5,555 research outputs found

    REAL-TIME PREDICTIVE CONTROL OF CONNECTED VEHICLE POWERTRAINS FOR IMPROVED ENERGY EFFICIENCY

    Get PDF
    The continued push for the reduction of energy consumption across the automotive vehicle fleet has led to widespread adoption of hybrid and plug-in hybrid electric vehicles (PHEV) by auto manufacturers. In addition, connected and automated vehicle (CAV) technologies have seen rapid development in recent years and bring with them the potential to significantly impact vehicle energy consumption. This dissertation studies predictive control methods for PHEV powertrains that are enabled by CAV technologies with the goal of reducing vehicle energy consumption. First, a real-time predictive powertrain controller for PHEV energy management is developed. This controller utilizes predictions of future vehicle velocity and power demand in order to optimize powersplit decisions of the vehicle. This predictive powertrain controller utilizes nonlinear model predictive control (NMPC) to perform this optimization while being cognizant of future vehicle behavior. Second, the developed NMPC powertrain controller is thoroughly evaluated both in simulation and real-time testing. The controller is assessed over a large number of standardized and real-world drive cycles in simulation in order to properly quantify the energy savings benefits of the controller. In addition, the NMPC powertrain controller is deployed onto a real-time rapid prototyping embedded controller installed in a test vehicle. Using this real-time testing setup, the developed NMPC powertrain controller is evaluated using on-road testing for both energy savings performance and real-time performance. Third, a real-time integrated predictive powertrain controller (IPPC) for a multi-mode PHEV is presented. Utilizing predictions of future vehicle behavior, an optimal mode path plan is computed in order to determine a mode command best suited to the future conditions. In addition, this optimal mode path planning controller is integrated with the NMPC powertrain controller to create a real-time integrated predictive powertrain controller that is capable of full supervisory control for a multi-mode PHEV. Fourth, the IPPC is evaluated in simulation testing across a range of standard and real-world drive cycles in order to quantify the energy savings of the controller. This analysis is comprised of the combined benefit of the NMPC powertrain controller and the optimal mode path planning controller. The IPPC is deployed onto a rapid prototyping embedded controller for real-time evaluation. Using the real-time implementation of the IPPC, on-road testing was performed to assess both energy benefits and real-time performance of the IPPC. Finally, as the controllers developed in this research were evaluated for a single vehicle platform, the applicability of these controllers to other platforms is discussed. Multiple cases are discussed on how both the NMPC powertrain controller and the optimal mode path planning controller can be applied to other vehicle platforms in order to broaden the scope of this research

    A novel strategy for power sources management in connected plug-in hybrid electric vehicles based on mobile edge computation framework

    Get PDF
    This paper proposes a novel control framework and the corresponding strategy for power sources management in connected plug-in hybrid electric vehicles (cPHEVs). A mobile edge computation (MEC) based control framework is developed first, evolving the conventional on-board vehicle control unit (VCU) into the hierarchically asynchronous controller that is partly located in cloud. Elaborately contrastive analysis on the performance of processing capacity, communication frequency and communication delay manifests dramatic potential of the proposed framework in sustaining development of the cooperative control strategy for cPHEVs. On the basis of MEC based control framework, a specific cooperative strategy is constructed. The novel strategy accomplishes energy flow management between different power sources with incorporation of the active energy consumption plan and adaptive energy consumption management. The method to generate the reference battery state-of-charge (SOC) trajectories in energy consumption plan stage is emphatically investigated, fast outputting reference trajectories that are tightly close to results by global optimization methods. The estimation of distribution algorithm (EDA) is employed to output reference control policies under the specific terminal conditions assigned via the machine learning based method. Finally, simulation results highlight that the novel strategy attains superior performance in real-time application that is close to the offline global optimization solutions

    Minimum cost path problem for Plug-in Hybrid Electric Vehicles

    Get PDF
    Cataloged from PDF version of article.We introduce a practically important and theoretically challenging problem: finding the minimum cost path for plug-in hybrid electric vehicles (PHEVs) in a network with refueling and battery switching stations, considering electricity and gasoline as sources of energy with different cost structures and limitations. We show that this problem is NP-complete even though its electric vehicle and conventional vehicle special cases are polynomially solvable. We propose three solution techniques: (1) a mixed integer quadratically constrained program that incorporates non-fuel costs such as vehicle depreciation, battery degradation and stopping, (2) a dynamic programming based heuristic and (3) a shortest path heuristic. We conduct extensive computational experiments using both real world road network data and artificially generated road networks of various sizes and provide signifi- cant insights about the effects of driver preferences and the availability of battery switching stations on the PHEV economics. In particular, our findings show that increasing the number of battery switching stations may not be enough to overcome the range anxiety of the drivers

    Research on Ecological Assessment and Dynamic Optimization of Energy-saving and New Energy Vehicle Business Model Based on Full Life Cycle Theory

    Get PDF
    The rapid development of China's automobile industry has brought ever-increasing impact on resources, energy and environment, the energy-saving and new energy vehicles come into being accordingly. This article firstly systematically introduces the technical route of energy-saving and new energy vehicles of China, focusing on the key bottleneck problems arising from  the construction process of current assessment system of the technical route for energy-saving and new energy vehicles, establishes the energy-saving and new energy vehicle business model assessment index system afterward based on the comparative analysis on energy-saving and new energy vehicle business assessment model and the full life cycle theory, and finally makes prospects and forecasts on vital problems of system boundary, dynamic optimization, simulation system of full life cycle assessment of energy-saving and new energy vehicle
    corecore