5,384 research outputs found

    Canonical ordering for graphs on the cylinder, with applications to periodic straight-line drawings on the flat cylinder and torus

    Get PDF
    We extend the notion of canonical ordering (initially developed for planar triangulations and 3-connected planar maps) to cylindric (essentially simple) triangulations and more generally to cylindric (essentially internally) 33-connected maps. This allows us to extend the incremental straight-line drawing algorithm of de Fraysseix, Pach and Pollack (in the triangulated case) and of Kant (in the 33-connected case) to this setting. Precisely, for any cylindric essentially internally 33-connected map GG with nn vertices, we can obtain in linear time a periodic (in xx) straight-line drawing of GG that is crossing-free and internally (weakly) convex, on a regular grid Z/wZ×[0..h]\mathbb{Z}/w\mathbb{Z}\times[0..h], with w≤2nw\leq 2n and h≤n(2d+1)h\leq n(2d+1), where dd is the face-distance between the two boundaries. This also yields an efficient periodic drawing algorithm for graphs on the torus. Precisely, for any essentially 33-connected map GG on the torus (i.e., 33-connected in the periodic representation) with nn vertices, we can compute in linear time a periodic straight-line drawing of GG that is crossing-free and (weakly) convex, on a periodic regular grid Z/wZ×Z/hZ\mathbb{Z}/w\mathbb{Z}\times\mathbb{Z}/h\mathbb{Z}, with w≤2nw\leq 2n and h≤1+2n(c+1)h\leq 1+2n(c+1), where cc is the face-width of GG. Since c≤2nc\leq\sqrt{2n}, the grid area is O(n5/2)O(n^{5/2}).Comment: 37 page

    Crossing-free straight-line drawing of graphs on the flat torus

    Get PDF
    Workshop is part of the Computational Geometry weekInternational audienceThe problem of efficiently computing straight-line drawings of planar graphs has attracted a lot of attention in the past. In this paper we took interest on straight line drawings for graphs drawn on the cylinder or on the torus. More precisely, we look at straight line drawing of unfolded periodic representations of the cylinder and the torus

    Unexpected behaviour of crossing sequences

    Get PDF
    The n-th crossing number of a graph G, denoted cr_n(G), is the minimum number of crossings in a drawing of G on an orientable surface of genus n. We prove that for every a>b>0, there exists a graph G for which cr_0(G) = a, cr_1(G) = b, and cr_2(G) = 0. This provides support for a conjecture of Archdeacon et al. and resolves a problem of Salazar.Comment: 21 page

    The obstructions for toroidal graphs with no K3,3K_{3,3}'s

    Full text link
    Forbidden minors and subdivisions for toroidal graphs are numerous. We consider the toroidal graphs with no K3,3K_{3,3}-subdivisions that coincide with the toroidal graphs with no K3,3K_{3,3}-minors. These graphs admit a unique decomposition into planar components and have short lists of obstructions. We provide the complete lists of four forbidden minors and eleven forbidden subdivisions for the toroidal graphs with no K3,3K_{3,3}'s and prove that the lists are sufficient.Comment: 10 pages, 7 figures, revised version with additional detail

    Shortest path embeddings of graphs on surfaces

    Get PDF
    The classical theorem of F\'{a}ry states that every planar graph can be represented by an embedding in which every edge is represented by a straight line segment. We consider generalizations of F\'{a}ry's theorem to surfaces equipped with Riemannian metrics. In this setting, we require that every edge is drawn as a shortest path between its two endpoints and we call an embedding with this property a shortest path embedding. The main question addressed in this paper is whether given a closed surface S, there exists a Riemannian metric for which every topologically embeddable graph admits a shortest path embedding. This question is also motivated by various problems regarding crossing numbers on surfaces. We observe that the round metrics on the sphere and the projective plane have this property. We provide flat metrics on the torus and the Klein bottle which also have this property. Then we show that for the unit square flat metric on the Klein bottle there exists a graph without shortest path embeddings. We show, moreover, that for large g, there exist graphs G embeddable into the orientable surface of genus g, such that with large probability a random hyperbolic metric does not admit a shortest path embedding of G, where the probability measure is proportional to the Weil-Petersson volume on moduli space. Finally, we construct a hyperbolic metric on every orientable surface S of genus g, such that every graph embeddable into S can be embedded so that every edge is a concatenation of at most O(g) shortest paths.Comment: 22 pages, 11 figures: Version 3 is updated after comments of reviewer

    On Hardness of the Joint Crossing Number

    Full text link
    The Joint Crossing Number problem asks for a simultaneous embedding of two disjoint graphs into one surface such that the number of edge crossings (between the two graphs) is minimized. It was introduced by Negami in 2001 in connection with diagonal flips in triangulations of surfaces, and subsequently investigated in a general form for small-genus surfaces. We prove that all of the commonly considered variants of this problem are NP-hard already in the orientable surface of genus 6, by a reduction from a special variant of the anchored crossing number problem of Cabello and Mohar
    • …
    corecore