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Abstract 

The continued push for the reduction of energy consumption across the automotive vehicle 

fleet has led to widespread adoption of hybrid and plug-in hybrid electric vehicles (PHEV) 

by auto manufacturers. In addition, connected and automated vehicle (CAV) technologies 

have seen rapid development in recent years and bring with them the potential to 

significantly impact vehicle energy consumption. This dissertation studies predictive 

control methods for PHEV powertrains that are enabled by CAV technologies with the goal 

of reducing vehicle energy consumption. 

First, a real-time predictive powertrain controller for PHEV energy management is 

developed. This controller utilizes predictions of future vehicle velocity and power demand 

in order to optimize powersplit decisions of the vehicle. This predictive powertrain 

controller utilizes nonlinear model predictive control (NMPC) to perform this optimization 

while being cognizant of future vehicle behavior. 

Second, the developed NMPC powertrain controller is thoroughly evaluated both in 

simulation and real-time testing. The controller is assessed over a large number of 

standardized and real-world drive cycles in simulation in order to properly quantify the 

energy savings benefits of the controller. In addition, the NMPC powertrain controller is 

deployed onto a real-time rapid prototyping embedded controller installed in a test vehicle. 

Using this real-time testing setup, the developed NMPC powertrain controller is evaluated 

using on-road testing for both energy savings performance and real-time performance. 



xix 

Third, a real-time integrated predictive powertrain controller (IPPC) for a multi-mode 

PHEV is presented. Utilizing predictions of future vehicle behavior, an optimal mode path 

plan is computed in order to determine a mode command best suited to the future 

conditions. In addition, this optimal mode path planning controller is integrated with the 

NMPC powertrain controller to create a real-time integrated predictive powertrain 

controller that is capable of full supervisory control for a multi-mode PHEV. 

Fourth, the IPPC is evaluated in simulation testing across a range of standard and real-

world drive cycles in order to quantify the energy savings of the controller. This analysis 

is comprised of the combined benefit of the NMPC powertrain controller and the optimal 

mode path planning controller. The IPPC is deployed onto a rapid prototyping embedded 

controller for real-time evaluation. Using the real-time implementation of the IPPC, on-

road testing was performed to assess both energy benefits and real-time performance of the 

IPPC. 

Finally, as the controllers developed in this research were evaluated for a single vehicle 

platform, the applicability of these controllers to other platforms is discussed. Multiple 

cases are discussed on how both the NMPC powertrain controller and the optimal mode 

path planning controller can be applied to other vehicle platforms in order to broaden the 

scope of this research. 

 





1 

1 Introduction 

1.1 Background 

In response to regulatory, environmental, and market forces, automotive manufactures 

have focused on two technology domains in the search for ways to reduce the energy 

consumption of their vehicles and increase overall vehicle fleet efficiency. These two 

technology areas, vehicle electrification and connected and automated vehicle (CAV) 

technologies have seen significant developments in recent years. Hybrid electric vehicles 

(HEV) and plug-in hybrid electric vehicles (PHEV) have been popular electrification 

options amongst automakers for many years. As a result, the design and control of these 

hybridized powertrain is well understood and have been thoroughly researched. However, 

the advent of CAV technology and the information it can provide has led to new control 

possibilities for HEVs and PHEVs, specifically predictive powertrain control, that require 

further study. 

According to [1] and [2], a research priority in the realm of CAV technology is to further 

quantify exactly the energy impact these technologies provide. As predictive powertrain 

control methods are directly enabled by CAV technology [3], this dissertation will focus 

on providing a thorough assessment of the reduction in energy consumption that predictive 

powertrain methods can have on a PHEV. Additionally, there exists limited research into 

predictive control methods for HEV and PHEV energy management that demonstrate real-

time capability. This dissertation will also aim to develop predictive powertrain control 
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methods that not only reduce energy consumption relative to existing control methods, but 

also demonstrate that the developed control methods are capable of operating in a real-time 

environment. 

1.2 Literature Review 

Research in three particular categories will be reviewed in order to contextualize the 

research presented in this dissertation. Section 1.2.1 focuses specifically on non-predictive 

methods of electrified vehicle (xEV) control methods. Section 1.2.2 will review previous 

work in predictive control methodologies for xEV vehicles. Finally, the advent of CAV 

technologies has opened a window of opportunity to integrate vehicle level functions, like 

powertrain control, with CAV technology. Section 1.2.3 examines the potential 

applications and impact that CAV technologies can have on powertrain level control. 

1.2.1 xHEV Powertrain Control Methods 

A multitude of methods have been studied for the control and energy management of HEV 

and PHEV powertrains [4]. These methods can fall into several categories, including 

heuristic methods, instantaneous optimization methods, local optimization methods, and 

globally optimal methods [5-7]. Heuristic methods like rules-based control, such as in [8, 

9], were studied early in the development of HEVs. While easy to implement and fast 

performing in real-time control, the complexity of HEV systems and the variability of 

operating conditions that HEVs encounter often result in sub-optimal energy management 

of the HEV powertrain when using rules-based methods. Instantaneous optimization 



3 

energy management strategies for HEVs optimize a cost function at each execution step of 

the controller allowing for the consideration of the current state of the vehicle in the 

choosing of a most optimal control action for the given moment. Strategies that fall in under 

the instantaneous optimization method umbrella include the equivalent consumption 

management strategy (ECMS). The ECMS, which is capable of real time control, utilizes 

a cost function with a predetermined equivalence factor between the cost of fuel and 

electrical energy consumption [6, 10-12]. Improvements to the ECMS method include 

adaptive ECMS, or A-ECMES. This strategy was able to improve upon ECMS by adapting 

the equivalence factor to changing driving conditions [13]. However, even with this 

adapting factor, the A-ECMS method does not include a mechanism to account for future 

conditions of the vehicle, which can lead to suboptimal control decisions over the course 

of an entire drive cycle. 

Global optimal control methods can serve a useful purpose in determining a true optimal 

control strategy for a vehicle over a drive cycle [14, 15]. Denis et al. [16] examined the use 

of DP and the genetic algorithm (GA) as methods for powersplit control in a parallel hybrid 

finding that, while slower to solve, the DP-based method provided greater energy savings. 

However, as both the DP and GA implementations required full cycle knowledge, neither 

were suitable for real-time control. Pei and Leamy [17] use DP to generate global optimal 

energy management strategy for a parallel and powersplit HEV. This global optimal 

strategy was then used to evaluate an ECMS-based strategy. 



4 

There are several common methods used for local optimal control of PHEV powertrains. 

DP is one of methods used in this application, but instead of optimizing an energy 

management strategy for the entire drive cycle, short segments are used. For example, 

papers [18], [19], and [20] utilize a DP-based controller with a short horizon look-ahead 

for energy management in a parallel HEV. However, the implementation was only in 

simulation and has no real-time capability demonstrated. Model predictive control (MPC) 

is another popular local optimal method for xEV powertrain energy management and will 

be discussed in depth in the subsequent section. 

1.2.2 Model Predictive Control xEV Applications 

The use of model predictive control for energy management in xEVs has been a well-

researched topic over the past decade and has been shown to be an effective control method 

for optimizing the energy management of xEV powertrains [21]. Through the capability of 

considering predicted future vehicle behavior in the determination of a current control 

action, the use of MPC for xEV powertrain energy management can be an effective tool 

for reducing energy consumption. A number of past studies have been conducted on the 

use of MPC in xEVs. Ripaccioli et al. in [22] proposed an MPC controller for a parallel 

HEV and was shown in simulation to reduce fuel consumption relative to a conventionally 

controlled vehicle. The same author presented an MPC controller for a series HEV in [23]. 

An MPC torque-split control strategy was presented for a parallel HEV in [24]. This work 

incorporated engine transient characteristics into the MPC formulation finding that this 

addition reduced fuel consumption when compared to the steady-state implementation. A 
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similar study was conducted in [25], once again finding that the incorporation of engine 

dynamics into an MPC formulation for a parallel HEV can reduce fuel consumption 

compared to the steady-state implementation. The authors of [26] presented a stochastic 

MPC for powersplit control of a parallel HEV. In this implementation, future road grade is 

incorporated into the MPC using a Markov chain. This method reduced fuel consumption 

when compared to an ECMS strategy that does not contain the road grade preview. The 

authors of [27] developed both a linear and non-linear MPC control for a powersplit HEV 

finding that, in simulation testing, that the NMPC implementation offered higher fuel 

economy than that of the linear MPC implementation. In [28] and [29], the authors 

developed an NMPC controller for a powersplit HEV powertrain that was incorporated 

with an electrochemical battery model that was considerate of battery aging. An NMPC 

controller for a single mode, powersplit HEV was also proposed in [30] where testing was 

expanded to real time in a benchtop embedded controller and simulator. While for a 

conventional vehicle with a CVT, paper [31] demonstrated that real-time MPC for 

powertrain control is possible in a production-level embedded controller thus providing 

validity to the goal of achieving real-time MPC control for a xEV powertrain. 

1.2.3 Powertrain Applications of Connected and Automated Vehicle Technologies 

For at least the last decade, the mobility industry has seen CAV technologies as a key 

enabler to the success of electrified vehicles [32]. During the course of this decade, 

significant progress has been made in making this view a reality. Not only does the 

integration of CAV technology offer promise in terms of safety, comfort, and convenience, 
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the use of CAV tech offers significant promise as a tool to reduce energy consumption 

[33]. CAV technologies can impact a vehicle, those that alter interaction of a vehicle with 

its surroundings and those that alter the behavior of a vehicle within itself. Inter-vehicle 

technologies such as Eco-Routing, Eco Approach and Departure, Platooning and Speed 

Harmonization, have the potential to offer significant energy savings benefits [34-37]. 

However, the focus of this work is on how CAV technologies can impact intra-vehicle 

behavior, specifically on how the information provided by CAV technologies can improve 

powertrain operation.  

Predictive control strategies for xEV powertrains can produce energy savings when 

compared to non-predictive strategies, especially when integrated with CAV technology 

[3]. Using reliable forecasts obtained through CAV technology can improve the 

performance of predictive energy management strategies when compared to predictions 

developed using historical data as presented in [23, 38, 39]. However, a requirement for 

the successful implementation of predictive control methods is the ability to obtain a 

prediction of future driving conditions, such as vehicle speed, road grade, and light timing 

[4]. As commercial development of CAV technology continues, it is becoming feasible to 

obtain these future predictions through V2X communication [40]. Because of this, the 

integration of CAV technology and powertrain control has becoming a popular research 

topic. For example, paper [41] examines on how future route knowledge can impact 48V 

mild hybrid control as well as engine control. In [42], Hu et al. present a controller that 

uses Pontryagin’s Minimum Principal to optimize vehicle acceleration and automatic 

transmission gear state given forecasted vehicle speed and road grade. However, this work 
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was performed in simulation only and was limited to a conventional vehicle. Papers [43] 

and [44] present a method for utilizing a full route preview to optimize where along the 

route charge depleting and charge sustaining powertrain operation should be used for the 

minimal energy consumption. 

1.3 Research Objective and Contributions 

The research objective of this dissertation is to investigate predictive control methods for 

PHEV powertrain control that leverage vehicle connectivity for energy savings and are 

both capable and practical for real-time control. Control methods for HEVs and PHEVs 

have been well studied; however, a control strategy that is predictive in nature, utilizes 

vehicle connectivity, and capable of real-time control on an embedded control has yet to 

be developed. This dissertation presents an Integrated Predictive Powertrain Controller 

(IPPC) for the 2nd generation Chevrolet Volt, a multi-mode PHEV. The IPPC consists of 

two layers of control. The lower layer, detailed in Chapter 3, presents a non-linear model 

predictive controller designed for optimal energy management of the Chevrolet Volt. This 

layer of control utilizes predictions of future vehicle speed and road conditions to produce 

an optimized powersplit for the vehicle. The energy savings benefits of this controller were 

demonstrated in simulation. In addition, the controller was implemented in a real-time 

environment and the performance observed in simulation was validated in real-time. The 

upper layer of control, detailed in Chapter 4, presents a method in which predictions of 

future vehicle behavior are used to plan an optimal path of vehicle powertrain modes that 
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minimizes energy consumption. The energy savings benefit of this control level was 

evaluated in simulation testing as well as validated through real-time testing. 

1.4 Outline of the Dissertation 

The dissertation is organized as follows. Chapter 2 presents details of the vehicle used as a 

research platform in this dissertation. This chapter will also discuss the simulation model 

utilized in this research. Chapter 3 introduces a real-time predictive powertrain controller 

for a connected PHEV that utilizes non-linear model predictive control to optimize 

powersplit for reduced energy consumption. Chapter 4 presents an Integrated Predictive 

Powertrain Controller for a multi-mode PHEV. This includes the integration of an Optimal 

Mode Path Planning algorithm and the NMPC Powertrain Controller presented in Chapter 

3 into one real-time integrated controller for multi-mode PHEV powertrain control. 

Chapter 5 provides further performance analysis into the controllers presented in Chapters 

3 and 4. Chapter 6 examines the applicability of the controllers developed in Chapters 3 

and 4 to other vehicle platforms. Finally, Chapter 7 provides conclusions along with 

potential future work possibilities. 
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2 Research Environment: Vehicle Model and Test Setup 

This chapter will provide an overview of the platforms on which this research was 

conducted. Two main sections are contained within this chapter. First, the vehicle utilized 

in this work, specifically the powertrain of said vehicle, will be detailed in order to provide 

appropriate context for the control algorithms presented in later chapters. Secondly, a 

general overview of the model used for simulation testing of the developed control 

algorithms is provided. For details of the real-time model and test vehicle used for real-

time evaluation of the developed control algorithms, please refer to Chapter 3.4. 

2.1 2nd Generation Chevrolet Volt 

This dissertation investigates predictive control methods for PHEV powertrain control. 

Therefore, a vehicle platform is required on which to perform this investigation. The 

vehicle platform used in this research is the 2nd generation Chevrolet Volt, a multi-mode 

PHEV manufactured by General Motors capable of both electric-only and hybrid 

operation. 

2.1.1 Vehicle Specifications 

The Volt’s powertrain components consist of a 1.5L 4-cylinder engine paired with two 

electric machines. BSFC and efficiency maps of these components are provided in Section 

3.2. These components are integrated into the vehicle’s drive unit which produces five 

distinct operating modes through the use of two planetary gear sets, two actuated clutches 
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and a one-way clutch. Two of the modes are electric-only modes, while the remaining three 

are hybrid operating modes. The battery pack on the 2nd generation Volt is an 18.4 kWh 

unit allowing for a 50-mile EV range. 

A simplified lever representation of this drive unit is provided in Figure 2-1 while major 

parameters of the vehicle are given in Table 2-1. Full details and specifications of the Volt 

powertrain components can be found in [45-49], and a breakdown of the vehicle’s 

performance is provided in [50, 51]. 

 

Figure 2-1: 2nd Generation Chevrolet Volt drive unit lever diagram representation. 

Table 2-1: Major parameters of the 2nd generation Chevrolet Volt [47]. 

Parameter Value Units 

Max Engine Power 75 kW 

Max Torque Engine 140 Nm 
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Max Power MGA 48 kW 

Max Torque MGA 118 Nm 

Max Power MGB 87 kW 

Max Torque MGB 280 Nm 

Battery Capacity 18.4 kW-hr 

Battery Max Discharge Power 120 kW 

Curb Weight 1607 kg 

2.1.2 Drive Unit Mode Breakdown 

These five drive unit modes are broken down into two electric-only, or charge depleting 

(CD), modes and three hybrid, or charge sustaining (CS), modes. CD operation is default 

for the vehicle. This strategy is utilized by the vehicle until one of two events occurs at 

which point CS operating will begin. The first event is that battery SOC reaches its lower 

limit, approximately 16%. The second event is in the case that the driver commands CS 

mode through an in-vehicle setting. CS operation utilizes the three hybrid modes to 

maintain battery SOC within ~±1% of either ~16% in the case of a fully depleted battery 

or, in the case of a non-depleted battery, the SOC of the battery at the time of the in-vehicle 

CS command. 
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The electric-only modes consist of one motor operation, 1-EV, and two motor operation, 

2-EV. In EV operation, as shown in Figure 2-2, clutch C1 is open, clutch B1 is closed 

which allows Motor B to provide power directly to the output, and the one-way clutch is 

loaded which allows Motor A to provide power directly to the output in 2-EV mode. 1-EV 

uses Motor B only to provide power to the wheels. Due to the ability of Motor B to provide 

sufficient tractive effort in most driving conditions, 1-EV mode is used for the majority of 

electric-only operation. In high torque demand situations, such as vehicle launch and high 

acceleration events, 2-EV mode will be utilized in which case Motor A supplies the 

additional torque required to meet demand [47]. The governing torque and speed equations, 

derived using the lever analogy of planetary gear sets [52], of the drive unit in EV mode 

are provided in (2-1). 
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Figure 2-2: EV Mode Clutch State and Power Flow. 

Low extended range (LER) is the first of three hybrid modes produced by the drive unit. 

LER is an input powersplit hybrid arrangement. In this mode, the engine speed is decoupled 

from the wheels. The engine’s power is split on PG1 between the carrier, which serves as 

the output, and Motor A, which acts as a generator and speed controller for the engine. 

Depending on the amount of power produced by Motor A, power is sent to Motor B, which 

also provides power to the output, and, in the case of the power produced by Motor A being 

in excess of that required by Motor B, to the battery. Clutch C1 is open in this arrangement 

and clutch B1 is closed as shown in Figure 2-3. LER mode is most efficient during high 

torque, low speed events. LER use is very prominent in scenarios such as city driving where 

frequent stop and starts occur and overall vehicle speeds are relatively low [47]. The 

governing torque and speed equations of the drive unit in LER mode are provided in (2-2). 
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Figure 2-3: LER Mode Clutch State and Power Flow. 

Fixed ratio extended range (FER) mode is a parallel hybrid arrangement. Shown in Figure 

2-4, clutch B1 and C1 are both closed which results in both Motor A and the ring of PG2 

being grounded and the engine speed being directly coupled to wheel speed. This allows 

the engine deliver power directly to the output carrier while Motor B is able to either 

provide or absorb power from the output carrier depending on the current output power 

demand. FER is very efficient during acceleration events and can provide efficient charging 

of the battery when overall output power demand is low [47]. The governing torque and 

speed equations of the drive unit in FER mode are provided in (2-3). 
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Figure 2-4: FER Mode Clutch State and Power Flow. 

The final hybrid mode is high extended range, or HER. HER mode is a compound 

powersplit hybrid arrangement where clutch C1 is closed and B1 is open as shown in Figure 

2-5. As with LER mode, the engine speed is decoupled from wheel speed and must be 

controlled by the electric machines. Because this clutch arrangement allows the engine to 

be ran at low speeds with high drive unit output speeds, this mode is most efficient when 

used in low-torque demand situations such as highway driving [47]. The governing torque 

and speed equations of the drive unit in HER mode are provided in (2-4). 
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Figure 2-5: HER Mode Clutch State and Power Flow. 

2.2 Simulation Model 

All simulations conducted in this research were completed using MATLAB Simulink. A 

simplified overview of the Simulink model used for analysis is presented in Figure 2-6. 

The model is divided into three main sections. The first section, show in red, is the 

Trajectory Generator. This portion of the model is responsible for creating the reference 

trajectories used by the predictive controller. In simulation testing, these trajectories are 

generated from vehicle data collected in both dynamometers and simulation testing. At 

each timestep in the simulation of the drive cycle, this portion of the model extracts the 



17 

projected velocity for the length of the prediction horizon from the logged vehicle data. 

From this velocity trajectory, a torque trajectory is also calculated for the length of the 

prediction horizon. The mathematical details of this process are covered in the subsequent 

chapters. 

 

Figure 2-6: Simulation Implementation 

The second portion of the model, shown in green, is the Control section of the model. This 

contains both the NMPC Powertrain Controller (NMPC PTC) which will be detailed in 

Chapter 3 and the Optimal Mode Path Planning (OMPP) Algorithm which will be covered 

in Chapter 4. In terms of implementation in the model, the NMPC PTC is C-based, which 

is integrated into the model as a Simulink S-function. The OMPP is implemented in 

Simulink as a MATLAB function block. Each of these two controllers receive the 

prediction horizon trajectories from the Trajectory Generation portion of the model as well 
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as feedback from the Vehicle portion of the model. Control actions containing engine and 

motor torques, as well as drive unit mode, are sent to the Vehicle portion of the model. 

The final subunit of the model is that of the vehicle powertrain. This subunit contains three 

main subsystems. The first subsystem, the state and loss calculator, utilizes the speed and 

torque equations, given in equations (2-1)-(2-4), in order to compute the remaining 

component torques and speeds within the drive unit that are not control actions. With every 

component speed and torque now know, the e-motor torques and speeds are passed through 

manufacturer-provided detailed efficiency maps of both the motors and power electronics 

in order to compute the total power draw from each motor. These motor powers are then 

passed to the second vehicle subsystem, the battery model. The battery is modeled as an 

RC equivalent circuit and was developed by the MTU NEXTCAR program utilizing 

manufacturer provided parameters. Details of this model are given in [53]. Once SOC is 

computed, it is provided as feedback to the control section of the model. The third 

subsystem of the vehicle portion of the model is the energy estimator. The energy 

consumption model, developed as part of the MTU NEXTCAR program, uses over 200 

hours of vehicle data collected in both on-road and dynamometer testing in order to train a 

response surface model that outputs the both fuel and electrical energy consumed by the 

vehicle in megajoules. Full details of this model are given in [54]. 
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3 Real-Time Model Predictive Powertrain Control for a 

Connected Plug-In Hybrid Electric Vehicle1 [55] 

The continued development of connected and automated vehicle technologies presents the 

opportunity to utilize these technologies for vehicle energy management. Leveraging this 

connectivity among vehicles and infrastructure allows a powertrain controller to be 

predictive and forward-looking. This paper presents a real-time predictive powertrain 

control strategy for a Plug-in Hybrid Electric Vehicle (PHEV) in a connected vehicle 

environment. This work focuses on the optimal energy management of a multi-mode 

PHEV based on predicted future velocity, power demand, and road conditions. The 

powertrain control system in the vehicle utilizes vehicle connectivity to a cloud-based 

server in order to obtain future driving conditions. For predictive powertrain control, a 

Nonlinear Model Predictive Controller (NMPC) is developed to make torque-split 

decisions within each operating mode of the vehicle. The torque-split among two electric 

machines and one combustion engine is determined such that fuel consumption is 

minimized while battery SOC and vehicle velocity targets are met. The controller has been 

extensively tested in simulation across multiple real-world driving cycles where energy 

savings in the range of 1 to 4% have been demonstrated. The developed controller has also 

been deployed and tested in real-time on a test vehicle equipped with a rapid prototyping 

                                                 

1 ©2020 IEEE Reprinted, with permission, from [Joseph Oncken, Bo Chen, Real-Time Model Predictive 
Powertrain Control for a Connected Plug-In Hybrid Electric Vehicle, IEEE Transactions on 
Vehicular Technology, August 2020] 
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embedded controller. Real-time in-vehicle testing confirmed the energy savings observed 

in simulation and demonstrated the ability of the developed controller to be effective in a 

real-time environment. 

3.1 Introduction 

The ongoing push in the automotive sector to reduce vehicle energy consumption requires 

the development and adoption of new technologies. One major technology that the 

automotive industry has turned to over the past two decades has been the development and 

utilization of hybrid electric vehicles (HEV) and, more recently, plug-in hybrid electric 

vehicles (PHEV). While HEVs and PHEVs have been able to reduce energy consumption 

relative to their conventional counterparts, the opportunity exits to further reduce HEV and 

PHEV energy consumption through the integration of vehicle powertrain control with 

connected and automated vehicle (CAV) technologies. The incorporation of CAV 

technologies into HEV and PHEV energy management strategies has the potential to have 

significant energy savings benefits [35, 41]. [33] has shown that regardless of powertrain 

type, conventional, HEV, or battery electric vehicle (BEV), the integration of vehicle 

connectivity reduces energy consumption. [1] shows that not only the benefits that the 

integration of CAV technologies provides at the vehicle level, but also those at the 

transportation system and urban system levels. While there has been significant research 

into HEV and PHEV energy management, research into practical PHEV energy 

management strategies that incorporate the potential benefits of CAV technology is 

lacking. This paper will detail a PHEV energy management strategy that is not only capable 
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of interfacing with CAV technologies, but is capable of doing so in a real-time 

environment. 

Multiple solutions to HEV and PHEV energy management have been well studied [4] for 

non-CAVs. Early strategies included the equivalent consumption management strategy 

(ECMS), and adaptive ECMS (A-ECMS). ECMS is an instantaneous optimization strategy 

that utilizes an equivalent factor between the cost of fuel and SOC variation [6, 10, 11]. 

The A-ECMS strategy improves upon the ECMS strategy by adapting the equivalence 

factor to changing driving conditions [13]. However, while these methods are capable of 

real-time control, the lack of a mechanism to consider future driving conditions sacrifices 

overall optimality. Dynamic programming (DP) has been well studied as a method to 

achieve a global optimal control strategy for the entire drive cycle [14, 15, 18]. However, 

due to DP’s requirement for knowledge of the entire drive cycle, it is an impractical method 

for real-time PHEV control. 

Model predictive control (MPC) and nonlinear model predictive control (NMPC) are 

options for predictive HEV control while maintaining the capability for real-time 

implementation. By utilizing a short horizon look ahead of driving conditions, the ability 

to allow future events to influence the current control is maintained while reducing the 

amount of predictive information required when compared to the whole-cycle knowledge 

requirement of DP. In [26], the authors implemented stochastic MPC for powersplit control 

of a parallel HEV where the future road grade is modeled as a Markov chain and 

incorporated into the MPC. The authors were able to reduce fuel consumption relative to 
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an ECMS strategy that lacks the road grade preview. The authors of [38] also implemented 

stochastic MPC but with a Markov chain-based driver model that predicts the future power 

demand for the prediction horizon. Using the proposed method, the authors were able to 

approach the fuel consumption levels resulting from MPC control with full power demand 

knowledge of the prediction horizon. In [27] and [29], the authors were able to implement 

NMPC for single mode HEVs to further reduce energy consumption over MPC; however, 

validation work was completed in simulation only and not expanded to real-time testing. 

Paper [30] also proposed an NMPC controller for a single mode HEV, but in this case, 

testing was expanded to real time where the controller was simulated on an embedded 

controller. 

One major challenge in the implementation of predictive energy management strategies is 

obtaining an accurate real-time prediction of future conditions such as vehicle speed and 

road grade. The ongoing commercial development of CAV technologies is now making it 

possible to obtain static future information such as road conditions through V2V and V2I 

communication [40]. According to [3], this information can be utilized to make accurate 

predictions of future vehicle behavior that can serve as an input to real-time, in-vehicle 

predictive PHEV control. Using reliable forecasts obtained through CAV technology, the 

effectiveness of predictive energy management strategies can be improved when compared 

to estimated forecasts developed using historical data as is done in [23, 38]. With these 

CAV technologies becoming commercially available, it is appropriate to develop and 

implement methods for PHEV energy management that leverage this predictive 

information. 
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The purpose of this work is to investigate the effectiveness and real-time feasibility of 

predictive powertrain energy management using NMPC for a connected multi-mode 

PHEV, specifically the 2nd generation Chevrolet Volt. In order to satisfy this objective, an 

NMPC powertrain controller (NMPC PTC) was developed for the 2nd generation 

Chevrolet Volt. This controller was extensively tested across many standard and real-world 

drive cycles in order to quantify its performance. In addition to simulation validation, the 

developed controller was deployed and tested in real-time on a test vehicle. This work is 

one component of a holistic CAV controls and optimization system for a PHEV developed 

under the Michigan Technological University NEXTCAR program [56]. In addition to the 

powertrain controller presented in this paper, components of this system, which is outlined 

in Figure 3-1, include technologies such as eco-routing, eco approach and departure, PHEV 

charge depleting/charge sustaining mode blending, optimal velocity profiling and optimal 

powertrain mode selection. These technologies cover a range of time horizons from full 

trip consideration used in eco-routing to a seconds-scale forward look-ahead used in this 

paper. Further information on these technologies can be found in [43, 57-59]. The outputs 

of other components serve as crucial inputs to the NMPC PTC such as providing a future 

predicted velocity trajectory for the NMPC PTC to follow. 
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Figure 3-1. MTU NEXTCAR CAV Technology System. 

The main contributions of this paper are as follows: (1) A predictive real-time capable 

energy management strategy integrated with vehicle dynamics, road grade, and real-time 

vehicle operating conditions, has been developed for a multi-mode PHEV. This strategy 

utilizes NMPC to perform online optimization of the powertrain torque split and engine 

speed in order to minimize fuel consumption while maintaining SOC targets. (2) The 

impact of drive cycle variation on the energy savings using developed optimal controller 

is quantified. First, the developed controller is evaluated over the three EPA standard 

cycles. Next, a distribution of controller performance has been generated using repeated 

real-world drive cycles recorded over the same route in order to not only assess the 

performance of the developed NMPC PTC, but to also quantify the variation of controller 

performance that results from drive cycle variation when repeating the same route in real-
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world conditions. Finally, the controller is evaluated over two real world routes to 

demonstrate controller effectiveness in non-cycle scenarios. (3) The developed NMPC 

PTC is demonstrated in real-time on an in-vehicle hardware-in-loop test platform. This test 

platform is able to run the developed NMPC PTC in real-time in parallel to the vehicle’s 

stock controller while interfacing with hardware such as on-board sensors, the vehicle’s 

CAN bus and control modules, and a cloud-based server that provides future driving 

information such as future road grade and predicted vehicle velocity. Results of this testing 

validate that the developed controller is capable of running in a real-time, hardware 

integrated control system while still achieving the energy savings demonstrated in the 

extensive simulation testing. 

The rest of the paper is organized as follows. Section 3.2 introduces the powertrain and 

plant model of the 2nd generation Chevrolet Volt. Section 3.3 presents the architecture of 

the developed NMPC powertrain controller. Section 3.4 provides a description of the 

instrumented vehicles used for real-time testing as well as the real-time implementation of 

the NMPC PTC. Section 3.5 assesses the energy savings of the NMPC PTC across multiple 

standard and real-world drive-cycles in simulation testing. Finally, Section 3.6 presents the 

energy savings and real-time performance of the NMPC PTC when tested in-vehicle on a 

rapid-prototyping embedded controller. 
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3.2 Chevrolet Volt Powertrain Plant Model 

3.2.1 Drive Unit Dynamics 

The platform upon which this research is based is the 2nd generation Chevrolet Volt, a 

multi-mode PHEV. Specifications of this vehicle such as engine size, motor-generator size, 

battery capacity, etc., can be found in [45-49, 60]. At the heart of this vehicle is the Voltec 

hybrid drive unit. The architecture of this drive unit is shown in Figure 3-2. This drive unit 

is designed to operate in five distinct powertrain operating modes sorted into two 

categories, charge depletion (CD) operation and charge sustaining (CS) operation. CD 

operation is the default operating strategy and is utilized by the vehicle until the battery is 

fully depleted or the driver elects to enter into CS mode through an in-vehicle command. 

The CS strategy uses the three hybrid modes to most efficiently meet the drivers demand 

while maintaining SOC within a narrow band. This SOC band is a ~±1% region around a 

reference SOC. In a fully depleted state, this reference SOC is ~16% SOC [47]. 

 

Figure 3-2. Second Generation Chevrolet Volt Drive Unit Architecture 

CD operation utilizes two modes, single motor (1-EV) and dual motor (2-EV) operation. 

1-EV mode is utilized for the majority of time spent in CD operation. Motor B provides all 
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tractive power in 1-EV mode and is capable of sufficiently propelling the vehicle in most 

operating cases. 2-EV mode utilizes Motor A operating in parallel with Motor B. 2-EV 

mode is active in high torqued demand situations such as vehicle launch from stop and 

intense accelerations while at speed [47]. Equation (3-1) governs the speed and torque 

relationships in electric-only mode. 
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CS operation is comprised of three distinct hybrid operating modes. The first hybrid mode 

is Low Extended Range (LER). LER is an input power split configuration designed for 

efficient operation at low vehicle speeds and also for high torque demand situations [47]. 

Equation (3-2) represents the torque and speed of LER operating mode. In LER, clutch B1 

is closed which grounds the ring of the second planetary gear set. This leads to a direct 

relationship between output speed and Motor B speed. 
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 (3-2) 

The second hybrid mode is Fixed Ratio Extended Range (FER). FER is a parallel 

configuration designed for efficient operation in acceleration situations at medium and high 

vehicle speeds, cruising at medium speeds, and battery charging in low output torque 

demand situations [47]. Equation (3-3) represents the torque and speed of FER mode. 
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Motor A is off and grounded through closed clutches C1 and B1 so Motor A torque and 

speed are constrained to zero. 
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High Extended Range (HER), the third hybrid mode, is a compound power split designed 

for high vehicle speed, low torque demand situations such as highway cruising [47]. 

Equation (3-4) represents the torque and speed equations of HER operating mode. Clutch 

C1 is closed which connects Motor A of the first planetary gear set to the ring of the second 

planetary gear set. 
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 (3-4) 

3.2.2 Electric Machines 

The electric propulsion system of the Chevrolet Volt has four main components. They are 

the two electric motor-generators contained inside the drive unit as well as a Traction 

Power Invertor Module (TPIM) for each motor-generator. The efficiency of each of these 

components is a function of the torque and speed demanded of the motor-generator as 

shown in (3-5) and Figure 3-3 and Figure 3-4. For simplicity, the efficiency of the motor-

generator and TPIM for each motor/TPIM pair is combined into one map which is 

implemented inside the NMPC PTC. 
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�𝜂𝜂𝑀𝑀𝑀𝑀𝜂𝜂𝑇𝑇𝑃𝑃𝑇𝑇𝑀𝑀 𝑀𝑀 = 𝑓𝑓(𝑇𝑇𝑀𝑀𝑀𝑀,𝜔𝜔𝑀𝑀𝑀𝑀)
𝜂𝜂𝑀𝑀𝑀𝑀𝜂𝜂𝑇𝑇𝑃𝑃𝑇𝑇𝑀𝑀 𝑀𝑀 = 𝑓𝑓(𝑇𝑇𝑀𝑀𝑀𝑀,𝜔𝜔𝑀𝑀𝑀𝑀) (3-5) 

 

Figure 3-3. Chevrolet Volt Motor-Generator A Efficiency [49]. 

 

Figure 3-4. Chevrolet Volt Motor-Generator B Efficiency [49]. 

3.2.3 Engine 

Engine fuel consumption is modeled through the use of a Brake Specific Fuel Consumption 

(BSFC) map, represented in (3-6), of the engine as well as a map of approximate fuel 

consumption due to changing operating point which is represented in (3-7). The 

development and details of the transient fuel penalty can be found in [53]. The BSFC map, 
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shown in Figure 3-5, and the transient fuel consumption map, shown in Figure 3-6, are 

utilized by the NMPC PTC in order to select the most appropriate engine speed and torque 

that satisfy the objective cost function given the current disturbance. 

𝑚𝑚𝑃𝑃,𝑠𝑠𝑂𝑂𝐵𝐵𝑂𝑂𝑃𝑃𝑠𝑠(𝑘𝑘) =  Δ𝑡𝑡 ∗ 𝑇𝑇𝐸𝐸𝐸𝐸𝐸𝐸𝑃𝑃𝐸𝐸𝑃𝑃(𝑘𝑘) ∗ 𝜔𝜔𝐸𝐸𝐸𝐸𝐸𝐸𝑃𝑃𝐸𝐸𝑃𝑃(𝑘𝑘) ∗ 𝐵𝐵𝑆𝑆𝐹𝐹𝐶𝐶(𝑇𝑇𝐸𝐸𝐸𝐸𝐸𝐸𝑃𝑃𝐸𝐸𝑃𝑃(𝑘𝑘),𝜔𝜔𝐸𝐸𝐸𝐸𝐸𝐸𝑃𝑃𝐸𝐸𝑃𝑃(𝑘𝑘)) (3-6) 

𝑚𝑚𝑃𝑃,𝑂𝑂𝑃𝑃𝐵𝐵𝐸𝐸𝑠𝑠𝑃𝑃𝑃𝑃𝐸𝐸𝑂𝑂(𝑘𝑘) = Δ𝑡𝑡 ∗ 𝑡𝑡𝑡𝑡𝑎𝑎𝑛𝑛𝑡𝑡𝑡𝑡𝑚𝑚𝑛𝑛𝑡𝑡 𝑝𝑝𝑚𝑚𝑛𝑛𝑎𝑎𝑝𝑝𝑡𝑡𝑝𝑝(Δ𝑇𝑇𝐸𝐸𝐸𝐸𝐸𝐸𝑃𝑃𝐸𝐸𝑃𝑃(𝑘𝑘),Δ𝜔𝜔𝐸𝐸𝐸𝐸𝐸𝐸𝑃𝑃𝐸𝐸𝑃𝑃(𝑘𝑘)) (3-7) 

 

Figure 3-5. Chevrolet Volt Engine BSFC Map [47]. 

 

Figure 3-6. Chevrolet Volt Engine Transient Fuel Penalty Map [53]. 
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3.2.4 Energy Model 

The energy consumption model utilized by this research was developed at MTU as part of 

the NEXTCAR program. The model is a response fit model trained with more than 200 

hours of dynamometer and on-road vehicle data. The model is split into two response 

surfaces, one for CD mode and one for CS mode. The CD model is a function of vehicle 

speed and axle torque, while the CS model is a function of vehicle speed, axle torque, and 

engine speed and torque. Representations of these functions are given in (3-8). The output 

of this model is energy consumption in megajoules. More information about this model 

can be found in [54]. 

�
𝐸𝐸𝐶𝐶𝐶𝐶 = 𝑓𝑓(𝑇𝑇𝑀𝑀𝐴𝐴𝑃𝑃𝑃𝑃, 𝑣𝑣𝐸𝐸𝑃𝑃ℎ)

𝐸𝐸𝐶𝐶𝐶𝐶 = 𝑓𝑓(𝑇𝑇𝑀𝑀𝐴𝐴𝑃𝑃𝑃𝑃,𝑣𝑣𝐸𝐸𝑃𝑃ℎ,𝑇𝑇𝐸𝐸𝐸𝐸𝐸𝐸𝑃𝑃𝐸𝐸𝑃𝑃,𝜔𝜔𝐸𝐸𝐸𝐸𝐸𝐸𝑃𝑃𝐸𝐸𝑃𝑃)  (3-8) 

3.3 Controller Architecture 

The purpose of the NMPC PTC is to make optimal torque-split, and when appropriate, 

engine speed decisions while within a given operating mode. Due to the differing 

kinematics and dynamics between the operating modes caused by changing clutch states, 

each mode has a unique control requirement in terms of relevant control variables and 

governing plant dynamics. Because of this, each mode has its own NMPC 

implementations. Four separate controller implementations have been developed, one for 

EV mode and one for each of the three hybrid modes. The following section will describe 

the architecture of the NMPC PTC, including control variables, cost functions, and 

constraints. 
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Equation (3-9) represents the nonlinear state function of the system where the change in 

state X ̇, is a nonlinear function of the current state vector X, the control vector U, and the 

disturbance vector V. The problem formulation changes for each operating mode due to 

the differing kinematics between the modes. All four operating modes share a common 

state vector X and disturbance vector V, but each mode has its own control vector U. 

Battery SOC is selected as the state variable of NMPC as shown in (3-10). 

�̇�𝑋 = 𝑓𝑓(𝑋𝑋,𝑈𝑈,𝑉𝑉) (3-9) 

𝑋𝑋 = [𝑆𝑆𝑆𝑆𝐶𝐶] (3-10) 

SOC is estimated as a function of battery power, open circuit voltage, resistance, and 

battery capacity as shown in (3-11). For this work, open-circuit voltage and resistance were 

assumed to be constant as battery dynamics are not a main focus of this work. A more 

thorough investigation of the impact of battery dynamics on HEV powertrain control can 

be found in [29, 61]. Battery power is a function of both Motor A and B torques and speeds, 

as well as motor and power invertor efficiencies. The proper efficiency is applied by setting 

𝛽𝛽𝑀𝑀𝑀𝑀 and 𝛽𝛽𝑀𝑀𝑀𝑀 to either 1 or -1 depending on if the electric machines are motoring or 

generating. 

𝑆𝑆𝑆𝑆𝐶𝐶̇ (𝑘𝑘) =
�𝑉𝑉𝑂𝑂𝐶𝐶2 − 4𝑃𝑃𝑀𝑀𝐵𝐵𝑂𝑂𝑂𝑂𝑃𝑃𝑃𝑃𝐵𝐵(𝑘𝑘)𝐹𝐹𝑀𝑀𝐵𝐵𝑂𝑂𝑂𝑂𝑃𝑃𝑃𝑃𝐵𝐵 − 𝑉𝑉𝑂𝑂𝐶𝐶

2𝑄𝑄𝑀𝑀𝐵𝐵𝑂𝑂𝑂𝑂𝑃𝑃𝑃𝑃𝐵𝐵𝐹𝐹𝑀𝑀𝐵𝐵𝑂𝑂𝑂𝑂𝑃𝑃𝑃𝑃𝐵𝐵
 (3-11) 

𝑃𝑃𝑀𝑀𝐵𝐵𝑂𝑂𝑂𝑂𝑃𝑃𝑃𝑃𝐵𝐵 = �𝜂𝜂𝑀𝑀𝑀𝑀𝜂𝜂𝑇𝑇𝑃𝑃𝑇𝑇𝑀𝑀,𝑀𝑀�
𝛽𝛽𝑀𝑀𝑀𝑀𝑇𝑇𝑀𝑀𝑀𝑀𝜔𝜔𝑀𝑀𝑀𝑀 + �𝜂𝜂𝑀𝑀𝑀𝑀𝜂𝜂𝑇𝑇𝑃𝑃𝑇𝑇𝑀𝑀,𝑀𝑀�

𝛽𝛽𝑀𝑀𝑀𝑀𝑇𝑇𝑀𝑀𝑀𝑀𝜔𝜔𝑀𝑀𝑀𝑀 (3-12) 
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The control vector, U, varies from operating mode to operating mode as shown in (3-13). 

For EV mode, the two EV modes present in the vehicle have been combined into one 

NMPC implementation which allows the NMPC PTC to determine the most efficient 

torque split between the two motor-generators. Therefore, the torque of both Motor A and 

B need to be controlled. Component speeds are kinematically linked to the output and thus 

the wheels, so no speed control is required. In LER and HER modes, engine and Motor B 

torques are selected as control variables. Either engine or Motor A speed also needs to be 

controlled to fully define the system. Engine speed was chosen as the control variable as 

the engine operating point is critical to the overall powertrain efficiency. The control vector 

of FER mode consists of engine torque and Motor B torque. In FER, all component speeds 

are kinematically linked to the output and Motor A is off and grounded. 

⎩
⎪
⎪
⎪
⎪
⎨

⎪
⎪
⎪
⎪
⎧ 𝑈𝑈𝐸𝐸𝐸𝐸 = �𝑇𝑇𝑀𝑀𝑀𝑀𝑇𝑇𝑀𝑀𝑀𝑀

�

𝑈𝑈𝐿𝐿𝐸𝐸𝐿𝐿 = �
𝑇𝑇𝐸𝐸𝐸𝐸𝐸𝐸𝑃𝑃𝐸𝐸𝑃𝑃
𝑇𝑇𝑀𝑀𝑀𝑀

𝜔𝜔𝐸𝐸𝐸𝐸𝐸𝐸𝑃𝑃𝐸𝐸𝑃𝑃

�

𝑈𝑈𝐹𝐹𝐸𝐸𝐿𝐿 = �
𝑇𝑇𝐸𝐸𝐸𝐸𝐸𝐸𝑃𝑃𝐸𝐸𝑃𝑃
𝑇𝑇𝑀𝑀𝑀𝑀

�

𝑈𝑈𝐻𝐻𝐸𝐸𝐿𝐿 = �
𝑇𝑇𝐸𝐸𝐸𝐸𝐸𝐸𝑃𝑃𝐸𝐸𝑃𝑃
𝑇𝑇𝑀𝑀𝑀𝑀

𝜔𝜔𝐸𝐸𝐸𝐸𝐸𝐸𝑃𝑃𝐸𝐸𝑃𝑃

�

 (3-13) 

The disturbance vector V, shown in (3-14), remains the same for each operating mode. This 

vector brings the predicted drive unit output speed, (3-15), output acceleration, (3-16), and 

output torque, (3-17), for the length of the prediction into the problem. The data contained 

in this disturbance vector is provided from two sources. The road grade utilized in the 

estimation of future required output torque is obtained from map data of a given route. The 
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reference velocity profile is generated using an optimal velocity prediction algorithm 

developed as part of the MTU NEXTCAR project, which is presented in [57] and [58]. 

𝑉𝑉 = �
𝜔𝜔𝑂𝑂𝑂𝑂𝑂𝑂,𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃
𝛼𝛼𝑂𝑂𝑂𝑂𝑂𝑂,𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃
𝑇𝑇𝑂𝑂𝑂𝑂𝑂𝑂,𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃

� (3-14) 

𝜔𝜔𝑂𝑂𝑂𝑂𝑂𝑂,𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 =
𝐹𝐹𝐹𝐹𝐹𝐹
𝐹𝐹𝑇𝑇𝑃𝑃𝑃𝑃𝑃𝑃

∗ 𝑣𝑣𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 (3-15) 

𝛼𝛼𝑂𝑂𝑂𝑂𝑂𝑂,𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 =
𝜔𝜔𝑂𝑂𝑂𝑂𝑂𝑂(𝑘𝑘+1) −𝜔𝜔𝑂𝑂𝑂𝑂𝑂𝑂(𝑘𝑘)

Δ𝑡𝑡  (3-16) 

𝑇𝑇𝑂𝑂𝑂𝑂𝑂𝑂,𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 =
𝐹𝐹𝑇𝑇𝑃𝑃𝑃𝑃𝑃𝑃
𝐹𝐹𝐹𝐹𝐹𝐹 ∗ �

𝑚𝑚𝑎𝑎𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 + 𝐹𝐹0 + 𝐹𝐹1 ∗ 𝑣𝑣𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃
+𝐹𝐹2 ∗ 𝑣𝑣𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃2 + 𝑚𝑚𝑚𝑚𝑡𝑡𝑡𝑡𝑛𝑛(𝜃𝜃𝐺𝐺𝑃𝑃𝐵𝐵𝐺𝐺𝑃𝑃)� (3-17) 

Two different cost functions are defined; one for EV mode, (3-18), and one for the hybrid 

modes, (3-19). In EV mode, the delivery of electrical power in the most efficient manner 

is a main concern. Therefore, the only objective in EV mode is to minimize overall battery 

power by choosing the optimal powersplit between the two electric machines. The cost 

function in the charge sustaining modes includes SOC and fuel consumption terms as 

shown in (3-20)-(3-22). The objective is to minimize the amount of fuel consumed while 

maintaining a specific reference SOC level from the beginning of the prediction window 

until the end of the horizon, 𝑁𝑁. For all testing completed in this work, the reference SOC 

is held constant to match that of the baseline vehicle as the baseline vehicle aims to track a 

constant SOC value in CS mode. However, while not shown in this work, the NMPC does 

have the ability to track a reference SOC trajectory. The transient fuel term is included for 

the purpose of preventing excessive engine operating point changes that could potentially 

occur without the penalization of those changes. 
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𝐶𝐶𝑚𝑚𝑡𝑡𝑡𝑡𝐸𝐸𝐸𝐸 =  �(𝑃𝑃𝑀𝑀𝐵𝐵𝑂𝑂𝑂𝑂𝑃𝑃𝑃𝑃𝐵𝐵(𝑘𝑘))
𝑁𝑁

𝑘𝑘=1

 (3-18) 

𝐶𝐶𝑚𝑚𝑡𝑡𝑡𝑡𝐿𝐿𝐸𝐸𝐿𝐿,𝐹𝐹𝐺𝐺,𝐻𝐻𝐸𝐸𝐿𝐿 =  ��
𝑤𝑤1 ∗ �𝑆𝑆𝑆𝑆𝐶𝐶𝐿𝐿𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝐸𝐸𝑠𝑠𝑃𝑃 − 𝑆𝑆𝑆𝑆𝐶𝐶(𝑘𝑘)�

2

+𝑤𝑤2 ∗ 𝑚𝑚𝑃𝑃,𝑠𝑠𝑂𝑂𝐵𝐵𝑂𝑂𝑃𝑃𝑠𝑠(𝑘𝑘)
+𝑤𝑤3 ∗ 𝑚𝑚𝑃𝑃,𝑂𝑂𝑃𝑃𝐵𝐵𝐸𝐸𝑠𝑠𝑃𝑃𝑃𝑃𝐸𝐸𝑂𝑂(𝑘𝑘)

�
𝑁𝑁

𝑘𝑘=1

 (3-19) 

𝑆𝑆𝑆𝑆𝐶𝐶(𝑘𝑘+1) = 𝑆𝑆𝑆𝑆𝐶𝐶𝑘𝑘̇ ∗ 𝛥𝛥𝑡𝑡 + 𝑆𝑆𝑆𝑆𝐶𝐶𝑘𝑘 (3-20) 

𝑚𝑚𝑃𝑃,𝑠𝑠𝑂𝑂𝐵𝐵𝑂𝑂𝑃𝑃𝑠𝑠(𝑁𝑁) = 𝑝𝑝 �
�𝑇𝑇𝐸𝐸𝐸𝐸𝐸𝐸𝑃𝑃𝐸𝐸𝑃𝑃,𝜔𝜔𝐸𝐸𝐸𝐸𝐸𝐸𝑃𝑃𝐸𝐸𝑃𝑃�1, �𝑇𝑇𝐸𝐸𝐸𝐸𝐸𝐸𝑃𝑃𝐸𝐸𝑃𝑃,𝜔𝜔𝐸𝐸𝐸𝐸𝐸𝐸𝑃𝑃𝐸𝐸𝑃𝑃�2

, … … , �𝑇𝑇𝐸𝐸𝐸𝐸𝐸𝐸𝑃𝑃𝐸𝐸𝑃𝑃,𝜔𝜔𝐸𝐸𝐸𝐸𝐸𝐸𝑃𝑃𝐸𝐸𝑃𝑃�𝑁𝑁
� (3-21) 

𝑚𝑚𝑃𝑃,𝑂𝑂𝑃𝑃𝐵𝐵𝐸𝐸𝑠𝑠𝑃𝑃𝑃𝑃𝐸𝐸𝑂𝑂(𝑁𝑁) = 𝑓𝑓 �
�Δ𝑇𝑇𝐸𝐸𝐸𝐸𝐸𝐸𝑃𝑃𝐸𝐸𝑃𝑃,Δ𝜔𝜔𝐸𝐸𝐸𝐸𝐸𝐸𝑃𝑃𝐸𝐸𝑃𝑃�1, �Δ𝑇𝑇𝐸𝐸𝐸𝐸𝐸𝐸𝑃𝑃𝐸𝐸𝑃𝑃,Δ𝜔𝜔𝐸𝐸𝐸𝐸𝐸𝐸𝑃𝑃𝐸𝐸𝑃𝑃�2

, … … , �Δ𝑇𝑇𝐸𝐸𝐸𝐸𝐸𝐸𝑃𝑃𝐸𝐸𝑃𝑃,Δ𝜔𝜔𝐸𝐸𝐸𝐸𝐸𝐸𝑃𝑃𝐸𝐸𝑃𝑃�𝑁𝑁
� (3-22) 

The system state and control variables are subject to a set of constraints. Velocity tracking 

is achieved through the assumption that the application of the predicted output torque will 

result in the desired velocity trajectory. Therefore, as shown in (3-23), the computed output 

torque is constrained to the predicted output torque profile within a defined tolerance, ε. 

To ensure proper velocity tracking, ε is set to a small value such as 1 Nm. Battery power 

is constrained to be within the maximum charge and discharge rates of the battery. 

Maximum engine torque, Motor A torque, and Motor B torque are all defined as a function 

of the respective component’s speed. Finally, engine speed is limited within the minimum 

and maximum speeds. 
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⎩
⎪
⎪
⎨

⎪
⎪
⎧

−𝜀𝜀 < (𝑇𝑇𝑂𝑂𝑂𝑂𝑂𝑂,𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 − 𝑇𝑇𝑂𝑂𝑂𝑂𝑂𝑂) < 𝜀𝜀
𝑃𝑃𝑀𝑀𝐵𝐵𝑂𝑂𝑂𝑂𝑃𝑃𝑃𝑃𝐵𝐵,𝐶𝐶ℎ𝐵𝐵𝑃𝑃𝐸𝐸𝑃𝑃 < 𝑃𝑃𝑀𝑀𝐵𝐵𝑂𝑂𝑂𝑂𝑃𝑃𝑃𝑃𝐵𝐵 < 𝑃𝑃𝑀𝑀𝐵𝐵𝑂𝑂𝑂𝑂𝑃𝑃𝑃𝑃𝐵𝐵,𝐶𝐶𝑃𝑃𝑠𝑠𝑠𝑠ℎ𝐵𝐵𝑃𝑃𝐸𝐸𝑃𝑃

𝑇𝑇𝐸𝐸𝐸𝐸𝐸𝐸𝑃𝑃𝐸𝐸𝑃𝑃,𝑚𝑚𝑃𝑃𝐸𝐸�𝜔𝜔𝐸𝐸𝐸𝐸𝐸𝐸𝑃𝑃𝐸𝐸𝑃𝑃� < 𝑇𝑇𝐸𝐸𝐸𝐸𝐸𝐸𝑃𝑃𝐸𝐸𝑃𝑃
𝑇𝑇𝐸𝐸𝐸𝐸𝐸𝐸𝑃𝑃𝐸𝐸𝑃𝑃 < 𝑇𝑇𝐸𝐸𝐸𝐸𝐸𝐸𝑃𝑃𝐸𝐸𝑃𝑃,𝑚𝑚𝐵𝐵𝐴𝐴�𝜔𝜔𝐸𝐸𝐸𝐸𝐸𝐸𝑃𝑃𝐸𝐸𝑃𝑃�

𝑇𝑇𝑀𝑀𝑀𝑀,𝑚𝑚𝑃𝑃𝐸𝐸(𝜔𝜔𝑀𝑀𝑀𝑀) < 𝑇𝑇𝑀𝑀𝑀𝑀 < 𝑇𝑇𝑀𝑀𝑀𝑀,𝑚𝑚𝐵𝐵𝐴𝐴(𝜔𝜔𝑀𝑀𝑀𝑀)
𝑇𝑇𝑀𝑀𝑀𝑀,𝑚𝑚𝑃𝑃𝐸𝐸(𝜔𝜔𝑀𝑀𝑀𝑀) < 𝑇𝑇𝑀𝑀𝑀𝑀 < 𝑇𝑇𝑀𝑀𝑀𝑀,𝑚𝑚𝐵𝐵𝐴𝐴(𝜔𝜔𝑀𝑀𝑀𝑀)
𝜔𝜔𝐸𝐸𝐸𝐸𝐸𝐸𝑃𝑃𝐸𝐸𝑃𝑃,𝑚𝑚𝑃𝑃𝐸𝐸 < 𝜔𝜔𝐸𝐸𝐸𝐸𝐸𝐸𝑃𝑃𝐸𝐸𝑃𝑃 < 𝜔𝜔𝐸𝐸𝐸𝐸𝐸𝐸𝑃𝑃𝐸𝐸𝑃𝑃,𝑚𝑚𝐵𝐵𝐴𝐴

 (3-23) 

Figure 3-7 presents a flow chart of the internal architecture of the NMPC powertrain 

controller. 
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Figure 3-7. NMPC Powertrain Controller Architecture 

3.4 Real-Time Implementation 

3.4.1 Test Vehicle Layout 

The NMPC PTC was designed to be implemented on any of the four instrumented 

Chevrolet Volts in MTU’s test vehicle fleet. The architecture of the on-board computing 

unit in test vehicles is shown in Figure 3-8. The vehicles are outfitted with a dSPACE 
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MicroAutoBox II (MAB) that serves as the main processing unit for the vehicle’s 

instrumentation system. The MAB is able to interface with the vehicle’s CAN bus to which 

it has full read access. A host of on-board sensors such as GPS, current and temperature 

sensors, and accelerometers also interface with the MAB. The MAB is capable of 

communication with the MTU Mobile Lab computing center as well as other vehicles in 

the MTU test fleet through a 4G LTE network connection. A human-machine interface 

(HMI) display is included in order to provide real-time feedback to the driver. The final 

piece of instrumentation included on the vehicles are Dedicated Short Range 

Communication (DSRC) units that have the ability to interface with other DSRC-equipped 

vehicles or infrastructure in order to obtain information such as traffic signal phasing and 

timing. The in-vehicle installation of this system is shown in Figure 3-9. 

 

Figure 3-8. MTU Test Vehicle Architecture. 
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Figure 3-9. MTU Chevrolet Volt vehicle instrumentation package. 

3.4.2 Implementation of Real-time Predictive Controller 

The design goal of this controller was to build a controller that not only reduces energy 

consumption relative to the stock vehicle’s powertrain controller, but is also capable of 

running in real-time on a prototyping embedded controller as a core element of this CAV 

control system. The controller was designed and implemented in such a way that the same 

controller used in simulation can be compiled into executable code. The compiled 

controller can then be run in a test vehicle in parallel to the vehicle’s stock controller in 

order to assess the performance of the developed NMPC PTC under real-world driving 

scenarios. 

The ACADO, Automatic Control and Dynamic Optimization toolkit was utilized to 

generate a real-time viable implementation of the NMPC PTC. The ACADO toolkit is an 

open-source platform designed for the purposes of solving optimal control problems. The 
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toolkit exports efficient C-code that evaluates NMPC problems with a sequential quadratic 

programming (SQP)-based solver. This C-code is then able to be deployed onto embedded 

controller hardware for the purposes of fast optimal control [62-64]. 

The exported NMPC PTC C-Code is integrated into Simulink through the use of an S-

Function. This S-Function can be deployed into the test vehicle model that integrates all 

on-board sensor, CAN, and communication devices. Inside this model, the controller is 

interfaced with signals from the vehicle’s CAN bus and V2X communication system. This 

model is then converted to executable code which is deployed onto the in-vehicle MAB. 

The integration of the NMPC PTC into the test vehicle is shown in Figure 3-8. From this 

point, the NMPC controller can be run in parallel to the vehicle’s stock controller during 

on-road real-world tests. 

3.5 Simulation Assessment 

In this section, the performance of the NMPC PTC is assessed over three simulation 

scenarios. Scenario 1 examines the controller’s performance across three standard drive 

cycles, the UDDS, HWFET, and US06. These cycles are also used to determine an 

appropriate prediction horizon length for all following testing. Scenario 2 examines the 

controller’s performance over a large number of drive cycles driven on the same route in 

order to obtain a distribution of the controller’s performance. Scenario 3 examines two 

real-world driving routes in order to assess performance of the controller on a non-standard 

drive cycle. 
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The process of energy consumption comparison is outlined in Figure 3-10. During on-road 

or dynamometer vehicle testing, vehicle control actions, such as the speeds and torques of 

the electric machines and engine, are logged by data logger in the test vehicle. These logged 

control actions, as well as logged vehicle speed and mode, are then fed through the MTU 

energy and SOC estimation tools which produce a final energy consumption value and 

SOC profile to be used as a baseline to compare the NMPC PTC against. In order to achieve 

an energy consumption value and SOC profile for the NMPC PTC, the following process 

is used. The logged baseline vehicle velocity, mode, and axle torque are input into the 

NMPC PTC. The NMPC PTC issues control actions to the MTU energy and SOC 

estimation tools. SOC is fed back to the NMPC PTC for tracking purposes. The final energy 

consumption and SOC of the baseline vehicle and NMPC PTC are then compared in order 

to determine the overall energy savings. In order account for end of cycle differences in 

SOC between baseline and NMPC results, the SOC difference is converted into an energy 

value and incorporated into the energy savings calculation as shown in (3-24) and (3-25). 

𝐸𝐸𝑛𝑛𝑚𝑚𝑡𝑡𝑚𝑚𝑝𝑝 𝑆𝑆𝑎𝑎𝑣𝑣𝑡𝑡𝑛𝑛𝑚𝑚𝑡𝑡 = �
𝐸𝐸𝑛𝑛𝑚𝑚𝑡𝑡𝑚𝑚𝑝𝑝𝑀𝑀𝐵𝐵𝑠𝑠𝑃𝑃𝑃𝑃𝑃𝑃𝐸𝐸𝑃𝑃 − 𝐸𝐸𝑛𝑛𝑚𝑚𝑡𝑡𝑚𝑚𝑝𝑝𝑁𝑁𝑀𝑀𝑃𝑃𝐶𝐶 + 𝐸𝐸𝑛𝑛𝑚𝑚𝑡𝑡𝑚𝑚𝑝𝑝Δ𝐶𝐶𝑂𝑂𝐶𝐶

𝐸𝐸𝑛𝑛𝑚𝑚𝑡𝑡𝑚𝑚𝑝𝑝𝑀𝑀𝐵𝐵𝑠𝑠𝑃𝑃𝑃𝑃𝑃𝑃𝐸𝐸𝑃𝑃
� (3-24) 

𝐸𝐸𝑛𝑛𝑚𝑚𝑡𝑡𝑚𝑚𝑝𝑝Δ𝐶𝐶𝑂𝑂𝐶𝐶 = �𝑆𝑆𝑆𝑆𝐶𝐶𝐸𝐸𝐸𝐸𝐺𝐺,𝑁𝑁𝑀𝑀𝑃𝑃𝐶𝐶 − 𝑆𝑆𝑆𝑆𝐶𝐶𝐸𝐸𝐸𝐸𝐺𝐺,𝑀𝑀𝐵𝐵𝑠𝑠𝑃𝑃𝑃𝑃𝑃𝑃𝐸𝐸𝑃𝑃� ∗ 𝑄𝑄𝑀𝑀𝐵𝐵𝑂𝑂𝑂𝑂𝑃𝑃𝑃𝑃𝐵𝐵 (3-25) 
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Figure 3-10. Process for energy consumption determination and comparison. 

3.5.1 Standard Cycle Assessment 

Simulation testing was initially completed using standard drive cycles, in this case the 

UDDS, HWFET, and US06. Baseline control actions for this testing were collected by 

Argonne National Laboratory (ANL) during their evaluation of the 2nd Generation 

Chevrolet Volt. Control for these three cycles was simulated using the NMPC PTC. The 

energy consumption of the NMPC PTC was then compared to that of the baseline vehicle. 

These cycles were also used to identify an appropriate length of prediction horizon for use 

in following simulation and real-time testing. Three prediction horizons were examined 

consisting of 5, 10, and 15 second lengths all using the same cost function weighting 

factors. 
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Several trends appeared in the results related to prediction horizon length. Similar levels of 

energy savings were demonstrated with the 5 and 10 second prediction horizons while the 

15 second provided a drop off in energy savings as shown in Figure 3-11. However, with 

the short 5-second prediction horizon, SOC fluctuates and deviates more from the reference 

SOC and ultimately results in an end SOC much lower than the reference SOC as shown 

in Figure 3-12. While this SOC deviation could potentially remedied through cost function 

weight factor tuning, using the short horizon can result in scenarios where energy savings 

opportunities are lost that weight factor tuning cannot account for. A scenario from the 

UDDS cycle that represents start/stop driving is used as an example and is shown in Figure 

3-13. Starting at time 389 when the engine turns on, the 5 second horizon is not long enough 

to capture the future deceleration. This results in an unnecessary higher engine power 

command, shown in Figure 3-14, relative to the 10 and 15 second horizons. It should be 

noted that the impact of SOC in this scenario can be neglected as the SOC between the 

three predictions horizons at the start of this scenario are within 0.03% of each other. For 

these reasons, the similar levels of energy savings between the 5 and 10 second horizons 

as well as the extra savings demonstrated in start stop scenarios with the 10 second horizon, 

all following work utilized a 10-second prediction horizon in order to maximize energy 

savings while maintaining an acceptable SOC level. 
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Figure 3-11. Prediction horizon length effect on energy savings relative to the baseline 

vehicle. 

 

Figure 3-12. Delta SOC from the baseline cycle over the US06 cycle for the three 

prediction horizon lengths. 

 

Figure 3-13. Start/Stop segment from the UDDS drive cycle. 
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Figure 3-14. Engine power command based on prediction horizon length for a start/stop 

segment of the UDDS cycle. (Negative engine power is dues to fuel cutoff which puts the 

engine in a motoring state.) 

3.5.2 Energy Saving Distribution 

An investigation was completed that looked at controller performance over multiple 

velocity profiles collected on the same route. Controller performance will naturally not be 

identical between two separate drives of the same route, so a distribution of controller 

performance was desired to be obtained. In order to achieve this distribution, 30 drive 

cycles were logged on the Michigan Technological University Drive Cycle (MTUDC), a 

combined highway and urban cycle ~38 km in length with ~160 m in minimum to 

maximum elevation change. Shown in Figure 3-15, the MTUDC starts and ends at the 

Michigan Technological University Advanced Power Systems Laboratory (APS LABS). 

The direction shown in Figure 3-15 is the forward direction of the MTUDC. Full details of 

the MTUDC are provided in [51]. 20 of the cycles logged were driven in the forward 

direction and 10 were driven in the reverse direction. 
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Figure 3-15. Forward MTUDC route as well as velocity and elevation profiles. 

Simulations were completed on all 30 logged velocity profiles using the NMPC PTC with 

the timing parameters shown in Table 3-1. These outputs were then compared to the 

baseline control actions of the vehicle that were recorded while the velocity profiles were 

being logged on-road. Upon completion of the simulations, the use of the NMPC PTC 

resulted in a reduction in energy consumption in both the forward and reverse directions of 

the MTUDC. A summary of simulation results and the distribution of energy savings are 

provided in Table 3-2 and Figure 3-16, respectively. 

Table 3-1. Simulation Parameters 

NMPC Controller Step Time 0.1 sec 

Prediction Horizon 10 sec 
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Table 3-2. MTUDC Cycle Energy Consumption 

 Number of Cycles Average Energy Savings 95% CI 

MTUDC 20 1.0% (0.3%, 1.7%) 

Reverse MTUDC 10 1.6% (0.9%, 2.4%) 

 

Figure 3-16. MTUDC energy savings distribution using NMPC PTC. 

The following analysis more closely examines the energy savings from one of the 20 

forward MTUDC cycles. The velocity profile and drive unit modes over this cycle is 

presented in Figure 3-17. Figure 3-18 presents the energy consumed over this cycle as well 

as the delta energy consumed between the baseline and NMPC controllers. Delta energy 

consumed, defined in (3-26), is the difference between baseline and NMPC energy 

consumed. A downward trend in the plot of this value signifies an area of the cycle where 

the NMPC controller is using less energy than the baseline control. For this cycle, the main 

energy savings occurred during accelerations spent in LER and FER modes. The savings 

was achieved through a reduction in engine power during these events which was then 

compensated by an increase in electric motor power. While a short-term penalty is paid 

during this maneuver in the form of a reduction of SOC, which is shown in Figure 3-19, 
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that cost is later mitigated by bringing SOC back to the reference level during lower 

demand periods of operation. Long-term effects of this strategy are negligible as the 

reference SOC is maintained throughout the whole cycle. 

Δ𝐸𝐸𝑛𝑛𝑚𝑚𝑡𝑡𝑚𝑚𝑝𝑝 𝐶𝐶𝑚𝑚𝑛𝑛𝑡𝑡𝐶𝐶𝑚𝑚𝑚𝑚𝑚𝑚(𝑘𝑘) = 𝐸𝐸𝑛𝑛𝑚𝑚𝑡𝑡𝑚𝑚𝑝𝑝𝑁𝑁𝑀𝑀𝑃𝑃𝐶𝐶(𝑘𝑘) − 𝐸𝐸𝑛𝑛𝑚𝑚𝑡𝑡𝑚𝑚𝑝𝑝𝑀𝑀𝐵𝐵𝑠𝑠𝑃𝑃𝑃𝑃𝑃𝑃𝐸𝐸𝑃𝑃(𝑘𝑘) (3-26) 

 

Figure 3-17. MTUDC Vehicle Velocity and Operating Mode. 

 

Figure 3-18. MTUDC Energy Consumption Comparison. 

 

Figure 3-19. MTUDC SOC Comparison. 
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3.5.3 Real World Cycle Controller Performance 

In order to further verify the performance of the NMPC PTC, simulation testing was 

expanded to two real-world cycles that have not been extensively tested like the standard 

cycles (UDDS, etc.) and the MTUDC. The purpose of this is to demonstrate that the 

controller is not “tuned’ for those specific cycles. The first route, collected between MTU 

and Copper Harbor, MI, is a rural route driven at highway speeds with significant elevation 

and speed changes. The second route, collected in Ann Arbor, MI, is an urban route that 

consists of heavy traffic city speeds and high traffic urban freeway speeds. Both routes 

were driven by an MTU test vehicle. All vehicle performance data were logged in order to 

obtain a baseline set of control actions. 

In both cases, a reduction in energy was realized. The reduction in energy occurred in the 

same situations as those in the MTUDC test, accelerations in LER and FER mode. As with 

the previous test cases, no major drop in SOC occurred over the duration of the drive cycle. 

It should be noted that the large SOC increase at time 4000 seconds is due to a ~150 m 

elevation decrease in which case the vehicle is regenerative braking for an extended period 

of time thus charging the battery. Details of this testing are provided in Table 3-3 and 

Figure 3-20 - Figure 3-22. 

Table 3-3. Real World Cycle Energy Consumption 

 Baseline NMPC Reduction 

Copper Harbor to MTU 126.015 MJ 120.390 MJ 3.9% 

Ann Arbor Loop 35.116 MJ 34.105 MJ 3.0% 
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Figure 3-20. Copper Harbor to MTU Vehicle Velocity and Operating Mode. 

 

Figure 3-21. Copper Harbor to MTU Energy Consumption. 

 

Figure 3-22. Copper Harbor to MTU SOC Comparison. 

3.6 Real-Time Assessment 

In this section, the testing conducted examined the real-time performance of the NMPC 

PTC. All testing in this section was completed in real-time during on-road tests by utilizing 

the NMPC PTC deployed onto the in-vehicle dSPACE MicroAutoBox. The engineer’s 

station from which this testing is conducted is shown in Figure 3-23.This testing has two 
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purposes. Purpose 1 is to confirm that the energy savings benefits seen in simulation testing 

are presented when the controller is deployed in real-time. Purpose 2 is to demonstrate the 

ability of the NMPC PTC to run in real-time on an embedded controller that is integrated 

with hardware such as on-board sensors, the vehicle’s CAN bus and control modules, and 

a cloud server that provides future road information. 

 

Figure 3-23. In-vehicle engineer’s station for conducting real-time tests of the NMPC 

PTC. 

The analysis procedure for real time testing results is similar to that in simulation testing. 

The baseline vehicle and NMPC PTC control actions are passed through the MTU energy 

and SOC estimation tools in order to obtain energy consumption values. However, there 

are two key differences in this testing when compared to the completed simulation testing. 

Difference 1 is that the NMPC PTC is being run in real-time in the vehicle while the 

baseline control actions are being recorded. Difference 2 is that the NMPC PTC is taking 

inputs from multiple real-time sources. Vehicle speed, axle torque, and mode are read from 

the CAN bus at each time step of the controller. While the vehicle is capable of 
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communicating with a cloud server in order to obtain the required velocity reference 

profile, this testing did not utilize that feature and instead computed the reference profile 

locally on the MAB. This decision was made in this initial testing in order to focus solely 

on the NMPC PTC performance. The influence of cloud communication on NMPC PTC 

performance will be the subject of future testing. The reference velocity profile used for 

this testing was generated using an optimal velocity prediction algorithm developed as part 

of the MTU NEXTCAR project. This algorithm is presented in [57, 58]. Timing 

information for the test is provided in Table 3-4. The vehicle testing was conducted on the 

first eight km of the MTUDC. A shortened segment of the MTUDC was selected for in-

vehicle testing in order to reduce the time requirements of on road testing. This section was 

chosen as it contains periods of operation in all powertrain modes at both city and highway 

speeds. The reference SOC for the NMPC PTC for this testing was set as the vehicle’s 

current SOC at the start of the test. This value stays constant for the remainder of the test. 

Table 3-4. Real-Time Test Parameters 

NMPC Controller Step Time 0.2 sec 

Prediction Horizon 10 sec 

Energy savings achieved during real-time testing was within the range observed in 

simulation testing. An average savings of 1.1% across 10 tests was realized through the use 

of the NMPC controller when compared to the vehicle’s baseline control. A summary of 

testing results and the distribution of energy savings are provided in Table 3-5 and Figure 

3-24, respectively. 
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Table 3-5. MTUDC Real Time Energy Consumption 

 Number of Cycles Average Energy Savings 95% CI 

MTUDC 

(First 8 km) 
10 1.1% (0.6%, 1.5%) 

 

Figure 3-24. Real -time testing energy savings over the first 8 km of the MTUDC. 

The following analysis more closely examines the energy savings from one of the 10 real-

time tests conducted on the first 8 km of the MTUDC. This cycle, whose velocity and mode 

profile are presented in Figure 3-25, resulted in an energy savings of 1.3%. As was shown 

in the simulation testing, the primary sources of energy savings, shown in Figure 3-26, 

occur through the increased use of battery power during accelerations followed by a 

recovery in SOC during lower demand portions of the drive cycle. SOC over this cycle is 

shown in Figure 3-27. 

 

Figure 3-25. Real-time testing Velocity and Operating Mode over the first 8 km of the 

MTUDC. 
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Figure 3-26. Real-time testing Vehicle Energy Consumption over the first 8 km of the 

MTUDC. 

 

Figure 3-27. Real-time testing SOC over the first 8 km of the MTUDC. 

Controller turnaround time, shown in Figure 3-28, differs between the operating modes of 

the vehicle due to the different number of control variables presented in each mode. The 

hybrid modes with 3 control variables, LER and HER, had turnaround times in the range 

of 90-110 ms. Due to the turnaround time exceeding 100 ms in certain instances, the update 

rate of the controller was slowed to 200 ms in order to avoid computation overruns. FER 

mode had a faster turnaround time in the range of 50-70 ms. The EV mode had a turnaround 

time in the range of 80-100 ms. These turnaround times are approaching those that would 

be required for supervisory control of an HEV thus demonstrating the real-time feasibility 

of the developed controller. 
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Figure 3-28. Real-time testing Turnaround Time over the first 8 km of the MTUDC. 

In-vehicle testing demonstrated the energy savings capability of the NMPC PTC as well as 

the real-time capability of the controller. This demonstration of real-time NMPC used in 

conjunction with real-time communication is an important step in demonstrating the 

feasibility of real-time predictive optimal control methods for PHEVs. 

3.7 Conclusion 

This paper presents a real-time NMPC control algorithm for energy management in a 

connected multi-mode PHEV. The developed controller utilizes a reference of future 

vehicle speed and power demand in order to make more efficient energy management 

decisions. Extensive simulation testing has shown that the NMPC PTC provides an energy 

savings of 1 to 4% across multiple standard and non-standard drive cycles when compared 

to the vehicle’s production baseline control. Furthermore, the developed controller was 

deployed and tested in a real-time control system where the energy savings observed in 

simulations was confirmed in a real-time application during on-road testing. 

This work has demonstrated the feasibility of utilizing CAV and predictive control 

technologies to improve PHEV energy consumption at the powertrain control level. 
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Controller computation times observed during real-time testing show that the 

implementation of a predictive optimal energy management strategy in a production 

vehicle is feasible. The next step in demonstrating this production potential would be to 

utilize the NMPC PTC as the supervisory controller for the vehicle’s powertrain in an in-

vehicle or dynamometer test in order to demonstrate the controller’s ability to control 

physical components. In addition, extensive testing of the NMPC PTC used in conjunction 

with cloud communication needs to be completed. Finally, as the developed NMPC PTC 

is designed to be one part of a larger PHEV CAV controls and optimization system, testing 

of the NMPC PTC with other components of the PHEV CAV controls and optimization 

system has occurred both in simulation and in real-time in-vehicle tests. Future work 

includes the continued testing of the NMPC PTC while integrated with the other pieces of 

the overall control system. 
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4 Integrated Predictive Powertrain Control for a Multi-Mode 

Plug-in Hybrid Electric Vehicle 

In the ongoing push for a more energy efficient vehicle fleet, the multi-mode Plug-in 

Hybrid Electric Vehicle (PHEV) is an effective vehicle architecture for reducing vehicle 

energy consumption when paired with a proper energy management strategy. Due to the 

complexity of a multi-mode PHEV powertrain, the energy management strategy of said 

powertrain is a prime candidate for the application of optimal control methods. This paper 

presents a predictive control strategy for optimal mode selection and powertrain control for 

a multi-mode PHEV capable of real-time control. This method utilizes predictions of future 

vehicle behavior in order to plan an optimal path of vehicle powertrain modes that 

minimizes energy consumption. In addition, this paper also presents the integration of the 

developed optimal mode control strategy with an optimal powersplit strategy using 

Nonlinear Model Predictive Control (NMPC) to create a real-time Integrated Predictive 

Powertrain Controller (IPPC) responsible for all aspects of multi-mode PHEV powertrain 

supervisory control. The IPPC provides a real-time optimal solution to address the major 

challenge of a multi-mode HEV powertrain control: an integrated discrete and continuous 

optimization. Testing in simulation has shown the IPPC to be capable of reducing PHEV 

energy consumption by 4-10% across real-world and standard drive cycles. In addition, the 

presented IPPC was deployed onto a rapid prototyping embedded controller where on-road, 

real-time testing has shown the IPPC to be capable of real-time control while providing an 

energy reduction of 5%, thus confirming the energy savings observed in simulation. 
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4.1 Introduction 

Over the past two decades, automotive manufacturers have turned vehicle electrification 

in order to reduce overall vehicle energy consumption and to meet emissions standards. 

Hybrid electric vehicles (HEVs) have been the most popular electrified option for 

manufacturers with single-mode hybrids being the most common design. Single mode 

hybrids, such as the Toyota Prius, are defined as having permanent arrangement of power 

delivery within the drivetrain. More recently, multi-mode hybrids, such as the Chevrolet 

Volt, were introduced to the market. Multi-mode hybrids make use of clutches within the 

drivetrain to change the arrangement of power delivery which allows more flexibility and 

options to propel the car in the most efficient way possible [65]. However, with this greater 

flexibility comes a larger control problem. While supervisory powertrain control of a single 

mode HEVs requires only a control decision regarding the powersplit among the engine 

and motor(s) be made, a multi-mode HEV requires that powertrain operating mode and 

powersplit both be controlled. The major challenge of a multi-mode HEV supervisory 

powertrain control is that a combination of discrete optimization (mode selection) and 

continuous optimization (power-split) is required. 

An early research on optimal multi-mode HEV control was conducted on a GM 2-mode 

hybrid system. A partial instantaneous optimization controller was developed that uses 

rule-based logic to control engine ON/OFF decisions and SOC management while 

instantaneous optimization is used to determine the mode and operating points that provide 

the lowest fuel consumption [66]. More recently, work was conducted on the optimization 
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of multi-mode HEV design, including clutch arrangement and components sizing for 

minimum fuel consumption [67-74]. While the work in [67-74] did result in an optimal 

mode selection strategy, the method used is a form of exhaustive search that is not 

applicable to on-line control. Zhuang et al. [75] presents a map-based control strategy for 

a multi-mode HEV. Dynamic programming (DP) is used offline to determine an optimal 

mode selection and powersplit strategy over several drive cycles. The mode selection 

output of the DP algorithm is then used to generate a best mode selection map for each 

vehicle speed and torque demand that is suitable for use in online control. This mode 

selection map is then paired with an equivalent consumption minimization strategy 

(ECMS) controller for powersplit in order to create a complete powertrain controller. 

Zhuang et al. conducted a similar study in [76] where the ECMS controller was replaced a 

normalized efficiency maximum strategy that improves upon the fuel economy of the 

ECMS controller. Similarly, Wang et al. [11] uses ECMS to develop best mode and 

operating point maps for a given vehicle speed and torque that can then be used for online 

control. Anselma et al. [77] presents an online multi-mode HEV control strategy that 

utilizes the outputs of the offline optimal control methods presented in [72, 74] to train a 

neural network. The resulting trained neural network is capable of outputting a powertrain 

mode and powersplit in an online implementation. Finally, in [18], a DP-based receding 

horizon control method for HEV mode selection and powertrain control that uses a forward 

look ahead of vehicle speed in order to determine a best current operating point. However, 

this method was tested in simulation only and was not validated in real-time control. 
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While optimal control of multi-mode HEVs has been well studied, the real-time 

applications of these technologies are limited. In addition, the predictive real-time optimal 

control of multi-mode HEVs that is considerate of future road conditions such as elevation 

changes and stops has not been extensively studied. With the advancement of vehicle-to-

vehicle (V2V) and vehicle-to-infrastructure (V2I) technologies, more and more real-time 

traffic and road information will be available to vehicles. This information can be used by 

powertrain controllers to provide superior mode selection and powersplit strategies [35, 

78]. This paper presents an integrated predictive powertrain controller for a multi-mode 

PHEV in connected vehicle environment. The controller integrates with connected and 

automated vehicle (CAV) technologies, which provide short-term predictions of future 

vehicle velocity and road conditions over the prediction horizon. Two-layer control 

architecture is employed for this integrated powertrain controller: mode path planning and 

powersplit control. The upper layer is an optimal mode path planning algorithm that 

generates a drive unit mode path for a given prediction horizon in real-time. The optimal 

mode path planning algorithm is developed based on the discrete optimal planning 

technology. The lower layer of this integrated powertrain controller is a Nonlinear Model 

Predictive Control (NMPC) powersplit controller developed and vetted in [55] in order to 

create a comprehensive optimal controller for the multi-mode 2nd generation Chevrolet 

Volt powertrain. 

This work was completed as part of the Michigan Technological University (MTU) 

NEXTCAR program which has a target reducing energy consumption of a PHEV by 20% 

through the use of CAV technologies [56]. This program aimed at all aspects of vehicle 
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dynamics and powertrain operation in order to discover areas where energy consumption 

can be reduced. Technologies developed include Eco Arrival and Departure Speed 

Harmonization [59], Optimal Velocity Profiling [57, 58], Charge Depleting/Charge 

Sustaining Optimization [43], and NMPC power split management [55]. 

The main contributions of this article are the following: (1) Develop an algorithm capable 

of using predictive information obtained through CAV technologies to optimize mode path 

planning for a given prediction horizon in a multi-mode PHEV. (2) Combine the developed 

Optimal Mode Path Planning algorithm with NMPC powersplit management in order to 

produce an integrated predictive powertrain controller (IPPC) that provides full 

supervisory control for a multi-mode PHEV. (3) Demonstrate the effectiveness of the IPPC 

in simulation and on-road testing and show the energy benefit over baseline vehicle control 

and NMPC powersplit control. 

The chapter is organized in the following manner. Section 4.2 provides details of the 

Optimal Mode Path Planning Algorithm. Section 4.3 describes the automated weight factor 

selection strategy used in the Optimal Mode Path Planning Algorithm. Section 4.4 presents 

the integration of the Optimal Mode Path Planning Algorithm and the NMPC powertrain 

controller developed in [55]. Finally, Section 4.5 presents the resulting energy 

improvements of the IPPC in both simulation and on-road testing. 
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4.2 Optimal Mode Path Planning Algorithm 

The objective of the Optimal Mode Path Planning algorithm is to utilize a prediction of 

vehicle state, which includes future vehicle speed and torque demand, in order to plan a 

best trajectory of drive unit operating mode over the next 𝑁𝑁 seconds. Planning this 

trajectory of future modes allows for the best possible mode command to be issued at the 

current time step. By repeating this process at each execution step of the controller, a near 

optimal mode selection strategy can be followed for the entire drive cycle. The Optimal 

Mode Path Planning algorithm is based upon the forward value iteration for discrete 

optimal planning with a fixed length method presented by Lavelle in [79]. 

4.2.1 Algorithm Overview 

Equation (4-1) represents the problem definition of the Optimal Mode Path Planning 

algorithm. The system state 𝑋𝑋 is defined as the battery 𝑆𝑆𝑆𝑆𝐶𝐶 as well as the current operating 

mode, namely EV, LER, FER, and HER, and is shown in (4-2). The control variable 𝑈𝑈, 

represented in (4-3), is the operating mode of the vehicle to be issued as a command. The 

disturbance vector 𝑉𝑉 is comprised of the predicted future velocity of the vehicle and 

expected road grade and is shown in (4-4). 

�̇�𝑋 = 𝑓𝑓(𝑋𝑋,𝑈𝑈,𝑉𝑉) (4-1) 

𝑋𝑋 = � 𝑆𝑆𝑆𝑆𝐶𝐶𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚� 
(4-2) 
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𝑈𝑈 = [𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚] (4-3) 

𝑉𝑉 = �
𝑣𝑣𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃
𝜃𝜃𝐺𝐺𝑃𝑃𝐵𝐵𝐺𝐺𝑃𝑃

� (4-4) 

The change in system state, 𝑆𝑆𝑆𝑆𝐶𝐶̇ , is given in (4-5). It is a function of the assumed constant 

battery parameters 𝑉𝑉𝑂𝑂𝐶𝐶, the open ciruit voltage, 𝐹𝐹𝑀𝑀𝐵𝐵𝑂𝑂𝑂𝑂𝑃𝑃𝑃𝑃𝐵𝐵, the internal resistance, and 

𝑄𝑄𝑀𝑀𝐵𝐵𝑂𝑂𝑂𝑂𝑃𝑃𝑃𝑃𝐵𝐵, the total battery capacity, as well as battery power as shown in (4-7). It should 

be noted that battery parameters are assumed constant in this paper. The effects of changing 

battery parameters have been studied in other works such as [29]. 𝑃𝑃𝑀𝑀𝐵𝐵𝑂𝑂𝑂𝑂𝑃𝑃𝑃𝑃𝐵𝐵, as well as the 

fuel consumption term 𝑚𝑚𝑃𝑃 as shown in (4-8), are a function of the control and disturbance 

vectors. The values for these variables are determined offline as a result of the computed 

optimal operating point for a given mode, velocity, and torque request combination using 

the methods presented in [11]. The disturbance vector variable 𝑣𝑣𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 is the predicted 

future velocity of the vehicle. This profile is produced by an optimal velocity prediction 

tool developed as part of the MTU NEXTCAR program. Details of this tool can be found 

in [56-58]. 

𝑆𝑆𝑆𝑆𝐶𝐶̇ (𝑘𝑘) =
�𝑉𝑉𝑂𝑂𝐶𝐶2 − 4𝑃𝑃𝑀𝑀𝐵𝐵𝑂𝑂𝑂𝑂𝑃𝑃𝑃𝑃𝐵𝐵(𝑘𝑘)𝐹𝐹𝑀𝑀𝐵𝐵𝑂𝑂𝑂𝑂𝑃𝑃𝑃𝑃𝐵𝐵 − 𝑉𝑉𝑂𝑂𝐶𝐶

2𝑄𝑄𝑀𝑀𝐵𝐵𝑂𝑂𝑂𝑂𝑃𝑃𝑃𝑃𝐵𝐵𝐹𝐹𝑀𝑀𝐵𝐵𝑂𝑂𝑂𝑂𝑃𝑃𝑃𝑃𝐵𝐵
 (4-5) 

𝑇𝑇𝑂𝑂𝑂𝑂𝑂𝑂,𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 =
𝐹𝐹𝑇𝑇𝑃𝑃𝑃𝑃𝑃𝑃
𝐹𝐹𝐹𝐹𝐹𝐹 ∗ �

𝑚𝑚𝑎𝑎𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 + 𝐹𝐹0 + 𝐹𝐹1 ∗ 𝑣𝑣𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃
+𝐹𝐹2 ∗ 𝑣𝑣𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃2 + 𝑚𝑚𝑚𝑚𝑡𝑡𝑡𝑡𝑛𝑛(𝜃𝜃𝐺𝐺𝑃𝑃𝐵𝐵𝐺𝐺𝑃𝑃)� (4-6) 

𝑃𝑃𝑀𝑀𝐵𝐵𝑂𝑂𝑂𝑂𝑃𝑃𝑃𝑃𝐵𝐵(𝑘𝑘) = 𝑓𝑓(𝑀𝑀𝑚𝑚𝑚𝑚𝑚𝑚(𝑘𝑘),𝑣𝑣𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃(𝑘𝑘),𝑇𝑇𝑂𝑂𝑂𝑂𝑂𝑂,𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃(𝑘𝑘)) (4-7) 

𝑚𝑚𝑃𝑃(𝑘𝑘) = 𝑓𝑓(𝑀𝑀𝑚𝑚𝑚𝑚𝑚𝑚(𝑘𝑘),𝑣𝑣𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃(𝑘𝑘),𝑇𝑇𝑂𝑂𝑂𝑂𝑂𝑂,𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃(𝑘𝑘)) (4-8) 
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𝑎𝑎𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 =
𝑣𝑣𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃(𝑘𝑘+1) − 𝑣𝑣𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃(𝑘𝑘)

Δ𝑡𝑡  (4-9) 

The cost function, shown in (4-10), is comprised of two types of cost. The first is the cost 

incurred by residing in a specific mode in a given time step. This includes terms for the 

fuel consumed during each time step, 𝑚𝑚𝑃𝑃,(𝑘𝑘), and a term penalizing deviation in the actual 

SOC from the reference SOC,  �𝑆𝑆𝑆𝑆𝐶𝐶𝐿𝐿𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝐸𝐸𝑠𝑠𝑃𝑃 − 𝑆𝑆𝑆𝑆𝐶𝐶(𝑘𝑘)�. The second type of cost is that 

incurred by transitioning from one mode to another, the 𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚 𝑡𝑡ℎ𝑡𝑡𝑓𝑓𝑡𝑡 𝑝𝑝𝑚𝑚𝑛𝑛𝑎𝑎𝑝𝑝𝑡𝑡𝑝𝑝 term. Shown 

in (4-11), this term includes the kinetic energy change in rotating components due to a 

mode shift, the electrical energy required by the electric hydraulic pump to execute the 

shift, and, in the case of a shift that requires an engine start, the additional fuel required to 

start the engine. This term serves two purposes. Purpose 1 is to prevent energy intensive 

mode transitions. Purpose 2 is to prevent frequent mode shifts that would result in poor 

perceived drive quality by the driver. The hydraulic pump and engine-on penalties, defined 

in (4-12) and (4-13), are functions of the current time step control variable, 𝑀𝑀𝑚𝑚𝑚𝑚𝑚𝑚(𝑘𝑘), and 

the previous time step’s control variable, 𝑀𝑀𝑚𝑚𝑚𝑚𝑚𝑚(𝑘𝑘−1). The component speeds used in the 

kinetic energy calculations are defined in (4-14)-(4-16). 

𝑐𝑐𝑚𝑚𝑡𝑡𝑡𝑡 = ��
𝛼𝛼 ∗𝑚𝑚𝑃𝑃,(𝑘𝑘) + 𝛽𝛽�𝑆𝑆𝑆𝑆𝐶𝐶𝐿𝐿𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝐸𝐸𝑠𝑠𝑃𝑃 − 𝑆𝑆𝑆𝑆𝐶𝐶(𝑘𝑘)�

+𝛾𝛾 ∗ 𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚 𝑡𝑡ℎ𝑡𝑡𝑓𝑓𝑡𝑡 𝑝𝑝𝑚𝑚𝑛𝑛𝑎𝑎𝑝𝑝𝑡𝑡𝑝𝑝(𝑘𝑘)
�

𝑁𝑁

𝑘𝑘=1

 (4-10) 

𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚 𝑡𝑡ℎ𝑡𝑡𝑓𝑓𝑡𝑡 𝑝𝑝𝑚𝑚𝑛𝑛𝑎𝑎𝑝𝑝𝑡𝑡𝑝𝑝

=

⎝

⎜⎜
⎛

�0.5 ∙ 𝐼𝐼𝑀𝑀𝑀𝑀 ∙ �𝜔𝜔𝑀𝑀𝑀𝑀,(𝑘𝑘)
2 − 𝜔𝜔𝑀𝑀𝑀𝑀,(𝑘𝑘−1)

2 �� + 
�0.5 ∙ 𝐼𝐼𝑀𝑀𝑀𝑀 ∙ �𝜔𝜔𝑀𝑀𝑀𝑀,(𝑘𝑘)

2 − 𝜔𝜔𝑀𝑀𝑀𝑀,(𝑘𝑘−1)
2 �� +

 �0.5 ∙ 𝐼𝐼𝐸𝐸𝐸𝐸𝐸𝐸𝑃𝑃𝐸𝐸𝑃𝑃 ∙ �𝜔𝜔𝐸𝐸𝐸𝐸𝐸𝐸𝑃𝑃𝐸𝐸𝑃𝑃,(𝑘𝑘)
2 − 𝜔𝜔𝐸𝐸𝐸𝐸𝐸𝐸𝑃𝑃𝐸𝐸𝑃𝑃,(𝑘𝑘−1)

2 �� +
𝑚𝑚𝑃𝑃,𝐸𝐸𝐸𝐸𝐸𝐸𝑃𝑃𝐸𝐸𝑃𝑃 𝑂𝑂𝐸𝐸 + 𝐸𝐸𝑛𝑛𝑚𝑚𝑡𝑡𝑚𝑚𝑝𝑝𝑝𝑝𝑂𝑂𝑚𝑚𝑝𝑝

 ⎠

⎟⎟
⎞

 
(4-11) 
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𝑚𝑚𝑃𝑃, 𝐸𝐸𝐸𝐸𝐸𝐸𝑃𝑃𝐸𝐸𝑃𝑃 𝑂𝑂𝐸𝐸(𝑘𝑘) = 𝑓𝑓�𝑀𝑀𝑚𝑚𝑚𝑚𝑚𝑚(𝑘𝑘),𝑀𝑀𝑚𝑚𝑚𝑚𝑚𝑚(𝑘𝑘−1)� (4-12) 

𝐸𝐸𝑛𝑛𝑚𝑚𝑡𝑡𝑚𝑚𝑝𝑝𝑝𝑝𝑂𝑂𝑚𝑚𝑝𝑝(𝑘𝑘) =  𝑓𝑓�𝑀𝑀𝑚𝑚𝑚𝑚𝑚𝑚(𝑘𝑘),𝑀𝑀𝑚𝑚𝑚𝑚𝑚𝑚(𝑘𝑘−1)� (4-13) 

𝜔𝜔𝑀𝑀𝑀𝑀(𝑘𝑘) =  𝑓𝑓(𝑀𝑀𝑚𝑚𝑚𝑚𝑚𝑚(𝑘𝑘),𝑣𝑣𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃(𝑘𝑘),𝑇𝑇𝑂𝑂𝑂𝑂𝑂𝑂,𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃(𝑘𝑘)) (4-14) 

𝜔𝜔𝑀𝑀𝑀𝑀(𝑘𝑘) =  𝑓𝑓(𝑀𝑀𝑚𝑚𝑚𝑚𝑚𝑚(𝑘𝑘),𝑣𝑣𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃(𝑘𝑘),𝑇𝑇𝑂𝑂𝑂𝑂𝑂𝑂,𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃(𝑘𝑘)) (4-15) 

𝜔𝜔𝐸𝐸𝐸𝐸𝐸𝐸𝑃𝑃𝐸𝐸𝑃𝑃(𝑘𝑘) =  𝑓𝑓�𝑀𝑀𝑚𝑚𝑚𝑚𝑚𝑚(𝑘𝑘),𝑣𝑣𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃(𝑘𝑘),𝑇𝑇𝑂𝑂𝑂𝑂𝑂𝑂,𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃(𝑘𝑘)� (4-16) 

4.2.2 Algorithm Details 

The optimal mode path planning algorithm is shown in Figure 4-1. The problem is defined 

with the following terms. 𝑘𝑘 represents the time step in the prediction horizon. Let 𝑛𝑛 be the 

possible mode options, 𝑀𝑀, at time step 𝑇𝑇𝑘𝑘. Let 𝑝𝑝 be the possible mode options at time 

step 𝑇𝑇𝑘𝑘−1. Let 𝐶𝐶𝐸𝐸,𝑘𝑘 be the cumulative cost of traveling from 𝑀𝑀0 at 𝑇𝑇0 to 𝑀𝑀𝐸𝐸 at time step 𝑇𝑇𝑘𝑘. 

𝐻𝐻𝐸𝐸,𝑘𝑘, shown in (4-17), is the cost of residing in 𝑀𝑀𝐸𝐸 at time step 𝑇𝑇𝑘𝑘. 𝐽𝐽𝐸𝐸,𝑝𝑝,𝑘𝑘, shown in (4-18), 

is the cost of going from 𝑀𝑀𝑝𝑝 at time step 𝑇𝑇𝑘𝑘−1 to 𝑀𝑀𝐸𝐸 at time step 𝑇𝑇𝑘𝑘. 𝑃𝑃𝐸𝐸,𝑘𝑘 is the mode at 

time step 𝑇𝑇𝑘𝑘−1 that gives the path with least cost 𝐶𝐶𝐸𝐸,𝑘𝑘  as shown in (4-19). 

𝐻𝐻𝐸𝐸,𝑘𝑘 = 𝛼𝛼 ∗ 𝑚𝑚𝑃𝑃,(𝑘𝑘) + 𝛽𝛽 ∗ �𝑆𝑆𝑆𝑆𝐶𝐶𝐿𝐿𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝐸𝐸𝑠𝑠𝑃𝑃 − 𝑆𝑆𝑆𝑆𝐶𝐶(𝑘𝑘)� (4-17) 

𝐽𝐽𝐸𝐸,𝑝𝑝,𝑘𝑘 =  𝛾𝛾 ∗ 𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚 𝑡𝑡ℎ𝑡𝑡𝑓𝑓𝑡𝑡 𝑝𝑝𝑚𝑚𝑛𝑛𝑎𝑎𝑝𝑝𝑡𝑡𝑝𝑝𝑘𝑘 (4-18) 

𝐶𝐶𝐸𝐸,𝑘𝑘 = min
𝑝𝑝∈�𝑀𝑀0,𝑃𝑃𝑃𝑃 𝑘𝑘=1

1:𝐸𝐸,𝑃𝑃𝑃𝑃 𝑘𝑘≠1�
�𝐶𝐶𝑝𝑝,𝑘𝑘−1 + 𝐻𝐻𝐸𝐸,𝑘𝑘 + 𝐽𝐽𝐸𝐸,𝑝𝑝,𝑘𝑘� (4-19) 
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Figure 4-1: Mode selection process for a problem with 𝑛𝑛 modes and 𝑘𝑘 timesteps. 

For an example of the calculation process, equations (4-20)-(4-25) show the calculation 

process for time step 𝑇𝑇𝑘𝑘 for a problem with 𝑛𝑛 modes. At timestep 𝑇𝑇𝑘𝑘, the cumulative cost 

for each mode 𝑀𝑀1:𝐸𝐸 is evaluated for each potential path from time 𝑇𝑇𝑘𝑘−1 to time 𝑇𝑇𝑘𝑘 as shown 

in (4-20), (4-22), and (4-24). The mode at time 𝑇𝑇𝑘𝑘−1 that resulted in the minimum 

cumulative cost at time 𝑇𝑇𝑘𝑘 is then stored as 𝑃𝑃𝐸𝐸,𝑘𝑘 in order to track the path of minimum cost 

as shown in (4-21), (4-23) and (4-25). This process is repeated for each timestep 𝑇𝑇1:𝑇𝑇𝑁𝑁. 

The result of this process will be a set of cumulative costs 𝐶𝐶1:𝐸𝐸,𝑁𝑁, the minimum of which is 

the lowest path cost for the problem. 

𝐶𝐶1,𝑘𝑘 =  min {�𝐶𝐶1,𝑘𝑘−1 + 𝐽𝐽1,1,𝑘𝑘 + 𝐻𝐻1,𝑘𝑘�, �𝐶𝐶2,𝑘𝑘−1 + 𝐽𝐽1,2,𝑘𝑘 + 𝐻𝐻1,𝑘𝑘�,⋯, 
�𝐶𝐶𝐸𝐸,𝑘𝑘−1 +  𝐽𝐽1,𝐸𝐸,𝑘𝑘 + 𝐻𝐻1,𝑘𝑘�} 

(4-20) 

𝑃𝑃1,𝑘𝑘 =  

⎩
⎪
⎨

⎪
⎧1, 𝑡𝑡𝑓𝑓 �𝐶𝐶1,𝑘𝑘−1 + 𝐽𝐽1,1,𝑘𝑘 + 𝐻𝐻1,𝑘𝑘� 𝑡𝑡𝑡𝑡 𝑡𝑡ℎ𝑚𝑚 𝑝𝑝𝑚𝑚𝑎𝑎𝑡𝑡𝑡𝑡 𝑐𝑐𝑚𝑚𝑡𝑡𝑡𝑡

2 𝑡𝑡𝑓𝑓 �𝐶𝐶2,𝑘𝑘−1 + 𝐽𝐽1,2,𝑘𝑘 + 𝐻𝐻1,𝑘𝑘� 𝑡𝑡𝑡𝑡 𝑡𝑡ℎ𝑚𝑚 𝑝𝑝𝑚𝑚𝑎𝑎𝑡𝑡𝑡𝑡 𝑐𝑐𝑚𝑚𝑡𝑡𝑡𝑡
⋯⋯⋯

𝑛𝑛 𝑡𝑡𝑓𝑓 �𝐶𝐶𝐸𝐸,𝑘𝑘−1 + 𝐽𝐽1,𝐸𝐸,𝑘𝑘 + 𝐻𝐻1,𝑘𝑘� 𝑡𝑡𝑡𝑡 𝑡𝑡ℎ𝑚𝑚 𝑝𝑝𝑚𝑚𝑎𝑎𝑡𝑡𝑡𝑡 𝑐𝑐𝑚𝑚𝑡𝑡𝑡𝑡

 
(4-21) 
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𝐶𝐶2,𝑘𝑘 =  min {�𝐶𝐶1,𝑘𝑘−1 +  𝐽𝐽2,1,𝑘𝑘 + 𝐻𝐻2,𝑘𝑘�, �𝐶𝐶2,𝑘𝑘−1 + 𝐽𝐽2,2,𝑘𝑘 + 𝐻𝐻2,𝑘𝑘� ,⋯, 
�𝐶𝐶𝐸𝐸,𝑘𝑘−1 + 𝐽𝐽2,𝐸𝐸,𝑘𝑘 + 𝐻𝐻2,𝑘𝑘�} 

(4-22) 

𝑃𝑃2,𝑘𝑘 =  

⎩
⎪
⎨

⎪
⎧1, 𝑡𝑡𝑓𝑓 �𝐶𝐶1,𝑘𝑘−1 + 𝐽𝐽2,1,𝑘𝑘 + 𝐻𝐻2,𝑘𝑘� 𝑡𝑡𝑡𝑡 𝑡𝑡ℎ𝑚𝑚 𝑝𝑝𝑚𝑚𝑎𝑎𝑡𝑡𝑡𝑡 𝑐𝑐𝑚𝑚𝑡𝑡𝑡𝑡

2 𝑡𝑡𝑓𝑓 �𝐶𝐶2,𝑘𝑘−1 + 𝐽𝐽2,2,𝑘𝑘 + 𝐻𝐻2,𝑘𝑘� 𝑡𝑡𝑡𝑡 𝑡𝑡ℎ𝑚𝑚 𝑝𝑝𝑚𝑚𝑎𝑎𝑡𝑡𝑡𝑡 𝑐𝑐𝑚𝑚𝑡𝑡𝑡𝑡
⋯⋯⋯

𝑛𝑛 𝑡𝑡𝑓𝑓 �𝐶𝐶𝐸𝐸,𝑘𝑘−1 +  𝐽𝐽2,𝐸𝐸,𝑘𝑘 + 𝐻𝐻2,𝑘𝑘� 𝑡𝑡𝑡𝑡 𝑡𝑡ℎ𝑚𝑚 𝑝𝑝𝑚𝑚𝑎𝑎𝑡𝑡𝑡𝑡 𝑐𝑐𝑚𝑚𝑡𝑡𝑡𝑡

 
(4-23) 

𝐶𝐶𝐸𝐸,𝑘𝑘 =  min {�𝐶𝐶1,𝑘𝑘−1 + 𝐽𝐽𝐸𝐸,1,𝑘𝑘 + 𝐻𝐻𝐸𝐸,𝑘𝑘�, �𝐶𝐶2,𝑘𝑘−1 + 𝐽𝐽𝐸𝐸,2,𝑘𝑘 + 𝐻𝐻𝐸𝐸,𝑘𝑘� ,⋯, 
�𝐶𝐶𝐸𝐸,𝑘𝑘−1 +  𝐽𝐽𝐸𝐸,𝐸𝐸,𝑘𝑘 + 𝐻𝐻𝐸𝐸,𝑘𝑘�} 

(4-24) 

𝑃𝑃𝐸𝐸,𝑘𝑘 =  

⎩
⎪
⎨

⎪
⎧1, 𝑡𝑡𝑓𝑓 �𝐶𝐶1,𝑘𝑘−1 + 𝐽𝐽𝐸𝐸,1,𝑘𝑘 + 𝐻𝐻𝐸𝐸,𝑘𝑘� 𝑡𝑡𝑡𝑡 𝑡𝑡ℎ𝑚𝑚 𝑝𝑝𝑚𝑚𝑎𝑎𝑡𝑡𝑡𝑡 𝑐𝑐𝑚𝑚𝑡𝑡𝑡𝑡

2 𝑡𝑡𝑓𝑓 �𝐶𝐶2,𝑘𝑘−1 +  𝐽𝐽𝐸𝐸,2,𝑘𝑘 + 𝐻𝐻𝐸𝐸,𝑘𝑘� 𝑡𝑡𝑡𝑡 𝑡𝑡ℎ𝑚𝑚 𝑝𝑝𝑚𝑚𝑎𝑎𝑡𝑡𝑡𝑡 𝑐𝑐𝑚𝑚𝑡𝑡𝑡𝑡
⋯⋯⋯

𝑛𝑛 𝑡𝑡𝑓𝑓 �𝐶𝐶𝐸𝐸,𝑘𝑘−1 +  𝐽𝐽𝐸𝐸,𝐸𝐸,𝑘𝑘 + 𝐻𝐻𝐸𝐸,𝑘𝑘� 𝑡𝑡𝑡𝑡 𝑡𝑡ℎ𝑚𝑚 𝑝𝑝𝑚𝑚𝑎𝑎𝑡𝑡𝑡𝑡 𝑐𝑐𝑚𝑚𝑡𝑡𝑡𝑡

 
(4-25) 

4.2.3 Algorithm Application 

The following sections details how the algorithm described in 4.2.2 is specifically applied 

to mode path planning for the Chevrolet Volt. The Volt has 5 distinct operating modes; 

however, the NMPC powertrain controller outlined in [55] treats 1-EV and 2-EV as one 

mode and determines the best powersplit between the two motors. Therefore, the number 

of modes, 𝑛𝑛, considered in the Optimal Mode Path Planning algorithm is four: EV, LER, 

FER, and HER (mode 1, 2, 3, and 4). An example of an optimal mode path for the Volt is 

shown in Figure 4-2. 
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Figure 4-2: Optimal mode path example with a starting state of FER mode and an end 

state of EV mode. 

Several physical limitations of the Volt drive unit must be considered in the formulation of 

the Optimal Mode Path Planning algorithm. Mode shifting on the Volt is relatively slow 

process as mode shifts take on the seconds scale to complete. Because of this, the prediction 

horizon is discretized into time steps with a length of one second. Time steps of a shorter 

duration would not be appropriate to consider as the drive unit cannot physically shift that 

quickly. Another physical limitation that must be accounted for in the problem formulation 

involves what are and what are not allowable shifts. Due to the design of the Volt drive 

unit, only direct shifts that require the actuation of one clutch between consecutive modes 

are possible. For example, EV→LER, FG→HER, or FG→LER are direct shifts. However, 

EV→HER, FG→EV, or LER→HER would all be indirect shifts. Because of this, only 
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legal shift paths are considered. For example, if the cost 𝐶𝐶𝐻𝐻𝐸𝐸𝐿𝐿,𝑘𝑘 is being computed, only 

paths 𝐽𝐽𝐻𝐻𝐸𝐸𝐿𝐿,𝐹𝐹𝐸𝐸𝐿𝐿,𝑘𝑘 and 𝐽𝐽𝐻𝐻𝐸𝐸𝐿𝐿,𝐻𝐻𝐸𝐸𝐿𝐿,𝑘𝑘 will be evaluated. 

4.3 Automated Weight Factor Selection 

Crucial to the performance of any optimization problem with multiple cost function terms 

is the weighting of the terms in the cost function [80]. Methods for the selection of weight 

factors often involve some form of manual tuning that produces a suitable output. However, 

relying on a single set of tuned values can result in cases where the chosen weight factors 

do not lead to an optimal solution. For this reason, it was desired to use a method that 

automatically selects and updates weighting factors based on the current state of the 

system.  

The weighting process is started by introducing normalization terms. As all terms in the 

cost function are in a unit of energy, it was desired to convert all terms to a common unit 

of energy. In order to accomplish this, it was chosen to leave the fuel consumption term in 

its base units of grams of fuel consumed and normalize the SOC and mode sift penalty 

terms to equivalent grams of fuel consumed. These normalized terms are presented in 

equations (4-26) and (4-27) where 𝜆𝜆 is the normalizing factor, 𝑄𝑄𝑀𝑀𝐵𝐵𝑂𝑂𝑂𝑂𝑃𝑃𝑃𝑃𝐵𝐵 is the total capacity 

of the battery in 𝑘𝑘𝑊𝑊ℎ, 𝑁𝑁 is the number of prediction horizon steps, and 𝐵𝐵𝑆𝑆𝐹𝐹𝐶𝐶𝑀𝑀𝑃𝑃𝐸𝐸 is the 

minimum BSFC point of the engine in 𝐸𝐸𝑃𝑃𝐵𝐵𝑚𝑚𝑠𝑠
𝑘𝑘𝑘𝑘ℎ

, the most efficient operating point to use the 

engine to replenish the charge used from the battery. Multiplying 𝜆𝜆𝐶𝐶𝑂𝑂𝐶𝐶 by the percentage 

the current prediction horizon step’s SOC is below the reference SOC results in the grams 
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of fuel required to raise the SOC back to the reference SOC level. This quantity is then 

divided by the number of time steps in the prediction horizon in order to determine the 

amount of fuel required to return SOC to the reference level at the end of the prediction 

horizon. Multiplying the energy required to execute a mode shift, 

the 𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚 𝑡𝑡ℎ𝑡𝑡𝑓𝑓𝑡𝑡 𝑝𝑝𝑚𝑚𝑛𝑛𝑎𝑎𝑝𝑝𝑡𝑡𝑝𝑝, by 𝜆𝜆𝑚𝑚𝑃𝑃𝐺𝐺𝑃𝑃 𝑠𝑠ℎ𝑃𝑃𝑃𝑃𝑂𝑂 𝑝𝑝𝑃𝑃𝐸𝐸𝐵𝐵𝑃𝑃𝑂𝑂𝐵𝐵 results in the equivalent grams of fuel 

required to execute the shift. Applying these normalizing factors places all three cost 

function terms in directly comparable units. This assists in the application of appropriate 

weighting terms. 

𝜆𝜆𝐶𝐶𝑂𝑂𝐶𝐶 =
𝑄𝑄𝑀𝑀𝐵𝐵𝑂𝑂𝑂𝑂𝑃𝑃𝑃𝑃𝐵𝐵 ∗ 𝐵𝐵𝑆𝑆𝐹𝐹𝐶𝐶𝑀𝑀𝑃𝑃𝐸𝐸

𝑁𝑁  (4-26) 

𝜆𝜆𝑚𝑚𝑃𝑃𝐺𝐺𝑃𝑃 𝑠𝑠ℎ𝑃𝑃𝑃𝑃𝑂𝑂 𝑝𝑝𝑃𝑃𝐸𝐸𝐵𝐵𝑃𝑃𝑂𝑂𝐵𝐵 = 𝐵𝐵𝑆𝑆𝐹𝐹𝐶𝐶𝑀𝑀𝑃𝑃𝐸𝐸 ∗ 𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚 𝑡𝑡ℎ𝑡𝑡𝑓𝑓𝑡𝑡 𝑝𝑝𝑚𝑚𝑛𝑛𝑎𝑎𝑝𝑝𝑡𝑡𝑝𝑝(𝑘𝑘) (4-27) 

The objective function goal of maintaining a reference SOC level is accomplished through 

penalizing control actions that lead to deviations below the reference SOC set point. In 

order to achieve this, the SOC tracking term is weighted using a progressive term that 

imposes a stricter penalty the further the predicted SOC deviates from the reference SOC 

level. This is accomplished through the use of the exponential function where the operand 

is the current time step’s predicted SOC below the reference SOC level. This function is 

shown in equation (4-28). 

𝛽𝛽(𝑘𝑘) = 𝑚𝑚�𝐶𝐶𝑂𝑂𝐶𝐶𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅−𝐶𝐶𝑂𝑂𝐶𝐶(𝑘𝑘)� ∗ 𝜆𝜆𝐶𝐶𝑂𝑂𝐶𝐶 (4-28) 

The purpose of the mode shift penalty term is to prevent energy intensive mode transitions 

while also preventing frequent mode shifts that would result in poor perceived drive quality 
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by the driver. Developing a weighting factor for this term was focused on eliminating 

frequent mode shifts as energy intensive mode shifts are avoided by normalizing the energy 

consumed to execute the mode shift to equivalent grams of fuel. However, what this does 

not cover is low required energy mode shift where the potential of frequent back and forth 

mode switching exists. To counter this potential behavior, an exponential weight factor has 

been introduced where the operand is the number of mode changes that occurred in the 

previous prediction horizon or the 𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚 𝑡𝑡ℎ𝑡𝑡𝑓𝑓𝑡𝑡 𝑐𝑐𝑚𝑚𝐶𝐶𝑛𝑛𝑡𝑡. This ensures that if a high number 

of mode changes were predicted in the previous controller step, the mode shift weight for 

the current step is increased to eliminate this behavior. The formula for this term is given 

in equation (4-29). It should be noted that if the power demand remains negative for the 

entirety of the prediction horizon, the value this weight is set to 1 so as to not discourage 

shifts to EV mode. 

𝛾𝛾 = 𝑚𝑚𝑚𝑚𝑃𝑃𝐺𝐺𝑃𝑃 𝑠𝑠ℎ𝑃𝑃𝑃𝑃𝑂𝑂 𝑠𝑠𝑃𝑃𝑂𝑂𝐸𝐸𝑂𝑂 ∗ 𝜆𝜆𝑚𝑚𝑃𝑃𝐺𝐺𝑃𝑃 𝑠𝑠ℎ𝑃𝑃𝑃𝑃𝑂𝑂 𝑝𝑝𝑃𝑃𝐸𝐸𝐵𝐵𝑃𝑃𝑂𝑂𝐵𝐵 (4-29) 

4.4 Integrated Multi-Mode PHEV Powertrain Control 

4.4.1 Summary of NMPC Controller 

An NMPC powertrain controller (PTC) was developed for the 2nd generation Chevrolet 

Volt PHEV. This controller utilizes predictions of future vehicle velocity and torque 

demand, provided by the MTU-developed optimal velocity profiling algorithm [57, 58], to 

optimize drive unit powersplit and battery SOC management. Depending on the operating 

mode commanded, the NMPC powertrain controller will command one or both motor 
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torques, engine torque, and engine speed [55]. A simplified representation of the NMPC 

powertrain controller is shown in Figure 4-3. 

 

Figure 4-3: NMPC Powertrain Controller Architecture for LER and HER modes. 

As tested in [55], the NMPC PTC received its commanded mode input from the stock 

vehicle controller in the form of logged vehicle testing data in the case of simulations or 

from CAN feedback to the dSPACE MicroAutoBox in the case of on-road, in-vehicle 

testing. Simulation testing showed that this controller reduced energy consumption from 

1-4% when compared to the vehicle’s stock control across 32 drive cycles. In-vehicle, real-

time testing confirmed the energy reduction shown in simulation by demonstrating a 1% 

energy reduction over 10 drive cycles while maintaining controller turnaround times 

between 50-100 ms. 

4.4.2 Integrated Predictive Powertrain Controller 

As outlined in [55, 56], the Optimal Mode Path Planning Algorithm and NMPC powertrain 

controller are the two MTU NEXTCAR-developed technologies that are designed to 

provide optimal powertrain control using a short, seconds length horizon prediction of 

future vehicle operating condition. While capable of being implemented without the other, 

these two technologies were designed to be implemented as one integrated predictive 
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powertrain controller. Their integration is diagrammed in Figure 4-4. At each controller 

execution step, both the Optimal Mode Path Planning algorithm and the NMPC powertrain 

controller receive predictions of future vehicle speed and torque demand from the MTU-

developed optimal velocity profiling algorithm [57, 58]. In addition, both controllers 

receive feedback of the current vehicle states, including current vehicle speed and battery 

SOC. The Optimal Mode Path Planning Algorithm uses this information to compute an 

optimal drive unit mode trajectory for the prediction horizon. This information is provided 

to the NMPC powertrain controller which computes an optimal powersplit strategy for the 

prediction horizon. Once both the optimal mode and optimal powersplit are computed, the 

next time step mode and powersplit is issued as a command and the process repeats itself 

at the next controller execution step. 

 

Figure 4-4: IPPC architecture including both NMPC powertrain control and Optimal 

Mode Path Planning. 
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4.5 Performance Assessment of IPPC 

The integrated predictive powertrain controller has undergone extensive testing both in 

simulations and on-road, in-vehicle testing. The logged drive cycles tested in simulation in 

[55] with only the NMPC powertrain controller were re-tested in this work using the full 

integrated predictive powertrain controller. The main reason for using these same drive 

cycles is to directly show the added benefit of integrating the Optimal Mode Path Planning 

algorithm with the NMPC powertrain controller. In addition to the completed simulation 

testing, on-road real-time testing was completed in order to confirm the energy savings 

demonstrated in simulation and to show the real-time feasibility of the integrated predictive 

powertrain controller. 

 

4.5.1 Simulation Assessment 

Simulations of the integrated powertrain controller were conducted using a Simulink 

implementation of the IPPC and an MTU NEXTCAR developed model of the Volt. These 

simulations were conducted over 28 different drive cycles. Three of the drive cycles tested 

were the standard EPA cycles; the US06, the UDDS, and the HWFET. 22 of the cycles 

were logged on the Michigan Technological University Drive Cycle, or MTUDC. The 

MTUDC is a real-world drive cycle located in the Houghton/Hancock, MI area. Developed 

as part of the MTU NEXTCAR program, this cycle was designed to incorporate elements 

of all three EPA cycles in order to provide a comprehensive test of vehicle performance. 
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Full details of the MTUDC can be found in [51]. The final three cycles tested are real-

world cycles logged by MTU. These three cycles consist of a rural highway route collected 

between Copper Harbor, MI and the MTU campus in Houghton, MI, a mixed urban and 

freeway route collected in the Ann Arbor, MI area, and a mixed urban and highway cycle 

collected at the American Center for Mobility (ACM) vehicle testing facility in Ypsilanti, 

MI. 

The following paragraph details the method used to analyze the energy consumption of 

both the baseline vehicle and IPPC control actions. All baseline energy consumption values 

reported in this study are a function of vehicle speed and axle torque as well as vehicle 

control actions, such as mode, engine torque, and engine speed, recorded during either on-

road or dynamometer testing. This logged data is then processed through the MTU energy 

calculator and SOC prediction tools, shown in (3-8), in order to obtain the final baseline 

energy consumption and SOC values. Energy assessment of the IPPC is conducted in the 

following manner as shown in Figure 4-5. The vehicle velocity and axle torque recorded 

by the baseline vehicle are provided as inputs to the Integrated Predictive Powertrain 

Controller. Internal to the IPPC, the Optimal Mode Path Planning algorithm uses these 

inputs in addition to feedback from the SOC predictor for the current SOC level and the 

previously commanded mode in order to determine an optimal path of modes for the 

prediction horizon. The first mode in this path is then issued as a command to the NMPC 

Powertrain Controller. The NMPC powertrain controller uses this mode command, 

velocity and axle torque inputs, and the current SOC level from the SOC predictor to 

compute an optimal powersplit command. This powersplit and mode command is then 
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issued by the IPPC to the MTU energy calculator and SOC predictor tools whose outputs 

can directly be compared to the baseline values. Finally, in order to provide an accurate 

energy savings value using the IPPC, the final energy savings value is adjusted to account 

for any end of cycle SOC values using (4-30) and (4-31). 

𝐸𝐸𝑛𝑛𝑚𝑚𝑡𝑡𝑚𝑚𝑝𝑝 𝑆𝑆𝑎𝑎𝑣𝑣𝑡𝑡𝑛𝑛𝑚𝑚𝑡𝑡 = �
𝐸𝐸𝑛𝑛𝑚𝑚𝑡𝑡𝑚𝑚𝑝𝑝𝑀𝑀𝐵𝐵𝑠𝑠𝑃𝑃𝑃𝑃𝑃𝑃𝐸𝐸𝑃𝑃 − 𝐸𝐸𝑛𝑛𝑚𝑚𝑡𝑡𝑚𝑚𝑝𝑝𝑇𝑇𝑃𝑃𝑃𝑃𝐶𝐶 + 𝐸𝐸𝑛𝑛𝑚𝑚𝑡𝑡𝑚𝑚𝑝𝑝Δ𝐶𝐶𝑂𝑂𝐶𝐶

𝐸𝐸𝑛𝑛𝑚𝑚𝑡𝑡𝑚𝑚𝑝𝑝𝑀𝑀𝐵𝐵𝑠𝑠𝑃𝑃𝑃𝑃𝑃𝑃𝐸𝐸𝑃𝑃
� (4-30) 

𝐸𝐸𝑛𝑛𝑚𝑚𝑡𝑡𝑚𝑚𝑝𝑝Δ𝐶𝐶𝑂𝑂𝐶𝐶 = �𝑆𝑆𝑆𝑆𝐶𝐶𝐸𝐸𝐸𝐸𝐺𝐺,𝑇𝑇𝑃𝑃𝑃𝑃𝐶𝐶 − 𝑆𝑆𝑆𝑆𝐶𝐶𝐸𝐸𝐸𝐸𝐺𝐺,𝑀𝑀𝐵𝐵𝑠𝑠𝑃𝑃𝑃𝑃𝑃𝑃𝐸𝐸𝑃𝑃� ∗ 𝑄𝑄𝑀𝑀𝐵𝐵𝑂𝑂𝑂𝑂𝑃𝑃𝑃𝑃𝐵𝐵 (4-31) 

 

Figure 4-5: Evaluation process for determining the energy consumed of the baseline 

vehicle and integrated predictive powertrain controller. 
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4.5.1.1 Standard Drive Cycles 

Simulation testing of the EPA standard drive cycles demonstrated that the use of the 

integrated predictive powertrain control offers significant energy improvements over both 

the baseline vehicle control and powersplit optimization only. It should be noted that the 

baseline energy consumption for the standard cycles was collected by Argonne National 

Laboratory (ANL) during their assessment of the 2nd generation Chevrolet Volt and 

provided to the MTU NEXTCAR team by ANL. As shown in Table 4-1, the integrated 

predictive powertrain controller provides, depending on the cycle, a 4-10% reduction in 

energy consumption relative to the vehicle’s baseline control. In addition to the savings 

seen relative to baseline vehicle control, savings have also been demonstrated using the 

IPPC relative to just using NMPC powertrain control as presented in [55]. The addition of 

the Optimal Mode Path Planning algorithm provided a 4%, 4%, and 5% energy savings 

increase in the US06, UDDS, and HWFET, respectively. Production vehicles have been 

calibrated well for standard drive cycles. However, dyno calibration does not consider a 

prediction of the upcoming velocity profile. That may be the reason that mode path 

planning can provide a good amount of energy saving. 

 

Table 4-1: Standard drive cycle energy savings distribution using Integrated Predictive 

Powertrain Control. 

Cycle Baseline 
Integrated Predictive 

Powertrain Control 
Energy Savings 
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US06 23.289 MJ 22.016 MJ 3.7% 

UDDS 16.952 MJ 15.401 MJ 9.8% 

HWFET 22.423 MJ 20.963 MJ 5.7% 

Figure 4-6 - Figure 4-9 present the areas where the IPPC provides an energy consumption 

reduction in the HWFET. Figure 4-6 and Figure 4-7 show the powertrain mode over the 

drive cycle for both baseline vehicle control and optimal mode selection, respectively. 

Figure 4-8 shows the energy consumption for both baseline vehicle control and the IPPC 

as well as the cumulative difference in energy consumption between the baseline and IPPC 

controllers as defined in (4-32). It can be observed from these three figures that the IPPC 

provides the most benefit in drive cycle conditions where a reduction in power demand can 

be predicted such as the decelerations at the 200 and 600 second marks. The IPPC is able 

to recognize this power demand drop and turn off the engine which results in an overall 

energy savings. This occurs while maintaining SOC within 0.5% of the baseline SOC as 

shown in Figure 4-9. 

Δ𝐸𝐸𝑛𝑛𝑚𝑚𝑡𝑡𝑚𝑚𝑝𝑝 𝐶𝐶𝑚𝑚𝑛𝑛𝑡𝑡𝐶𝐶𝑚𝑚𝑚𝑚𝑚𝑚(𝑘𝑘) = 𝐸𝐸𝑛𝑛𝑚𝑚𝑡𝑡𝑚𝑚𝑝𝑝𝑇𝑇𝑃𝑃𝑃𝑃𝐶𝐶(𝑘𝑘)− 𝐸𝐸𝑛𝑛𝑚𝑚𝑡𝑡𝑚𝑚𝑝𝑝𝑀𝑀𝐵𝐵𝑠𝑠𝑃𝑃𝑃𝑃𝑃𝑃𝐸𝐸𝑃𝑃(𝑘𝑘) (4-32) 
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Figure 4-6: HWFET Vehicle Velocity and Baseline Operating Mode. 

 

Figure 4-7: HWFET Vehicle Velocity and Optimal Operating Mode. 

 

Figure 4-8: HWFET Baseline vs. IPPC Energy Consumption Comparison. 
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Figure 4-9: HWFET Baseline vs. IPPC SOC Comparison. 

4.5.1.2 MTU Drive Cycle 

The integrated predictive powertrain control was evaluated on 22 velocity profiles recorded 

by MTU test vehicles on the MTUDC which is shown in Figure 3-15. Of the 22 cycles, 12 

were logged in the counterclockwise, or forward, direction and 10 were recorded in the 

clockwise, or reverse direction which is abbreviated as the reverse MTUDC or RMTUDC. 

This large number of simulations was conducted in order to quantify the distribution of 

energy savings that will occur due to the variations in velocity profile that appear when a 

particular drive route is driven multiple times. Outlined in Table 4-2, this testing showed 

that use of the IPPC resulted in an average savings of 5% in the forward direction and an 

average of 6% savings in the reverse direction relative to baseline vehicle control. This also 

represents an additional 4% energy savings in the forward and reverse directions  when 

compared to using just the NMPC powertrain controller presented in [55]. The distribution 

of this savings relative to the baseline vehicle control is shown in Figure 4-10. 
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Table 4-2: MTUDC Energy Savings Using Integrated Predictive Powertrain Control. 

 Number of Cycles 
Average Energy 

Savings 

95% Confidence 

Interval 

MTUDC 12 4.8% (3.5%, 6.0%) 

RMTUDC 10 5.7% (4.6%, 6.8%) 

 

Figure 4-10: MTUDC energy savings distribution using Integrated Predictive Powertrain 

Control. 

Figure 4-11 - Figure 4-15 present the areas where the IPPC provides an energy 

consumption reduction. Figure 4-11 and Figure 4-12 show the powertrain mode selected 

by the stock vehicle controller and the Optimal Mode Path Planning algorithm, 

respectively. Figure 4-13 shows the energy consumption of both the baseline vehicle and 

the IPPC controller as well as the delta energy consumed between the two controllers. What 

Figure 4-13 shows in conjunction with Figure 4-14, the elevation profile of the RMTUDC, 

is that the energy reductions occur during areas with significant elevation change such as 
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those between 0-500 seconds and 1000-2000 seconds. This is due to the ability of the IPPC 

to utilize predictions of future power demands to optimize the current control actions. For 

example, the knowledge of an extended period of downhill road grade between time 0-500 

seconds allows the IPPC to make the decision to turn the engine off knowing that power 

demand will be low enough that engine use is unnecessary. This is all accomplished with 

no detriment to battery SOC as a consistent SOC level is able to be maintained through the 

whole cycle as shown in Figure 4-15. 

 

Figure 4-11: RMTUDC Vehicle Velocity and Baseline Operating Mode. 

 

Figure 4-12: RMTUDC IPPC Velocity and Optimal Operating Mode. 
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Figure 4-13: RMTUDC Baseline vs. IPPC Energy Consumption Comparison. 

 

Figure 4-14: RMTUDC Elevation Profile. 

 

Figure 4-15: RMTUDC Baseline vs. IPPC SOC Comparison. 

4.5.1.3 Additional Real-World Drive Cycles 

In addition to the assessment of the IPPC over the standardized drive cycles and the 

MTUDC, the IPPC was evaluated over additional three real-world drive cycles. The first 

of the three cycles was logged by MTU on a rural route starting in Copper Harbor, MI and 

ending at the MTU campus in Houghton, MI as shown in Figure 4-16. This route contains 
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two distinctive scenarios designed to test the IPPC. The first scenario occurs between 

kilometers 0-25 of the drive cycle. This part of the route features repeated tight curves and 

small elevation changes that cause frequent changes in vehicle speed and power demand. 

The second distinct scenario of this route is highway speed driving with large elevation 

changes and occurs between kilometers 25-80. The second of the three cycles was logged 

by MTU in the Ann Arbor, MI area and is shown in Figure 4-17. This cycle proceeds 

through urban roads with heavy traffic frequent starts and stops and then finishes on a 

section of urban freeway. The last of the three cycles was collected by MTU at the 

American Center for Mobility (ACM) Smart City Test Center. Shown in Figure 4-18, the 

ACM route includes both urban boulevard sections with frequent starts and stops as well 

as high speed urban arterial sections of road. 

 

Figure 4-16: Copper Harbor to MTU route with velocity and elevation profiles versus 

drive cycle distance. 
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Figure 4-17: Ann Arbor Loop route with velocity and elevation profiles versus drive 

cycle distance. 
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Figure 4-18: ACM Loop route with velocity and elevation profiles versus drive cycle 

distance. 

In all three test scenarios, the IPPC provided an energy savings benefit over the baseline 

control of the vehicle. A 5.1% energy savings was observed on both the Copper Harbor to 

MTU and Ann Arbor Loop routes while a 2.9% reduction in energy consumption was 

observed on the ACM Loop. Full details are provided in Table 4-3. In the case of the 

Copper Harbor to MTU and Ann Arbor routes, utilizing the IPPC provided an additional 

1.2% and 2.1% energy savings, respectively, when compared to using only NMPC 

powersplit control as presented in [55]. 

 

Table 4-3: Real World Drive Cycle Energy Savings Using Integrated Powertrain Control. 

Cycle Baseline 
Integrated Predictive 

Powertrain Control 
Energy Savings 
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Copper Harbor to 

MTU 

126.015 MJ 118.953 5.1% 

Ann Arbor Loop 35.116 MJ 34.362 MJ 5.1% 

ACM Loop 36.855 MJ 36.325 MJ 2.9% 

There are several specific areas of each drive cycle where the majority of the energy 

savings occurred. For example, in the case of the Copper Harbor to MTU route, 4% of the 

total 5% energy savings occurred in the first 2000 seconds of the drive route where the 

tight road curves and very frequent small elevation changes make for a transient velocity 

and torque demand profile. This 2000 seconds corresponds to the first 35 km of the drive 

cycle as shown in Figure 4-16. The predictive capability of the IPPC is able to better handle 

this scenario than stock controller by avoiding unnecessary engine starts and mode shifts 

thus producing an energy savings, as shown in Figure 4-19 - Figure 4-21. This is all 

accomplished while maintaining a consistent SOC level as shown in Figure 4-22. 
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Figure 4-19: Copper Harbor to MTU Vehicle Velocity and Baseline Operating Mode. 

 

Figure 4-20: Copper Harbor to MTU Vehicle Velocity and IPPC Operating Mode. 
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Figure 4-21: Copper Harbor to MTU Baseline vs. IPPC Energy Consumption 

Comparison. 

 

Figure 4-22: Copper Harbor to MTU Baseline vs. IPPC SOC Comparison. (SOC spike at 

time 4000 seconds is due to an extended downhill section of road where regenerative 

braking is in use). 

4.5.2 Real-time Performance Assessment 

An important aspect of the presented IPPC is the capability of the controller to run in real-

time. To demonstrate this capability, the IPPC was tested on-road in an instrumented 

Chevrolet Volt. Shown in Figure 4-23, the MTU Chevrolet Volt instrumentation package 

consists of a multitude of sensors and communication devices. Sensors include forward 

facing LiDAR, GPS, voltage and current sensors, temperature sensors, and accelerometers. 

Also installed in the vehicle is a dedicated short-range communication (DSRC) device used 
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for vehicle-to-infrastructure (V2I) communication with traffic signals. A dSPACE 

MicroAutoBox (MAB) II prototyping ECU integrates the installed sensors and 

communication devices as well as interfaces with the vehicle’s CAN bus and powertrain 

control modules for the purposes of logging real-time vehicle behavior as well for the use 

of real-time CAN signals as inputs to MTU-developed control algorithms. For further 

details on the MTU Chevrolet Volt instrumentation package, papers [51, 55] provide 

supplemental detail on the instrumentation system. 

 

Figure 4-23: MTU Chevrolet Volt In-Vehicle Instrumentation Package. 

The testing procedure is as follows. The IPPC is integrated into the test vehicle Simulink 

model where the controllers are interfaced with the test vehicle sensors, communication 

devices, and CAN bus. This model is then compiled into executable code and uploaded to 

the MAB II through dSPACE ControlDesk. Once on the MAB II, the IPPC is run parallel 

to the stock vehicle control during on-road testing. For energy consumption analysis, a 

similar process to that used for simulation assessment is used. The MTU energy estimation 
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tool is integrated onto the MAB II. In real-time, both the vehicle and IPPC control actions 

are fed into the energy estimation tool to provide a real-time look of the energy 

consumption of both controllers. 

Real-time assessment of the IPPC was conducted on the first 8 km of the MTUDC. This 

section of the MTUDC was chosen as it has both a slow speed section with multiple stops 

and starts as well as a highway section with elevation change. In addition, all powertrain 

modes are utilized over this testing route. As the IPPC requires a prediction of future 

vehicle behavior, the MTU optimal velocity profiling algorithm was used to generate an 

optimal velocity profile for the test route. This profile was then used as the future reference 

input to the IPPC. Several important parameters of the test are included in Table 4-4. 

Table 4-4: Real-time testing parameters. 

Parameter Value 

Prediction Horizon Length 10 sec 

Optimal Mode Path Planning Step Time 1 sec 

NMPC Powertrain Control Step Time 0.2 sec 

Ten on-road tests of the IPPC were conducted. An average energy savings of 4.8% was 

achieved through the use of the IPPC. Using the IPPC adds an additional ~4% of energy 

savings when compared to using just the NMPC powertrain controller as was tested in [55]. 

As was the case with simulation testing, this energy savings value does account for any 
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differences in end SOC between the vehicle and IPPC by using equations (4-30) and (4-31). 

Table 4-5 provides a testing results summary while a distribution of energy savings from 

the 10 tests is presented in Figure 4-24. 

Table 4-5: IPPC real-time testing energy savings. 

 
Number of 

Cycles 

Average Energy 

Savings 

95% Confidence 

Interval 

MTUDC (First 8 km) 10 4.8% (4.0%, 5.7%) 

 

Figure 4-24: IPPC real-time testing energy savings distribution. 

Energy savings, shown in Figure 4-25, are realized at several points along the drive cycle. 

For example, at time 70, the IPPC is able to recognize the upcoming required deceleration 

due to a stop sign. The IPPC, shown in Figure 4-27, is able to avoid the engine start that 

the vehicle performs, shown in Figure 4-26, and thus save energy without an SOC impact. 

Another area of energy savings occurs a time ~350 seconds. The road at this point 

transitions into and extended segment of a slight downhill grade which results in a low 
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torque demand. The IPPC is able to recognize this low power demand for the near future, 

recognize that no major SOC penalty will be paid by turning off the engine, as shown in 

Figure 4-28, and transition to EV mode in order to save fuel. 

 

Figure 4-25: Real-time testing energy consumption comparison. 

 

Figure 4-26: Real-time testing velocity and baseline mode. 

 

Figure 4-27: Real-time testing velocity and IPPC powertrain mode. 
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Figure 4-28: IPPC real-time testing SOC comparison. 

A key metric of real-time controller performance is the computation requirements of the 

controller. The turnaround time of the NMPC powertrain control portion of the IPPC was 

already examined in [55], the computation time requirement of the Optimal Mode Path 

Planning (OMPP) algorithm needed to be assessed. Shown in Figure 4-29, the Optimal 

Mode Path Planning algorithm has an average turnaround time of ~15 ms. This is well 

below the one second controller step time of the OMPP making the OMPP suitable for 

real-time control. 

 

Figure 4-29: IPPC real-time testing turnaround time separated into NMPC powertrain 

control (NMPC PTC) and Optimal Mode Path Planning components. 
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4.6 Conclusion 

This paper presents a real-time predictive control strategy for a comprehensive control of 

a multi-mode PHEV powertrain. An algorithm for optimal powertrain mode selection has 

been detailed that uses a prediction of future vehicle behavior to plan a best path of mode 

to minimize vehicle energy consumption. This algorithm was then integrated with an 

existing method that utilizes NMPC for powertrain powersplit management in order to 

create an Integrated Predictive Powertrain Controller. This integrated controller was 

thoroughly tested in both simulation and real-time environments. Simulation testing 

revealed that the presented controller can provide an 4-10% energy savings in standard 

drive cycles and a 3-7% energy savings over non-standard, real-world drive cycles. Real 

time testing of the IPPC was completed on an in-vehicle installed rapid prototyping ECU. 

On-road testing showed that the presented controller provides an energy savings of 4-6% 

over baseline vehicle control while achieving computational turnaround times suitable for 

real-time control. The next steps in the development of the proposed IPPC involve the full 

integration of the controller with the physical vehicle drive unit. While the IPPC has been 

tested on real-time controller hardware, the control output was not used to physically 

control the drive unit. Full integration of the IPPC with physical hardware would allow for 

a physical demonstration of the energy savings the IPPC has been analytically shown to 

provide in this paper. 
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5 Controller Performance Analysis 

This chapter aims to expand the analysis of the performance of the NMPC Powertrain 

Controller presented in Chapter 3 and the Integrated Predictive Powertrain Controller 

presented in Chapter 4. Due to the page limits of the journal papers, analysis of the 

controller performance was limited. This chapter will examine the control decisions that 

were made by the NMPC PTC and IPPC that lead to the energy savings benefits they 

provide. 

5.1 NMPC PTC Powersplit Analysis 

This section will examine the powersplit decisions made by the NMPC PTC within each 

of the hybrid powertrain modes. Used for example is a section from one of the 20 forward 

direction MTUDC’s presented in Chapter 3. Specifically, it is the first ~500 seconds of the 

recorded MTUDC presented in Figure 3-17. This section of the MTUDC was chosen for 

closer examination as all modes of the vehicle are used over the course of the cycle. Figure 

5-1 shows velocity profile from the first ~500 seconds of the MTUDC along with the 

accompanying powertrain mode. Figure 5-2 presents the energy consumption of both the 

baseline vehicle and the NMPC PTC. Figure 5-3 gives the powersplit between the engine 

and motors of the baseline vehicle over the drive cycle segment while Figure 5-4 presents 

the powersplit between the engine and electric motors from the NMPC PTC. Finally, 

Figure 5-5 shows the SOC profile over this drive cycle segment from both the baseline 

vehicle and the NMPC PTC. 
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Figure 5-1: MTUDC Vehicle Velocity and Operating Mode. 

 

Figure 5-2: MTUDC Energy Consumption Comparison. 

 

Figure 5-3: MTUDC Baseline Vehicle Powersplit. 
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Figure 5-4: MTUDC NMPC PTC Powersplit. 

 

Figure 5-5: MTUDC SOC Comparison. 

The first mode examined will be LER. As previously described, this mode is an input 

powersplit design and is utilized during high torque, low speed events such as vehicle 

launch. In this particular example, LER mode is utilized for propulsion three times during 

the three vehicle launches contained in this example at approximately times 10, 110 and 

210 as can be seen in Figure 5-1. It was stated in Section 3.5.2 that the main place energy 

savings occur using the NMPC PTC is during these acceleration events due to an increase 

in electrical power usage and a decrease in engine power usage. By examining Figure 5-3 

and Figure 5-4, one can see that the NMPC uses a lower power request from engine and 

increases the e-motor power request. This leads to a small overall energy savings in each 
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case that over the course of a drive cycle can add up to a non-insignificant savings. Due to 

the short duration of these events, there is minimal impact to SOC as can be seen in Figure 

5-5. 

The next mode examined will be FER, a parallel hybrid mode used during acceleration 

events and mid vehicle speeds. During periods of relatively steady state operation in FER 

mode, the powersplit decisions made by the baseline vehicle and the NMPC controller are 

largely similar. This is due to the limited optimization opportunity presented in the FER 

mode. Because engine speed is directly couple to the wheels and Motor A being grounded, 

the only variables to control are engine torque and Motor B torque. While there 

theoretically is an opportunity to optimize between these two variables, practically, a large 

optimization opportunity does not exist. This is due to there typically being a most efficient 

engine torque at which to operate at the vehicle-speed-constrained engine speed. This leads 

to very similar powersplit decisions between the baseline vehicle and the NMPC controller 

as can be observed in Figure 5-3 and Figure 5-4. 

The final powersplit examined is that in HER mode. This is the mode that provides the 

most flexibility in operating point selection due to its compound power split design. 

However, because this mode of operation is used in low-torque demand, high speed 

operation like highway driving where vehicles are rather efficient at operating, the energy 

savings opportunities are limited. This being said, the HER implementation of the NMPC 

PTC does use a slightly different operating strategy than that of the baseline controller. For 

example, the NMPC PTC maintains a narrower window of engine power operation when 
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compared to the baseline control; however, the mean engine power output over the segment 

remains roughly equivalent as can be observed in Figure 5-3 and Figure 5-4. The end result 

for HER operation over this segment is an equivalent energy consumption when using 

baseline control and NMPC control even with accounting for the slight difference in end 

SOC. 

5.2 OMPP Mode Selection Analysis 

This section will examine the mode selections the OMPP algorithm makes with a specific 

examination of how well the modes chosen along a prediction horizon align with the 

eventual commanded mode. This is done in order to show that predicted future modes are 

accurately influencing the current commanded mode. The cycle studied in this section will 

be the Copper Harbor to MTU cycle that was examined in Section 4.5.1.3. This was chosen 

for examination due to the variation in vehicle speed and elevation that presents conditions 

ideal for the OMPP to improve upon the mode selection decisions made by the vehicle. 

Figure 5-6 provides the velocity and mode profile of the baseline vehicle for a selected 

segment of the Copper Harbor to MTU cycle. Figure 5-7 gives the velocity and mode 

profile of the IPPC for the selected segment. The elevation profile of the selected segment 

is shown Figure 5-8. Finally, Table 5-1 presents the mode prediction made by the OMPP 

at several time points located within the selected segment. 



100 

 

Figure 5-6: Copper Harbor to MTU Vehicle Velocity and Baseline Operating Mode. 

 

Figure 5-7: Copper Harbor to MTU Vehicle Velocity and IPPC Operating Mode. 

 

Figure 5-8: Copper Harbor to MTU Elevation Profile. 
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Table 5-1: Copper Harbor to MTU Mode Selection Predictions. 

Time N N N+1 N+2 N+3 N+4 N+5 N+6 N+7 N+8 N+9 

1170 FER FER FER FER LER EV EV EV EV EV 

1185 EV EV EV EV EV LER FER FER FER FER 

1195 FER FER FER FER FER LER EV EV EV EV 

1220 EV EV EV EV EV EV LER FER FER FER 

Table 5-1 provides the optimal mode predictions for several selected time points. The mode 

listed at time N is the command issued by the controller. The modes listed from times N+1 

to N+9 are the modes predicted at time N for the remainder of the prediction horizon. The 

purpose of this example is to show that the control action predictions made by the OMPP 

algorithm properly account for changes in driving conditions, such as velocity or elevation 

changes, that are observed within the prediction horizon. 

The first example examined occurs at time 1170. At this time, the vehicle is performing an 

acceleration and is in a current state of FER mode. The OMPP algorithm recognizes that 

the vehicle will be accelerating for the next several seconds and therefore, FER mode is 

chosen as the commanded mode and predicted as the best for the first four seconds of the 

prediction horizon. It is at this point in the prediction horizon, time 1174, that the OMPP 

algorithm recognizes that the vehicle speed levels off and begins to decrease as shown in 

Figure 5-7. In addition, it is at this point that elevation begins to decrease, shown in Figure 

5-8. These two factors lead to a decreased power demand which the OMPP recognizes and 

predicts a shift to LER at time 1174 and EV mode for the remainder of the prediction 
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horizon. This particular prediction ends up mirroring the actual control actions issued as 

can be observed in Figure 5-7. This is largely due to the continuation of the downhill road 

grade, something that is captured within the prediction horizon of subsequent control steps. 

This may not have been the case if, for example, a power demand increase, due to a vehicle 

speed or elevation increase, came within the view of subsequent prediction horizons. In 

this case, the modes predicted at 1170 for the next 10 seconds may not have matched the 

mode command at 1178 if an increased power demand began at time 1181. However, with 

sufficient prediction horizon length, this issue can be avoided. 

Three more mode selection predictions made at times 1185, 1195, and 1220 in the drive 

cycle. While these will not be examined in-depth like the predictions made at time 1170, 

these other three examples follow a similar pattern. In each case, some event, either a speed 

or elevation change, occurs in the middle of the prediction horizon that provides the 

possibility for a mode change. Each time, the OMPP responds by predicting a mode change 

in response to this event. In all three cases the modes predicted by the OMPP end up 

mirroring the eventual commanded mode. These four examples demonstrate an important 

point about the OMPP algorithm. The OMPP algorithm does in fact respond to 

disturbances that occur within the prediction horizon such as an elevation or speed change. 

This ability to predict control actions that respond to these events leads to the issuance of 

control actions at the current control step that, over the course of a drive cycle, reduce 

overall vehicle energy consumption. 
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5.3 OMPP Automated Weight Factor Selection Performance 

Presented in Chapter 4.3 is a method for the automatic selection of the weighting factors 

used in the Optimal Mode Path Planning Algorithm cost function. This section will 

examine the performance and implementation benefits of the automated selection process 

when compared to the manual selection of weighting factor. The simulation results, 

presented in Chapter 4, of the IPPC controller that utilize the automated weight factor 

selection process are compared against simulation results of the same drive cycles that 

utilize manually tuned weighting factors for the OMPP cost function. 

The simulation and analysis process of the IPPC controller using the manually tuned OMPP 

cost function is identical to that as presented in Section 4.5.1 with the only change being 

the use of manually tuned weighting factors for the OMPP cost function. Simulations of 

the IPPC were conducted using the Simulink implementation of the IPPC, with manual 

OMPP weighting, and the MTU NEXTCAR developed model of the Volt. The simulations 

were conducted over the 28 different drive cycles examined in Section 4.5.1, which include 

a mix of standard drive cycles, MTU developed drive cycles, and real-world drive cycles. 

In order to determine energy consumption of the baseline of the IPPC control actions, the 

control actions of each are fed through the MTU energy consumption and SOC prediction 

tools in order to find the final SOC and energy consumption values. Energy savings are 

then computed using (5-1) and (5-2) in order to account for any end of cycle SOC 

differences between the baseline and IPPC results. 



104 

𝐸𝐸𝑛𝑛𝑚𝑚𝑡𝑡𝑚𝑚𝑝𝑝 𝑆𝑆𝑎𝑎𝑣𝑣𝑡𝑡𝑛𝑛𝑚𝑚𝑡𝑡 = �
𝐸𝐸𝑛𝑛𝑚𝑚𝑡𝑡𝑚𝑚𝑝𝑝𝑀𝑀𝐵𝐵𝑠𝑠𝑃𝑃𝑃𝑃𝑃𝑃𝐸𝐸𝑃𝑃 − 𝐸𝐸𝑛𝑛𝑚𝑚𝑡𝑡𝑚𝑚𝑝𝑝𝑇𝑇𝑃𝑃𝑃𝑃𝐶𝐶 + 𝐸𝐸𝑛𝑛𝑚𝑚𝑡𝑡𝑚𝑚𝑝𝑝Δ𝐶𝐶𝑂𝑂𝐶𝐶

𝐸𝐸𝑛𝑛𝑚𝑚𝑡𝑡𝑚𝑚𝑝𝑝𝑀𝑀𝐵𝐵𝑠𝑠𝑃𝑃𝑃𝑃𝑃𝑃𝐸𝐸𝑃𝑃
� (5-1) 

𝐸𝐸𝑛𝑛𝑚𝑚𝑡𝑡𝑚𝑚𝑝𝑝Δ𝐶𝐶𝑂𝑂𝐶𝐶 = �𝑆𝑆𝑆𝑆𝐶𝐶𝐸𝐸𝐸𝐸𝐺𝐺,𝑇𝑇𝑃𝑃𝑃𝑃𝐶𝐶 − 𝑆𝑆𝑆𝑆𝐶𝐶𝐸𝐸𝐸𝐸𝐺𝐺,𝑀𝑀𝐵𝐵𝑠𝑠𝑃𝑃𝑃𝑃𝑃𝑃𝐸𝐸𝑃𝑃� ∗ 𝑄𝑄𝑀𝑀𝐵𝐵𝑂𝑂𝑂𝑂𝑃𝑃𝑃𝑃𝐵𝐵 (5-2) 

As with the automated weight procedure, the manual weighting procedure utilizes 

normalizing terms to convert the SOC and mode shift penalty terms to equivalent grams of 

fuel consumed. These terms, 𝜆𝜆𝐶𝐶𝑂𝑂𝐶𝐶 and  𝜆𝜆𝑚𝑚𝑃𝑃𝐺𝐺𝑃𝑃 𝑠𝑠ℎ𝑃𝑃𝑃𝑃𝑂𝑂 𝑝𝑝𝑃𝑃𝐸𝐸𝐵𝐵𝑃𝑃𝑂𝑂𝐵𝐵, are defined in equations (4-26) 

and (4-27). In order to highlight the cycle to cycle adaptability of the automatic tuning 

method when compared to the manual method, the same values of 𝛽𝛽 and 𝛾𝛾 were utilized 

for all drive cycles. The values used for 𝛽𝛽 and 𝛾𝛾 were determined through a manual search 

process using the forward MTUDC cycle and were selected based on the values that 

maximize energy savings while maintaining SOC levels. 

Energy savings results for the manual weight factor and automatic weight factor selection 

for the OMPP algorithm are presented in Table 5-2. The use of the automated weight factor 

selection procedure offers equivalent to improved performance when it comes to energy 

savings. The main reason for this is the adaptability of the weight factor terms to the drive 

cycle. For example, in the case of the MTUDC, there is no energy savings benefit offered 

by using the automated method. This is because the manual weight factors were tuned 

using this cycle resulting in the maximum possible energy savings. However, when other 

driving cycles are encountered, the manually selected weight factors are no longer optimal 

as is the case in RMTUDC. These scenarios will be broken down in detail for the 𝛽𝛽 and 𝛾𝛾 

terms in Sections 5.3.1 and 5.3.2. 
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Table 5-2: Manual vs. Automatic OMPP Cost Function Weight Factor Selection 

Cycle 
Manual Weight Factor 

Energy Savings 

Automated Weighting 

Factor Energy Savings 
Improvement 

US06 -0.3% 3.7% 4.0% 

UDDS 9.2% 9.8% 0.6% 

HWFET 1.2% 5.7% 4.5% 

MTUDC 

(12 Cycle Average) 
4.9% 4.8% -0.1% 

RMTUDC 

(10 Cycle Average) 
4.5% 5.7% 1.2% 

Copper Harbor to 

MTU 
3.7% 5.1% 1.4% 

Ann Arbor Loop 4.8% 5.1% 0.3% 

ACM Loop 3.7% 2.9% -0.8% 

5.3.1 SOC Weight Factor Analysis 

Presented in Figure 5-9 through Figure 5-12 is a comparison between the use of the 

manually tuned SOC weight factor and the automatically tuned SOC weight factor over 
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the forward direction MTUDC, the cycle used for the manual tuning of the SOC weight 

factor. Note that a single cycle is examined in these figures and that the MTUDC energy 

values in Table 5-2 are an average of all MTUDC cycles tested. One can observe in Figure 

5-9 and Figure 5-10 that the resulting mode selected by the OMPP is largely identical 

between the manual and automatically weight cost functions. As a result of this, the 

subsequent SOC trajectory over the course of the drive cycle for the two weight factor 

methods is near identical, as shown in Figure 5-11. Figure 5-12 shows the change of the 

SOC weight factor, 𝛽𝛽, over the course of the drive cycle while Figure 5-13 gives the energy 

consumption of the two methods over the cycle. From this drive cycle, one could conclude 

that, despite the automatically weighted value of 𝛽𝛽 adjusting itself to the current SOC, the 

automatically weighted term has limited impact when compared to the manually weighted 

term as the SOC trajectory, shown in Figure 5-11, remain largely the same for the two 

methods for this particular drive cycle. However, the next drive cycle examined will show 

situation where the automatically weighted SOC term does provide benefit for SOC 

maintenance. 
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Figure 5-9: MTUDC Vehicle Velocity and Optimal Operating Mode with Manual 

Weighting (𝛼𝛼 = 1,𝛽𝛽 = 2.5, 𝛾𝛾 = 2). 

 

Figure 5-10: MTUDC Vehicle Velocity and Optimal Operating Mode with Automatic 

Weighting. 
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Figure 5-11: MTUDC SOC Comparison Between Manual and Automatic Weighting. 

 

Figure 5-12: MTUDC SOC Weighting Factor Comparison Between Manual and 

Automatic Weighting. 

 

Figure 5-13: MTUDC Energy Consumption for Manual and Automatic Weighting. 
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The next cycle examined is the reverse MTUDC or RMTUDC. The performance of the 

OMPP will be examined when using the manually weighted SOC cost term and the 

automatically weighted term. Note that a single cycle is examined in these figures and that 

the MTUDC energy values in Table 5-2 are an average of all MTUDC cycles tested. Figure 

5-14 and Figure 5-15 shown the velocity and mode selection profiles for the manually 

weighted and automatically weighted cost functions, respectively. Once again, as in the 

case with the forward MTUDC example, the modes selected for the RMTUDC remain 

largely the same for both weighting methods with one critical exception. From time 2200-

2500, an uphill start/stop section of the drive cycle, the manually weighted controller 

responds by solely commanding EV mode which leads to a 2% drop in SOC as shown in 

Figure 5-16. This represents a significant amount of SOC depletion for the particular 

vehicle under study especially in the battery depleted charge-sustaining under which the 

vehicle is operating. In contrast, the automatically weighted controller increases the SOC 

weight over this section of the drive cycle as shown in Figure 5-17. This results in the 

selection of LER and FER hybrid modes during this portion of the drive cycle which act to 

maintain an acceptable SOC level. In terms of energy consumption, the energy saved 

during this section of the drive cycle by the manually weighted controller by not using the 

engine is cancelled out due to the extra fuel spent in the subsequent section of the drive 

cycle in order to recover the SOC level to normal operating levels. 
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Figure 5-14: RMTUDC Vehicle Velocity and Optimal Operating Mode with Manual 

Weighting (𝛼𝛼 = 1,𝛽𝛽 = 2.5, 𝛾𝛾 = 2). 

 

Figure 5-15: RMTUDC Vehicle Velocity and Optimal Operating Mode with Automatic 

Weighting. 
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Figure 5-16: RMTUDC SOC Comparison Between Manual and Automatic Weighting. 

 

Figure 5-17: RMTUDC SOC Weighting Factor Comparison Between Manual and 

Automatic Weighting. 

 

Figure 5-18: RMTUDC Energy Consumption for Manual and Automatic Weighting. 
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5.3.2 Mode Shifting Weight Factor Analysis 

The impact of the mode shifting weight factor will be examined using a situation from the 

MTU drive cycle. Presented in Figure 5-19 through Figure 5-23 is a comparison between 

the use of the manually tuned mode shift weight factor and the automatically tuned mode 

shift weight factor over the forward direction MTUDC. Specifically, the portion of the 

drive cycle from time 2670 to 2770 will be examined. As can be seen in Figure 5-21, the 

manually weighted controller commands frequent mode shifts. This is a result of the 

different modes of the vehicle having similar residing costs in this particular driving 

scenario. The manually weighted controller’s decision to change mode at each controller 

execution step, such as between time 2710 and 2720, is not practical as the drive unit cannot 

physically perform the changes this quickly. The automatically weighted controller, shown 

in Figure 5-22, eliminates this rapid shifting behavior and produces a much more 

reasonable shift strategy that is practical for the physical vehicle to perform. Shown in 

Figure 5-23, the automated weight factor increases in value in response to an increasing 

amount of predicted mode shifts. As a result, this rapid shifting behavior observed in the 

use of the manually weighted controller is eliminated and practical mode shift strategy is 

produced. 
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Figure 5-19: MTUDC Vehicle Velocity and Optimal Operating Mode with Manual 

Weighting (𝛼𝛼 = 1,𝛽𝛽 = 2.5, 𝛾𝛾 = 2). 

 

Figure 5-20: MTUDC Vehicle Velocity and Optimal Operating Mode with Automatic 

Weighting. 

 

Figure 5-21: MTUDC Vehicle Velocity and Optimal Operating Mode with Manual 

Weighting (𝛼𝛼 = 1,𝛽𝛽 = 2.5, 𝛾𝛾 = 2). 
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Figure 5-22: MTUDC Vehicle Velocity and Optimal Operating Mode with Automatic 

Weighting. 

 

 

Figure 5-23: MTUDC Mode Shifting Weighting Factor Comparison Between Manual and 

Automatic Weighting. 
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6 Predictive Control Application Across xEV Powertrain 

Architectures 

So far, this dissertation has been focused on predictive powertrain control technologies 

specifically for one vehicle platform, the 2nd generation Chevrolet Volt. However, while 

tested on one specific vehicle platform, the predictive powertrain control methods 

presented in this dissertation are not valid only for this one vehicle. This chapter will 

discuss how the predictive powertrain control methods presented in this dissertation could 

be applied to other vehicle platforms in order to show that this research has future 

relevance. 

The multi-mode design of the 2nd generation Chevrolet Volt utilized three separate hybrid 

architectures. Included in the Volt drive unit are an input powersplit hybrid mode, a parallel 

hybrid mode, and a compound powersplit mode. Because predictive controllers were 

developed for each of these three modes, the conclusions drawn for this vehicle can be 

extrapolated to other vehicle platforms, both single-mode or multi-mode, that utilize one 

of the architectures that are present in the Volt. This chapter will highlight cases where the 

controllers developed in this work could apply to other platforms in order to highlight that 

this work is not constrained to one vehicle platform and has potential future applications. 
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6.1 NMPC PTC Application to Other Vehicle Platforms 

Multiple different vehicle platforms utilizing a powersplit hybrid architecture are available 

on the market today. One such example is the Toyota Hybrid System (THS), the underlying 

architecture of popular vehicle models such as the Prius [81]. Variations of the THS 

underpins an array of models available from Toyota in the US market [81-83]. A second 

example is the eFlite dedicated hybrid transmission utilized in the FCA Chrysler Pacifica 

Hybrid. Two implementations of THS II and the Pacifica will be briefly discussed in order 

to convey how the IPPC controller presented in this dissertation could apply to different 

vehicle platforms. The first implementation examined will be the front-wheel drive 

(FWD)version utilized in vehicles such as the Prius and Camry and the eFlite used in the 

Pacifica. The second implementation studied will be the all-wheel drive (AWD) version 

utilized in vehicle such as the RAV4 Hybrid and the Highlander Hybrid. 

While independent designs, the THS and the eFlite utilize a similar architecture. The FWD 

implementation of the THS as well as the eFlite is shown in Figure 6-1. The generator is 

connected to the sun gear of the planetary gearset. The engine is connected to the planet 

carrier. Some implementations of the THS connect the engine to the planet carrier through 

a one-way clutch in order to enable dual motor operation when in EV only operation. The 

main traction motor is connected to the ring gear through a parallel shaft reduction gear. 

Finally, the output of the system is connected to the ring gear [83, 84]. 
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Figure 6-1: Toyota Hybrid System and FCA eFlite Architecture. 

As the THS and eFlite are a power split architecture similar to the LER mode in the 2nd 

generation Chevrolet Volt, a control implementation of the NMPC PTC similar to that used 

for LER mode can be used. The governing torque and speed equations of the eFlite and 

THS are given in equation (6-1). Upon review of these equations, it can be seen that the 

same control vector used for the LER mode in the Volt can be applied to the eFlite and 

THS. By controlling engine speed, engine torque, and traction motor torque, the torque 

split between the engine and motor can be optimized as well as the engine operating point. 

The control vector is shown in equation (6-2). 
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The AWD implementation of the THS utilizes the same front axle drive unit, with model 

specific alterations, as the FWD implementation of the THS. However, an additional e-

motor is added to the rear axle for AWD capability [82]. The layout of this architecture is 

shown in Figure 6-2. 

 

Figure 6-2: Toyota Hybrid System AWD Architecture. 

This additional motor slightly alters the NMPC PTC implementation. The governing torque 

and speed equations, given in equation (6-3), remain largely unchanged with the only 

modification being the addition of the rear motor into the computation of total output 

torque. Because of the addition of the extra motor, the control vector needs modification 

as well. Shown in equation (6-4), rear motor torque needs to be added to the control vector. 

The addition of rear motor torque as a control variable provides even further opportunity 

to optimize the torque split of the powertrain for minimal energy consumption. 

Furthermore, the potential exists to utilize the NMPC PTC not only for energy consumption 

considerations, but also for drivability management of the vehicle. The addition of a motor 

to the rear axle, completely independent of the front axle, provides a mechanism to impact 
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vehicle handling through powertrain control. By including predicted vehicle behavior and 

future road conditions in the determination of a torque split, the possibility exists to adapt 

the torque split of the vehicle proactively rather than reactively in order to maximize 

traction and stability. 
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6.2 Optimal Mode Path Planning Applications to Other Vehicle 

Platforms 

Section 6.1 highlighted how the NMPC PTC is not limited to just the 2nd generation Volt 

platform and can be utilized for other hybrid architectures. This section will examine how 

the Optimal Mode Path Planning algorithm also has use cases outside of the Volt platform. 

The obvious use case for applying the optimal mode path planning algorithm is other multi-

mode HEVs and PHEVs. For example, the Honda Clarity, introduced in for MY 2018, is 

a PHEV that utilizes three distinct powertrain operating modes. These include an EV only 

mode, a parallel hybrid mode, and series hybrid mode. Switching between modes is 

accomplished through the use of a clutch placed between the engine and output [85]. The 
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methodology and implementation of the OMPP used for the Volt could easily be adapted 

to the Clarity platform. The same problem formulation would be able to be used. The only 

modifications required would be the creating of optimal operating point maps specific to 

the Clarity as well as modifying the mode shift penalty term to correlate with this vehicle 

platform.  

 

Figure 6-3: Honda Clarity Powertrain Architecture. 

As previously stated, the obvious use case for the OMPP algorithm is other multi-mode 

hybrid platforms such as the Honda Clarity. However, the number of multi-mode hybrid 

vehicle platforms in production is limited when compared to single mode hybrids. This 

does not mean that there is limited application for the OMPP. In Chapter 4, it was 

discovered during the analysis of the OMPP that the majority of the energy savings benefit 

of the OMPP algorithm occurs by strategically utilizing EV mode when an extended 

segment of low power demand is detected in the prediction horizon thus allowing the 

vehicle to turn off its engine with no to minimal SOC depletion. Therefore, it is reasonable 

to conclude that the OMPP can provide an energy savings benefit to any HEV that is 

capable of extended electric only operation. This includes both multi-hybrid-mode and 

single-hybrid-mode PHEVs. This greatly expands the amount of use cases for the OMPP 

algorithm as there are significant number of PHEVs currently for sale in the US as well as 
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planned by auto manufactures. For example, Toyota produces two PHEVs, the Prius Prime 

and RAV4 Prime [86]. FCA currently produces the Pacifica PHEV [87] and is introducing 

the Jeep Wrangler 4Xe for MY 2021 [88]. Ford Motor Company offers the Lincoln Aviator 

with a PHEV architecture and is introducing the Corsair PHEV for MY 2021 [89]. Honda 

currently produces the Clarity PHEV [90], and finally, Subaru introduced their Crosstrek 

PHEV for MY 2019 [91]. This is only a partial list of all the PHEVs available or planned 

and is limited to the US market. However, even this partial list demonstrates that there is a 

significant presence of PHEVs in the automotive market. Therefore, ample opportunity to 

apply the OMPP algorithms to other vehicle platforms. 
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7 Conclusions and Future Work 

7.1 Conclusions 

This dissertation presents the development, implementation, and evaluation of real-time 

predictive control methods for a connected multi-mode PHEV. Two controllers were 

presented. A lower-level NMPC-based controller was developed for powersplit 

management, while an upper-level path planning-based mode selection controller was 

developed for optimal mode selection. 

The NMPC predictive powertrain controller was developed for power-split management 

in a connected multi-mode PHEV. This controller utilizes a forecast of future vehicle state, 

such as vehicle speed and torque demand, in order to optimize torque and powersplit 

decision at the current control instant. The proposed controller was tested extensively 

across numerous standardized and real-world drive cycles where it was found that the 

NMPC powertrain controller utilizes less energy than the baseline vehicle control. 

Additionally, the NMPC powertrain controller was deployed onto a rapid-prototyping 

embedded controller for real-time, in-vehicle testing. These on-roads tests confirmed the 

energy savings observed in simulation testing as well as demonstrated the presented 

controller was capable of computation speeds required for real-time powertrain supervisory 

control. 

The optimal mode path planning algorithm was presented for optimal mode selection of a 

multi-mode PHEV for reduced energy consumption. Once again using forecasts of future 
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vehicle state, such as vehicle speed and torque demand, the optimal mode path planning 

algorithm determines a path of best mode for minimal energy consumption over the 

predicted vehicle trajectory in order to issue an optimal mode command. This optimal 

mode selection controller was then integrated with the NMPC powertrain controller in 

order to create an Integrated Predictive Powertrain Controller responsible for full 

supervisory control of a multi-mode PHEV powertrain. This combined powersplit and 

mode selection controller was assessed in simulation testing over standard and real-world 

drive cycles in order to determine the energy savings provided by the controller. This 

testing revealed that the IPPC was able to provide an additional energy savings relative to 

baseline control when compared to using only the NMPC powersplit controller. The IPPC 

was deployed on an in-vehicle installed rapid prototyping ECU and evaluated with on-road 

testing. This testing confirmed the energy savings results observed in simulation testing 

while achieving computational turnaround times suitable for real-time control. 

Finally, the applicability of the two controllers developed in this research to other vehicle 

platforms was examined. Because the multi-mode PHEV used as a research platform 

combines several hybrid architectures (an input powersplit hybrid mode, a parallel hybrid 

mode, and a compound powersplit mode) into one platform, the controllers presented in 

this research are valid for multiple hybrid architectures. Therefore, a number of HEV and 

PHEV vehicle platforms were presented, and how the controllers developed as a part of 

this research could be applied to these other platforms was discussed. 
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7.2 Future Work 

Three main areas in which future work should be continued on the research presented in 

this dissertation. The three areas are the expansion of the controller to other vehicle 

platforms, the integration of the developed controllers with a physical powertrain, and 

finally, the full integration of the developed controllers with a robust communication 

system. 

The first area of future work, implementing the developed predictive powertrain controllers 

on other vehicle platforms, is an important task for several reasons. First, the production of 

the 2nd generation Chevrolet Volt ended in 2019 with no replacement planned. This means 

that, while the current vehicle platform can be used for development and testing, the 

controller needs to be implemented on other vehicle platforms in order to have applicability 

to future production vehicles. As discussed in Chapter 6, this should be a straightforward 

task as there are a number of other vehicle platforms to which the IPPC controller could 

easily be adapted. 

The second area of future work is concerned with further development of the controller. 

This dissertation validated the energy savings benefits of the developed controllers in 

simulation. In addition, the real-time capability of the controllers and energy savings when 

ran in real-time was demonstrated. However, the real-time testing of the controllers did not 

involve the physical control of the powertrain. In order to fully validate the real-time 

capability and practicality of the developed controller, testing would need to occur with 

physical powertrain components. As this level of testing and integration requires 
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significant resources and proprietary knowledge of the vehicle, it would be best performed 

by or in close association with the manufacturer of the vehicle platform on which this 

testing would be performed. 

The final area of future work involves the full integration of the IPPC controller with a 

robust CAV system. The main focus of this dissertation was to demonstrate the energy 

savings that can be achieved with a predictive powertrain that utilizes predictions of future 

vehicle behavior that are obtained through CAV technologies. While the controllers were 

integrated with a simple real-time communication system, it was not in the scope of this 

work to integrate the developed controllers with a robust CAV system that can reliably 

provide future vehicle behavior predictions. In order to fully validate the predictive 

powertrain control concept, focus should be placed on this integration. 
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	Abstract

	The continued push for the reduction of energy consumption across the automotive vehicle fleet has led to widespread adoption of hybrid and plug-in hybrid electric vehicles (PHEV) by auto manufacturers. In addition, connected and automated vehicle (CA...
	First, a real-time predictive powertrain controller for PHEV energy management is developed. This controller utilizes predictions of future vehicle velocity and power demand in order to optimize powersplit decisions of the vehicle. This predictive pow...
	Second, the developed NMPC powertrain controller is thoroughly evaluated both in simulation and real-time testing. The controller is assessed over a large number of standardized and real-world drive cycles in simulation in order to properly quantify t...
	Third, a real-time integrated predictive powertrain controller (IPPC) for a multi-mode PHEV is presented. Utilizing predictions of future vehicle behavior, an optimal mode path plan is computed in order to determine a mode command best suited to the f...
	Fourth, the IPPC is evaluated in simulation testing across a range of standard and real-world drive cycles in order to quantify the energy savings of the controller. This analysis is comprised of the combined benefit of the NMPC powertrain controller ...
	Finally, as the controllers developed in this research were evaluated for a single vehicle platform, the applicability of these controllers to other platforms is discussed. Multiple cases are discussed on how both the NMPC powertrain controller and th...

	1 Introduction
	1.1 Background
	In response to regulatory, environmental, and market forces, automotive manufactures have focused on two technology domains in the search for ways to reduce the energy consumption of their vehicles and increase overall vehicle fleet efficiency. These ...
	According to [1] and [2], a research priority in the realm of CAV technology is to further quantify exactly the energy impact these technologies provide. As predictive powertrain control methods are directly enabled by CAV technology [3], this dissert...

	1.2 Literature Review
	Research in three particular categories will be reviewed in order to contextualize the research presented in this dissertation. Section 1.2.1 focuses specifically on non-predictive methods of electrified vehicle (xEV) control methods. Section 1.2.2 wi...
	1.2.1 xHEV Powertrain Control Methods
	A multitude of methods have been studied for the control and energy management of HEV and PHEV powertrains [4]. These methods can fall into several categories, including heuristic methods, instantaneous optimization methods, local optimization methods...
	Global optimal control methods can serve a useful purpose in determining a true optimal control strategy for a vehicle over a drive cycle [14, 15]. Denis et al. [16] examined the use of DP and the genetic algorithm (GA) as methods for powersplit contr...
	There are several common methods used for local optimal control of PHEV powertrains. DP is one of methods used in this application, but instead of optimizing an energy management strategy for the entire drive cycle, short segments are used. For exampl...

	1.2.2 Model Predictive Control xEV Applications
	The use of model predictive control for energy management in xEVs has been a well-researched topic over the past decade and has been shown to be an effective control method for optimizing the energy management of xEV powertrains [21]. Through the capa...

	1.2.3 Powertrain Applications of Connected and Automated Vehicle Technologies
	For at least the last decade, the mobility industry has seen CAV technologies as a key enabler to the success of electrified vehicles [32]. During the course of this decade, significant progress has been made in making this view a reality. Not only do...
	Predictive control strategies for xEV powertrains can produce energy savings when compared to non-predictive strategies, especially when integrated with CAV technology [3]. Using reliable forecasts obtained through CAV technology can improve the perfo...


	1.3 Research Objective and Contributions
	The research objective of this dissertation is to investigate predictive control methods for PHEV powertrain control that leverage vehicle connectivity for energy savings and are both capable and practical for real-time control. Control methods for HE...

	1.4 Outline of the Dissertation
	The dissertation is organized as follows. Chapter 2 presents details of the vehicle used as a research platform in this dissertation. This chapter will also discuss the simulation model utilized in this research. Chapter 3 introduces a real-time predi...


	2 Research Environment: Vehicle Model and Test Setup
	This chapter will provide an overview of the platforms on which this research was conducted. Two main sections are contained within this chapter. First, the vehicle utilized in this work, specifically the powertrain of said vehicle, will be detailed i...
	2.1 2nd Generation Chevrolet Volt
	This dissertation investigates predictive control methods for PHEV powertrain control. Therefore, a vehicle platform is required on which to perform this investigation. The vehicle platform used in this research is the 2nd generation Chevrolet Volt, a...
	2.1.1 Vehicle Specifications
	The Volt’s powertrain components consist of a 1.5L 4-cylinder engine paired with two electric machines. BSFC and efficiency maps of these components are provided in Section 3.2. These components are integrated into the vehicle’s drive unit which produ...
	A simplified lever representation of this drive unit is provided in Figure 2-1 while major parameters of the vehicle are given in Table 2-1. Full details and specifications of the Volt powertrain components can be found in [45-49], and a breakdown of ...
	Figure 2-1: 2nd Generation Chevrolet Volt drive unit lever diagram representation.
	Table 2-1: Major parameters of the 2nd generation Chevrolet Volt [47].

	2.1.2 Drive Unit Mode Breakdown
	These five drive unit modes are broken down into two electric-only, or charge depleting (CD), modes and three hybrid, or charge sustaining (CS), modes. CD operation is default for the vehicle. This strategy is utilized by the vehicle until one of two ...
	The electric-only modes consist of one motor operation, 1-EV, and two motor operation, 2-EV. In EV operation, as shown in Figure 2-2, clutch C1 is open, clutch B1 is closed which allows Motor B to provide power directly to the output, and the one-way ...
	Figure 2-2: EV Mode Clutch State and Power Flow.
	Low extended range (LER) is the first of three hybrid modes produced by the drive unit. LER is an input powersplit hybrid arrangement. In this mode, the engine speed is decoupled from the wheels. The engine’s power is split on PG1 between the carrier,...
	Figure 2-3: LER Mode Clutch State and Power Flow.
	Fixed ratio extended range (FER) mode is a parallel hybrid arrangement. Shown in Figure 2-4, clutch B1 and C1 are both closed which results in both Motor A and the ring of PG2 being grounded and the engine speed being directly coupled to wheel speed. ...
	Figure 2-4: FER Mode Clutch State and Power Flow.
	The final hybrid mode is high extended range, or HER. HER mode is a compound powersplit hybrid arrangement where clutch C1 is closed and B1 is open as shown in Figure 2-5. As with LER mode, the engine speed is decoupled from wheel speed and must be co...
	Figure 2-5: HER Mode Clutch State and Power Flow.


	2.2 Simulation Model
	All simulations conducted in this research were completed using MATLAB Simulink. A simplified overview of the Simulink model used for analysis is presented in Figure 2-6. The model is divided into three main sections. The first section, show in red, i...
	Figure 2-6: Simulation Implementation
	The second portion of the model, shown in green, is the Control section of the model. This contains both the NMPC Powertrain Controller (NMPC PTC) which will be detailed in Chapter 3 and the Optimal Mode Path Planning (OMPP) Algorithm which will be co...
	The final subunit of the model is that of the vehicle powertrain. This subunit contains three main subsystems. The first subsystem, the state and loss calculator, utilizes the speed and torque equations, given in equations (2-1)-(2-4), in order to com...


	3 Real-Time Model Predictive Powertrain Control for a Connected Plug-In Hybrid Electric Vehicle0F  [55]
	The continued development of connected and automated vehicle technologies presents the opportunity to utilize these technologies for vehicle energy management. Leveraging this connectivity among vehicles and infrastructure allows a powertrain controll...
	3.1 Introduction
	The ongoing push in the automotive sector to reduce vehicle energy consumption requires the development and adoption of new technologies. One major technology that the automotive industry has turned to over the past two decades has been the developmen...
	Multiple solutions to HEV and PHEV energy management have been well studied [4] for non-CAVs. Early strategies included the equivalent consumption management strategy (ECMS), and adaptive ECMS (A-ECMS). ECMS is an instantaneous optimization strategy t...
	Model predictive control (MPC) and nonlinear model predictive control (NMPC) are options for predictive HEV control while maintaining the capability for real-time implementation. By utilizing a short horizon look ahead of driving conditions, the abili...
	One major challenge in the implementation of predictive energy management strategies is obtaining an accurate real-time prediction of future conditions such as vehicle speed and road grade. The ongoing commercial development of CAV technologies is now...
	The purpose of this work is to investigate the effectiveness and real-time feasibility of predictive powertrain energy management using NMPC for a connected multi-mode PHEV, specifically the 2nd generation Chevrolet Volt. In order to satisfy this obje...
	Figure 3-1. MTU NEXTCAR CAV Technology System.
	The main contributions of this paper are as follows: (1) A predictive real-time capable energy management strategy integrated with vehicle dynamics, road grade, and real-time vehicle operating conditions, has been developed for a multi-mode PHEV. This...
	The rest of the paper is organized as follows. Section 3.2 introduces the powertrain and plant model of the 2nd generation Chevrolet Volt. Section 3.3 presents the architecture of the developed NMPC powertrain controller. Section 3.4 provides a descri...

	3.2 Chevrolet Volt Powertrain Plant Model
	3.2.1 Drive Unit Dynamics
	The platform upon which this research is based is the 2nd generation Chevrolet Volt, a multi-mode PHEV. Specifications of this vehicle such as engine size, motor-generator size, battery capacity, etc., can be found in [45-49, 60]. At the heart of this...
	Figure 3-2. Second Generation Chevrolet Volt Drive Unit Architecture
	CD operation utilizes two modes, single motor (1-EV) and dual motor (2-EV) operation. 1-EV mode is utilized for the majority of time spent in CD operation. Motor B provides all tractive power in 1-EV mode and is capable of sufficiently propelling the ...
	CS operation is comprised of three distinct hybrid operating modes. The first hybrid mode is Low Extended Range (LER). LER is an input power split configuration designed for efficient operation at low vehicle speeds and also for high torque demand sit...
	The second hybrid mode is Fixed Ratio Extended Range (FER). FER is a parallel configuration designed for efficient operation in acceleration situations at medium and high vehicle speeds, cruising at medium speeds, and battery charging in low output to...
	High Extended Range (HER), the third hybrid mode, is a compound power split designed for high vehicle speed, low torque demand situations such as highway cruising [47]. Equation (3-4) represents the torque and speed equations of HER operating mode. Cl...

	3.2.2 Electric Machines
	The electric propulsion system of the Chevrolet Volt has four main components. They are the two electric motor-generators contained inside the drive unit as well as a Traction Power Invertor Module (TPIM) for each motor-generator. The efficiency of ea...
	Figure 3-3. Chevrolet Volt Motor-Generator A Efficiency [49].
	Figure 3-4. Chevrolet Volt Motor-Generator B Efficiency [49].

	3.2.3 Engine
	Engine fuel consumption is modeled through the use of a Brake Specific Fuel Consumption (BSFC) map, represented in (3-6), of the engine as well as a map of approximate fuel consumption due to changing operating point which is represented in (3-7). The...
	Figure 3-5. Chevrolet Volt Engine BSFC Map [47].
	Figure 3-6. Chevrolet Volt Engine Transient Fuel Penalty Map [53].

	3.2.4 Energy Model
	The energy consumption model utilized by this research was developed at MTU as part of the NEXTCAR program. The model is a response fit model trained with more than 200 hours of dynamometer and on-road vehicle data. The model is split into two respons...


	3.3 Controller Architecture
	The purpose of the NMPC PTC is to make optimal torque-split, and when appropriate, engine speed decisions while within a given operating mode. Due to the differing kinematics and dynamics between the operating modes caused by changing clutch states, e...
	Equation (3-9) represents the nonlinear state function of the system where the change in state X ̇, is a nonlinear function of the current state vector X, the control vector U, and the disturbance vector V. The problem formulation changes for each ope...
	SOC is estimated as a function of battery power, open circuit voltage, resistance, and battery capacity as shown in (3-11). For this work, open-circuit voltage and resistance were assumed to be constant as battery dynamics are not a main focus of this...
	The control vector, U, varies from operating mode to operating mode as shown in (3-13). For EV mode, the two EV modes present in the vehicle have been combined into one NMPC implementation which allows the NMPC PTC to determine the most efficient torq...
	The disturbance vector V, shown in (3-14), remains the same for each operating mode. This vector brings the predicted drive unit output speed, (3-15), output acceleration, (3-16), and output torque, (3-17), for the length of the prediction into the pr...
	Two different cost functions are defined; one for EV mode, (3-18), and one for the hybrid modes, (3-19). In EV mode, the delivery of electrical power in the most efficient manner is a main concern. Therefore, the only objective in EV mode is to minimi...
	The system state and control variables are subject to a set of constraints. Velocity tracking is achieved through the assumption that the application of the predicted output torque will result in the desired velocity trajectory. Therefore, as shown in...
	Figure 3-7 presents a flow chart of the internal architecture of the NMPC powertrain controller.
	Figure 3-7. NMPC Powertrain Controller Architecture

	3.4 Real-Time Implementation
	3.4.1 Test Vehicle Layout
	The NMPC PTC was designed to be implemented on any of the four instrumented Chevrolet Volts in MTU’s test vehicle fleet. The architecture of the on-board computing unit in test vehicles is shown in Figure 3-8. The vehicles are outfitted with a dSPACE ...
	Figure 3-8. MTU Test Vehicle Architecture.
	Figure 3-9. MTU Chevrolet Volt vehicle instrumentation package.

	3.4.2 Implementation of Real-time Predictive Controller
	The design goal of this controller was to build a controller that not only reduces energy consumption relative to the stock vehicle’s powertrain controller, but is also capable of running in real-time on a prototyping embedded controller as a core ele...
	The ACADO, Automatic Control and Dynamic Optimization toolkit was utilized to generate a real-time viable implementation of the NMPC PTC. The ACADO toolkit is an open-source platform designed for the purposes of solving optimal control problems. The t...
	The exported NMPC PTC C-Code is integrated into Simulink through the use of an S-Function. This S-Function can be deployed into the test vehicle model that integrates all on-board sensor, CAN, and communication devices. Inside this model, the controll...


	3.5 Simulation Assessment
	In this section, the performance of the NMPC PTC is assessed over three simulation scenarios. Scenario 1 examines the controller’s performance across three standard drive cycles, the UDDS, HWFET, and US06. These cycles are also used to determine an ap...
	The process of energy consumption comparison is outlined in Figure 3-10. During on-road or dynamometer vehicle testing, vehicle control actions, such as the speeds and torques of the electric machines and engine, are logged by data logger in the test ...
	Figure 3-10. Process for energy consumption determination and comparison.
	3.5.1 Standard Cycle Assessment
	Simulation testing was initially completed using standard drive cycles, in this case the UDDS, HWFET, and US06. Baseline control actions for this testing were collected by Argonne National Laboratory (ANL) during their evaluation of the 2nd Generation...
	Several trends appeared in the results related to prediction horizon length. Similar levels of energy savings were demonstrated with the 5 and 10 second prediction horizons while the 15 second provided a drop off in energy savings as shown in Figure 3...
	Figure 3-11. Prediction horizon length effect on energy savings relative to the baseline vehicle.
	Figure 3-12. Delta SOC from the baseline cycle over the US06 cycle for the three prediction horizon lengths.
	Figure 3-13. Start/Stop segment from the UDDS drive cycle.
	Figure 3-14. Engine power command based on prediction horizon length for a start/stop segment of the UDDS cycle. (Negative engine power is dues to fuel cutoff which puts the engine in a motoring state.)

	3.5.2 Energy Saving Distribution
	An investigation was completed that looked at controller performance over multiple velocity profiles collected on the same route. Controller performance will naturally not be identical between two separate drives of the same route, so a distribution o...
	Figure 3-15. Forward MTUDC route as well as velocity and elevation profiles.
	Simulations were completed on all 30 logged velocity profiles using the NMPC PTC with the timing parameters shown in Table 3-1. These outputs were then compared to the baseline control actions of the vehicle that were recorded while the velocity profi...
	Table 3-1. Simulation Parameters
	Table 3-2. MTUDC Cycle Energy Consumption
	Figure 3-16. MTUDC energy savings distribution using NMPC PTC.
	The following analysis more closely examines the energy savings from one of the 20 forward MTUDC cycles. The velocity profile and drive unit modes over this cycle is presented in Figure 3-17. Figure 3-18 presents the energy consumed over this cycle as...
	Figure 3-17. MTUDC Vehicle Velocity and Operating Mode.
	Figure 3-18. MTUDC Energy Consumption Comparison.
	Figure 3-19. MTUDC SOC Comparison.

	3.5.3 Real World Cycle Controller Performance
	In order to further verify the performance of the NMPC PTC, simulation testing was expanded to two real-world cycles that have not been extensively tested like the standard cycles (UDDS, etc.) and the MTUDC. The purpose of this is to demonstrate that ...
	In both cases, a reduction in energy was realized. The reduction in energy occurred in the same situations as those in the MTUDC test, accelerations in LER and FER mode. As with the previous test cases, no major drop in SOC occurred over the duration ...
	Table 3-3. Real World Cycle Energy Consumption
	Figure 3-20. Copper Harbor to MTU Vehicle Velocity and Operating Mode.
	Figure 3-21. Copper Harbor to MTU Energy Consumption.
	Figure 3-22. Copper Harbor to MTU SOC Comparison.


	3.6 Real-Time Assessment
	In this section, the testing conducted examined the real-time performance of the NMPC PTC. All testing in this section was completed in real-time during on-road tests by utilizing the NMPC PTC deployed onto the in-vehicle dSPACE MicroAutoBox. The engi...
	Figure 3-23. In-vehicle engineer’s station for conducting real-time tests of the NMPC PTC.
	The analysis procedure for real time testing results is similar to that in simulation testing. The baseline vehicle and NMPC PTC control actions are passed through the MTU energy and SOC estimation tools in order to obtain energy consumption values. H...
	Table 3-4. Real-Time Test Parameters
	Energy savings achieved during real-time testing was within the range observed in simulation testing. An average savings of 1.1% across 10 tests was realized through the use of the NMPC controller when compared to the vehicle’s baseline control. A sum...
	Table 3-5. MTUDC Real Time Energy Consumption
	Figure 3-24. Real -time testing energy savings over the first 8 km of the MTUDC.
	The following analysis more closely examines the energy savings from one of the 10 real-time tests conducted on the first 8 km of the MTUDC. This cycle, whose velocity and mode profile are presented in Figure 3-25, resulted in an energy savings of 1.3...
	Figure 3-25. Real-time testing Velocity and Operating Mode over the first 8 km of the MTUDC.
	Figure 3-26. Real-time testing Vehicle Energy Consumption over the first 8 km of the MTUDC.
	Figure 3-27. Real-time testing SOC over the first 8 km of the MTUDC.
	Controller turnaround time, shown in Figure 3-28, differs between the operating modes of the vehicle due to the different number of control variables presented in each mode. The hybrid modes with 3 control variables, LER and HER, had turnaround times ...
	Figure 3-28. Real-time testing Turnaround Time over the first 8 km of the MTUDC.
	In-vehicle testing demonstrated the energy savings capability of the NMPC PTC as well as the real-time capability of the controller. This demonstration of real-time NMPC used in conjunction with real-time communication is an important step in demonstr...

	3.7 Conclusion
	This paper presents a real-time NMPC control algorithm for energy management in a connected multi-mode PHEV. The developed controller utilizes a reference of future vehicle speed and power demand in order to make more efficient energy management decis...
	This work has demonstrated the feasibility of utilizing CAV and predictive control technologies to improve PHEV energy consumption at the powertrain control level. Controller computation times observed during real-time testing show that the implementa...


	4 Integrated Predictive Powertrain Control for a Multi-Mode Plug-in Hybrid Electric Vehicle
	In the ongoing push for a more energy efficient vehicle fleet, the multi-mode Plug-in Hybrid Electric Vehicle (PHEV) is an effective vehicle architecture for reducing vehicle energy consumption when paired with a proper energy management strategy. Due...
	4.1 Introduction
	Over the past two decades, automotive manufacturers have turned vehicle electrification in order to reduce overall vehicle energy consumption and to meet emissions standards. Hybrid electric vehicles (HEVs) have been the most popular electrified optio...
	An early research on optimal multi-mode HEV control was conducted on a GM 2-mode hybrid system. A partial instantaneous optimization controller was developed that uses rule-based logic to control engine ON/OFF decisions and SOC management while instan...
	While optimal control of multi-mode HEVs has been well studied, the real-time applications of these technologies are limited. In addition, the predictive real-time optimal control of multi-mode HEVs that is considerate of future road conditions such a...
	This work was completed as part of the Michigan Technological University (MTU) NEXTCAR program which has a target reducing energy consumption of a PHEV by 20% through the use of CAV technologies [56]. This program aimed at all aspects of vehicle dynam...
	The main contributions of this article are the following: (1) Develop an algorithm capable of using predictive information obtained through CAV technologies to optimize mode path planning for a given prediction horizon in a multi-mode PHEV. (2) Combin...
	The chapter is organized in the following manner. Section 4.2 provides details of the Optimal Mode Path Planning Algorithm. Section 4.3 describes the automated weight factor selection strategy used in the Optimal Mode Path Planning Algorithm. Section ...

	4.2 Optimal Mode Path Planning Algorithm
	The objective of the Optimal Mode Path Planning algorithm is to utilize a prediction of vehicle state, which includes future vehicle speed and torque demand, in order to plan a best trajectory of drive unit operating mode over the next 𝑁 seconds. Pla...
	4.2.1 Algorithm Overview
	Equation (4-1) represents the problem definition of the Optimal Mode Path Planning algorithm. The system state 𝑋 is defined as the battery 𝑆𝑂𝐶 as well as the current operating mode, namely EV, LER, FER, and HER, and is shown in (4-2). The control ...
	The change in system state, ,𝑆𝑂𝐶., is given in (4-5). It is a function of the assumed constant battery parameters, 𝑉-𝑂𝐶., the open ciruit voltage, ,𝑅-𝐵𝑎𝑡𝑡𝑒𝑟𝑦., the internal resistance, and ,𝑄-𝐵𝑎𝑡𝑡𝑒𝑟𝑦., the total battery capacity,...
	The cost function, shown in (4-10), is comprised of two types of cost. The first is the cost incurred by residing in a specific mode in a given time step. This includes terms for the fuel consumed during each time step, ,𝑚-𝑓, ,𝑘.., and a term penal...

	4.2.2 Algorithm Details
	The optimal mode path planning algorithm is shown in Figure 4-1. The problem is defined with the following terms. 𝑘 represents the time step in the prediction horizon. Let 𝑛 be the possible mode options, 𝑀, at time step ,𝑇-𝑘.. Let 𝑝 be the possi...
	Figure 4-1: Mode selection process for a problem with 𝑛 modes and 𝑘 timesteps.
	For an example of the calculation process, equations (4-20)-(4-25) show the calculation process for time step ,𝑇-𝑘. for a problem with 𝑛 modes. At timestep ,𝑇-𝑘., the cumulative cost for each mode ,𝑀-1:𝑛. is evaluated for each potential path fr...

	4.2.3 Algorithm Application
	The following sections details how the algorithm described in 4.2.2 is specifically applied to mode path planning for the Chevrolet Volt. The Volt has 5 distinct operating modes; however, the NMPC powertrain controller outlined in [55] treats 1-EV and...
	Figure 4-2: Optimal mode path example with a starting state of FER mode and an end state of EV mode.
	Several physical limitations of the Volt drive unit must be considered in the formulation of the Optimal Mode Path Planning algorithm. Mode shifting on the Volt is relatively slow process as mode shifts take on the seconds scale to complete. Because o...


	4.3 Automated Weight Factor Selection
	Crucial to the performance of any optimization problem with multiple cost function terms is the weighting of the terms in the cost function [80]. Methods for the selection of weight factors often involve some form of manual tuning that produces a suit...
	The weighting process is started by introducing normalization terms. As all terms in the cost function are in a unit of energy, it was desired to convert all terms to a common unit of energy. In order to accomplish this, it was chosen to leave the fue...
	The objective function goal of maintaining a reference SOC level is accomplished through penalizing control actions that lead to deviations below the reference SOC set point. In order to achieve this, the SOC tracking term is weighted using a progress...
	The purpose of the mode shift penalty term is to prevent energy intensive mode transitions while also preventing frequent mode shifts that would result in poor perceived drive quality by the driver. Developing a weighting factor for this term was focu...

	4.4 Integrated Multi-Mode PHEV Powertrain Control
	4.4.1 Summary of NMPC Controller
	An NMPC powertrain controller (PTC) was developed for the 2nd generation Chevrolet Volt PHEV. This controller utilizes predictions of future vehicle velocity and torque demand, provided by the MTU-developed optimal velocity profiling algorithm [57, 58...
	Figure 4-3: NMPC Powertrain Controller Architecture for LER and HER modes.
	As tested in [55], the NMPC PTC received its commanded mode input from the stock vehicle controller in the form of logged vehicle testing data in the case of simulations or from CAN feedback to the dSPACE MicroAutoBox in the case of on-road, in-vehicl...

	4.4.2 Integrated Predictive Powertrain Controller
	As outlined in [55, 56], the Optimal Mode Path Planning Algorithm and NMPC powertrain controller are the two MTU NEXTCAR-developed technologies that are designed to provide optimal powertrain control using a short, seconds length horizon prediction of...
	Figure 4-4: IPPC architecture including both NMPC powertrain control and Optimal Mode Path Planning.


	4.5 Performance Assessment of IPPC
	The integrated predictive powertrain controller has undergone extensive testing both in simulations and on-road, in-vehicle testing. The logged drive cycles tested in simulation in [55] with only the NMPC powertrain controller were re-tested in this w...
	4.5.1 Simulation Assessment
	Simulations of the integrated powertrain controller were conducted using a Simulink implementation of the IPPC and an MTU NEXTCAR developed model of the Volt. These simulations were conducted over 28 different drive cycles. Three of the drive cycles t...
	The following paragraph details the method used to analyze the energy consumption of both the baseline vehicle and IPPC control actions. All baseline energy consumption values reported in this study are a function of vehicle speed and axle torque as w...
	Figure 4-5: Evaluation process for determining the energy consumed of the baseline vehicle and integrated predictive powertrain controller.
	4.5.1.1 Standard Drive Cycles
	Simulation testing of the EPA standard drive cycles demonstrated that the use of the integrated predictive powertrain control offers significant energy improvements over both the baseline vehicle control and powersplit optimization only. It should be ...
	Table 4-1: Standard drive cycle energy savings distribution using Integrated Predictive Powertrain Control.
	Figure 4-6 - Figure 4-9 present the areas where the IPPC provides an energy consumption reduction in the HWFET. Figure 4-6 and Figure 4-7 show the powertrain mode over the drive cycle for both baseline vehicle control and optimal mode selection, respe...
	Figure 4-6: HWFET Vehicle Velocity and Baseline Operating Mode.
	Figure 4-7: HWFET Vehicle Velocity and Optimal Operating Mode.
	Figure 4-8: HWFET Baseline vs. IPPC Energy Consumption Comparison.
	Figure 4-9: HWFET Baseline vs. IPPC SOC Comparison.
	4.5.1.2 MTU Drive Cycle
	The integrated predictive powertrain control was evaluated on 22 velocity profiles recorded by MTU test vehicles on the MTUDC which is shown in Figure 3-15. Of the 22 cycles, 12 were logged in the counterclockwise, or forward, direction and 10 were re...
	Table 4-2: MTUDC Energy Savings Using Integrated Predictive Powertrain Control.
	Figure 4-10: MTUDC energy savings distribution using Integrated Predictive Powertrain Control.
	Figure 4-11 - Figure 4-15 present the areas where the IPPC provides an energy consumption reduction. Figure 4-11 and Figure 4-12 show the powertrain mode selected by the stock vehicle controller and the Optimal Mode Path Planning algorithm, respective...
	Figure 4-11: RMTUDC Vehicle Velocity and Baseline Operating Mode.
	Figure 4-12: RMTUDC IPPC Velocity and Optimal Operating Mode.
	Figure 4-13: RMTUDC Baseline vs. IPPC Energy Consumption Comparison.
	Figure 4-14: RMTUDC Elevation Profile.
	Figure 4-15: RMTUDC Baseline vs. IPPC SOC Comparison.
	4.5.1.3 Additional Real-World Drive Cycles
	In addition to the assessment of the IPPC over the standardized drive cycles and the MTUDC, the IPPC was evaluated over additional three real-world drive cycles. The first of the three cycles was logged by MTU on a rural route starting in Copper Harbo...
	Figure 4-16: Copper Harbor to MTU route with velocity and elevation profiles versus drive cycle distance.
	Figure 4-17: Ann Arbor Loop route with velocity and elevation profiles versus drive cycle distance.
	Figure 4-18: ACM Loop route with velocity and elevation profiles versus drive cycle distance.
	In all three test scenarios, the IPPC provided an energy savings benefit over the baseline control of the vehicle. A 5.1% energy savings was observed on both the Copper Harbor to MTU and Ann Arbor Loop routes while a 2.9% reduction in energy consumpti...
	Table 4-3: Real World Drive Cycle Energy Savings Using Integrated Powertrain Control.
	There are several specific areas of each drive cycle where the majority of the energy savings occurred. For example, in the case of the Copper Harbor to MTU route, 4% of the total 5% energy savings occurred in the first 2000 seconds of the drive route...
	Figure 4-19: Copper Harbor to MTU Vehicle Velocity and Baseline Operating Mode.
	Figure 4-20: Copper Harbor to MTU Vehicle Velocity and IPPC Operating Mode.
	Figure 4-21: Copper Harbor to MTU Baseline vs. IPPC Energy Consumption Comparison.
	Figure 4-22: Copper Harbor to MTU Baseline vs. IPPC SOC Comparison. (SOC spike at time 4000 seconds is due to an extended downhill section of road where regenerative braking is in use).

	4.5.2 Real-time Performance Assessment
	An important aspect of the presented IPPC is the capability of the controller to run in real-time. To demonstrate this capability, the IPPC was tested on-road in an instrumented Chevrolet Volt. Shown in Figure 4-23, the MTU Chevrolet Volt instrumentat...
	Figure 4-23: MTU Chevrolet Volt In-Vehicle Instrumentation Package.
	The testing procedure is as follows. The IPPC is integrated into the test vehicle Simulink model where the controllers are interfaced with the test vehicle sensors, communication devices, and CAN bus. This model is then compiled into executable code a...
	Real-time assessment of the IPPC was conducted on the first 8 km of the MTUDC. This section of the MTUDC was chosen as it has both a slow speed section with multiple stops and starts as well as a highway section with elevation change. In addition, all...
	Table 4-4: Real-time testing parameters.
	Ten on-road tests of the IPPC were conducted. An average energy savings of 4.8% was achieved through the use of the IPPC. Using the IPPC adds an additional ~4% of energy savings when compared to using just the NMPC powertrain controller as was tested ...
	Table 4-5: IPPC real-time testing energy savings.
	Figure 4-24: IPPC real-time testing energy savings distribution.
	Energy savings, shown in Figure 4-25, are realized at several points along the drive cycle. For example, at time 70, the IPPC is able to recognize the upcoming required deceleration due to a stop sign. The IPPC, shown in Figure 4-27, is able to avoid ...
	Figure 4-25: Real-time testing energy consumption comparison.
	Figure 4-26: Real-time testing velocity and baseline mode.
	Figure 4-27: Real-time testing velocity and IPPC powertrain mode.
	Figure 4-28: IPPC real-time testing SOC comparison.
	A key metric of real-time controller performance is the computation requirements of the controller. The turnaround time of the NMPC powertrain control portion of the IPPC was already examined in [55], the computation time requirement of the Optimal Mo...
	Figure 4-29: IPPC real-time testing turnaround time separated into NMPC powertrain control (NMPC PTC) and Optimal Mode Path Planning components.


	4.6 Conclusion
	This paper presents a real-time predictive control strategy for a comprehensive control of a multi-mode PHEV powertrain. An algorithm for optimal powertrain mode selection has been detailed that uses a prediction of future vehicle behavior to plan a b...


	5 Controller Performance Analysis
	This chapter aims to expand the analysis of the performance of the NMPC Powertrain Controller presented in Chapter 3 and the Integrated Predictive Powertrain Controller presented in Chapter 4. Due to the page limits of the journal papers, analysis of ...
	5.1 NMPC PTC Powersplit Analysis
	This section will examine the powersplit decisions made by the NMPC PTC within each of the hybrid powertrain modes. Used for example is a section from one of the 20 forward direction MTUDC’s presented in Chapter 3. Specifically, it is the first ~500 s...
	Figure 5-1: MTUDC Vehicle Velocity and Operating Mode.
	Figure 5-2: MTUDC Energy Consumption Comparison.
	Figure 5-3: MTUDC Baseline Vehicle Powersplit.
	Figure 5-4: MTUDC NMPC PTC Powersplit.
	Figure 5-5: MTUDC SOC Comparison.
	The first mode examined will be LER. As previously described, this mode is an input powersplit design and is utilized during high torque, low speed events such as vehicle launch. In this particular example, LER mode is utilized for propulsion three ti...
	The next mode examined will be FER, a parallel hybrid mode used during acceleration events and mid vehicle speeds. During periods of relatively steady state operation in FER mode, the powersplit decisions made by the baseline vehicle and the NMPC cont...
	The final powersplit examined is that in HER mode. This is the mode that provides the most flexibility in operating point selection due to its compound power split design. However, because this mode of operation is used in low-torque demand, high spee...

	5.2 OMPP Mode Selection Analysis
	This section will examine the mode selections the OMPP algorithm makes with a specific examination of how well the modes chosen along a prediction horizon align with the eventual commanded mode. This is done in order to show that predicted future mode...
	Figure 5-6: Copper Harbor to MTU Vehicle Velocity and Baseline Operating Mode.
	Figure 5-7: Copper Harbor to MTU Vehicle Velocity and IPPC Operating Mode.
	Figure 5-8: Copper Harbor to MTU Elevation Profile.
	Table 5-1: Copper Harbor to MTU Mode Selection Predictions.
	Table 5-1 provides the optimal mode predictions for several selected time points. The mode listed at time N is the command issued by the controller. The modes listed from times N+1 to N+9 are the modes predicted at time N for the remainder of the pred...
	The first example examined occurs at time 1170. At this time, the vehicle is performing an acceleration and is in a current state of FER mode. The OMPP algorithm recognizes that the vehicle will be accelerating for the next several seconds and therefo...
	Three more mode selection predictions made at times 1185, 1195, and 1220 in the drive cycle. While these will not be examined in-depth like the predictions made at time 1170, these other three examples follow a similar pattern. In each case, some even...

	5.3 OMPP Automated Weight Factor Selection Performance
	Presented in Chapter 4.3 is a method for the automatic selection of the weighting factors used in the Optimal Mode Path Planning Algorithm cost function. This section will examine the performance and implementation benefits of the automated selection ...
	The simulation and analysis process of the IPPC controller using the manually tuned OMPP cost function is identical to that as presented in Section 4.5.1 with the only change being the use of manually tuned weighting factors for the OMPP cost function...
	As with the automated weight procedure, the manual weighting procedure utilizes normalizing terms to convert the SOC and mode shift penalty terms to equivalent grams of fuel consumed. These terms, ,𝜆-𝑆𝑂𝐶. and  ,𝜆-𝑚𝑜𝑑𝑒 𝑠ℎ𝑖𝑓𝑡 𝑝𝑒𝑛𝑎𝑙𝑡𝑦...
	Energy savings results for the manual weight factor and automatic weight factor selection for the OMPP algorithm are presented in Table 5-2. The use of the automated weight factor selection procedure offers equivalent to improved performance when it c...
	Table 5-2: Manual vs. Automatic OMPP Cost Function Weight Factor Selection
	5.3.1 SOC Weight Factor Analysis
	Presented in Figure 5-9 through Figure 5-12 is a comparison between the use of the manually tuned SOC weight factor and the automatically tuned SOC weight factor over the forward direction MTUDC, the cycle used for the manual tuning of the SOC weight ...
	Figure 5-9: MTUDC Vehicle Velocity and Optimal Operating Mode with Manual Weighting (𝛼=1, 𝛽=2.5, 𝛾=2).
	Figure 5-10: MTUDC Vehicle Velocity and Optimal Operating Mode with Automatic Weighting.
	Figure 5-11: MTUDC SOC Comparison Between Manual and Automatic Weighting.
	Figure 5-12: MTUDC SOC Weighting Factor Comparison Between Manual and Automatic Weighting.
	Figure 5-13: MTUDC Energy Consumption for Manual and Automatic Weighting.
	The next cycle examined is the reverse MTUDC or RMTUDC. The performance of the OMPP will be examined when using the manually weighted SOC cost term and the automatically weighted term. Note that a single cycle is examined in these figures and that the...
	Figure 5-14: RMTUDC Vehicle Velocity and Optimal Operating Mode with Manual Weighting (𝛼=1, 𝛽=2.5, 𝛾=2).
	Figure 5-15: RMTUDC Vehicle Velocity and Optimal Operating Mode with Automatic Weighting.
	Figure 5-16: RMTUDC SOC Comparison Between Manual and Automatic Weighting.
	Figure 5-17: RMTUDC SOC Weighting Factor Comparison Between Manual and Automatic Weighting.
	Figure 5-18: RMTUDC Energy Consumption for Manual and Automatic Weighting.

	5.3.2 Mode Shifting Weight Factor Analysis
	The impact of the mode shifting weight factor will be examined using a situation from the MTU drive cycle. Presented in Figure 5-19 through Figure 5-23 is a comparison between the use of the manually tuned mode shift weight factor and the automaticall...
	Figure 5-19: MTUDC Vehicle Velocity and Optimal Operating Mode with Manual Weighting (𝛼=1, 𝛽=2.5, 𝛾=2).
	Figure 5-20: MTUDC Vehicle Velocity and Optimal Operating Mode with Automatic Weighting.
	Figure 5-21: MTUDC Vehicle Velocity and Optimal Operating Mode with Manual Weighting (𝛼=1, 𝛽=2.5, 𝛾=2).
	Figure 5-22: MTUDC Vehicle Velocity and Optimal Operating Mode with Automatic Weighting.
	Figure 5-23: MTUDC Mode Shifting Weighting Factor Comparison Between Manual and Automatic Weighting.



	6 Predictive Control Application Across xEV Powertrain Architectures
	So far, this dissertation has been focused on predictive powertrain control technologies specifically for one vehicle platform, the 2nd generation Chevrolet Volt. However, while tested on one specific vehicle platform, the predictive powertrain contro...
	The multi-mode design of the 2nd generation Chevrolet Volt utilized three separate hybrid architectures. Included in the Volt drive unit are an input powersplit hybrid mode, a parallel hybrid mode, and a compound powersplit mode. Because predictive co...
	6.1 NMPC PTC Application to Other Vehicle Platforms
	Multiple different vehicle platforms utilizing a powersplit hybrid architecture are available on the market today. One such example is the Toyota Hybrid System (THS), the underlying architecture of popular vehicle models such as the Prius [81]. Variat...
	While independent designs, the THS and the eFlite utilize a similar architecture. The FWD implementation of the THS as well as the eFlite is shown in Figure 6-1. The generator is connected to the sun gear of the planetary gearset. The engine is connec...
	Figure 6-1: Toyota Hybrid System and FCA eFlite Architecture.
	As the THS and eFlite are a power split architecture similar to the LER mode in the 2nd generation Chevrolet Volt, a control implementation of the NMPC PTC similar to that used for LER mode can be used. The governing torque and speed equations of the ...
	The AWD implementation of the THS utilizes the same front axle drive unit, with model specific alterations, as the FWD implementation of the THS. However, an additional e-motor is added to the rear axle for AWD capability [82]. The layout of this arch...
	Figure 6-2: Toyota Hybrid System AWD Architecture.
	This additional motor slightly alters the NMPC PTC implementation. The governing torque and speed equations, given in equation (6-3), remain largely unchanged with the only modification being the addition of the rear motor into the computation of tota...

	6.2 Optimal Mode Path Planning Applications to Other Vehicle Platforms
	Section 6.1 highlighted how the NMPC PTC is not limited to just the 2nd generation Volt platform and can be utilized for other hybrid architectures. This section will examine how the Optimal Mode Path Planning algorithm also has use cases outside of t...
	Figure 6-3: Honda Clarity Powertrain Architecture.
	As previously stated, the obvious use case for the OMPP algorithm is other multi-mode hybrid platforms such as the Honda Clarity. However, the number of multi-mode hybrid vehicle platforms in production is limited when compared to single mode hybrids....


	7 Conclusions and Future Work
	7.1 Conclusions
	This dissertation presents the development, implementation, and evaluation of real-time predictive control methods for a connected multi-mode PHEV. Two controllers were presented. A lower-level NMPC-based controller was developed for powersplit manage...
	The NMPC predictive powertrain controller was developed for power-split management in a connected multi-mode PHEV. This controller utilizes a forecast of future vehicle state, such as vehicle speed and torque demand, in order to optimize torque and po...
	The optimal mode path planning algorithm was presented for optimal mode selection of a multi-mode PHEV for reduced energy consumption. Once again using forecasts of future vehicle state, such as vehicle speed and torque demand, the optimal mode path p...
	Finally, the applicability of the two controllers developed in this research to other vehicle platforms was examined. Because the multi-mode PHEV used as a research platform combines several hybrid architectures (an input powersplit hybrid mode, a par...

	7.2 Future Work
	Three main areas in which future work should be continued on the research presented in this dissertation. The three areas are the expansion of the controller to other vehicle platforms, the integration of the developed controllers with a physical powe...
	The first area of future work, implementing the developed predictive powertrain controllers on other vehicle platforms, is an important task for several reasons. First, the production of the 2nd generation Chevrolet Volt ended in 2019 with no replacem...
	The second area of future work is concerned with further development of the controller. This dissertation validated the energy savings benefits of the developed controllers in simulation. In addition, the real-time capability of the controllers and en...
	The final area of future work involves the full integration of the IPPC controller with a robust CAV system. The main focus of this dissertation was to demonstrate the energy savings that can be achieved with a predictive powertrain that utilizes pred...
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