than b, but that a and b are flying towards one another such

that before long b will be closer to the destination. Assume, further, that the network topology is constant.

Notice that every packet destined for that same destination node will be forwarded to node a until the instant

at which node b becomes closer to the destination, after which every packet destined for that destination will

be forwarded to node b. If a and b are, for example, 14 miles apart, then in the worst case if both aircraft are

flying directly at one another at the maximum velocity of 700 miles per hour (1400 mph closing rate), there

is at least 36 seconds before b will be nearer to the destination than a. During this time packets could be

blindly sent to a without actually calculating which node is closer. Likely an update could be made after 36

seconds and the time could be extended. More sophisticated estimations of the future positions of directly

connected neighbors could also be used.

This technique could be implemented as a table on each node containing an entry for each destination

to which flows currently sending packets through this node are destined. Each entry would include the

destination node ID, the outgoing interface number, and a time at which this entry should be considered

stale, and removed (not unlike similar fields in many routing algorithms).

Packets being routed at the node would look up their destination in the table, and, assuming the entry

is not stale, the packet could be immediately forwarded out the interface in the table entry. If the entry

was stale or non-existent, the packet would be greedily routed as normal, but just before forwarding the

packet onward, a new entry for the given destination could be added to the table, including a new stale time,

representing the earliest possible time that a change to the cached entry may be needed. In addition, any

time a topology change affected the set of directly connected nodes, the table would need to be cleared so

that new decisions could consider the impact of the changed topology on the forwarding decisions.

This caching scheme would yield substantial savings in computation time without sacrificing the ability

to quickly react to changes in the network topology. For TAG, where the local topology information is

also used to make these decisions, the determination of the expiration time for an entry would be a bit

more complicated, but still possible. Packets in face routing mode could also benefit from this type of

178



enhancement, though each row of the table would then need to also include a mode entry.

6.3.2.2 Higher Fidelity

Early in this work a more realistic physical layer model was developed for a free-space optical commu-

nication link. Unfortunately, the high computational complexity of high fidelity physical layer simulations

made this model too time consuming to use. Increasing the fidelity of the simulated optical links is another

area of interesting future work.

To increase the accuracy of the simulations, a sophisticated link budget for the free-space optical commu-

nication links could be modeled; including the impact of altitude, atmospheric turbulence, distance between

nodes, laser beam width, laser wavelength, visibility, diameter of the receiver, and so forth. In addition,

the position and orientation of each link could be modeled. The channel, that includes all of the network

devices, could then determine which links were able to communicate and at what signal-to-noise ratio. In-

terference could also be modeled in such a simulation, and bit errors could be introduced based upon this

signal-to-noise ratio. The result would be a much more realistic simulation of the network, but also one

requiring significantly more computation and even longer run times.

6.3.3 Avoiding Cloud Occlusion

The simulations in this dissertation assume that there are no clouds occluding the transmissions between

nodes. Commercial passenger and cargo aircraft generally remain at a very high cruising altitudes (above

30,000 feet) for the bulk of their journeys. At these altitudes, the direct connections between aircraft, over the

expected ranges, will generally be free from laser-attenuating clouds. The connections to aircraft climbing

to their cruising altitude and connections to ground stations, however, could be problematic. Suppose that

every aircraft had a decently accurate 3D model of the clouds currently in their vicinity. This information

could be used by the topology management algorithm to avoid connections that would intersect clouds. To

implement this, ray-tracing techniques from the computer graphics world could be employed. Each node

would, when computing its local potential connections graph, send a ray between each pair of nodes in its

community. If the ray intersected any of the objects representing clouds the connection would be removed

from consideration. In this way, the topology of the network could completely avoid connecting through

clouds. This would be a simple addition to the topology management framework. A potentially more

difficult task may be maintaining an accurate 3D view of the clouds at each node.

179



6.3.4 Avoiding Congestion

The airborne network can become congested with certain routes through certain nodes being used more

than others. One area of future work is developing techniques to counteract or avoid this congestion. One

way to potentially reduce congestion would be to more fully support multipath routing. Two packets that

leave a source node at about the same time could be allowed to take completely different paths through the

network. There are cases in the TAG implementation where it is unclear which of two options is better, and

therefore a default action is taken. If instead, at such a point, a random choice was made, it would lead to

more diversity in the network paths, but also potentially more issues with TCP detecting network congestion

when none exists.

Another idea for increasing path diversity and reducing congestion would be to use a method similar to

GLSR[Med11]. As described in Section 2.2.5.5, in GLSR a node greedily seeks to simultaneously maximize

the packet’s advance toward the destination and minimize the packet’s queuing delay when determining

where to forward the packet. Congested would suddenly become less desirable from a greedy standpoint,

and packets are motivated to use a different path, when possible. This would have the outcome of lowering

or alleviating the congestion and utilizing more of the links. This could be implemented in TAG by first

making TAG aware of the outgoing queue length on each data link attached to the node. In greedy mode, in

addition to considering the local topology, the lengths of the queues holding packets ready to be transmitted

across each link would also be considered. The less congested links would be favored for situations where

multiple greedy next hops exist.

In face mode, the queue size could be considered when determining which direction around a face to

route a packet. If either direction appears to require about the same number of hops, the lengths of the

queues at the outgoing interfaces could be used to make an informed decision about the direction in which

the face boundary should be explored.

6.3.5 Parallelization

The ns-3 network simulator provides support for parallelizing execution across multiple cores and mul-

tiple distributed compute resources. Unfortunately, this functionality is only supported for point-to-point

network devices and communication channels. The simulations in this work use a hybrid between point-

to-point network devices and wireless devices. Each standard point-to-point channel connects exactly two

180



network devices, but the standard wireless channel includes all of the network devices that are a part of

the wireless subnet. These airborne network simulations require that a network device be able to form a

point-to-point-like connection with one node, and then later re-point and connect with a different node.

Therefore, a channel is desired that includes all of the network devices, in the same way a wireless channel

includes all of the wireless devices. However, this channel should only allow specific pairs of net devices

to communicate with one another, like a set of point-to-point connections. As described in Section 5.1.2

the custom wireless point-to-point net device and channel in ns-3 fills this need. Unfortunately, this custom

network device type and channel are not able to support parallelized execution as easily as the point-to-point

versions.

One aspect of interesting future work is enabling the parallelization of these new hybrid network device

and channel models. To understand how this might be done for the airborne network requires some back-

ground on discrete event simulation. The idea of parallel discrete event simulation is to divide the nodes

among several compute resources, called ranks. The simulation for all the packets flowing between nodes

in the same rank can be carried out independently by that rank, and it can proceed at its own pace. However,

any packets flowing to a node in a different rank must use a message passing infrastructure to pass the packet

to the other rank. In a discrete event simulation, events that are to execute at a given time are placed in a

priority queue. After each event is processed, the event at the front of the priority queue is removed, and

simulation time advances to the time associated with this event. Because of this, the simulation time can

advance in a non-uniform way. For this reason, and the fact that each rank may have other factors influenc-

ing its execution speed, a simulation may progress at different rates on each rank. The fundamental problem

with this is that it may be possible for a rank to receive a packet that was intended to be delivered to one

of its nodes at a simulation time that is now in the past. To overcome this issue, some technique must be

employed to avoid this situation, or to roll-back the simulation when it happens.

One parallel discrete event simulation technique supported by point-to-point links in ns-3 is the granted-

time window method. In this method, ranks are granted a window of time into the future in which they are

free to proceed without fear of receiving a message that should have arrived at a time in the past. Upon

reaching the end of the window, each rank must wait for all the other ranks to catch up. Inter-rank messages

are then exchanged by the ranks, before proceeding with the simulation in the next time window. Note that

each point-to-point connection that spans multiple ranks has a delay associated with it. To set the granted-

time window, the simulator finds the shortest delay on all the connections that span a given pair of ranks. In

181



this way, even a message that was sent by one rank to another rank immediately at the start of a granted-time

window, is guaranteed to have a receive event that is scheduled for a time later than the start of the next

granted-time window (since the delay in crossing the link is at least as long as the granted-time window).

The receiving rank is able to synchronize and receive messages from other ranks before it continues on to

the next window (in which the receive event for the message would be processed).

Just the initial problem of assigning nodes to ranks appears challenging for a large-scale airborne net-

work. Suppose, you decide to start out small and allocate only 4 ranks to a simulation of an airborne network

spanning the continental United States. One could assign nodes to ranks based on their starting geographic

position. Aircraft in the northwest region at the start the simulation, for example, could be assigned to one

rank, and aircraft starting in the southeast another, and so on. Since most aircraft only communicate directly

with other nodes nearby, initially only the nodes near the rank boundaries would need to pass messages

between ranks. However, as the simulation progressed, nodes would leave their initial geographic region.

For example, a node heading from Albuquerque, New Mexico to Atlanta, Georgia would eventually cross

the dividing line between the southwest and southeast regions. After it crosses this boundary it may start

directly connecting with more and more nodes that are assigned to a different rank. As the simulation pro-

gresses it is likely that fewer and fewer nodes would be in the region where they started. Depending on the

duration of the simulations and the number and size of regions, it may not take long to lose all of the benefits

of running in parallel, and instead, be overwhelmed by the overhead necessary to synchronize the ranks.

It is possible one could devise some scheme in which nodes could essentially move between ranks during

the simulation as they moved in and out of geographic regions. This, however, may require some careful

handling of and transfer of state information from one rank to another, and would likely require significant

changes to the existing simulation code. Another potential solution might be to assign nodes to ranks based

on some other quality that is not as time-variant. Suppose, for example, that all the nodes leaving California

and heading for the east coast of the United States were assigned to one rank, and all the nodes just leaving

Florida and headed toward New England were assigned to another rank. This type of a partitioning would

likely avoid the severe degradation over time, but may still require a lot of message passing between ranks

since the nodes would directly connect with other nodes whose destinations areas were different.

Another issue that must be addressed to support this type of parallelization is determining the appropriate

granted-time value. If this value is set too small the result would be an increase in synchronization overhead,

allowing ranks to get a smaller amount of work done during each iteration. However, if the value were set too

182



large, an event could arrive at a rank after its execution time had already passed. Unlike traditional point-to-

point connections, the connections between airborne nodes in our simulations do not have a specified fixed

delay. Instead, the delay is essentially a combination of the transmission time and the propagation time,

which for free-space optical communication links is actually just the speed of light through the atmosphere.

If a lower bound can be placed on the distance between any two aircraft in our simulations, an appropriate

granted time could be determined. If the simulation could ensure, for example, that two aircraft will never

fly closer to one another than 5 km, then the granted time could be set to about 15 microseconds. A small

value, but long enough to transmit about 21 kilobytes of information at a rate of 10 Gbps.

There may be other parallelization schemes that could also be considered, such as optimistic schemes,

in which, no effort is expended to ensure against events arriving at rank at a time later than their expected

execution time. An optimistic parallel discrete event simulator, instead, rolls-back the execution to the point

where the event was scheduled upon receiving an old event. The simulation then begins re-executing from

there. There would likely be significant effort to implement such a scheme in ns-3, but it may also be an

option to consider for our dynamic network.

Regardless of how it is accomplished, being able to simulate these large-scale networks in a distributed

manner is essential moving forward.

6.4 Conclusion

This dissertation has demonstrated that a topology management framework and a routing algorithm can

be developed that are capable of connecting thousands of commercial aircraft, flying normal routes, into a

large-scale airborne network sufficient to support tens of thousands of 1 Mbps data flows.

Communication networks of the future will be vastly different from those we are familiar with today.

Large-scale airborne networks are quickly becoming a reality as companies like Google and Facebook ac-

tively seek to deploy and control networks that will be able to reach more of the world’s population. The

protocols and methods described in this dissertation address some of the issues with managing connections

and routing data within these high-capacity continental-scale airborne networks. It is my hope that these

protocols will help to enable these networks to really “take off”.

183



REFERENCES

[ACK04] N. Ansari, Gang Cheng, and R.N. Krishnan. Efficient and reliable link state information
dissemination. Communications Letters, IEEE, 8(5):317–319, May 2004.

[APC+12] L. C. Andrews, R. L. Phillips, R. Crabbs, T. Leclerc, and P. Sauer. Final report: Channel char-
acterization for free-space optical communications. Technical report, Florida Space Institute,
University of Central Florida, 2012.

[APH01] Larry C. Andrews, Ronald L. Phillips, and Cynthia Y. Hopen. Laser Beam Scintillation with
Applications (SPIE Press Monograph Vol. PM99). SPIE Publications, March 2001.

[BHJ+12] Zachary C. Bagley, David H. Hughes, Juan C. Juarez, Paul Kolodzy, Todd Martin, Mal-
colm Northcott, H. Alan Pike, Ned D. Plasson, Brian Stadler, Larry B. Stotts, and David W.
Young. Hybrid optical radio frequency airborne communications. Optical Engineering,
51(5):055006–1–055006–25, 2012.

[BMSU99] Prosenjit Bose, Pat Morin, Ivan Stojmenović, and Jorge Urrutia. Routing with guaranteed
delivery in ad hoc wireless networks. In Proceedings of the 3rd International Workshop on
Discrete Algorithms and Methods for Mobile Computing and Communications, DIALM ’99,
pages 48–55, New York, NY, USA, 1999. ACM.

[BRMD07] Q. Balzano, John Rzasa, Stuart Milner, and Christopher Davis. High capacity tactical net-
works with reconfigerable, steerable, narrow-beam agile point-to-point rf links. In Military
Communications Conference, 2007. MILCOM 2007. IEEE, pages 1–7, Oct 2007.

[BRSS12] K.-D. Buchter, A. Reinhold, G. Stenz, and A. Sizmann. Drivers and elements of future airborne
communication networks. In German Air and Space Congress 2012, Berlin, - Lilienthal-
Oberth eV, Bonn, Sep 2012. German Society for Aeronautics and Astronautics.

[BSM+09] D.M. Boroson, J.J. Scozzafava, D.V. Murphy, B.S. Robinson, and H. Shaw. The lunar laser
communications demonstration (llcd). In Space Mission Challenges for Information Technol-
ogy, 2009. SMC-IT 2009. Third IEEE International Conference on, pages 23–28, July 2009.

[CAC+09] E. Ciaramella, Y. Arimoto, G. Contestabile, M. Presi, A. D’Errico, V. Guarino, and M. Mat-
sumoto. 1.28-Tb/s (32× 40 Gb/s) Free-Space Optical WDM Transmission System. Photonics
Technology Letters, IEEE, 21(16):1121–1123, Aug 2009.

[CaRCR15] Sérgio Conceição, Filipe Ribeiro, Rui Campos, and Manuel Ricardo. Novel ns-3 model en-
abling simulation of electromagnetic wireless underground networks. In Proceedings of the
2015 Workshop on Ns-3, WNS3 ’15, pages 9–16, New York, NY, USA, 2015. ACM.

[CCSM13] F. Cadger, K. Curran, J. Santos, and S. Moffett. A survey of geographical routing in wireless
ad-hoc networks. IEEE Communications Surveys Tutorials, 15(2):621–653, Second 2013.

[CFG+09] J. Cunningham, D. Foulke, T. Goode, D. Baber, B. Gaughan, M. Fletcher, D. W. Young,
J. C. Juarez, J. E. Sluz, and J. L. Riggins. Long range field testing of free space optical
communications terminals on mobile platforms. In MILCOM 2009 - 2009 IEEE Military
Communications Conference, pages 1–7, Oct 2009.

[CRJ+12] Egemen K. Cetinkaya, Justin P. Rohrer, Abdul Jabbar, Mohammed J.F. Alenazi, Dongsheng
Zhang, Dan S. Broyles, Kamakshi Sirisha Pathapati, Hemanth Narra, Kevin Peters, San-
tosh Ajith Gogi, and James P.G. Sterbenz. Protocols for highly-dynamic airborne networks.

184



In Proceedings of the 18th Annual International Conference on Mobile Computing and Net-
working, Mobicom ’12, pages 411–414, New York, NY, USA, 2012. ACM.

[DOD05a] Implementation of network-centric warfare. Technical report, United States Department of
Defense, Office of Force Transformation, 2005.

[DOD05b] Joint Concept of Operations for Global Information Grid NetOps. Technical report, United
States Department of Defense, United States Strategic Command, 2005.

[DOD13] Unmanned systems integrated roadmap fy2013-2038. Technical report, United States of Amer-
ica Department of Defense, December 2013.

[DSSM15] Emrecan Demirors, Bharatwaj G. Shankar, G. Enrico Santagati, and Tommaso Melodia.
Seanet: A software-defined acoustic networking framework for reconfigurable underwater
networking. In Proceedings of the 10th International Conference on Underwater Networks
& Systems, WUWNET ’15, pages 11:1–11:8, New York, NY, USA, 2015. ACM.

[DTBW13] R.W. Devaul, E. Teller, C.L. Biffle, and J. Weaver. Balloon network with free-space optical
communication between super-node balloons and rf communication between super-node and
sub-node balloons, July 18 2013. WO Patent App. PCT/US2013/020,705.

[DTS05] Jason Derenick, Christopher Thorne, and John Spletzer. Hybrid free-space optics/radio fre-
quency (fso/rf) networks for mobile robot teams. In LynneE. Parker, FrankE. Schneider, and
AlanC. Schultz, editors, Multi-Robot Systems. From Swarms to Intelligent Automata Volume
III, pages 263–268. Springer Netherlands, 2005.

[EM04] B. Epstein and V. Mehta. Free space optical communications routing performance in highly
dynamic airspace environments. In Proceedings of Aerospace Conference, IEEE., volume 2,
pages 1398–1406 Vol.2, 2004.

[FAA05] Air traffic bulletin. Technical Report Special Issue # 2005-3, Federal Aviation Administration,
August 2005.

[FAA10] Automatic dependent surveillance-broadcast (ADS-B) out performance requirements to sup-
port air traffic control (ATC) service; final rule, May 2010.

[FAA15] FAA aerospace forecast - fiscal years 2015-2035. Technical report, Federal Aviation Admin-
istration, 2015.

[FAA16] Air traffic by the numbers. Technical report, Federal Aviation Administration, March 2016.

[Fac16] State of connectivity 2015: A report on global internet access. Technical report, internet.org
by facebook, February 2016.

[FCC16] 2016 broadband progress report. Technical Report GN Docket No. 15-191, Federal Commu-
nications Commission, January 2016.

[Fin87] G. G. Finn. Routing and Addressing Problems in Large Metropolitan-Scale Internetworks.
University of Southern California ISI Research Report ISI/RR-87-180, March 1987.

[FS10] H. Frey and I. Stojmenovic. On delivery guarantees and worst-case forwarding bounds of
elementary face routing components in ad hoc and sensor networks. IEEE Transactions on
Computers, 59(9):1224–1238, Sept 2010.

185



[Gar14] Juliette Garside. Facebook buys UK maker of solar-powered drones to expand internet. The
Guardian, March 2014.

[GJ79] Michael R. Garey and David S. Johnson. Computers and Intractability: A Guide to the Theory
of NP-Completeness. W. H. Freeman & Co., New York, NY, USA, 1979.

[GK00] P. Gupta and P.R. Kumar. The capacity of wireless networks. Information Theory, IEEE
Transactions on, 46(2):388–404, Mar 2000.

[Guy16] Jessica Guynn. Facebook’s Aquila drone completes first test flight. USA Today, July 2016.

[GW02] Baksheesh Ghuman and Heinz Willebrand. Making free-space optics work. In Free Space
Optics: Enabling Optical Connectivity in Today’s Networks. 2002.

[HSSJ02] Zhuochuan Huang, Chien-Chung Shen, C. Srisathapornphat, and C. Jaikaeo. Topology control
for ad hoc networks with directional antennas. In Computer Communications and Networks,
2002. Proceedings. Eleventh International Conference on, pages 16–21, 2002.

[JM96] David B. Johnson and David A. Maltz. Dynamic source routing in ad hoc wireless networks.
In Mobile Computing, pages 153–181. Kluwer Academic Publishers, 1996.

[JMC+01] P. Jacquet, P. Muhlethaler, T. Clausen, A. Laouiti, A. Qayyum, and L. Viennot. Optimized link
state routing protocol for ad hoc networks. In Multi Topic Conference, 2001. IEEE INMIC
2001. Technology for the 21st Century. Proceedings. IEEE International, pages 62–68, 2001.

[JRO+09] A Jabbar, J.P. Rohrer, A Oberthaler, E.K. Cetinkaya, V. Frost, and J.P.G. Sterbenz. Perfor-
mance comparison of weather disruption-tolerant cross-layer routing algorithms. In INFO-
COM 2009, IEEE, pages 1143–1151, April 2009.

[JS09] Abdul Jabbar and James PG Sterbenz. Aerorp: A geolocation assisted aeronautical routing
protocol for highly dynamic telemetry environments. In International Telemetering Confer-
ence, 2009. Las Vegas, NV.

[Kel14] Heather Kelly. Facebook looks to drones, lasers and satellites for internet access. CNN, March
2014.

[Kel15] John Keller. Darpa moving forward with effort to develop 100-gigabit-per-second airborne
wireless data links. Military & Aerospace Electronics, March 2015.

[KGKS05a] Young-Jin Kim, Ramesh Govindan, Brad Karp, and Scott Shenker. Geographic routing made
practical. In Proceedings of the 2Nd Conference on Symposium on Networked Systems Design
& Implementation - Volume 2, NSDI’05, pages 217–230, Berkeley, CA, USA, 2005. USENIX
Association.

[KGKS05b] Young-Jin Kim, Ramesh Govindan, Brad Karp, and Scott Shenker. On the pitfalls of geo-
graphic face routing. In Proceedings of the 2005 Joint Workshop on Foundations of Mobile
Computing, DIALM-POMC ’05, pages 34–43, New York, NY, USA, 2005. ACM.

[KGT+09] N. Krishnamurthi, A. Ganguli, A. Tiwari, Bao-Hong Shen, J. Yadegar, and G. Hadynski.
Topology control for future airborne networks. In Military Communications Conference, 2009.
MILCOM 2009. IEEE, pages 1–7, 2009.

186



[KK00] Brad Karp and H. T. Kung. GPSR: Greedy Perimeter Stateless Routing for Wireless Net-
works. In Proceedings of the 6th Annual International Conference on Mobile Computing and
Networking, MobiCom ’00, pages 243–254, New York, NY, USA, 2000. ACM.

[KST+10] A. Kothari, Bao-Hong Shen, A. Tiwari, A. Ganguli, Shuli Xu, and D. Krzysiak. Performance
characterization of ad hoc routing protocols with mobility awareness. In Military Communi-
cations Conference, 2010 - MILCOM 2010, pages 80–85, 2010.

[KSU99] Evangelos Kranakis, Harvinder Singh, and Jorge Urrutia. Compass routing on geometric net-
works. In in proc. 11th Canadian Conference on Computational Geometry, pages 51–54,
1999.

[KWZ02] Fabian Kuhn, Roger Wattenhofer, and Aaron Zollinger. Asymptotically Optimal Geometric
Mobile Ad-Hoc Routing. In 6th International Workshop on Discrete Algorithms and Methods
for Mobile Computing and Communications (DIALM), Atlanta, Georgia, September 2002.

[KWZ03a] Fabian Kuhn, Rogert Wattenhofer, and Aaron Zollinger. Ad-hoc networks beyond unit disk
graphs. In Proceedings of the 2003 Joint Workshop on Foundations of Mobile Computing,
DIALM-POMC ’03, pages 69–78, New York, NY, USA, 2003. ACM.

[KWZ03b] Fabian Kuhn, Rogert Wattenhofer, and Aaron Zollinger. Worst-case optimal and average-case
efficient geometric ad-hoc routing. In Proceedings of the 4th ACM International Symposium
on Mobile Ad Hoc Networking and Computing, MobiHoc ’03, pages 267–278, New York, NY,
USA, 2003. ACM.

[KWZZ03] Fabian Kuhn, Rogert Wattenhofer, Yan Zhang, and Aaron Zollinger. Geometric ad-hoc rout-
ing: Of theory and practice. In Proceedings of the Twenty-second Annual Symposium on
Principles of Distributed Computing, PODC ’03, pages 63–72, New York, NY, USA, 2003.
ACM.

[L3:11] Mini-T2 transceiver. Technical Report 16-DSD/SS-089, L-3 Communications, Jul 2011. Rev
102.

[LHS03] N. Li, J.C. Hou, and Lui Sha. Design and analysis of an mst-based topology control algo-
rithm. In INFOCOM 2003. Twenty-Second Annual Joint Conference of the IEEE Computer
and Communications. IEEE Societies, volume 3, pages 1702–1712 vol.3, March 2003.

[LJDC+00] Jinyang Li, John Jannotti, Douglas S. J. De Couto, David R. Karger, and Robert Morris. A
scalable location service for geographic ad hoc routing. In Proceedings of the 6th Annual
International Conference on Mobile Computing and Networking, MobiCom ’00, pages 120–
130, New York, NY, USA, 2000. ACM.

[LML05] B. Leong, S. Mitra, and B. Liskov. Path vector face routing: geographic routing with local
face information. In 13TH IEEE International Conference on Network Protocols (ICNP’05),
page 12, Nov 2005.

[Mag] Yael Maguire. Building communications networks in the stratosphere. Blog, Facebook Code,
July.

[MC98] J.N. Martin and M.J. Colella. Broadband wireless communications via stratospheric halo
aircraft. In Military Communications Conference, 1998. MILCOM 98. Proceedings., IEEE,
volume 1, pages 45–49 vol.1, 1998.

187



[MC00] J.N. Martin and N.J. Colella. High-speed internet access via stratospheric HALO aircraft. In
Emerging Technologies Symposium: Broadband, Wireless Internet Access, 2000 IEEE, pages
5 pp.–, 2000.

[Med11] D. Medina. Geographic Load Share Routing in the Airborne Internet. Utz, 2011.

[MHRR10] D. Medina, F. Hoffmann, F. Rossetto, and C.-H. Rokitansky. A crosslayer geographic routing
algorithm for the airborne internet. In 2010 IEEE International Conference on Communica-
tions (ICC), pages 1–6, May 2010.

[MHRR12] D. Medina, F. Hoffmann, F. Rossetto, and C.-H. Rokitansky. A geographic routing strategy for
north atlantic in-flight internet access via airborne mesh networking. Networking, IEEE/ACM
Transactions on, 20(4):1231–1244, August 2012.

[MM96] Rudolf Mathar and Jürgen Mattfeldt. Optimal transmission ranges for mobile communica-
tion in linear multihop packet radio networks. Wireless Networking, 2(4):329–342, December
1996.

[MNAK09] K. Miyao, H. Nakayama, N. Ansari, and N. Kato. Ltrt: An efficient and reliable topology
control algorithm for ad-hoc networks. IEEE Transactions on Wireless Communications,
8(12):6050–6058, December 2009.

[Mur15] Madhumita Murgia. Google’s project loon balloons may face ban in india. The Telegraph,
December 2015.

[NAJ15] Ben Newton, Jay Aikat, and Kevin Jeffay. Simulating large-scale airborne networks with ns-3.
In Proceedings of the 2015 Workshop on Ns-3, WNS3 ’15, pages 32–39, New York, NY, USA,
2015. ACM.

[NAJ16] Ben Newton, Jay Aikat, and Kevin Jeffay. Geographic routing in extreme-scale highly-
dynamic mobile ad-hoc networks. In 2016 IEEE 24th International Symposium on Modelling,
Analysis Simulation of Computer and Telecommunication Systems, Sept 2016.

[NBPD+04] Thomas E. Noll, John M. Bron, Marla E. Perez-Davis, Stephen D. Ishmael, Geary C. Tiffany,
and Matthew Gaier. Investigation of the helios prototype aircraft mishap. Technical report,
NASA, January 2004.

[New16] Casey Newton. Facebook takes flight. The Verge, Jul 2016.

[NGUS12] Truc Anh N Nguyen, Siddharth Gangadhar, Greeshma Umapathi, and James PG Sterbenz.
Performance evaluation of the aerotp protocol in comparison to tcp newreno, tcp westwood,
and scps-tp. In Proceedings of the International Telemetering Conference (ITC), 2012. San
Diego, CA.

[O’B89] Donald Q. O’Brien. Maze demystified. New York Times, July 26, 1989.

[PB94] Charles E. Perkins and Pravin Bhagwat. Highly dynamic destination-sequenced distance-
vector routing (dsdv) for mobile computers. In Proceedings of the Conference on Commu-
nications Architectures, Protocols and Applications, SIGCOMM ’94, pages 234–244, New
York, NY, USA, 1994. ACM.

[PR99] C.E. Perkins and E.M. Royer. Ad-hoc on-demand distance vector routing. In Mobile Comput-
ing Systems and Applications, 1999. Proceedings. WMCSA ’99. Second IEEE Workshop on,
pages 90–100, Feb 1999.

188



[RED13] John Rzasa, Mehmet Can Ertem, and Christopher C. Davis. Pointing, acquisition, and track-
ing considerations for mobile directional wireless communications systems. Proc. SPIE,
8874:88740C–88740C–10, 2013.

[RH10] George F. Riley and Thomas R. Henderson. The ns-3 network simulator. In Klaus Wehrle,
Mesut Gnes, and James Gross, editors, Modeling and Tools for Network Simulation, pages
15–34. Springer, 2010.

[RVC01] E. Rosen, A. Viswanathan, and R. Callon. Multiprotocol label switching architecture. RFC
3031, RFC Editor, January 2001.

[RW15] Mark D. Rintoul and Andrew T. Wilson. Trajectory analysis via a geometric feature space
approach. Statistical Analysis and Data Mining: The ASA Data Science Journal, 8(5-6):287–
301, 2015.

[San05] Paolo Santi. Topology control in wireless ad hoc and sensor networks. ACM Comput. Surv.,
37(2):164–194, Jun 2005.

[Sim16] Tom Simonite. 10 breakthrough technologies: Project loon. MIT Technology Review - Best in
Tech: 2015, pages 20–25, 2016.

[SLM15] M. Strohmeier, V. Lenders, and I. Martinovic. On the security of the automatic dependent
surveillance-broadcast protocol. IEEE Communications Surveys Tutorials, 17(2):1066–1087,
Secondquarter 2015.

[SPM+11] L.B. Stotts, N. Plasson, T.W. Martin, D.W. Young, and J. Juarez. Progress towards reliable
free-space optical networks. In Military Communications Conference, 2011 - MILCOM 2011,
pages 1720–1726, Nov 2011.

[TGK+09] A. Tiwari, A. Ganguli, A. Kothari, S. Avadhanam, J. Yadegar, M. Compton, and K. Hopkinson.
Feasibility of communication planning in airborne networks using mission information. In
Military Communications Conference, 2009. MILCOM 2009. IEEE, pages 1–7, 2009.

[TGS+08] A. Tiwari, A. Ganguli, Ashwin Sampath, D.S. Anderson, Bao-Hong Shen, N. Krishnamurthi,
J. Yadegar, M. Gerla, and D. Krzysiak. Mobility aware routing for the airborne network
backbone. In Military Communications Conference, 2008. MILCOM 2008. IEEE, pages 1–7,
2008.

[TNAK10] Ngo Duc Thuan, H. Nishiyama, N. Ansari, and N. Kato. On performance evaluation of reliable
topology control algorithms in mobile ad hoc networks. In Vehicular Technology Conference
Fall (VTC 2010-Fall), 2010 IEEE 72nd, pages 1–5, 2010.

[TP13] E. Teller and W.G. Patrick. Balloon clumping to provide bandwidth requested in advance,
November 21 2013. WO Patent App. PCT/US2013/035,959.

[USA07] Airborne network architecture, system communications description & technical architecture
profile. Technical report, USAF Airborne Network Special Interest Group, October 2007.

[Vol00] Aircraft situation display to industry: Functional description and interface control document.
Technical Report Version 4.0, Volpe Center, August 2000. Report no. ASDI-FD-001.

[YHSJ15] David W. Young, Hugh H. Hurt, Joseph E. Sluz, and Juan C. Juarez. Development and demon-
stration of laser communications systems. Johns Hopkins APL Technical Digest, 33(2):122–
138, September 2015.

189


