3,428 research outputs found

    Traction and Launch Control for a Rear-Wheel-Drive Parallel-Series Plug-In Hybrid Electric Vehicle

    Get PDF
    Hybrid vehicles are becoming the future of automobiles leading into the all-electric generation of vehicles. Electric vehicles come with a great increase in torque at lower RPM resulting in the issue of transferring this torque to the ground effectively. In this thesis, a method is presented for limiting wheel slip and targeting the ideal slip ratio for dry asphalt and low friction surfaces at every given time step. A launch control system is developed to further reduce wheel slip on initial acceleration from standstill furthering acceleration rates to sixty miles per hour. A MATLAB Simulink model was built of the powertrain as well as a six degree of freedom vehicle model that has been validated with real testing data from the car. This model was utilized to provide a reliable platform for optimizing control strategies without having to have access to the physical vehicle, thus reducing physical testing. A nine percent increase has been achieved by utilizing traction control and launch control for initial vehicle movement to sixty miles per hour

    Development of an Integrated Control Strategy Consisting of an Advanced Torque Vectoring Controller and a Genetic Fuzzy Active Steering Controller

    Get PDF
    Replicated with permission by SAE Copyright © 2017 SAE International. Further distribution of this material is not permitted without prior permission from SAE.The optimum driving dynamics can be achieved only when the tire forces on all four wheels and in all three coordinate directions are monitored and controlled precisely. This advanced level of control is possible only when a vehicle is equipped with several active chassis control systems that are networked together in an integrated fashion. To investigate such capabilities, an electric vehicle model has been developed with four direct-drive in-wheel motors and an active steering system. Using this vehicle model, an advanced slip control system, an advanced torque vectoring controller, and a genetic fuzzy active steering controller have been developed previously. This paper investigates whether the integration of these stability control systems enhances the performance of the vehicle in terms of handling, stability, path-following, and longitudinal dynamics. An integrated approach is introduced that distributes the required control effort between the in-wheel motors and the active steering system. Several test maneuvers are simulated to demonstrate the performance and effectiveness of the integrated control approach, and the results are compared to those obtained using each controller individually. Finally, the integrated controller is implemented in a hardware- and operator-in-the-loop driving simulator to further evaluate its effectiveness.Funding for this work was provided by the Natural Sciences and Engineering Research Council of Canada and agrant from AUTO21, a Canadian Network of Centres of Excellenc

    Integration of anti-lock braking system and regenerative braking for hybrid/electric vehicles

    Get PDF
    Vehicle electrification aims at improving energy efficiency and reducing pollutant emissions which creates an opportunity to use the electric machines (EM) as Regenerative Braking System (RBS) to support the friction brake system. Anti-lock Braking System (ABS) is part of the active safety systems that help drivers to stop safely during panic braking while ensuring the vehicle’s stability and steerability. Nevertheless, the RBS is deactivated at a safe (low) deceleration threshold in favour of ABS. This safety margin results in significantly less energy recuperation than what would be possible if both RBS and ABS were able to operate simultaneously. Vehicle energy efficiency can be improved by integrating RBS and friction brakes to enable more frequent energy recuperation activations, especially during high deceleration demands. The main aim of this doctoral research is to design and implement new wheel slip control with torque blending strategies for various vehicle topologies using four, two and one EM. The integration between the two braking actuators will improve the braking performance and energy efficiency of the vehicle. It also enables ABS by pure EM in certain situations where the regenerative brake torque is sufficient. A novelmethod for integrating the wheel slip control and torque blending is developed using Nonlinear Model Predictive Control (NMPC). The method is well known for the optimal performance and enforcement of critical control and state constraints. A linear MPC strategy is also developed for comparison purpose. A pragmatic brake torque blending algorithm using Daisy-Chain with sliding mode slip control is also developed based on a pre-defined energy recuperation priority. Simulation using high fidelity model using co-simulation in Matlab/Simulink and CarMaker is used to validate the developed strategies. Different test patterns are used to evaluate the controllers’ performance which includes longitudinal and lateral motions of the vehicle. Comparison analysis is done for the proposed strategies for each case. The capability for real-time implementation of the MPC controllers is assessed in simulation testing using dSPACE hardware

    Estudo de modelagem de veículos elétricos e estratégia de controle de torque para sistemas de frenagens regenerativa e antitravamento

    Get PDF
    Orientador: José Antenor PomilioTese (doutorado) - Universidade Estadual de Campinas, Faculdade de Engenharia Elétrica e de ComputaçãoResumo: Os veículos elétricos têm despertado crescente interesse devido à sua capacidade para reduzir a poluição no meio ambiente, usando elementos de energia elétrica acumulado em baterias e supercapacitores para o acionamento da máquina elétrica no lugar de um motor de combustão interna. Por outro lado, a baixa autonomia do veículo elétrico continua sendo uma barreira para seu sucesso comercial. Instituções automobilísticas junto com a Academia enfrentam esse desafio com diversas soluções para aumentar a energia disponível. Entre as possibilidades está a frenagem regenerativa. A frenagem regenerativa é um processo no qual recupera-se energia de um veículo durante as desacelerações. Esta pesquisa se concentra nas frenagens para diversas condições com mudanças da superficie da estrada, considerando o sistema de frenagem regenerativo e o sistema de antibloqueio. Analisamos e revisamos os aspectos básicos da modelagem de um veículo com/sem ABS, assim como o comportamento dinâmico das rodas e mostramos uma contribuição para o estudo do controle de torque na máquina e estratégias de controle para o torque distribuído na combinação e cooperação entre o torque elétrico e o mecânico, mesmo com mudanças do solo e de métodos de operação, como descidas, obtendo estabilidade do veículo e recuperação de energiaAbstract: The interest in electric vehicles has grown worldwide due to their efficiency for reducing environmental pollution, by using energy elements such as batteries and supercapacitors to drive the electric machine, instead of an internal combustion engine. Contrarily, the low vehicle autonomy remains a barrier to their commercial success. Therefore, automotive institutions together with academics face the challenge through various solutions to increase the available energy. The regenerative braking is one of the implementations that helps a better use of the stored energy. Regenerative braking is a process in which energy is recovered from a vehicle during decelerations. This research focuses on braking for various road surface conditions. Furthermore, it considers the regenerative braking and the anti-lock braking systems regarding energy recovery performance for friction coefficient changes. In this work, we will review and analyze the basic aspects of the modeling of a vehicle with or without ABS, as well as the dynamic behavior of wheels. We will also present a contribution to the study of torque control and control strategies for the torque distribution regarding combination and co-operation between electric and mechanical torque. This process is done despite changes in ground surfaces and operating methods such as downhill, leading to better performance in the flexibility of vehicle stability and in the recovery of powerDoutoradoEnergia EletricaDoutora em Engenharia Elétrica149810/2013-0CAPESCNP

    Model predictive torque vectoring control with active trail-braking for electric vehicles

    Get PDF
    In this work we present the development of a torque vectoring controller for electric vehicles. The proposed controller distributes drive/brake torque between the four wheels to achieve the desired handling response and, in addition, intervenes in the longitudinal dynamics in cases where the turning radius demand is infeasible at the speed at which the vehicle is traveling. The proposed controller is designed in both the Linear and Nonlinear Model Predictive Control framework, which have shown great promise for real time implementation the last decades. Hence, we compare both controllers and observe their ability to behave under critical nonlinearities of the vehicle dynamics in limit handling conditions and constraints from the actuators and tyre-road interaction. We implement the controllers in a realistic, high fidelity simulation environment to demonstrate their performance using CarMaker and Simulink

    STUDY OF STRATEGIES FOR AN OPTIMAL ENERGY MANAGEMENT ON ELECTRIC AND HYBRID VEHICLES

    Get PDF
    Questa tesi di dottorato è focalizzata sull’identificazione di strategie di gestione dell’energia a bordo di veicoli elettrici e ibridi, con l’obiettivo di ottimizzare la gestione dell’energia e, quindi, consentire un risparmio di risorse. Infatti, l’ottimizzazione della fase d’uso del veicolo, attraverso una più efficiente gestione dell’energia, consente di dimensionare in modo ridotto i principali componenti, come il pacco batterie. Innanzitutto, viene presentato un tool di simulazione denominato TEST (Target-speed EV Simulation Tool). Questo strumento consente di effettuare simulazioni di dinamica longitudinale per veicoli completamente elettrici o ibridi e, quindi, di monitorare tutti i dati rilevanti necessari per effettuare un corretto dimensionamento del gruppo propulsore, inclusi il/i motore/i elettrico/i ed il pacco batterie. Inoltre, è possibile testare anche diversi layout di propulsori, compresi quelli che utilizzano celle a combustibile, le cosiddette “fuel cell”. Viene poi presentata una strategia di frenata rigenerativa, adatta per veicoli FWD, RWD e AWD. L’obiettivo principale è quello di recuperare la massima energia frenante possibile, mantenendo il veicolo stabile, con buone prestazioni in frenata. La strategia è stata testata sia attraverso un consolidato software di simulazione della dinamica del veicolo (VI-CarRealTime), sia attraverso simulazioni “driver-in-the-loop” utilizzando un simulatore di guida. Inoltre, la strategia proposta è stata integrata nel tool TEST per valutarne l’influenza sull’autonomia e sui consumi del veicolo. Gli strumenti sopra menzionati sono stati utilizzati per studiare uno scenario di casi reali, per valutare la fattibilità dell’utilizzo di una flotta alimentata a fuel cell a metano per svolgere attività di raccolta rifiuti porta a porta. I risultati mostrano un’elevata fattibilità in termini di autonomia del veicolo rispetto alle missioni standard di raccolta dei rifiuti, a condizione che i componenti siano adeguatamente dimensionati. Il dimensionamento dei componenti è stato effettuato attraverso iterazioni, utilizzando diversi componenti nelle stesse missioni. Infine, è stata riportata un’analisi approfondita degli studi LCA (Life Cycle Assessment) relativi ai veicoli elettrici, con particolare attenzione al pacco batterie, evidenziando alcune criticità ambientali. Questo studio sull’LCA sottolinea quindi l’importanza di una corretta gestione dell’energia per ridurre al minimo l’impatto ambientale associato al consumo stesso di energia.This PhD thesis is focused on identifying energy management strategies on board electric and hybrid vehicles, to optimize energy management and thus allow for resource savings. In fact, vehicle’s operational phase optimisation through a more efficient energy management allows main components downsizing, such as battery pack. First of all, a simulation tool called TEST (Target-speed EV Simulation Tool), is presented. This tool allows to carry out longitudinal dynamics simulations on pure electric or hybrid-electric vehicles, and therefore monitoring all the relevant data needed to carry out a proper powertrain sizing, including the electric motor(s) and the battery pack. Furthermore, several powertrain layouts can be also tested, including those using fuel cells. Then a regenerative braking strategy, suitable for FWD, RWD and AWD vehicles, is presented. Its main target is to recover the maximum possible braking energy, while keeping the vehicle stable with good braking performance. The strategy has been tested both through a state-of-art vehicle dynamics simulation software (VI-CarRealTime) and through driver-in-the-loop simulations using a driving simulator. Furthermore, the proposed strategy has been integrated into TEST to evaluate its influence on vehicle range and consumptions. The above-mentioned tools have been used to evaluate a real-world case scenario to assess the feasibility of using a methane fuel cell powered fleet to carry out door to door waste collection activities. Results show high feasibility in terms of vehicle range compared to standard waste collection missions, provided that components are properly sized. Components sizing has been done through iterations using different components on the same missions. Finally, an in-depth analysis of the LCA (Life Cycle Assessment) studies related to electric vehicles has been reported, with particular focus to the battery pack, highlighting some environmental critical issues. This LCA study therefore emphasizes the importance of a correct energy management to minimize the environmental impact associated with energy consumption

    Integrated braking control for electric vehicles with in-wheel propulsion and fully decoupled brake-by-wire system

    Get PDF
    This paper introduces a case study on the potential of new mechatronic chassis systems for battery electric vehicles, in this case a brake-by-wire (BBW) system and in-wheel propulsion on the rear axle combined with an integrated chassis control providing common safety features like anti-lock braking system (ABS), and enhanced functionalities, like torque blending. The presented controller was intended to also show the potential of continuous control strategies with regard to active safety, vehicle stability and driving comfort. Therefore, an integral sliding mode (ISM) and proportional integral (PI) control were used for wheel slip control (WSC) and benchmarked against each other and against classical used rule-based approach. The controller was realized in MatLab/Simulink and tested under real-time conditions in IPG CarMaker simulation environment for experimentally validated models of the target vehicle and its systems. The controller also contains robust observers for estimation of non-measurable vehicle states and parameters e.g., vehicle mass or road grade, which can have a significant influence on control performance and vehicle safety

    고성능 한계 핸들링을 위한 인휠모터 토크벡터링 제어

    Get PDF
    학위논문(박사) -- 서울대학교대학원 : 공과대학 기계항공공학부, 2021.8. 이경수.지난 10년 동안 차량 자세 제어시스템(ESC)은 치명적인 충돌을 방지하기 위해 많은 상용 차량에서 비약적으로 발전되고 개발되고 있다. 특히, 차량 자세 제어 시스템은 악천후로 인한 미끄러운 도로와 같은 위험한 도로에서 불안정한 차량 주행 조건에서 사고를 피하는데 큰 역할을 한다. 그러나, 최근의 경우, 고성능 차량 또는 스포츠카 등의 경우 제동제어의 빈번한 개입은 운전의 즐거움을 감소시키는 불만도 존재한다. 최근 차량의 전동화와 함께, 자량 자세 제어시스템의 작동 영역인 한계 주행 핸들링 조건에서 각 휠의 독립적인 구동을 적용 할 수 있는 시스템 중 하나인 인휠 모터 시스템을 사용하여 차량의 종, 횡방향 특성을 제어 가능하게 하는 토크 벡터링 제어기술에 대한 연구가 활발하다. 따라서, 본 연구에서는 차량의 선회 한계 핸들링 조건에서 안정성과 주행 다이나믹 성능을 향상시킬 수 있는 토크 벡터링 제어기를 제안하고자 한다. 먼저, 차량의 비선형 주행 구간인 한계 핸들링 조건에 대한 자동 드리프트 제어 알고리즘을 제안한다. 이 알고리즘을 이용하여 토크벡터링제어에 차량의 다이나믹한 주행모드에 대한 통찰력을 제공하고 미끄러운 도로에서 차량의 높은 슬립 각도의 안정성 제어를 제공 할 수 있다. 또한, 인휠 모터 시스템을 차량의 전륜에 2개 모터로 사용하여 차량 고유의 특성인 차량 언더스티어 구배를 직접적 제어를 수행하여, 차량의 핸들링 성능을 향상시켰다. 제어기의 채터링 효과를 줄이고 빠른 응답을 얻기 위해 새로운 과도 매개 변수가 이용하여 수식화하여 구성하였으며, 차량의 정상 상태 및 과도 특성 향상을 검증하기 위하여 ISO 기반 시뮬레이션 및 차량 실험을 수행하였다. 마지막으로 요 제어기와 횡 슬립 각도 제어기로 구성된 MASMC (Multiple Adaptive Sliding Mode Control) 접근 방식을 사용하는 4륜 모터 시스템을 사용한 동적 토크벡터링 제어를 수행하였다. 높은 비선형 특성을 가진 차량의 전후륜 타이어의 코너링 강성은 적응제어기법을 이용하여 예측하였다. 따라서, 안전모드와 다이나믹 모드를 구성하여, 운전자로 하여금 원하는 주행의 조건에 맞게 선택할 수 있는 알고리즘을 구현하였다. 이 MASMC 알고리즘은 향후 전동화 차량에 주행안정성 향상과 다이나믹한 주행의 즐거움을 주는 기술로써, 전차량 시뮬레이션을 이용하여 검증하였다.In the last ten decades, vehicle stability control systems have been dramatically developed and adapted in many commercial vehicles to avoid fatal crashes. Significantly, ESC (Electric Stability Control) system can help escape the accident from unstable driving conditions with dangerous roads such as slippery roads due to inclement weather conditions. However, for the high performed vehicle, frequent intervention from ESC reduces the pleasure of fun-to-drive. Recently, the development of traction control technologies has been taking place with that of the electrification of vehicles. The IWMs (In-Wheel Motor system), which is one of the systems that can apply independent drive of each wheel, for the limit handling characteristics, which are the operation areas of the ESC, is introduced for the control that enables the lateral characteristics of the vehicle dynamics. Firstly, the automated drift control algorithm can be proposed for the nonlinear limit handling condition of vehicles. This approach can give an insight of fun-to-drive mode to TV (Torque Vector) control scheme, but also the stability control of high sideslip angle of the vehicle on slippery roads. Secondly, using IWMs system with front two motors, understeer gradient of vehicle, which is the unique characteristics of vehicle can be used for the proposed control strategy. A new transient parameter is formulated to be acquired rapid response of controller and reducing chattering effects. Simulation and vehicle tests are conducted for validation of TV control algorithm with steady-state and transient ISO-based tests. Finally, dynamic torque vectoring control with a four-wheel motor system with Multiple Adaptive Sliding Mode Control (MASMC) approach, which is composed of a yaw rate controller and sideslip angle controller, is introduced. Highly nonlinear characteristics, cornering stiffnesses of front and rear tires are estimated by adaptation law with measuring data. Consequently, there are two types of driving modes, the safety mode and the dynamic mode. MASMC algorithm can be found and validated by simulation in torque vectoring technology to improve the handling performance of fully electric vehicles.Chapter 1 Introduction 7 1.1. Background and Motivation 7 1.2. Literature review 11 1.3. Thesis Objectives 15 1.4. Thesis Outline 15 Chapter 2 Vehicle dynamic control at limit handling 17 2.1. Vehicle Model and Analysis 17 2.1.1. Lateral dynamics of vehicle 17 2.1.2. Longitudinal dynamics of vehicle 20 2.2. Tire Model 24 2.3. Analysis of vehicle drift for fun-to-drive 28 2.4. Designing A Controller for Automated Drift 34 2.4.1. Lateral controller 35 2.4.2. Longitudinal Controller 37 2.4.3. Stability Analysis 39 2.4.4. Validation with simulation and test 40 Chapter 3 Torque Vectoring Control with Front Two Motor In-Wheel Vehicles 47 3.1. Dynamic Torque Vectoring Control 48 3.1.1. In-wheel motor system (IWMs) 48 3.1.2. Dynamic system modeling 49 3.1.3. Designing controller 53 3.2. Validation with Simulation and Experiment 59 3.2.1. Simulation 59 3.2.2. Vehicle Experiment 64 Chapter 4 Dynamic handling control for Four-wheel Drive In-Wheel platform 75 4.1. Vehicle System Modeling 76 4.2. Motion Control based on MASMC 78 4.2.1. Yaw motion controller for the inner ASMC 80 4.2.2. Sideslip angle controller for the outer ASMC 84 4.3. Optimal Torque Distribution (OTD) 88 4.3.1. Constraints of dynamics 88 4.3.2. Optimal torque distribution law 90 4.4. Validation with Simulation 91 4.4.1. Simulation setup 91 4.4.2. Simulation results 92 Chapter 5 Conclusion and Future works 104 5.1 Conclusion 104 5.2 Future works 106 Bibliography 108 Abstract in Korean 114박

    Exploration of robotic-wheel technology for enhanced urban mobility and city scale omni-directional personal transportation

    Get PDF
    Thesis (S.M.)--Massachusetts Institute of Technology, School of Architecture and Planning, Program in Media Arts and Sciences, 2008.Includes bibliographical references (leaves 50-52).Mobility is traditionally thought of as freedom to access more goods and services. However, in my view, mobility is also largely about personal freedom, i.e., the ability to exceed one's physical limitations, in essence, to become "more than human" in physical capabilities. This thesis explores novel designs for omni-directional motion in a mobility scooter, car and bus with the aim of increasing personal mobility and freedom. What links these designs is the use of split active caster wheel robot technology. In the first section, societal and technological impacts of omni-directional motion in the city are examined. The second section of the thesis presents built and rendered prototypes of these three designs. The third and final section, evaluates implementation issues including robotic controls and an algorithm necessary for real world omni-directional mobility.by Raul-David Valdivia Poblano.S.M

    Systematization of integrated motion control of ground vehicles

    Get PDF
    This paper gives an extended analysis of automotive control systems as components of the integrated motion control (IMC). The cooperation of various chassis and powertrain systems is discussed from a viewpoint of improvement of vehicle performance in relation to longitudinal, lateral, and vertical motion dynamics. The classification of IMC systems is proposed. Particular attention is placed on the architecture and methods of subsystems integration
    corecore