14,098 research outputs found

    Contextualized property market models vs. Generalized mass appraisals: An innovative approach

    Get PDF
    The present research takes into account the current and widespread need for rational valuation methodologies, able to correctly interpret the available market data. An innovative automated valuation model has been simultaneously implemented to three Italian study samples, each one constituted by two-hundred residential units sold in the years 2016-2017. The ability to generate a "unique" functional form for the three different territorial contexts considered, in which the relationships between the influencing factors and the selling prices are specified by different multiplicative coefficients that appropriately represent the market phenomena of each case study analyzed, is the main contribution of the proposed methodology. The method can provide support for private operators in the assessment of the territorial investment conveniences and for the public entities in the decisional phases regarding future tax and urban planning policies

    Data Analytic Approach to Support the Activation of Special Signal Timing Plans in Response to Congestion

    Get PDF
    Improving arterial network performance has become a major challenge that is significantly influenced by signal timing control. In recent years, transportation agencies have begun focusing on Active Arterial Management Program (AAM) strategies to manage the performance of arterial streets under the flagship of Transportation Systems Management & Operations (TSM&O) initiatives. The activation of special traffic signal plans during non-recurrent events is an essential component of AAM and can provide significant benefits in managing congestion. Events such as surges in demands or lane blockages can create queue spillbacks, even during off-peak periods resulting in delays and spillbacks to upstream intersections. To address this issue, some transportation agencies have started implementing processes to change the signal timing in real time based on traffic signal engineer/expert observations of incident and traffic conditions at the intersections upstream and downstream of congested locations. This dissertation develops methods to automate and enhance such decisions made at traffic management centers. First, a method is developed to learn from experts’ decisions by utilizing a combination of Recursive Partitioning and Regression Decision Tree (RPART) and Fuzzy Rule-Based System (FRBS) to deal with the vagueness and uncertainty of human decisions. This study demonstrates the effectiveness of this method in selecting plans to reduce congestion during non-recurrent events. However, the method can only recommend the changes in green time to the movement affected by the incident and does not give an optimized solution that considers all movements. Thus, there was a need to extend the method to decide how the reduction of green times should be distributed to other movements at the intersection. Considering the above, this dissertation further develops a method to derive optimized signal timing plans during non-recurrent congestion that considers the operations of the critical direction impacted by the incident, the overall corridor, as well as the critical intersection movement performance. The prerequisite of optimizing the signal plans is the accurate measurements of traffic flow conditions and turning movement counts. It is also important to calibrate any utilized simulation and optimization models to replicate the field traffic states according to field traffic conditions and local driver behaviors. This study evaluates the identified special signal-timing plan based on both the optimization and the DT and FRBS approaches. Although the DT and FRBS model outputs are able to reduce the existing queue and improve all other performance measures, the evaluation results show that the special signal timing plan obtained from the optimization method produced better performance compared to the DT and FRBS approaches for all of the evaluated non-recurrent conditions. However, there are opportunities to combine both approaches for the best selection of signal plans

    MECHANICAL ENERGY HARVESTER FOR POWERING RFID SYSTEMS COMPONENTS: MODELING, ANALYSIS, OPTIMIZATION AND DESIGN

    Get PDF
    Finding alternative power sources has been an important topic of study worldwide. It is vital to find substitutes for finite fossil fuels. Such substitutes may be termed renewable energy sources and infinite supplies. Such limitless sources are derived from ambient energy like wind energy, solar energy, sea waves energy; on the other hand, smart cities megaprojects have been receiving enormous amounts of funding to transition our lives into smart lives. Smart cities heavily rely on smart devices and electronics, which utilize small amounts of energy to run. Using batteries as the power source for such smart devices imposes environmental and labor cost issues. Moreover, in many cases, smart devices are in hard-to-access places, making accessibility for disposal and replacement difficult. Finally, battery waste harms the environment. To overcome these issues, vibration-based energy harvesters have been proposed and implemented. Vibration-based energy harvesters convert the dynamic or kinetic energy which is generated due to the motion of an object into electric energy. Energy transduction mechanisms can be delivered based on piezoelectric, electromagnetic, or electrostatic methods; the piezoelectric method is generally preferred to the other methods, particularly if the frequency fluctuations are considerable. In response, piezoelectric vibration-based energy harvesters (PVEHs), have been modeled and analyzed widely. However, there are two challenges with PVEH: the maximum amount of extractable voltage and the effective (operational) frequency bandwidth are often insufficient. In this dissertation, a new type of integrated multiple system comprised of a cantilever and spring-oscillator is proposed to improve and develop the performance of the energy harvester in terms of extractable voltage and effective frequency bandwidth. The new energy harvester model is proposed to supply sufficient energy to power low-power electronic devices like RFID components. Due to the temperature fluctuations, the thermal effect over the performance of the harvester is initially studied. To alter the resonance frequency of the harvester structure, a rotating element system is considered and analyzed. In the analytical-numerical analysis, Hamilton’s principle along with Galerkin’s decomposition approach are adopted to derive the governing equations of the harvester motion and corresponding electric circuit. It is observed that integration of the spring-oscillator subsystem alters the boundary condition of the cantilever and subsequently reforms the resulting characteristic equation into a more complicated nonlinear transcendental equation. To find the resonance frequencies, this equation is solved numerically in MATLAB. It is observed that the inertial effects of the oscillator rendered to the cantilever via the restoring force effects of the spring significantly alter vibrational features of the harvester. Finally, the voltage frequency response function is analytically and numerically derived in a closed-from expression. Variations in parameter values enable the designer to mutate resonance frequencies and mode shape functions as desired. This is particularly important, since the generated energy from a PVEH is significant only if the excitation frequency coming from an external source matches the resonance (natural) frequency of the harvester structure. In subsequent sections of this work, the oscillator mass and spring stiffness are considered as the design parameters to maximize the harvestable voltage and effective frequency bandwidth, respectively. For the optimization, a genetic algorithm is adopted to find the optimal values. Since the voltage frequency response function cannot be implemented in a computer algorithm script, a suitable function approximator (regressor) is designed using fuzzy logic and neural networks. The voltage function requires manual assistance to find the resonance frequency and cannot be done automatically using computer algorithms. Specifically, to apply the numerical root-solver, one needs to manually provide the solver with an initial guess. Such an estimation is accomplished using a plot of the characteristic equation along with human visual inference. Thus, the entire process cannot be automated. Moreover, the voltage function encompasses several coefficients making the process computationally expensive. Thus, training a supervised machine learning regressor is essential. The trained regressor using adaptive-neuro-fuzzy-inference-system (ANFIS) is utilized in the genetic optimization procedure. The optimization problem is implemented, first to find the maximum voltage and second to find the maximum widened effective frequency bandwidth, which yields the optimal oscillator mass value along with the optimal spring stiffness value. As there is often no control over the external excitation frequency, it is helpful to design an adaptive energy harvester. This means that, considering a specific given value of the excitation frequency, energy harvester system parameters (oscillator mass and spring stiffness) need to be adjusted so that the resulting natural (resonance) frequency of the system aligns with the given excitation frequency. To do so, the given excitation frequency value is considered as the input and the system parameters are assumed as outputs which are estimated via the neural network fuzzy logic regressor. Finally, an experimental setup is implemented for a simple pure cantilever energy harvester triggered by impact excitations. Unlike the theoretical section, the experimental excitation is considered to be an impact excitation, which is a random process. The rationale for this is that, in the real world, the external source is a random trigger. Harmonic base excitations used in the theoretical chapters are to assess the performance of the energy harvester per standard criteria. To evaluate the performance of a proposed energy harvester model, the input excitation type consists of harmonic base triggers. In summary, this dissertation discusses several case studies and addresses key issues in the design of optimized piezoelectric vibration-based energy harvesters (PVEHs). First, an advanced model of the integrated systems is presented with equation derivations. Second, the proposed model is decomposed and analyzed in terms of mechanical and electrical frequency response functions. To do so, analytic-numeric methods are adopted. Later, influential parameters of the integrated system are detected. Then the proposed model is optimized with respect to the two vital criteria of maximum amount of extractable voltage and widened effective (operational) frequency bandwidth. Corresponding design (influential) parameters are found using neural network fuzzy logic along with genetic optimization algorithms, i.e., a soft computing method. The accuracy of the trained integrated algorithms is verified using the analytical-numerical closed-form expression of the voltage function. Then, an adaptive piezoelectric vibration-based energy harvester (PVEH) is designed. This final design pertains to the cases where the excitation (driving) frequency is given and constant, so the desired goal is to match the natural frequency of the system with the given driving frequency. In this response, a regressor using neural network fuzzy logic is designed to find the proper design parameters. Finally, the experimental setup is implemented and tested to report the maximum voltage harvested in each test execution

    Automatic programming methodologies for electronic hardware fault monitoring

    Get PDF
    This paper presents three variants of Genetic Programming (GP) approaches for intelligent online performance monitoring of electronic circuits and systems. Reliability modeling of electronic circuits can be best performed by the Stressor - susceptibility interaction model. A circuit or a system is considered to be failed once the stressor has exceeded the susceptibility limits. For on-line prediction, validated stressor vectors may be obtained by direct measurements or sensors, which after pre-processing and standardization are fed into the GP models. Empirical results are compared with artificial neural networks trained using backpropagation algorithm and classification and regression trees. The performance of the proposed method is evaluated by comparing the experiment results with the actual failure model values. The developed model reveals that GP could play an important role for future fault monitoring systems.This research was supported by the International Joint Research Grant of the IITA (Institute of Information Technology Assessment) foreign professor invitation program of the MIC (Ministry of Information and Communication), Korea

    Soft Computing

    Get PDF
    Soft computing is used where a complex problem is not adequately specified for the use of conventional math and computer techniques. Soft computing has numerous real-world applications in domestic, commercial and industrial situations. This book elaborates on the most recent applications in various fields of engineering

    Enhancing soft computing techniques to actively address imbalanced regression problems

    Get PDF
    This paper has been supported in part by the ERDF A way of making Europe/Health Institute Carlos III/Spanish Ministry of Science, Innovation and Universities (grant number PI20/00711), by the ERDF A way of making Europe/Regional Government of Andalusia/Ministry of Economic Transformation, Industry, Knowledge and Universities (grant numbers P18-RT-2248 and B-CTS-536-UGR20) and by the MCIN/AEI/10.13039/50110001103 (grant numbers PID2019-107793GB-I00 and PID2020-119478GB-I00). Funding for open access charge: Universidad de Granada / CBUA
    • …
    corecore