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ABSTRACT OF THE DISSERTATION  

DATA ANALYTIC APPROACH TO SUPPORT THE ACTIVATION OF SPECIAL 

SIGNAL TIMING PLANS IN RESPONSE TO CONGESTION 

by 

Mosammat Tahnin Tariq 

Florida International University, 2020 

Miami, Florida 

Professor Mohammed Hadi, Major Professor 

Improving arterial network performance has become a major challenge that is 

significantly influenced by signal timing control. In recent years, transportation agencies 

have begun focusing on Active Arterial Management Program (AAM) strategies to manage 

the performance of arterial streets under the flagship of Transportation Systems 

Management & Operations (TSM&O) initiatives. The activation of special traffic signal 

plans during non-recurrent events is an essential component of AAM and can provide 

significant benefits in managing congestion.   

Events such as surges in demands or lane blockages can create queue spillbacks, even 

during off-peak periods resulting in delays and spillbacks to upstream intersections. To 

address this issue, some transportation agencies have started implementing processes to 

change the signal timing in real time based on traffic signal engineer/expert observations 

of incident and traffic conditions at the intersections upstream and downstream of 

congested locations. This dissertation develops methods to automate and enhance such 

decisions made at traffic management centers.  First, a method is developed to learn from 

experts’ decisions by utilizing a combination of Recursive Partitioning and Regression 
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Decision Tree (RPART) and Fuzzy Rule-Based System (FRBS) to deal with the vagueness 

and uncertainty of human decisions.  This study demonstrates the effectiveness of this 

method in selecting plans to reduce congestion during non-recurrent events. However, the 

method can only recommend the changes in green time to the movement affected by the 

incident and does not give an optimized solution that considers all movements.  Thus, there 

was a need to extend the method to decide how the reduction of green times should be 

distributed to other movements at the intersection.  

Considering the above, this dissertation further develops a method to derive 

optimized signal timing plans during non-recurrent congestion that considers the 

operations of the critical direction impacted by the incident, the overall corridor, as well as 

the critical intersection movement performance.  The prerequisite of optimizing the signal 

plans is the accurate measurements of traffic flow conditions and turning movement counts.  

It is also important to calibrate any utilized simulation and optimization models to replicate 

the field traffic states according to field traffic conditions and local driver behaviors. 

This study evaluates the identified special signal-timing plan based on both the 

optimization and the DT and FRBS approaches.  Although the DT and FRBS model outputs 

are able to reduce the existing queue and improve all other performance measures,  the 

evaluation results show that the special signal timing plan obtained from the optimization 

method produced better performance compared to the DT and FRBS approaches for all of 

the evaluated non-recurrent conditions.  However, there are opportunities to combine both 

approaches for the best selection of signal plans.
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CHAPTER I  

INTRODUCTION 

1.1  Problem Statement 

Improving arterial network performance has become a major challenge that is 

significantly influenced by signal timing control. In recent years, agencies have begun 

focusing on arterial systems by supporting Active Arterial Management (AAM) strategies 

(Abdel-Aty et al., 2019). The activation of special traffic signal plans during non-recurrent 

events is an important component of AAM and can provide significant benefits in terms of 

performance metrics of the transportation systems. Most of the existing signal controller 

systems in the United States are operated based on time of day (TOD) signal timing plans.   

The TOD plans are prepared using historical traffic flow data collected for different times 

of the day and fine-tuned based on field observations. Such plans lack the consideration of 

non-recurrent congestion due to incidents and other lane blockage events, as well as surges 

in demands due to special events.  In some cases, agencies have deployed adaptive signal 

control technology. However, such implementations are still limited, and the adaptive 

signal control may not be as effective under all conditions, particularly under heavily 

congested conditions with long queues.  

With non-recurrent events that cause reductions in capacity or an increase in demand, 

congestion can occur and extend to upstream intersections from the bottleneck location.  In 

these conditions, the vehicle queues continue to grow from cycle to cycle, either due to 

insufficient green times that cannot meet the demands or because of blockages that prevent 

traffic from efficiently using the assigned green times. The spillback to the upstream 
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intersection causes parts of the green time intervals at the upstream intersection to be 

constrained by the downstream queue. During the red interval(s) of the upstream feeding 

links to the downstream link, the queue starts decreasing due to the reduction in the arrivals 

at the back of the queue, creating queuing capacity that accommodates the flows from the 

upstream links in the next green phase. During the first parts of the upstream link green 

phases, referred to as the “unconstrained green”, the vehicles will be able to leave the stop 

lines of the feeding links at the saturation flow rates of these links until the queue due to 

the downstream incident spill backs to the upstream signal again.  The rest of the green 

time can be referred to as the ‘constrained green’.  As a result of this constraint, the queues 

can interrupt the flows on the arterial network and can also spill back on freeway ramps, 

consequently creating congestion on freeway facilities. Thus, it is critical to actively 

change the signal timings to address the lane blockages and the surges in demands on the 

arterial networks.  

To mitigate the adverse effect of non-recurrent events such as incidents, surges in 

demands, and work zones, some agencies have hired traffic signal engineers/expert 

operators to actively manage the traffic signal controls during these events.  These agencies 

have started implementing processes to change signal timing in real time based on traffic 

signal engineer/expert operator’s observations of incident and traffic conditions at the 

intersections upstream and downstream of the congested locations. Their strategy involves 

observing the queue formation based on videos received from closed-circuit television 

(CCTV) cameras and travel time maps produced using public agency data or third-party 

providers. The decisions to change the signal timing are based on observations such as the 
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conditions of the main and side streets, comparison of the queue spillback situation with 

historical queues, and the anticipated effects of queues on the upstream intersections. 

In order to maintain coordination, in many cases, expert operators keep the same 

cycle length between intersections while changing the green to cycle ratio (g/C) in the 

congested direction downstream of the incident location by taking green times from other 

intersection movements without violating the minimum vehicular and pedestrian greens.  

If the incident is severe and the congestion cannot be mitigated by increasing the green 

times within the same cycle, the traffic signal engineer may decide to change the cycle 

length and put the intersection out of coordination.  This process of changing signal timing 

by human experts is time-consuming and expensive, requiring processes to capture non-

recurrent event characteristics, downloading the existing timing, observing the traffic 

network conditions, designing new timing plans, and implementing the new plans. 

Moreover, the expert signal engineers/expert operators may change jobs, resulting in an 

important loss of acquired knowledge and experience. The experts also do not provide the 

service 24 hours a day/ 7 days a week at traffic management centers (TMCs). Thus, there 

is a need to automate the decisions to change signal timing plans. One of the objectives of 

this study is to automate the process of updating the signal timing plans during non-

recurrent conditions by capturing the history of the responses of the traffic signal engineers 

to non-recurrent conditions by utilizing this experience to train a machine learning model, 

which will facilitate a proactive, consistent and easily implementable approach to 

addressing traffic congestion during non-recurrent events. 

Although the expert’s intervention during a non-recurrent condition is an effective 

solution minimizing vehicle delay and long queue formation, this system only recommends 
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the changes in green time to the movements that are impacted by events like incidents or 

demand surges.  There is still a need to optimize how decreasing green times should be 

distributed to other intersection approaches. Thus, it is crucial to further integrate the 

decision support system with other data and optimization techniques to improve signal-

timing decisions. These techniques can be enhanced with the availability of detailed 

Automated Traffic Signal Performance Measures (ATSPMs) based on high-resolution 

controller data and micro-simulation tools. In non-recurrent traffic conditions, the 

application of improved algorithms and optimization procedures to obtain an effective 

traffic signal setting is an essential requirement for successful arterial operation 

performance. With such an application, optimization algorithms and high-resolution data 

can improve travel conditions on the major corridors without serious detriment to minor 

traffic flows. 

Choosing an appropriate objective function for optimizing traffic signal timing is 

critical because the choice will affect the overall network performance. It is well 

established that timing traffic signals is a multi-objective problem, in which optimizing the 

solution based on one variable can often work to the detriment of another. For example, 

optimizing signal timings by putting a higher weight on the arterial progression can cause 

excessive delay on the side streets.  Optimization based on network delay may not ensure 

an effective utilization of intersection capacity to the fullest in the case of congested 

conditions. In these cases, the use of a multi-objective optimization technique can generate 

the best solution with the inclusion of many performance measures of the arterial network. 

Signal timing optimization should be dynamic where the signal timing control 

strategy and the associated plans are selected based on the assessed traffic conditions, 
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including the congestion level. To achieve this goal, it is essential to have accurate 

congestion condition identification and traffic pattern partitioning based on the collected 

data.   

Conventional traffic data collection and utilization methods aggregate traffic 

measurements such as vehicle flow, speed, and occupancy in 15 minutes to one-hour 

resolution (Ali et al., 2017).  On arterial networks, day-to-day as well as cycle-to-cycle 

variations in the measurements are important, including the measurements of volumes, 

vehicle platoon arrivals, discharge rates, and green time utilization.  These measurements 

at signalized intersections significantly affect the estimation of network performance. In 

recent years, new data collection technologies are emerging that can be used to support 

better development and calibration of simulation models, including multi-scenario 

simulation.    

High-resolution controller data identifies when a vehicle arrives at or departs from a 

vehicle detector, and records the changes of signal status within a 0.1-sec resolution.  This 

data allows estimating vehicle arrivals and departures, green time utilization, signal control 

timings, and other parameters. This information can be used to obtain representative traffic 

operational scenarios for a more accurate estimation of arterial network performance 

measures. It can support the estimation of more detailed, accurate, and microscopic 

parameters of traffic flow and associated control to enhance traffic simulation modeling 

quality. In this study, PTV’s Verkehr In Städten SIMulationsmodell (VISSIM) microscopic 

simulation tool is used for generating micro-simulation traffic models.  

This study examines methods to design and activate signal timing strategies and 

associate plans to mitigate detected non-recurrent congestion.  The use of multi-objective 
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optimization combined with machine learning and fuzzy logic is explored. This study 

proposes methodology and algorithms to combine data collected from existing and 

emerging sources with enhanced models and optimization algorithms to optimize and 

manage signal operations during non-recurrent events. The results from applying the 

developed methods and algorithms are examined to investigate their ability to reduce travel 

time and delays at the signalized intersections, increase system throughput and travel time 

reliability, and provide a better queue management strategy. The methods explored in this 

study are useful for application to mitigate the adverse impacts during lane blockage 

conditions due to incidents close to the subject intersection or demand surges from 

upstream traffic demand feeding sources. 

1.2 Research Goal and Objectives 

This study aims to develop methods to activate signal timing plans that will mitigate 

detected non-recurrent congested conditions in real-time operations.  The specific 

objectives are:    

• Examine the ability to use data from multiple sources and advanced data 

analytic models to identify congested conditions that require switching to 

special signal timing plans. 

• Develop methods to generate special signal timing plans to mitigate the 

detected congested conditions.  

• Identify the impacts of selecting and activating the special signal plans in 

response to the identified congestion. 
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1.3 Dissertation Organization 

  This dissertation includes a total of five chapters. Chapter II provides a literature 

review of previous studies on signal timing during congested conditions and the use of 

emerging data sources and advanced algorithms in signal control strategies. Chapter III 

presents the methodology that is used to achieve the stated objectives. Chapter IV describes 

the results from the application of the methodology developed in this study.  Finally, 

Chapter V summarizes the findings from this research and provides recommendations for 

future studies. 
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CHAPTER II  

LITERATURE REVIEW 

 Transportation agencies usually operate signal control systems based on time of day 

plans. These plans are prepared using historical traffic flow data from different times of the 

day (Urbanik et al., 2015). Time of day signal timing plans lack the consideration of non-

recurrent congestion due to incidents and other lane blockage events and cannot address 

the congestion due to the stochastic variations in demand and capacity. In particular, lane 

blockages due to incidents create queue spillbacks even during off-peak periods resulting 

in unused green times by the constrained traffic at the upstream intersection(s) (Tariq et 

al., 2020). Some locations have Adaptive Traffic Control Systems (ATCSs). These systems 

adjust signal timings based on the current traffic conditions, demand, and system capacity 

in real time. However, the true adaptability of ATCSs during congestion conditions with 

long queues is questionable. Campbell and Skabardonis (2014) reported three issues with 

adaptive signal control during oversaturated conditions.  The first issue is that the system 

does not allocate enough green time to the critical approach at the bottleneck intersection. 

The second issue is that allocated green time at the critical approach of the upstream 

intersection may be more than necessary, which can oversaturate the bottleneck location.  

The third is the inefficiency of the offset settings at the downstream intersection of the 

bottleneck location, resulting in additional delays for traffic departing the bottleneck and 

creating the potential for queue spillbacks to the bottleneck itself. 

 The Federal Highway Administration (FHWA) identified the anticipation and 

response to planned and unplanned events as an important issue. They emphasized the need 
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for automating the selection of pre-planned signal timing plans to manage the special 

events by identifying incident lane closures and increased volume thresholds (Platman et 

al, 2018).  State and local transportation agencies have reached the same conclusion.  For 

example, the Florida Department of Transportation (FDOT) District 5 documented in the 

District’s ITS Master Plan that there is a need to identify incident details through CCTV 

cameras, emergency responder agency contacts, and other sources during non-recurrent 

traffic conditions. Such identification will allow traffic signal engineers to determine if the 

conditions warrant an alternate signal timing plan based on the severity of incidents and 

the percentage of lanes blocked (FDOT, District 5, 2016; Nafis et al., 2019). 

 A key application of the special signal timing plan identified in the literature is the 

sudden increase in demand due to freeway incidents that cause traffic diversion to 

alternative routes. Such applications are considered a critical component of integrated 

corridor management (ICM). The benefit assessment of the Maryland CHART 

(Coordinated Highways Action Report Team) program reported in 2011 that the 

application of diversion special signal timing plans to accommodate diversion onto parallel 

arterials during freeway incidents resulted in a total delay time reduction of 33.56 million 

vehicle-hours, as well as a total fuel consumption reduction of 6.49 million gallons (Chang 

and Rochon, 2011). 

 This chapter is divided into two main parts.  The first part reviews previous studies 

on signal timing during congested conditions and the use of emerging data sources for 

signal control.  This part describes important signal timing parameters, traditional state-of-

practice, previous studies on signal timing modification during non-recurrent and/or 

oversaturated conditions, the use of emerging data sources in signal timing performance 
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measures, and traffic pattern identification methods.  The second part reviews advanced 

algorithms in signal control strategies.  This part presents algorithms for human decision 

automation, traffic pattern identification, and optimization.   

2.1 Review of Literature on Traditional Practice and Previous Studies 

 This section first describes the basic signal timing parameters.  Then, traditional 

practices and previous studies on signal timing modification during non-recurrent and/or 

oversaturated conditions are reviewed, followed by the description of the practices and the 

need for simulation model calibration. Finally, a review on the use of high-resolution 

controller data in signal timing performance measures and traffic pattern identification 

methods is presented. 

2.1.1 Considerations in Selecting Signal Timing Parameters 

 The basic parameters of the traffic signal control system are cycle length, green splits, 

and offsets. Signal performance measures are heavily affected by these three parameters, 

which are discussed in the following section. 

Cycle Length: 

 The selection of the cycle length is an important feature of signal timing plan 

selection. To maintain a synchronized traffic flow, adjacent intersections should operate 

with a common cycle length. Some restrictions need to be placed on the cycle lengths of 

individual signals. Vehicle delay is affected by the selection of the cycle length. Delays 

increase significantly when the cycle length is lower than a minimum and higher than a 

maximum cycle length, which depends on the degree of saturation (Chaudhary et al., 2002). 

Figure 2-1 shows the variations in delay with the increase and decrease of the cycle lengths 
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using the Webster’s equations and Highway Capacity Manual (HCM, 2000) according to 

Cheng et al. (2003). 

 

Figure 2-1: Delay Variation with the Cycle Length Estimated Using the Webster 

and Highway Capacity Manual (HCM) 2000 Methods (Source: Cheng et al., 2003) 

(Note: The volume unit in the figure is vehicles per hour.) 
 

 These restrictions on the cycle length can be established using Webster’s theory to 

determine the minimum and maximum cycle lengths according to Equations 2-1 and 2-2. 

(Webster and Cobbe, 1966). 

𝑐𝑐 =
𝐿

1−𝑌
                                                         (2-1) 

𝑐𝑚 =
1.5𝐿−5

1−𝑌
                                                    (2-2) 

where 

CC = Critical or minimum cycle length (seconds), 

Cm= Maximum cycle length (seconds), 

L = Total lost time for all critical phases in seconds, and 
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Y = Sum of flow ratios (volume/saturation flow ratios) for all critical phases. 

Green Splits: 

 The most basic method used to calculate green splits is to allocate the selected signal 

cycle to signal phases in proportion to the volume-to-saturation flow ratios for the critical 

movement served by each of these phases. However, more advanced and refined 

techniques such as optimization and machine learning methods have been used to identify 

the green splits in order to improve the performance of the signalized system. 

Offsets: 

 The offsets between the intersections influence progression quality. Therefore, 

arterial performance is also greatly affected by the offset settings. An important 

performance measure in signal control performance is the percentage of vehicle arrivals on 

green.  A large proportion of vehicles arriving during the green time is a sign of good 

arterial progression. 

2.1.2 Traditional Practices for Signal Timing Modification  

 One of the most effective strategies used to mitigate the impacts of non-recurrent 

events is to prioritize specific movements affected by events in order to minimize the 

delays to these movements, as well as the overall delay in the network. For example, the 

Florida Department of Transportation (FDOT) District 4 Arterial Management Program 

(AMP) uses operators to change the signal timing plans during non-recurrent events in both 

Broward and Palm Beach counties in South Florida. The estimated Benefit-Cost (B/C) 

ratios of the program for Palm Beach County and Broward County were estimated to be 

7.76 and 5.03, respectively, in 2016 (FDOT District Four, 2017,2018,2019). 
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 As part of the Dallas US-75 ICM corridor project, incident signal timing plans are 

developed to flush the diverted vehicles to arterials during freeway incidents (Alexiadis, 

and Chu, 2016a). Clustering analysis was first conducted to classify incidents into different 

groups based on different traffic and incident attributes (Alexiadis, and Chu, 2016a). The 

probable diversion was then estimated using a simulation-based dynamic traffic 

assignment model, and signal timing plans were developed for the identified clusters and 

prioritized based on their impacts on the freeway and the surrounding roadway network 

delays. A database was created that includes criteria-based expert rules for response plan 

recommendations (Alexiadis, and Chu, 2016a). 

 Most of the signalized intersections within the San Diego I-15 ICM network are 

operated utilizing actuated signal control (Alexiadis, and Chu, 2016b). During a congested 

event, some intersections along the alternative routes switch to a special signal timing plan 

to provide additional green time to accommodate the increased traffic. The decision to 

activate the plans is supported by a real-time simulation model. Changing signal timing 

plans during freeway and major incidents that occur on arterial streets was also proposed 

in the concept of operation of the I-210 ICM project (Dion et al., 2015). Signal timing 

changes were modeled in two of the four evaluation scenarios (Patire et al., 2016). In those 

two scenarios, signal timing plans along the arterial were modified to increase the capacity 

of the main approaches by increasing the cycle length and the relative green time for the 

main direction while the green time for the side streets was kept constant. Tariq et al. (2019) 

estimated the diversion due to freeway incidents based on detector data and argued that the 

diversion is constrained by the capacity of the signals at the off-ramps and adjacent signals 

during congested periods, which indicates the need for special signal control plans during 
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incidents to increase the capacity of these signals. Saha et al. developed methods for the 

selection of special signal timing plans to accommodate traffic diversion during freeway 

incidents to arterial streets (Saha et al., 2020a; Saha et al., 2020b; Saha et al., 2021).   

 A good example of the adaptive signal control strategy that explicitly considers the 

oversaturated condition is the “gating” strategy implemented in the Split, Cycle, Offset 

Optimization Technique (SCOOT) system. Gating provides a feature that terminates 

upstream movement phases and reduces the upstream traffic flow to high congestion 

intersections, thus preventing spillbacks (Wood, 1970). Another strategy that has been 

proposed to control queues at congested intersections is to provide a “reverse offset” 

instead of a forward offset between intersections. The reverse offset refers to determining 

the offset at the upstream intersection based on the start of green of the downstream 

intersection with the consideration of the time required for the recovery shockwave to move 

to the upstream intersection (Quinn, 1992).  

 Another practice for a coordinated arterial network is to use “double cycling”. An 

example of double cycling is when all of the signals in a coordinated corridor operate at a 

cycle length of 120 seconds, except for one signal operating at a 60-second cycle length. 

Using this technique, the operator can maintain fixed synchronization and reduce vehicle 

queuing and potentially, wait time (Chaudhary et al., 2002). 

2.1.3 Existing Signal Timing Optimization Tools  

 Several signal timing optimization tools have been developed in the past few decades 

to generate signal timing parameters. These tools optimize traffic delay and number of 

stops, as well as other measures of effectiveness to improve travel conditions. 
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 Among the existing tools, Synchro is currently the most widely used signal timing 

optimization tool used by transportation professionals in the United States. It is a delay-

based signal timing design tool, which can compute intersection offsets, as well as cycle 

lengths and phase splits. The program calculates the cycle length and green splits using 

Webster’s method and calculates the intersection delay using the HCM method (Benekohal 

et al., 2001). This program does not model platoon dispersion effects, spillback effects, or 

"bottleneck" situations where upstream traffic deficiencies reduce the traffic volumes 

reaching downstream of the intersections. 

 Synchro calculates the “Coordinatability Factor”, which is used to recommend 

whether the signals should be coordinated. This factor considers travel time, volume, 

distance, vehicle platoons, vehicle queuing, and natural cycle lengths. The potential for 

vehicle queues exceeding the available storage is also considered in determining the 

desirability of coordination (Henry and Sabra, 2005). The offsets are selected using a quasi-

exhaustive search that attempts to minimize delay.  

 Another software package, the Highway Capacity Software (HCS), is a macroscopic 

modeling approach that implements the HCM procedures.  The HCS can optimize pre-

timed signal timing at a single intersection for minimum delay using the SOAP2K tool 

method and also estimate the actuated phase lengths (Cheng et al., 2005).  Currently, the 

Streets module within HCS 2010 can optimize signal timing for an arterial segment based 

on the HCM 2010 procedures using a Genetic Algorithm. HCS 2010 can optimize the 

signal timings based on several objective functions, including the Percent Free-Flow Speed 

for Level of Service, Overall Delay, Arterial Delay, Arterial Stops, Travel Time, and Travel 

Speed. 
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 The TRAffic Network StudY Tool (TRANSYT) is a signal timing optimization 

package developed by the Transport Research Laboratory in the United Kingdom, which 

is one of the most widely used for signal timing optimization. Version 7 of TRANSYT was 

"Americanized" by the University of Florida Transportation Research Center for the 

Federal Highway Administration (FHWA) and named TRANSYT-7F (Cohen and Liu, 

1986; Park et al., 2001).  TRANSYT-7F uses a system “performance index” (PI) to 

optimize signal timing (Wallace, C. E. et al., 1998). Optimization of the cycle length, splits, 

and offsets is done by minimizing a Disutility Index (DI), which is a function of delay, 

number of stops, fuel consumption, and, optionally, queue spillover.  

 Some of the frequently used tools and their adapted optimization methods and 

optimized parameters are listed in Table 2-1. 

Table 2-1 Existing Signal Timing Optimization Tools 

 
Tools Source Methods Optimization Parameters 

MAXBAND 

Little et al., 

1966; 

Little et al., 

1981 

Mixed Integer Linear 

Programming (MILP) 

method  

Bandwidth/progression 

maximization 

MULTIBAND 
Gartner et al., 

1991 

 

PASSER II 

Chang and 

Messer, 1991 
Exhaustive search 

Cycle length estimation using 

Webster’s method 

Hill-Climbing optimization 
Adjust splits by minimizing the 

delay 

Bandwidth maximization 

and fine-tuning using 

interference algorithm for 

both directions 

Optimize phasing sequence and 

offset 

PASSER V 

Chaudhary and 

Chu, 2003  

Genetic Algorithm -Based 

Optimizer and 

Bandwidth maximization 

algorithms 

Minimizing delay 

bandwidth/progression 

maximization 

Interference algorithm and 

Time space diagram tool 
Fine tuning offset 
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Tools Source Methods Optimization Parameters 

TRANSYT & 

TRANSYT-7F 

Wallace et al., 

1998 
Exhaustive search for cycle 

length, Hill-Climbing and 

Genetic Algorithm (GA) 

based optimization methods 

Optimize progression 

bandwidth/function of delay, stops, 

fuel consumption / and, optionally, 

queue spillover. A later version 

considered “throughput measure” 

and “queuing measures” in 

objective functions 

HCS 
Benekohal et 

al., 2002  

SOAP2K tool method, 

Genetic Algorithm 

Split optimization by minimizing 

Delay 

SYNCRO 

Henry and 

Sabra, 2005 Exhaustive search technique 

Minimizes delay, number of stopa 

and queue size by applying 

penalties for these measures 

SIGOP 

Lieberman et 

al., 1976 

Monte Carlo simulation and 

gradual increment method 

for offset optimization 

Delay, number of stops and excess 

queue 

VISGAOST 

Stevanovic 

et.al., 2007 
VISSIM-based Genetic 

Algorithm 

Optimizes the fitness function 

combination of delay, travel time, 

number of stops, and throughput  

VISTRO 
PTV Group, 

2014 

Hill Climbing and Genetic 

Algorithm 

Optimizes the weighted sum of 

delays and number of stops 

2.1.4 Previous Researches on Signal Timing Strategies  

 Several research and development efforts addressed selecting traffic signal control 

during oversaturated conditions.  Liberman et al. (2000) proposed a real-time traffic control 

policy to select signal timing based on estimated queue lengths.  The goal was to control 

and stabilize queue lengths and provide equitable service to competing traffic streams by 

metering traffic at intersections, thus servicing oversaturated approaches while fully 

utilizing storage capacity and preventing queue spillback from maximizing the throughput 

that controls the interaction between incoming platoons and standing queues.  

 Researchers investigated the incorporation of knowledge-based artificial intelligent 

layers to support traffic management (Han and May, 1988; Scemama, 1994; Ritchie, 1990; 

Cuena et al., 1995). Some of these studies proposed the use of fuzzy decision support 

systems used for providing traffic control under different traffic situations (Cuena et al., 

1995; Hegyi et al., 2001). For example, a knowledge-based decision support system was 
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developed to identify critical traffic states, propose possible changes in the current signal 

timing plan, and decide which action should be taken (Cuena et al., 1995). Other systems 

have used “expert” systems, which represent traffic engineers' knowledge (Cuena et 

al.,1992; Deeter and Ritchie, 1993; Wild, 1994). 

 Optimization of a traffic signal setting is one of the most important requirements of 

a successful arterial performance. Choosing an appropriate objective function for 

optimizing traffic signal timing is critical because the choice will affect the overall network 

performance. Delay minimization is mostly used as an objective function for signal timing 

optimization, sometimes combined with the number of stops (Eriskin et al., 2017). 

However, instead of only delay minimization, a combination of delay minimization, system 

throughput maximization and queue maintenance are crucial for oversaturated conditions 

(Hadi et al., 1999; Li and Gan, 1999; Abu-Lebdeh and Benekohal, 2003; Lieberman et al., 

2000; Lieberman and Chang 2005). Signal timing optimization should be dynamic in that 

the signal timing control strategy and the associated plans should be selected based on the 

assessed conditions, including the congestion level. It is essential to have accurate 

congestion condition identification and queue estimation methods based on the collected 

data to achieve this goal. The following section discusses previous research conducted for 

signal timing optimization for oversaturated conditions. 

 Signal optimization for oversaturated conditions has been studied since the 1960s. In 

early studies, many researchers suggested that the objective function used in oversaturated 

intersection optimization should be based on maximizing system throughput instead of 

minimizing delay (Gazis and Potts, 1963; Gazis, 1964; Gordon, 1969; Singh and 

Tamura,1974; Mcshane et al., 1978). 
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 On the other hand, Michalopoulos and Stephanopoulos (Michalopoulos and G. 

Stephanopoulos, 1978) proposed a so-called ‘‘bang-bang” control model to minimize the 

delay of oversaturated intersections with queue-length constraints. Michalopoulos and 

Stephanopoulos developed timing strategies for undersaturated and oversaturated 

conditions and two-staged timing methods to identify switching over point (Michalopoulos 

and G. Stephanopoulos, 1978). Chang and Lin extended this work to identify the timing of 

switching strategies (Chan and Lin, 2000). Chang and Sun further extended the model for 

oversaturated networks by introducing the traffic flow propagation model in an integrated 

approach with TRANSYT-7F, where TRANSYT-7F identifies signal timings for 

undersaturated intersections while utilizing the two-stage model for oversaturated 

intersections (Chang and Sun, 2004). 

 While these methods concentrate on changing timing strategies between 

undersaturated and oversaturated conditions, other researchers have focused on solely 

identifying optimum cycle lengths and green times for oversaturated conditions (Chang, 

2001). Liberman et al. (2000) proposed a real-time traffic control policy to develop the 

relationship between the queue and signal timing (Lieberman et al., 2000) (Chang, 2001). 

This proposed queue estimation method uses input-output balancing of the advanced 

detector’s occupancy profile. Lieberman and Chang (2005) used a mixed-integer linear 

programming approach and heuristic optimization methods to the extent of this 

methodology. They implemented their method to a grid network by decomposing it into its 

constituent arterial subsystems in response to user-specified priorities (Lieberman and 

Chang, 2005).  
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 Girianna and Benekohal (2004) used genetic algorithm optimization to design a 

discrete-time signal-coordination model for coordinated oversaturated intersections to 

distribute the queue of the oversaturated intersections and ensure that the queues are 

reduced or cleared before released platoons arrive at a downstream signal system.  A 

quadratic programming approach was used to minimize and balance the link queues for 

real-time network-wide signal control in large-scale urban traffic networks (Aboudolas et 

al., 2010). 

 Hadi and Wallace (1993) developed a hybrid genetic algorithm approach to be 

implemented in the TRANSYT-7F program. Their method optimizes cycle length, phase 

sequence, and offsets, whereas TRANSYT-7F is used to optimize green splits. Hadi and 

Wallace (1995) proposed an enhancement function to TRANSYT-7F to enable the program 

to analyze and optimize signal-timing plans under congested conditions. The enhancement 

improved the program’s capability by implementing extensions to the objective function 

that considers queuing and/or throughput if queue spillback occurs (Wallace et al., 1998). 

 Park et al. (1999) proposed a genetic algorithm (GA) optimization strategy that 

includes a combination of delay minimization with a penalty function and throughput 

maximization based on the TRANSYT-7F model for optimal signal timing and queue 

management of oversaturated conditions (Park et al., 1999). Later, they tested three 

different optimization strategies and evaluated the strategies for different intersection 

configurations (Park et al., 2000). 

 Abu-Lebdeh and Benekohal (1997, 2000, 2003) presented a set of dynamic control 

and queue management algorithms for signal optimization to manage the queue formation 

and dissipation on oversaturated network links. They maximized the throughput by 
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managing queue formation and dissipation under oversaturated traffic conditions. (Abu-

Lebdeh and Benekohal,1997; Abu-Lebdeh and Benekohal, 2000; Abu-Lebdeh and 

Benekohal, 2003). Abu-Lebdeh et al. (2007) presented several models that can capture 

intersection traffic throughput while explicitly considering the interactions between traffic 

streams at adjacent signals.  

 Version 13 of TRANSYT included a cell transmission model as an alternative 

method to its embedded platoon dispersion model, enabling the model to consider the 

spillback effects and the time-varying flow evolution (Binning et al. 2008). Li (2010) 

proposed a model to capture traffic dynamics with the cell transmission concept by 

considering complex flow interactions among different lane groups under oversaturated 

conditions.  

 Liu and Chang (2011) developed a genetic algorithm for signal timing optimization 

during blockage and spillback conditions by minimizing the travel time or maximizing 

system throughput. They also compared their results with the output from TRANSYT-7F 

(version 8) and showed that their proposed model works better under congested and high 

demand traffic conditions. Long et al. (2011) developed a traffic control utilizing vehicle 

movement ban strategies to avoid gridlock situations during incidents in a grid network. 

They evaluated the control strategies in a simulated environment and found promising 

results in reducing congestion. 

2.1.5 Practice and Need for Simulation Model Calibration 

 Calibration of traffic simulation models is a critical component of simulation 

modeling. The increasing complexity of the transportation network and the adoption of the 

emerging vehicle and infrastructure-based technologies and strategies have motivated the 
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development of new methods that utilize new data sources in the calibration. There has 

been increasing recognition for the need for more detailed and specific guidance for 

utilizing simulation tools, considering the increasing complexity of simulation modeling.   

Several states have developed guidelines for utilizing simulation modeling, including a 

strong emphasis on calibration. The FHWA Traffic Analysis Toolbox documents have 

provided valuable information regarding the use of traffic analysis tools, including 

simulation model calibration (Wunderlich et al., 2019).   However, the existing simulation 

calibration guidance focuses on the use of field-measured macroscopic traffic flow 

parameters such as average travel times, approach volumes, turning movement counts, and 

queue lengths as measures of effectiveness (MOEs) to calibrate microscopic driving 

behavior parameters (Benekohal and Abu-Lebdeh, 1994; Hellinga, 1998; Ma and 

Abdulhai, 2002; Arafat et al., 2020). More recently, there has been an increasing interest 

in using microscopic parameters such as vehicle trajectories in simulation model 

calibration (Jie et al., 2013; Kesting and Treiber, 2008; Essa and Sayed, 2015). 

 In practice, the calibration of simulation models has relied on a manual iterative 

process to adjust the simulation model parameters to allow the model to better represent 

field traffic conditions. However, several researchers automate the calibration process 

using optimization-based approaches such as gradient search, simplex-based, and genetic 

algorithm (GA), aiming to minimize the error between field and simulation traffic 

parameters (Ma and Abdulhai, 2002; Kim and Rilett, 2003; Kim et al., 2005; Park and Qi, 

2005). However, these studies calibrated the models based on macroscopic measures, even 

when using advanced optimization techniques.  Combining the use of more detailed traffic 

measurements and advanced optimization techniques has the potential to achieve a more 
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accurate and reliable replication of traffic conditions in the simulation model. Such 

combinations are investigated in this study.   

2.1.6 Use of High-Resolution Controller Data in Signal Timing Performance Measures 

 Detailed signalized intersection parameters such as the number of vehicles utilizing 

an intersection, detector occupancy during green time and red time, and percentage of 

vehicle arrival on green are very important measures used to evaluate the performance of 

an intersection. Data from existing system detectors have been used to analyze the 

performance of signalized intersections for a long time.  In the past, the most popular type 

of detector was inductive loop technology, which was installed at intersection approaches. 

More recently, video image detections at stop lines and microwave detectors for midblock 

detections have been used due to concerns with the maintenance requirements of inductive 

loops.  Inductive detector failures are common, and maintaining them requires lane 

closures.  The use of microwave sensors, video image processing, Bluetooth, or Wi-Fi 

readers has increased in recent years for the automatic collection of data on arterials.  

 In recent years, advanced data collection, processing, archiving, and mining 

techniques have motivated and enabled the retrieval of event-based high-resolution 

controller data from signal controllers (Smaglik et al., 2007a; Day et al., 2007; Wu and Liu, 

2014).  This data is being widely used by signal control agencies to assess their signal 

control performance and identify required changes to the system.  

 There are several studies in which researchers utilize the event-based controller data 

for the estimation of measures, such as arterial progression quality, which uses the 

coordination diagram (Day and Bullock, 2012), split utilization (Bullock and Day, 2009), 

green occupancy ratio (Day and Bullock, 2011; Gettman et al., 2013), arrival type (Dakic 
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et al., 2017; Smaglik et al., 2007b), and vehicle arrival on green (Dakic et al., 2017; Al-

Abbas, 2018).   This section provides a brief description of the data and the derived 

parameters based on the data.    

 The FDOT adopted an ATSPM software that was originally developed by the Utah 

Department of Transportation (UDOT). Agencies in Florida have used the ATSPM 

software tools, with Seminole County being the first to use the FDOT tool in Florida.  Other 

agencies have used other commercially available tools for this purpose.  

 One objective of this study is to investigate the use of this data in traffic pattern 

recognition, and in the calibration and validation of microscopic simulation models. This 

study hypothesizes that it is possible to capture the multidimensional features of arterial 

traffic by using various performance measures derived based on high-resolution control 

data. 

Data description 

 The use of high-resolution data collected by traffic signal controllers has been 

developed and used for engineering-related performance measures over the past ten years.  

High-resolution controller data includes signal timing and detection at the highest time 

resolution of the controller (0.1 seconds), combined with data from other sources to support 

ATSPM. This data consists of various signal controller events that are logged in 0.1-s 

intervals based on a standardized set of event parameters and event identification codes. 

Figure 2-2 shows a sample of high-resolution event data.  
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Figure 2-2 Example of High-Resolution Controller Data 
 

 The high-resolution data consists of signal controller events based on a standardized 

set of event parameters and event identification codes.  The stored parameters include the 

Timestamp, which contains the date and time of activities, and the Event Code and Event 

Parameters.  The Event Code describes the type of event.  The Event Parameters indicate 

the specific detector or signal phase where the event occurs. The definitions of Event Code 

and Event Parameter are provided in the Indiana Traffic Signal High-Resolution Data 

Logger (Sturdevant et al., 2012). 

Utilized Performance Measures 

 In this study, performance measures based on high-resolution data are utilized for 

partitioning traffic operational scenarios. This data is also used for simulation model 

calibration and validation as part of the optimization process. The utilized measures are 

vehicle throughput, green occupancy ratio, split utilization ratio, and percentage arrival on 

green in each cycle.  
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 The high-resolution controller data provides the opportunity for cycle-by-cycle 

estimation of the throughputs. Having a separate detection channel per lane is required if 

lane-by-lane detection of the throughput is needed.  The Green Occupancy Ratio (GOR) is 

a performance measure that reflects the degree of green utilization in each phase. It is 

defined as the stop bar detector occupancy during the green interval (Day and Bullock, 

2011).  Higher values of GOR reflect higher utilization of the green time.  This value 

increases to values above 0.5 in the peak periods.  

 The Split Utilization Ratio (SUR) measures are derived for each intersection 

movement, which allows for the assessment of the congestion level in all intersection 

approaches. SUR is defined as the ratio of the number of vehicles passing the detector to 

the maximum number of vehicles that can pass during the effective green time (Day and 

Bullock, 2012) and can be calculated as follows: 

𝑋𝑘 =
ℎ𝑘×𝑁𝑘

𝑔𝑘
                                                          (2-3) 

where 

Xk = Split utilization ratio of phase k, 

Nk= The vehicle counts at phase k, 

hk = Saturation headway of phase k (seconds), and 

gk = Effective green time of phase k (seconds). 

The Percent Arrivals on Green (POG) is calculated as the proportion of vehicles that arrive 

at the green signal indication versus the proportion of vehicles that arrive at the red signal 

(Bullock and Day, 2009). This measure reflects the progression of traffic.  
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2.1.7 Identification and Partitioning of Traffic Operational Conditions  

 Clustering analysis is an unsupervised machine learning method that is capable of 

classifying each data point into a specific group. Clustering analysis is the most practical 

method for the identification of traffic patterns that are representative of traffic conditions 

in support of analysis, modeling, and simulation (AMS) (Rausch, 2007) (Yelchuru et al., 

2017; Hadi et al., 2019; Vasudevan, M., and Wunderlich, 2013). This type of analysis has 

been recommended for the development and calibration of simulation, particularly those 

used to assess transportation system operations and management strategies. Partitioning 

the field traffic conditions allows agencies to better plan, design, and evaluate new 

technologies and traffic operation strategies (Saha et al., 2019). The most extensive 

example of the utilization of clustering analysis in transportation engineering is its use in 

the AMS testbed effort funded by the FHWA (Wunderlich et al., 2013; Vasudevan and 

Wunderlich, 2013). 

Recent guidance provided in the updated Traffic Analysis Toolbox Volume III (FHWA) 

recommends using clustering to identify operational scenarios for use in calibration, such 

as different congestion levels, incident conditions, and weather conditions (Wunderlich et 

al., 2019).  In this study, clustering analysis is performed using parameters derived based 

on high-resolution controller data and travel time data to identify traffic patterns that 

represent field traffic conditions. 

2.2 Utilized Algorithms in Signal Timing Plan Selection 

 This study applies advanced machine learning and optimization algorithms to 

support the development and activation of special signal timing plans in response to non-

recurrent congestion.  This research uses data cleansing, clustering analysis, combination 
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of decision tree and fuzzy rule-based system, and optimization techniques that are 

implemented in this research and can be used to provide an efficient solution for non-

recurrent congestion in arterial networks. The following section presents an overview of 

the algorithms utilized in this study. 

2.2.1 Decision Tree and Fuzzy Rule Based System 

 A combination of a Decision Tree and Fuzzy Rule-Based System is used in this study 

to automate the decisions made by TMC signal engineers/expert operators when they 

observe and identify non-recurrent congestion. The Decision Tree (DT) is one of the most 

popular and effective supervised machine learning techniques for prediction and 

classification problems. A DT is developed to estimate the outcome variable based on a 

training dataset.  DT can work with high dimensional data, can be developed in an efficient 

manner, and can produce results that are easy to present and be understood by humans 

(Han, 2011). DT can be used to produce sets of decision rules by converting the resulting 

tree structure to “if” and “then” rules. If the condition of the first rule is true, then it uses 

the prediction of the first rule. If not, then it goes to the next rule and checks if it applies 

and so on.  

 There are many algorithms available for the development of the decision trees; with 

the most widely used being the Iterative Dichotomizer 3 (ID3), and C4.5, which is a 

successor of ID3, Classification and Regression Trees (CART), and Chi-square Automatic 

Interaction Detector (CHAID) (Singh, 2014). In general, the DT algorithms search for the 

dominant attribute among all of the other attributes. Then, the most dominant attribute is 

put on the top of the tree as the top-level decision node.  This search is repeated for the 

other attributes at the next levels of the DT.  In the tree development process, the algorithms 
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assess the measure of the effectiveness of partitioning the DT.  Three popular impurity 

quantification methods can be used as alternative measures of effectiveness:  Entropy or 

information gain, Gini Index, and Classification Error (Tan et al., 2006). 

 Often, in the case of human decision rule definitions, the rules cannot be delimited 

by sharp boundaries and associated with one-to-many relations or ambiguousness. The 

Fuzzy Rule-Based System (FRBS) extends the problem of classification and prediction to 

consider the vagueness and uncertainty in data more efficiently based on the fuzzy logic 

and fuzzy sets theory (Sugeno and Yasukawa, 1993; Yuan and Shaw, 1995). There is 

another advantage of FRBS in that an expert can augment the rules in the system. In this 

study, all the rules are extracted from the DT, and there are no additional rules that have 

been added to the system.  However, agencies may decide to augment the derived rules 

with additional rules as they apply the method in the real world.   

 Many researchers have used binary decision trees to extract the linguistic rules for 

developing FRBS models and creating a discrete set of fuzzy classes or class membership 

functions (Mitra et al., 2002; Hall and Lande, 1997).  The overlap percentages of the fuzzy 

classes can be chosen empirically. Decisions that are made based on the tree are fuzzier 

and soft when the overlap is large (Hall and Lande, 1997; Olaru and Wehenkel, 2003). The 

process of representing binary trees as crisp logical rules and transforming these rules into 

a fuzzy model involves four steps. The first step is to create the Decision Tree by 

minimizing impurities in the data. Second, membership class/functions are created to 

reflect the intervals of input and output variables and consideration of the crisp 

characteristic set generated by the Decision Tree. The third step is to formulate simplified 

fuzzy rules based on the rules generated by the partitioning of the tree and the characteristic 
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points of the fuzzy sets.  The final step is to run the fuzzy interface engine to predict the 

crisp output class from the fuzzy class for any new sample of the dataset (Abonyi et al., 

2003). Two popular FRBS models are the Mamdani model and the Takagi Sugeno Kang 

(TSK) model.   The Mamdani model is a multiple-input and single-output (MISO) system. 

This type of model consists of a fuzzy logic-based inference engine and linguistic variables 

in both the antecedent (input) and consequent (output) parts of the rules (Mamdani, 1974; 

Mamdani and Assilian, 1975).  The TSK model is similar to the Mamdani model, except 

that the consequent part in the TSK model is represented by a function of input variables 

(Takagi and Sugeno, 1993; Sugen et al., 1988).  In this study, the Mamdani-type FRBS 

model is used due to the ease of the model's interpretability.  

2.2.2 Clustering Methods  

 Clustering analysis is an unsupervised learning technique and refers to a grouping or 

segmenting technique applied to a collection of objects to subgroup them in a way where 

the objects within a cluster are closely related, compared to objects in different clusters 

(Hastie et al., 2017). Clustering methods usually utilize a dissimilarity measure to cluster 

the objects. The most widely used clustering method is the K-means clustering. Several 

other clustering methods are available, and the methods can be classified under four major 

approaches: centroid-based methods, hierarchical clustering, distribution-based clustering, 

and density-based clustering (Saha et al., 2019; Saha et al., 2020; Sarkar and Sharma, 

2018). The classification of clustering methods is shown in Figure 2-3. 
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Figure 2-3: Different Types of Clustering Methods (Source: Saha et al., 2019) 
 

 Figure 2-3 shows examples of clustering methods for the four major approaches. The 

K-means algorithm is the most widely used method among all types of clustering methods. 

This method is based on an iterative algorithm in which the process is initiated by providing 

a fixed set of centroids. Each data point to be clustered is then assigned to its closest 

centroid using a squared Euclidian distance measure. When assigning a point to a specific 

cluster, the goal is to minimize the sum of average pair-wise distance within-cluster 

dissimilarities. The centroids are then updated by computing the average of all the points 

assigned to each cluster. This process iterates until the assignment of the data points to each 

centroid does not change significantly (Hartigan and Wong, 1979; Hartigan, 1975; Huang, 

1998).  This method produces good results when applied to a large data set with quantitative 

values. 
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 One important aspect of clustering is to determine the number of clusters to use in 

the clustering process.  This study utilizes a method referred to as the “Elbow Method” to 

determine the required number of clusters (Ketchen and Shook, 1996). The Elbow Method 

is an empirical method that provides an objective approach to determine the optimal 

number of clusters and requires minimal prior knowledge about the dataset and the 

attributes of the dataset. The Elbow Method allows for clustering based on the optimal 

number of clusters, which is determined based on the total within-cluster sum of square 

(WSS) for each number of clusters (Ketchen and Shook, 1996). A graph is drawn between 

the total WSS and the number of clusters, and the location of the bend in the plot is 

generally considered an indicator of the appropriate number of clusters, as shown in Figure 

2-4.  

 

Figure 2-4: Plot of Total Within-Cluster Sum of Square (WSS) vs. Number of 

Clusters (Source: Tariq et al., 2019) 
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2.2.3 Optimization Techniques 

 Various optimization techniques have been used in signal timing optimization. There 

are three major components in an optimization algorithm:  selecting the decision variables, 

designing the objective function, and formulating constraints.  The first step of an 

optimization problem formulation is to identify the underlying decision variables to 

consider in the optimization process. Also, in most optimization problems, the bounds on 

the variables are set as the minimum and the maximum bounds.  

 The optimization objective functions could simply involve minimizing or 

maximizing certain functions depending on the research objective.  Another component in 

the algorithm is the formulation of constraints for the solution area. The constraints 

represent some functional relationships among the decision variables and other design 

parameters satisfying certain physical phenomena and certain resource limitations. The 

basic operation of an optimization algorithm is shown in Figure 2-5. 

 

Figure 2-5: A Flow Chart for the Basic Optimization Procedure (Source: Adby, 

2013) 
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 The optimization methods can be mainly divided into deterministic approaches and 

heuristic approaches. If an algorithm works in a mechanically deterministic manner 

without any random nature, it is called deterministic. Such algorithms will reach the same 

final solution if the optimization starts from the same initial point. The deterministic 

approaches can converge to a global or approximate global optimal solution by utilizing 

the analytical properties of the problem. Examples of deterministic approaches are linear 

programming, nonlinear programming, and mixed-integer nonlinear programming (Lin et 

al., 2012; Yang, 2013; Antoniou and Lu, 2007). 

 On the other hand, heuristic or stochastic approaches have been found to be more 

flexible than deterministic approaches. These algorithms are governed by probabilistic 

translation rules. However, the ability to find a global optimum solution is not guaranteed 

with these methods. Due to the randomness in these algorithms, it generally reaches a 

different solution in each run of the algorithm (Lin et al., 2012; Yang, 2013; Antoniou and 

Lu, 2007). 

 The Genetic Algorithm (GA) has become a widely used optimization technique in 

transportation engineering research.  It is a heuristic optimization technique motivated by 

Darwin’s principles of natural selection, survival of the fittest, and evolution. GA is widely 

used because of its robustness, computational efficiency, and ability to find a solution 

closest to the globally optimal solution. The three main components in genetic algorithms 

are: crossover, mutation, and selection of the fittest. Each solution is encoded in a string 

(often binary or decimal) called a chromosome. The crossover of two parent strings 

produce off-springs or new solutions by exchanging parts or genes of the chromosomes. 
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On the other hand, mutation is carried out by flipping some digits of a string, generating 

new solutions.  

 New solutions generated in each generation are evaluated by their fitness, which is 

linked to the objective function of the optimization problem. The new solutions are selected 

according to their fitness, which is called selection of the fittest. Sometimes, in order to 

make sure that the best solutions remain in the population, the best solutions are passed 

onto the next generation without much change; this is called elitism. (Whitley, 1994; 

Goldberg, 1989; Beasley et al., 1993) 

 When an optimization problem consists of multiple objectives instead of only one, it 

is called multi-objective, or a many objectives optimization. GA can be modified to deal 

with multiple objectives by incorporating the concept of Pareto domination in its selection 

operator and applying a niching pressure to spread its population out along the Pareto-

optimal trade-off surface.  

 The Non-dominated Sorting Genetic Algorithms (NSGA-II and NSGA-III) are 

multi-objective algorithms based on GA.   The NSGA-II algorithm is used when there are 

two objective functions to be optimized. On the other hand, the NSGA-III is applied for 

more than two objective function problems. Unlike the basic GA, the NSGA-III belongs to 

a set of multi-objective algorithms aiming to find the Pareto front of compromised solutions 

of all objectives rather than integrating all objectives together in one objective function 

(Yuan et al., 2014).   

 A solution belongs to the Pareto set if there is no other solution that can improve at 

least one of the objectives without the degradation of any other objective. NSGA-III is 

found to be able to maintain a better spread of solutions and converge better in the obtained 
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non-dominated front (Yuan et al., 2014, Mishra et al., 2002).  The boundary defined by the 

set of all points mapped from the Pareto-optimal set is called the Pareto-optimal front. 

Solutions in the Pareto-optimal front define the best trade-off between competing 

objectives. (Horn et al., 1994; Deb, 2001). Figure 2-6 illustrates the Pareto-optimal front 

and solution sets selecting process (Emmerich and Deutz, 2018). 

 

Figure 2-6: Graphical Representation of Pareto-Optimal Solution Process (Source: 

Emmerich and Deutz, 2018) 
 

 This study uses an optimization process not only for signal timing optimization but 

also to calibrate the simulation model based on a combination of traffic measurements 

incorporating parameters based on high-resolution controller data. 

2.3 Summary 

 This chapter presented a comprehensive review of literature on signal timing 

parameters, traditional practice and previous studies for signal timing strategies, use of 

emerging data sources for signal timing performance measures, criteria for 

microsimulation modeling, and advanced algorithms for data classification, machine 

learning, and optimization. Transportation agencies are manually modifying signal timing 
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parameters to accommodate non-recurrent congestion. Automated and effective strategies 

are required for signal timing modification during traffic incidents, work-zone, weather 

events, or sudden demand surge. Although several existing studies on signal timing 

optimization address recurrent congested conditions, solutions to the non-recurrent 

congestion problem on arterial streets still need to be explored. Proper calibration of the 

simulation-based optimization models is expected to be critical in order to provide 

solutions for local traffic conditions. Therefore, in this study, a methodology is developed 

to support proper signal timing modification decisions for non-recurrent congestion 

utilizing advanced data analytic and simulation-based optimization combined with 

emerging data sources. 
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CHAPTER III  

METHODOLOGY 

 This chapter provides a detailed description of the methods developed and proposed 

as a part of this dissertation to achieve the defined objectives. The first section, the 

methodological framework, provides an overview of the method of this study. A detailed 

description of each step is then presented in the subsequent sections. 

3.1 Methodological Framework 

 The proposed method provides signal timing modification strategies to mitigate 

detected non-recurrent congested conditions. The methodology in this study is developed 

utilizing machine learning and optimization techniques combined with emerging data 

sources. The effectiveness of the developed method is tested with alternative traffic 

operation scenarios. 

 The framework of the method is shown in Figure 3-1. In the methodological 

framework, the automation of experts’ decisions and signal timing optimization are used 

to generate special signal timing plans to mitigate the detected congested conditions. The 

study assesses the impacts of selecting and activating the special signal plans in response 

to non-recurrent congestion. 
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Figure 3-1: Proposed Framework of the Methodology 

 The first step of this study is to develop a machine learning model that automates the 

signal timing modification decisions taken by TMC Engineers.  This research uses a 

combination of Recursive Partitioning and Regression Decision Tree (RPART) and Fuzzy 

Rule-Based System (FRBS) to deal with the vagueness and uncertainty of human decisions. 

The method results in a rule based-decision system to identify the changes that need to be 

made to the signal control during incidents based on past cases of the experts’ decisions to 

change the signal timing.  The developed method is designed to capture the cognitive 

uncertainties associated with human thinking and perception related to an expert 

implementing signal timing changes in non-recurrent conditions.  

 The next step is data preparation to estimate the signal timing performance measures. 

These performance measures are used to identify the field traffic operational conditions. 
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The VISSIM microscopic simulation model is calibrated using these signal performance 

measures to replicate specific traffic operational conditions. As stated earlier, high-

resolution controller data provides the times when a vehicle arrives at and departs from a 

vehicle detector and records the changes in signal status within a 0.1-sec resolution.  

Therefore, this data allows for the derivation of vehicle arrivals and departures, green time 

utilization, signal control timings, and other parameters. The results from this derivation 

are used for partitioning traffic operational conditions and more detailed calibration and 

validation of simulation models.   

 The final step develops a method to optimize signal timing parameters for different 

types of non-recurrent events using optimization models integrated with the calibrated 

VISSIM simulation models. Calibrated simulation models nearly replicate non-recurrent 

event scenarios in the field. Signal timing optimization aims to minimize the corridor travel 

time, intersection delay, queue length upstream of the bottleneck, and maximize vehicle 

throughput. The utilized algorithm, NSGA-III, is a genetic algorithm optimization 

technique that deals with many objectives. The NSGA-III algorithm is utilized to generate 

special signal timing plans for non-recurrent congestion, such as arterial lane blockage and 

demand surge, which is due, for example, to diversion because of incidents on alternative 

routes. The assessment of the developed models shows the benefits of selecting and 

activating the special signal plans in response to non-recurrent congestion. 

3.2 Data Preparation  

 This section describes the data sources used in the methodology described in this 

chapter. This study used the expert’s decision log as important input to the methodology. 
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Other utilized data include high-resolution controller data, VISSIM direct output (raw 

data), and travel time data. The following section describes the data used in this study. 

3.2.1 Expert’s Decision Log 

 The traffic signal engineer/expert operator modifies the signal timing plans in real 

time based on the observations of incidents, prior experience, and the prevailing traffic 

conditions at upstream and downstream intersections. Their observed and recorded traffic 

parameters are queue length, upstream intersection importance, time of day, estimated 

demand increment ratio in case of demand surge situations, and estimated capacity 

reduction ratio during lane blockage conditions. Queue lengths are observed using CCTV 

cameras, and congestion is displayed in the Google Map Application. The Expert 

categorizes the upstream intersection importance into three levels, depending on the type 

of cross street at the upstream intersection, e.g., local road, major road, or road connected 

to a freeway ramp. The time of day is recorded as AM peak, PM peak, or midday. The 

capacity reduction ratio is estimated utilizing the capacity adjustment factors suggested by 

Dowling et al. (2013). The demand increment ratio is obtained by dividing the traffic 

demand in the critical direction during the demand surge by the historical traffic data. The 

Experts also recorded the modified green time, old green time, and cycle length for each 

non-recurrent event. An example of the Expert’s Decision Log is shown in Figure 3-2. 
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Figure 3-2: Example of Signal Timing Expert’s Decision Log 
 

3.2.2 Signal Performance Measures Extraction 

 High-resolution controller data, VISSIM raw data, and travel time data are analyzed 

and converted into signal timing performance measures for the purpose of this study.  The 

following section discusses these data items.  

High-Resolution Controller Data: 

 High-resolution controller data consists of various signal controller events that are 

logged in as 0.1-s intervals based on a standardized set of event parameters and event 

identification codes. Figure 2-2 in Chapter 2 shows an example of this data.  The high-

resolution data is logged in 24 hours a day as “h:m:s” (hour, minute, second). The stored 

parameters include the timestamp that contains the date and time of activities, Event Code, 

and Event Parameters.  These data are formatted as timestamp data and provide 0.1-sec 

resolution event data that are classified as Event Type Code and Event Parameter. 

 The Event Code describes the type of event and is coded in numbers. For example, 

the beginning of a green phase is coded as 1. Vehicle detections are encoded as 82. The 
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code descriptions of the “Event Type” are provided in the Indiana Traffic Signal High-

Resolution Data Logger (Sturdevant, J. R. et al., 2012).  

 The Event Parameter expresses the phase indication number or detector channel 

number in which the event occurs. For example, a data point Event Code 1 and Event 

Parameter 4 indicate that the green light of Phase 4 started during the time logged for the 

data point. These data provide complete records of the time vehicles arrive at and depart 

from a vehicle detector and record the signal status changes within a 0.1-sec resolution. 

 High-Resolution ATSPM data is used to estimate detailed measures, including 

vehicle throughput, actuated phase timing, split utilization ratio, green occupancy ratio, 

and percentage arrival on green in each cycle (Tariq et al, 2021). 

 As mentioned earlier, the high-resolution controller data provides the opportunity for 

a cycle-by-cycle estimation of various measures including the throughputs. Having a 

separate detection channel per lane is required if lane-by-lane detection of the throughput 

is needed. A “Detector On” code or Event Code 82 is encoded when a vehicle enters a 

detection zone. A “Detector Off” code or Event Code 81 in high-resolution data is encoded 

when a vehicle exits a detection zone. The event parameter expresses the phase indication 

number or detector channel number in which the event occurs. For example, a data point 

Event Code 1 and Event Parameter 4 indicate that the green light of Phase 4 started during 

the time logged for the data point. These data provide complete records of the time vehicles 

arrive at and depart from a vehicle detector and record the signal status changes within a 

0.1-sec resolution. Event Code 81 is used to calculate vehicle throughput in each lane per 

cycle. The volumes of the right-turn movements are calculated by subtracting the number 
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of vehicles departing the rightmost exit detector from the number of vehicles departing the 

rightmost lane stop line detector.  

 The actuated green time is calculated using Event Code 1 (Green Phase Begin) and 

Event Code 7 (Green Phase Termination) for each phase. The calculations of the yellow 

time and all-red time use Event Code 8 (Yellow Clearance Begin), Event Code 9 (Yellow 

Clearance End), Event Code 10 (Red Clearance Begin), and Event Code 11 (Red Clearance 

End). 

 The Green Occupancy is measured by the time difference between consequent Event 

Code 82 to Event Code 81, which shows the amount of time the detector is occupied.  The 

total occupancy per cycle is defined as the amount of time a detector is occupied. On the 

other hand, Green Occupancy is defined as the detector occupancy during the green time 

of each phase.  

 The Green Occupancy Ratio (GOR) is a performance measure that reflects the degree 

of green utilization in each phase. It is defined as the stop bar detector occupancy during 

the green interval (Day and Bullock, 2011). Higher values of GOR reflect higher utilization 

of the green time. This value increases to values above 0.5 in the peak periods. Equation 

3-1 shows the calculation of GOR using the detector occupancy during the green time and 

the actuated green time. The Split Utilization Ratio (SUR) measure is derived for each 

intersection movement to allow for the assessment of the congestion level of the 

movement.  SUR is defined as the ratio of the number of vehicles passing the detector to 

the maximum number of vehicles that can pass during the effective green time (Day and 

Bullock, 2012). SUR is calculated using Equation 3-2 based on vehicle throughput, 

actuated green time and saturation headway extracted from high-resolution controller data. 
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 The Percent Arrivals on Green (POG) is the proportion of vehicles that arrive on the 

green signal indication versus the proportion of vehicles that arrive at the red signal 

indication (Bullock and Day, 2009). This measure reflects the progression of traffic. POG 

is calculated by using the extracted vehicle arrival number from the ‘Detector On’ Event 

(Event Code 82) following Equation 3-3. 

                                               𝐺𝑂𝑅 =
𝑂𝑐𝑐𝐺𝑟𝑒𝑒𝑛.𝑘

𝑔𝑘
                                                      (3-1) 

𝑋𝑘 =
ℎ𝑘×𝑁𝑘

𝑔𝑘
                                                          (3-2) 

𝑃𝑂𝐺 =
𝑉𝐺𝑟𝑒𝑒𝑛.𝑘

𝑉𝐶𝑦𝑐𝑙𝑒.𝑘
× 100                                               (3-3) 

where 

k = Split utilization ratio of phase k, 

Nk= The vehicle counts for phase k, 

hk = Saturation headway for phase k (seconds), 

gk = The effective green time for phase k (seconds), 

OccGreen.k= Detector Occupancy during green period of phase k, 

VGreen.k= Vehicle arrival during green period at phase k, and 

VCycle.k= Vehicle arrival during cycle time at phase k. 

VISSIM Direct Output (Raw Data): 

 This study utilized raw output from the VISSIM microscopic tool to calculate the 

signal timing performance measures mentioned above using Equations 3-1, 3-2, and 3-3. 

The detection and signal phasing timing log files produced by the model are processed, 

providing 0.1-sec data that emulate real-world high-resolution signal controller event data. 

The performance measures from high-resolution controller data and emulated high-
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resolution data from VISSIM are used for partitioning traffic operational conditions, as 

well as for a more detailed calibration and validation of simulation models.   

Travel Time Data: 

 Travel time data is directly extracted from the Regional Integrated Transportation 

Information System (RITIS) website for the segments of the major corridor of the case 

study network. The vehicle travel times used in this study are estimated by a third-party 

vendor (HERE) based on probe vehicles. Figure 3-3 shows the corridor travel time data 

format. The travel time data consist of tmc_code, time stamp, and travel time data in 

seconds. The tmc_code in the data is used for roadway segment and movement direction 

identification. 

 

Figure 3-3: Partial of Travel Time Data 

3.3 Automation of Signal Timing Engineer’s Decisions 

 An important component of this research is to capture the decisions of the traffic 

signal engineers at the TMC in changing signal timing parameters during non-recurrent 
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congestion.  In such cases, the traffic signal engineers/experts modify the signal timing 

plans in real time based on the observations of incidents, prior experience, and the 

prevailing traffic conditions at upstream and downstream intersections. One of the goals of 

this study is to automate the decision-making process of the traffic signal engineer/expert 

operators to offer a proactive, consistent, and easily implementable solution. 

 This study investigates automating the process of updating the signal timing plans 

during non-recurrent conditions by capturing the history of the traffic signal engineer’s 

responses to non-recurrent conditions and utilizing this experience to train a machine 

learning model. This study intends to automate experts’ decisions using machine learning 

techniques, to facilitate a proactive, consistent, and easily implementable approach to 

addressing traffic congestion during non-recurrent events.  

 The proposed methodology includes utilizing a Fuzzy Rule-Based decision system 

that is supported by the Decision Tree machine learning approach to capture and automate 

the traffic signal engineer’s decision. The developed model learns from complex yet 

reasonable decisions made by traffic signal engineers/experts. Figure 3-4 shows the steps 

for constructing the rule-based decision system. As indicated in Figure 3-4, this 

construction comprises the Decision Tree generation and Fuzzy Rule-Based System 

development. 
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Figure 3-4: Principal Steps of the Utilized Fuzzy Rule-Based Decision System  

 The first step in the automation of the experts’ decisions is the Decision Tree 

formation, which provides the structure of the partitioning and classification of the traffic 

signal engineer’s decisions feeds to change the timing parameters. In assessing the quality 

of the model, this study utilized the Gini Impurity Index as an impurity measure for the 

subset selection of the developed decision tree. The Gini Impurity Index measures the 

probability of an element in the subset to be mislabeled, assuming it is randomly labeled 

according to the distribution of all of the classes in the set. DT also eliminates variables 

that do not contribute to predicting the output from inclusion in the tree utilizing a 

procedure referred to as feature selection. This is important since having irrelevant features 

in a dataset can decrease the accuracy of the developed model. The resulting Decision Tree 

with the remaining features and derived structure is then utilized to induce the knowledge 

base or rule-based system by converting the Decision Tree structure into crisp if-then rules. 

These crisp rules are extracted based on the DT results and capture the traffic signal 

engineer’s decisions. The next step is to fuzzify these crisp rules with consideration of the 
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uncertainties in assessing the traffic signal engineers according to the input and output 

parameters. 

 In this study, the Recursive Partitioning and Regression Trees (RPART) method is 

implemented to derive the Decision Tree based on the traffic signal engineer’s data feed. 

RPART is a function that implements the Classification and Regression Tree (CART) 

algorithm, which is a popular algorithm for the development of decision trees. It is used to 

build Decision Tree in a binary form (Atkinson and Therneau, 2000). In the implementation 

of RPART in this study, the ‘rpart’ and ‘rpart.plot’ functions in the R studio are used to 

extract the logical rules by partitioning the dataset. 

 When developing a DT, RPART first selects the variable that best splits the dataset 

into two groups. The subsets are then partitioned again using the same process. This 

method is recursive, which means that the process continues to partition the subsets from 

the previous split until no other improvements can be made to the tree (Therneau, 1983).  

The Gini Impurity Index is used for the subset selection when building the Decision Tree 

(Atkinson and Therneau, 2000). The Gini Impurity Index measures the probability of an 

element in the subset to be mislabeled, assuming it is randomly labeled according to the 

distribution of all of the classes in the set. As such, it estimates the heterogeneity of the 

classes in a subset created by the split. The Gini Impurity Index is scored between 0 to 1, 

with 0 being the best and 1 being the worst. If all of the elements in a set are in the same 

class, the Gini Impurity Index is 0. If there are an equal number of elements of the two 

classes in a subset, the Gini Impurity Index is 1/2 (Tan et al., 2006). The development of 

the decision tree in this model uses the Gini rule for splitting and two parameters referred 

to as ‘minsplit’ and complexity parameter (‘cp)’ as the control parameter of the nodes. This 
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model minimizes the Gini Index in a recursive pattern. The ‘minsplit’ parameter is the 

minimum number of observations that must exist in a node for a split to be attempted.  A 

‘minsplit’ of 3 is used in the DT model. The Complexity Parameter ‘cp’ in the ‘rpart’ 

function is the minimum improvement in the model needed at each node. It is the amount 

by which splitting that node improves the relative error. For example, if splitting the 

original root node drops the relative error from 1.0 to 0.5, the cp of the root node is 

calculated as 0.5.  A cp of 0.01 is used in the developed DT in this study.  This means that 

if splitting a node results in an improvement of 0.01 or less, the tree building at that node 

stops. 

 An FRBS is developed in this study using the ‘frbs.gen’ function in the R studio.  

The ‘frbs.gen’ function performs inference based on human knowledge. The purpose of 

this function is to build an FRBS model manually from user-given inputs or from the 

knowledge of human experts without a learning process (Riza, 2014; Riza, 2015).   

 As mentioned earlier, the Mamdani model is utilized in this study to develop the 

FRBS. The Mamdani model consists of four major steps: fuzzification, knowledge base 

creation, fuzzy rule inference, and defuzzification. Fuzzification is the process of 

converting the input variables into fuzzy sets. This step requires the use of membership 

functions representing the degree of truth in fuzzy logic and can be developed from the 

expert’s opinion or learned from statistical data. Instead of a precise set of bi-valued logic 

or boundaries, the membership functions or fuzzy sets have indeterminate boundaries.  In 

this study, the membership functions are developed using the expert’s database, which 

contains input variables recorded based on real-world events, including queue length, 

upstream intersection importance, demand increment ratio, incident start period, and lane 
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blockage data, as well as the output variable increment in the g/C ratio. Queue length is 

observed using CCTV cameras and the Google Maps. Upstream intersection importance is 

categorized from 1 to 3, depending on the type of cross street at the upstream intersection, 

e.g., local road, major road, or road connected to freeway ramp. Also, the linguistic terms 

of the input variables are converted to fuzzy numbers in this stage. The dataset used for the 

developed model only contains the cases involving green time modifications.  In these 

cases, the cycle length and offset were not changed in order to maintain the progression.  

Thus, this study does not consider the cases when the cycle length is changed. 

 The knowledge base in the fuzzy logic system is composed of a database and a rule 

base. The database includes the fuzzy-set membership functions.  The rule base represents 

the reasoning of human experts in a set of if-then rules, which are extracted from the 

Decision Tree as crisp if-then rules with antecedent and consequent parts. When a rule is 

formatted as “IF A THEN B”, where A and B are fuzzy sets, A is called the antecedent and 

B is called the consequent parts of the fuzzy rule. 

 The fuzzy rule inference engine converts the fuzzy input to fuzzy output using the if-

then rules. It establishes the rule strength of the antecedent part according to the 

combination of the membership functions and fuzzy rules. Then, it determines the 

consequent rule based on the rule strength and the output membership function. The 

defuzzification converts the fuzzy output of the inference engine to a crisp output. This 

process is conducted by aggregating all of the qualified consequents of the rules to get the 

defuzzified outputs.  

 The methodology developed in this step is a general process and can be applied by 

traffic management centers anywhere to recommend changes to the green time splits during 
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non-recurrent events while keeping the cycle length constant.  Figure 3-5 shows a detailed 

description of the process to be used for application development. 

                           

Figure 3-5: Step by Step Process for the Automation Model Development 
 

3.4 Identification and Partitioning Traffic Operational Conditions 

 This study used K-means clustering, which is widely used in transportation 

engineering research, for pattern recognition to model representative traffic operational 

scenarios.  The K-means clustering analysis is an iterative process that assigns data points 

to a particular cluster based on the Euclidean distance. This process iterates until the 

distances between cluster centers and the assigned data points to each cluster are minimum. 

One crucial aspect of clustering is to determine the number of clusters to use in the 

clustering. The Elbow method is used to determine the required number of clusters. Figure 

3-6 shows the pseudo-code for the K-means clustering analysis. 

 

Data preparation using decision taken by experts 

in non-recurrent traffic conditions 

Randomly separate certain percentage of the 

data (usually 5 to 20 percent) for use as test 

dataset and use the rest of the data for training 

 

Apply DT and FRBS algorithms to generate the 

decision rules 

Validate the model using the test dataset 
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K-means clustering algorithm 

Input: Dataset X= {x1, x2.…., xi}, Number of Cluster=K 

Output: Sets of Clusters 

stopping criterion: No more changes in the cluster membership of X 

Place the centroids, c1, c2, ...., ck randomly 

while not stopping criterion do 

          for data point each xi: 

                find the nearest centroid, (c1, c2, ...., ck)  

                assign the point to that cluster  

          for each cluster j = 1, 2, ..., K 

                new centroid = mean of all points assigned to that cluster 

end 

return Clusters, centroid 

 

Figure 3-6: Pseudo-Code for the K-means Clustering Algorithm 

 In this study, traffic pattern recognition is accomplished utilizing the GOR and travel 

times.  The whole clustering process is performed in two levels. First, the study applied 

clustering for the whole day travel time measurements at 15-minute resolutions for both 

directions of the study corridor. In this clustering analysis, normal (incident-free) day travel 

time data for one month is used.  The GOR values are included in the next level of 

clustering that further categorized the travel-time clusters based on the GOR.  In this second 

layer, the clusters are based on the GOR of the major through movements.  The data points 

in each resulting cluster are then further clustered based on the GOR of the left-turn 

movements. This process ensures that each final cluster represents a distinct traffic 

operational scenario considering all intersection movements. 

3.5 VISSIM Calibration Using High-Resolution Controller Data 

 Microscopic traffic simulation tools are now commonly used to support various 

transportation agencies’ business processes. The use of simulation models and the 

complexity of these models are expected to increase with the increasing need to assess the 

emerging vehicle and infrastructure-based technologies and strategies, such as active traffic 
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and demand management, connected and automated vehicles, and cooperative driving 

automation.    

 Traffic simulation tools are usually set with default values of user-adjustable 

parameters. However, the models with the default values rarely replicate local traffic 

conditions.  When a microscopic simulation model is used without proper calibration and 

validation, the simulation results are inaccurate and unreliable and cannot be used to 

support the agency’s decisions.  Thus, calibration and validation processes are necessary 

to minimize the deviation between the simulation results and field observations before 

using the models for alternative analyses. 

 The calibration of traffic simulation models is traditionally based on macroscopic 

traffic parameters, such as traffic volumes and demands, spot speeds, travel times, and 

where available, queue lengths.  The models are usually calibrated for an average peak 

and/or off-peak hour or period representing typical traffic conditions on the modeled 

network. However, the recent guidance provided by the updated Traffic Analysis Tool Box 

Volume III, which is produced by the FHWA, recommends the use of clustering to identify 

operational scenarios for use in calibration, such as different congestion levels, incident 

conditions, and weather conditions (Wunderlich et al., 2019). 

 This study investigates the use of high-resolution controller data in combination with 

the commonly used traffic data in the calibration and development of simulation models. 

The data is used first to identify operational scenarios for use in the model based on the 

clustering analysis, as mentioned above. A microscopic simulation model is then developed 

and calibrated for the scenarios using a multi-objective optimization technique based on 

travel time and high-resolution controller-based measurements.   
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 This study uses an optimization process to calibrate the simulation model based on a 

combination of traffic measurements, including those derived from high-resolution 

controller data.  The study compared the utilization of GA to calibrate the simulation model 

based on a single variable (travel time) with calibration based on NSGA-III multi-objective 

optimization utilizing additional parameters estimated from high-resolution controller data. 

 The evaluation of the calibration based on the multi-objective function indicates that 

the proposed optimization technique is able to better replicate intersection performance 

measures, including measures based on high-resolution controller data such as GOR, green 

utilization, and arrival on green. On the other hand, optimizing the calibration parameters 

based on travel time measurements alone produces unacceptable errors in those detailed 

signal parameters. 

 The utilized procedure for the development and calibrating microscopic simulation 

models consists of three main steps: model development, model calibration by optimizing 

driver behavior parameters to minimize the difference between the field and simulated 

performance measures, and model validation. The travel time, split utilization ratio, and 

movement throughput are used to calibrate each operational scenario identified based on 

clustering analysis. The errors in GOR and POG are checked for model validation. 

3.5.1 Model Development 

 The study segment used to demonstrate the proposed method consists of five 

intersections, from NW 22nd Avenue to NW 7th Avenue on NW 119th Street in Miami-

Dade County. . This segment, which is about 1.5 miles in length, was selected because it 

faces moderate to high demands all day long and is often congested during peak hours. In 

addition, there is an adequate amount of data on this segment from advanced data sources 
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such as high-resolution data, travel time data based on Bluetooth reader measurements, 

traffic counts, and incident data.  

 Coded signal timing plans in the model are the same as the semi-actuated time-of-

day plans implemented in the real world.  The signal phase timing plans are obtained from 

Miami-Dade County and verified using high-resolution controller data. Vehicle inputs at 

the entry points of the network and the static routes are coded as the traffic volume 

extracted from high-resolution data, which are verified for correctness based on the turning 

movement counts taken for one day in the peak periods. The relative flows associated with 

the static routes are coded based on the traffic volumes extracted from high-resolution data 

and verified using one-day turning movement counts.     

 The desired speed distribution in the eastbound (EB) and westbound (WB) directions 

is coded according to each link's speed limits in the segment. Also, reduced speed areas are 

placed for the turning movements of the roadway intersections to reflect the turning speeds, 

which impact the movement saturation flow rates. Figure 3-7 shows an illustration of the 

study simulation model over an Open Street Network map. 
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Figure 3-7: VISSIM Simulation Network of the Case Study Segment 
 

3.5.2 Selection of Model Calibration Parameters 

 Simulation models are developed and calibrated for a one-hour analysis period.   The 

study optimized the VISSIM parameters that affect driver behaviors and traffic 

performance characteristics to improve the microsimulation model’s ability to replicate 

real-world traffic scenarios.  VISSIM provides two car-following models to select from: 

Wiedemann 74 and Wiedemann 99.  The Wiedemann 74 model is generally used for urban 

traffic and merging areas, whereas the Wiedemann 99 is generally used for freeway traffic 

with no merging areas (WisDOT, 2017).  The driver behavior parameters for lane 

changing, signal control parameters, and the car-following model according to the 

Wiedemann 74 model are optimized in this study using the NSGA-III algorithm.  The 

specific optimized parameters and the associated ranges of their values are selected 

following the VISSIM-specific guidelines of the Wisconsin State Department of 
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Transportation’s (WisDOT) Traffic Engineering, Operations and Safety Manual 

(WisDOT, 2017), as presented in Table 3-1.
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Table 3-1: List of Adjusted Driver Behavior Parameters 
Parameter 

Type 

Parameters Min* Max* Default 

Value 

Unit Parameters Description 

Car Following 

Model 

Average Stand 

Still Distance 

3.28 6.56 6.56 ft Average desired distance between two cars. Higher 

value means larger standstill distance and lower 

capacity. 

Additive Part of 

Safety Distance 

2 2.2 2 ft Used for desired safety distance. Higher value means 

larger standstill distance and lower capacity. 

Multiplicative 

Part of Safety 

Distance 

2.8 3.3 3 ft Used for the computation of the desired safety 

distance. Higher value means larger standstill 

distance and lower capacity. 

Lane Change Maximum 

Deceleration-

Own (ft/s2) 

-15 -12 -13.12 ft/s2 Upper bound of deceleration for own vehicles. Higher 

absolute value means more aggressive lane-changing 

behaviors. 

Maximum 

Deceleration- 

Trail (ft/s2) 

-12 -8 -9.84 ft/s2 Upper bound of deceleration for trailing vehicles. 

Higher absolute value means more aggressive lane- 

changing behaviors. 

Waiting Time 

Before Diffusion 

(s) 

60 99999 60 s The maximum amount of time a vehicle can wait at 

the emergency stop distance for a necessary change 

of lanes. Higher value means more tolerance on 

vehicles waiting at the emergency stop distance for 

necessary lane changes. 

Minimum 

Headway 

1.5 2 1.64 ft The minimum distance between two vehicles that 

must be available after a lane change, so that the 

change can take place.  

Signal 

Control 

Factor 0.6 1 0.6 
 

Higher value reduces the safety distance between 

vehicles close to the signal stop bar. 

* Min= Minimum value, Max= Maximum value,  ft= feet, s= seconds
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 Performance measurements, as outputs of the simulation, are collected using the 

simulation evaluation window in the Python COM interface, as well as the output 

performance evaluation files, including the detection, signal phasing, and timing log files 

as follows: 

• Vehicles throughput is collected based on data collection points specified at the stop 

line detector locations. 

• Vehicle travel time is collected directly from vehicle travel time measurements in the 

simulation. 

• Green time is measured using the ‘signal state run time’.  

• The total number of vehicles passing each detector is collected based on detector log. 

3.5.3 Calibration Process  

 As stated earlier, the model calibration process investigates the use of the NSGA-III 

algorithm in multi-objective optimization to calibrate the simulation model with the use of 

additional parameters estimated based on high-resolution controller data, compared to the 

utilization of GA to calibrate the simulation model based on a single variable (travel time) 

in the calibration. There have been several studies that used GA to calibrate simulation 

models by minimizing the error between field and simulation travel time or turning 

movement counts (Ma and Abdulhai, 2002; Kim et al., 2005; Park and Qi, 2005). An 

arterial network traffic movement is affected by several major factors, including movement 

restrictions due to traffic controllers and traffic feed through cross streets. In this study, the 

calibration based on GA with a single objective and multi-objective optimization procedure 
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is compared to determine their effectiveness in supporting the calibration of simulation 

models.   

 When calibrating the driver behavior parameters based on a single objective GA 

operator, the absolute error between the field travel time and simulation travel time is 

minimized using Equation 3-4.  The pseudo-code for the GA is shown in Figure 3-8. 

                                                 𝑓(𝑥)= 
|𝑇𝑇𝐹𝑖𝑒𝑙𝑑−𝑇𝑇𝑠𝑖𝑚𝑢𝑙𝑎𝑡𝑖𝑜𝑛|

𝑇𝑇𝐹𝑖𝑒𝑙𝑑
                   (3-4) 

where 

x= Driver behavior parameters, 

f(x)= Objective function, 

TTField = Field-measured travel time,  

TTSimulation = Simulation travel time. 

 

Figure 3-8: Pseudo Code for Single Objective Genetic Algorithm Optimization 

GA algorithm 

START 

Generate generation n: 

                 number of variables=k, population size= i, 

                 initial population, p= [[[x11,x12, …., x1k], 

                                                      …… 

                                                      [xi1,xi2, …., xik]] 

Run   VISSIM simulation 

Break VISSIM simulation at 900 seconds 

Run VISSIM simulation using for individuals in new population 

Compute fitness using VISSIM COM interface 

Create generation n+1: 

            Selection 

            Crossover 

            Mutation 

            Open VISSIM COM interface 

            for each individual in population: 

                  Run   VISSIM simulation 

                  Break VISSIM simulation at 900 seconds 

                  Run   VISSIM simulation using for individuals in new population 

                  Compute fitness using VISSIM COM interface 

UNTIL population has converged 

END 
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 As discussed above, the change in the vehicle movements in an arterial network is 

influenced by multi-dimensional network features such as traffic signal timing, stop signs, 

and vehicle feed from cross streets. Therefore, a multi-objective optimization algorithm, 

referred to as NSGA-III, is applied to minimize the error between field and simulation 

measures, including corridor travel time, intersections delay, and vehicle throughput. The 

multi-objective optimization problem for VISSIM calibration can be stated as follows: 

minimize        𝑓(𝑥)= [𝑓1(𝑥), 𝑓2(𝑥), 𝑓3(𝑥) … … … . , 𝑓𝑀(𝑥)]               (3-5) 

subject to: 

𝑥𝑖
𝐿 ≤ 𝑥𝑖 ≤ 𝑥𝑖

𝑈                                            (3-6)  

where 

M= Number of objective functions, (In this study M=3, which are travel time, split 

utilization ratio, and throughput), 

f(x)= Objective function values, 

i= Number of variables, 

xi = Decision variables (Adjustable microsimulation parameters), 

xi
L= Lower bound of decision variables, 

xi
U= Upper bound of decision variables. 

 The decision variables in this optimization are listed in Table 3-1, and the lower 

bound and upper bound of each parameter in the optimization algorithm are set based on 

the minimum and maximum values in Table 3-1.  The objective function values are directly 

calculated based on the simulation results collected from the COM interface of the utilized 

tool and the field data for the Category 2 traffic pattern. The objective functions are 

calculated, as shown below: 
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f1= 
|𝑇𝑇𝐹𝑖𝑒𝑙𝑑−𝑇𝑇𝑠𝑖𝑚𝑢𝑙𝑎𝑡𝑖𝑜𝑛|

𝑇𝑇𝐹𝑖𝑒𝑙𝑑
                                   (3-7) 

f2=  
|𝑋𝐹𝑖𝑒𝑙𝑑(𝑘)−𝑋𝑠𝑖𝑚𝑢𝑙𝑎𝑡𝑖𝑜𝑛(𝑘)|

𝑆𝐹𝑖𝑒𝑙𝑑(𝑘)
                               (3-8) 

f3= 
|𝑇ℎ𝑟𝑜𝑢𝑔ℎ𝑝𝑢𝑡𝐹𝑖𝑒𝑙𝑑(𝑘)−𝑇ℎ𝑟𝑜𝑢𝑔ℎ𝑝𝑢𝑡𝑠𝑖𝑚𝑢𝑙𝑎𝑡𝑖𝑜𝑛(𝑘)|

𝑇ℎ𝑟𝑜𝑢𝑔ℎ𝑝𝑢𝑡𝐹𝑖𝑒𝑙𝑑(𝑘)
               (3-9) 

where 

TTField = Field-measured travel time (seconds),  

TTSimulation = Simulation travel time (seconds), 

XField(k)= Field- measured split utilization ratio at phase k, 

XSimulation(k)= Simulation split utilization ratio at phase k, 

ThroughputField(k)= Field- measured throughput at phase k, and 

Throughput Simulation(k)= Simulation throughput at phase k. 

 The multi-objective optimization process for calibrating driver behaviors in the 

VISSIM Simulation is shown in the flowchart in Figure 3-9. 
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Figure 3-9: NSGA-III Optimization Process Using the VISSIM COM Interface 
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3.6 Signal Time Optimization  

 As stated in the literature review section, signal optimization for oversaturated 

conditions has been studied since the 1960s. However, there are limited resources of 

practical solutions for non-recurrent congestions such as lane blockage and demand 

surcharge caused by the diversion from freeway incidents or vehicle rerouting, work zone, 

etc. This study aims to provide an implementable signal timing plan development system 

for various types of non-recurrent congestions. Advanced data analytics and replicated 

field signal timing performance measures within micro-simulation platforms are utilized 

in this research to generate the signal timing plans for non-recurrent conditions.  

 Choosing an appropriate objective function for optimizing traffic signal timing is 

critical because the choice will affect the overall network performance. As mentioned 

earlier, selecting the parameters of traffic signals in arterial corridors is a multi-objective 

problem, in which optimizing the solution based on one variable can often work to the 

detriment of another. Intersection delay minimization for signal timing optimization is by 

far the most widely used objective function. However, signal timing optimization based on 

network delay may not ensure utilizing intersection capacity to the fullest in congested 

conditions. Another consideration is that in addition to the consideration of individual 

intersections, the performance of the network corridor needs to be considered in the 

optimization, especially where long queue formation and spillback need to be taken into 

account. 

 In these situations, a multi-objective optimization technique is suitable for generating 

the signal timing plans considering multi-dimensional measures of effectiveness in the 

arterial network. In this study, the NSGA-III multi-objective optimization technique is 
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applied to find the best signal timing plans during non-recurrent events. Calibrated VISSIM 

models are used as part of the optimization of signal timing for different types of incident 

and demand surge. 

3.6.1 Optimized Objective Functions 

 As mentioned earlier, optimizing traffic signal timing is a multi-objective problem. 

Three measures of effectiveness have been selected in this study for the optimization 

problem. All of the objective function values are directly calculated based on the VISSIM 

simulation model results collected from the COM interface. The objective functions used 

in the optimization problem include the corridor travel time, intersection delay, and average 

throughput of all phases. 

 Delay is defined as the difference between the actual travel time and the travel time 

at free-flow conditions. At a signalized intersection, intersection delay depends on the 

vehicle stop time on red or waiting time for queue discharge.  

 Throughput is the total number of vehicles released from each link during a specific 

period of time. Throughput maximization increases the system's ability to process more 

vehicles, but it may cause queue formation at downstream intersections, especially when 

the downstream intersections have less capacity than demand. 

 The average time to move vehicles from one point to another point of the network is 

referred to as vehicle travel time. Corridor travel time is the average time it takes to travel 

the whole corridor. Minimizing the travel time of the critical direction of the corridor also 

minimizes the possibility of queue formation along the subject’s direction. However, this 

objective function does not consider all of the movement of the intersection. 
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 Non-recurrent events generally form long queues, and in some cases, cause spillback 

to the upstream intersections. Choosing the objective function for this type of traffic 

condition is crucial. The designed objective functions should give priority to the critical 

direction (direction of the special events). At the same time, it should not deteriorate the 

cross-street traffic conditions. The objective functions of minimizing intersection delay and 

maximizing average throughput balance the individual intersection performance 

considering all movements.  On the other hand, minimizing corridor travel time ensures 

the critical direction is a prime concern in the overall formulation.  The objective functions 

utilized in the optimization are cited below: 

                              𝑓1(𝑔)= Corridor Travel Time of the critical direction                  (3-10) 

𝑓2(𝑔)= Intersection delay                                     (3-11) 

𝑓3(𝑔)= Average throughput of all movements             (3-12) 

where 

𝑓1(𝑔), 𝑓2(𝑔), 𝑓3(𝑔)= Objective function values, 

g= Green split in each phase. 

3.6.2 Optimization Process 

 A knowledge-driven evolutionary algorithm NSGA-III is proposed in this study to 

select the optimized signal timing plans solutions. The NSGA-III algorithm is a non-

dominated sorting type GA algorithm that is capable of optimizing many objective 

functions at once.  The non-dominated solution set is a set of all of the solutions that are 

not dominated by any member of the solution set.  

 The Pareto-optimal set is the entire feasible decision space of the non-dominated sets 

from NSGA-III.  The final optimized solutions are found from the boundary of all mapped 
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points of the Pareto-optimal set.  The NSGA-III algorithm optimizes the fitness value in a 

minimization sense. For this reason, in order to maximize the throughput as one objective 

function, the negative value of the average throughput is minimized using the NSGA-III 

operator. The fitness function used in NSGA-III for signal timing optimization is stated in 

Equation 3-13. The pseudo-code of NSGA-III is shown in Figure 3-8.  

                       minimize             𝑓(𝑔) = [ 𝑓1(𝑔),  𝑓2(𝑔), − 𝑓3(𝑔) ]                                      (3-13)             

 subject to: 

                     Cm ≤ C ≤ Cc                                                       (3-14) 

 

                   𝑔𝑖
𝐿 ≤ 𝑔𝑖 ≤ 𝑔𝑖

𝑈                                                     (3-15) 

 

                     𝑔1 + 𝑔2 = 𝑔5 + 𝑔6                                                 (3-16) 

 

𝑔3 + 𝑔4 = 𝑔7 + 𝑔8                                                  (3-17) 

where 

i= Phase number, 

g= Vector of effective green time at each phase i (seconds),  

𝑓1(𝑔)= Corridor travel time of the critical direction (seconds), 

𝑓2(𝑔)= Intersection delay (seconds/vehicle), 

𝑓3(𝑔)= Vehicle throughput, 

Cm= Minimum Cycle Length (seconds), 

CC= Maximum or Critical Cycle Length (seconds), 

C= Cycle Length (seconds), 

gi= green split at phase i (seconds), 

g𝑖
𝐿 = Lower bound of green time at phase i (seconds), 

g𝑖
𝑈 = Upper bound of green time at phase i (seconds), 

g1= Eastbound Left (EBL) phase split (seconds), 
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g2= Westbound Through (WBT) phase split (seconds), 

g3= Southbound Left (SBL) phase split (seconds), 

g4= Northbound Through (NBT) phase split (seconds), 

g5= Westbound Left (WBL) phase split (seconds), 

g6= Eastbound Through (EBT) phase split (seconds), 

g7= Northbound Left (NBL) phase split (seconds), and 

g8= Southbound Through (SBT) phase split (seconds). 

3.6.3 Optimization Constraints 

 The signal timing optimization algorithm is constrained by the minimum and 

maximum cycle lengths, minimum and maximum green times, and phase sequence (ring 

and barrier settings). Equation 3-14 represents the constraint for the cycle length. The 

minimum and maximum cycle lengths are calculated according to Webster’s method, as 

cited in Chapter 2 in Equations 2-1 and 2-2, respectively. The barrier is used to separate 

the east-west movements from the north-south movements to avoid operating conflicting 

movements at the same time. Equations 3-16 and 3-17 ensure the correct ring and barrier 

setting of the controller, where the northbound and southbound movements start at the time 

that the eastbound and westbound movement end, and vice versa. 

 The minimum and maximum green time constraint is stated in Equation 3-15. The 

minimum and maximum green times of all approaches, except for the critical approach, are 

constrained by the controller settings in time-of-day plans. The minimum green on the 

critical approach is formulated by modifying the control policy principles for oversaturated 

conditions provided by Lieberman (Lieberman et al., 2000). One of these control policy 

principles is the signal phase duration of the oversaturated approaches that will stabilize 
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queue lengths and provide equitable service to competing traffic streams. The minimum 

green time provided for the critical approach is formulated according to Equation 3-18. 

The minimum green time is formulated such that the total incoming vehicle can be served 

at the maximum capacity of the subject approach to ensure no additional queue on 

congested directions. On the other hand, the maximum green time is formulated such that 

it does not oversaturate the downstream approach. Equation 3-19 is formulated such that 

the total traffic volume feeding to the downstream approach should not exceed the 

downstream approach capacity. 

                                Minimum Green time =
VT×hs×CS

NS×3600
                                        (3-18) 

                           Maximum Green time =  
CS×ND×gD

NS× CD
−

NT×hs×CS

NS×3600
                             (3-19) 

where 

VT= Total incoming vehicles per hour, 

CS= Cycle length of the subject intersection (seconds), 

CD= Cycle length of the downstream intersection (seconds), 

gD= Available green time at the downstream approach (seconds), 

NS= Number of lanes in subject approach, 

ND= Number of lanes in downstream approach, 

hS= Saturation headway (seconds), and 

NT= Number of left-turning and right-turning vehicles per hour. 
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 The following steps are used in the optimization process to calculate the fitness 

function values based on VISSIM simulation results. The entire process is performed using 

the Python COM interface.  

• Each of the generated population in the NSGA-III algorithm, which represents a 

signal timing plan is used as input to the simulation model to control traffic during 

the simulation run. 

• After using each timing plan generated by the NSGA-III, the VISSIM outputs are 

used to estimate the performance measures with the plan. 

•  The fitness values are then calculated for the individual populations (signal timing 

plans). 

 As mentioned earlier, the NSGA-III algorithm is used with three objective functions, 

as shown in Equations 3-10, 3-11 and 3-12, and are utilized to generate optimum signal 

timing plans. The pseudo-code of the utilized NSGA-III optimization algorithm is 

presented in Figure 3-10.    
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NSGA-III algorithm with generation t and number of objective function M 

Input: P0, H, Imax, N, M 

Population size=N 

P0= Initial Population 

H= Total Number of Reference Points H 

Imax= Maximum Number of Iterations 

M= Number of Objective Function 

Output: Pareto Solutions 

Initialize uniform distribution reference points H 

t=0; 

while termination conditions are not satisfied (t<Imax) do: 

        Run   VISSIM simulation 

        Break VISSIM simulation at 900 seconds. 

        Run VISSIM simulation using COM interface for individuals in Pt 

        Compute fitness f1,f2,f3, ……, fM using VISSIM COM interface 

        Qt= Recombination & Mutation (Pt) 

        Ct=Qt ∪ Pt (size 2N) 

        (L1, L2, …., Ll) = Non-dominated sort (Ct) (size N) 

        i=1 

       repeat 

                Pt+1= Pt+1 ∪ Li 

                i=i+1; 

       until | Pt+1 | ≥ N 

       if  | Pt+1 | =N then 

            break 

       else 

            Normalize the objectives 

            Delete the useless reference points 

            Associate each solution in Pt+1 with a reference point 

            Compute niche count α of reference points 

            Fill Pt+1 with N-| Pt+1 | solutions from Ll using niching information 

            Generate new reference points 

        t=t+1 

end  

return Pareto-optimal front and associated signal timing plan. 

 

Figure 3-10: NSGA-III Pseudo Code 

3.7 Summary 

 The proposed methodology in this study develops signal timing modification 

strategies to mitigate detected non-recurrent congested conditions. This chapter elaborates 

on the whole research methodology process step by step. The pseudo-codes of the 

developed methods can be transformed into any computer language for future use. In the 

next chapter, the outputs from applying these methods are analyzed and evaluated.  
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CHAPTER IV 

ANALYSIS AND RESULTS 

 The detailed application and analysis results of the proposed methodology described 

in Chapter III is discussed in this chapter. An important focus of this chapter is assessing 

the benefits of implementing the developed methodology. At first, the chapter presents an 

assessment of the impacts of applying the machine learning-based approach for the 

automation of the expert’s signal timing decisions. Then, the traffic operational condition 

partitioning and VISSIM simulation model calibration and validation analysis results are 

discussed. The last section presents the signal timing optimization results and the 

performance evaluation of the special signal timing plans based on arterial network 

performance measures. 

4.1 Automation of Expert’s Signal Timing Modification Decisions  

 As discussed in Chapter 3, this step utilized a combination of two artificial 

intelligence approaches, RPART and FRBS, to recommend modifications to signal timings 

during non-recurrent events such as incidents, construction, and surges in demands. The 

developed methodology learns from the decisions made by signal engineers/expert 

operators to change signal timings by extending greens during incidents and produce fuzzy 

rules that can be used to automate the process. The results from the model development 

and evaluation are described in the following section. 

4.1.1 Development of the Decision Tree 

 A DT is developed in this study for feature selection and for extracting the crisp 

logical rules based on traffic signal engineers’ decisions. The resulting crisp rules are then 
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fed into the FRBS algorithm. The building of the DT also eliminates the noncontributing 

variables to the prediction of the output to improve the prediction performance of the 

model. In the development of this study, among the potential six input variables, the DT 

selects five contributing features, which are “queue length”, “demand increment ratio”, 

“capacity reduction ratio”, “incident start period” and “upstream intersection importance”. 

Figure 4-1 shows the DT generated in this study. The RPART algorithm first divides the 

dataset depending on the queue length, then the subset that has the queue length lower than 

6,057 feet is further divided into subgroups based on the demand increment ratio and 

capacity reduction ratio. When the queue length is larger than 6,057 feet, the subsets are 

divided in terms of upstream intersection cross street importance, as well as the incident 

start period, demand increment ratio, and capacity reduction ratio in the next levels. It 

should be mentioned that the signal timing experts do not violate the summation of the 

minimum green times required for pedestrian phases and vehicular movement phase.  This 

and other constraints on the signal timing changes can be added as rules in the Fuzzy Rule-

Based System. 
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Figure 4-1: Developed Decision Tree from the Traffic Signal Engineer/Expert 

Operator’s Decision Feed 
 

4.1.2 Development of Fuzzy Rule-Based System 

 As stated earlier, developing the knowledge base consists of developing the rule base 

and database, with the rule base representing the reasoning of human experts in a set of if-

then rules. In the Mamdani model, there are two parts in each rule, the antecedent and the 

consequent part, which are separated by then ("->").   This study generates the rule base by 

creating fuzzy if-then rules from the DT, developed as described in the previous section, 

instead of creating rules as manual inputs from the experts or users, allowing for better 

estimation.  All of the rules are initially extracted from the Decision Tree as sets of 

simplified crisp rules. The extracted crisp rules are shown in Table 4-1 below. 
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Table 4-1:  Extracted Crisp Rules from the Decision Tree  

Incident 

Period 
 

Upstream 

Intersection 

Cross Street 

Importance 

 Queue 

Length 
 

Demand 

Increment 

Ratio 

 
Capacity 

Reduction 

Ratio 

  
Increment 

in g/C 

Ratio 

dont_care and dont_care and Small and Not Large and 
not Two-lane 

Blockage 
and -> No Change 

dont_care and dont_care and Medium and None and 
not Two-lane 

Blockage 
and -> Small 

dont_care and dont_care and Medium and Small and 
not Two-lane 

Blockage 
and -> Small 

dont_care and dont_care and Medium and Medium and 
not Two-lane 

Blockage 
and -> Medium 

dont_care and dont_care and Medium and Not Large and 
Two-lane 

Blockage 
and -> Medium 

dont_care and dont_care and Medium and Large and dont_care and -> Large 

dont_care and 
not Very 

Important 
and Long and Not Large and 

not Two-lane 

Blockage 
and -> Medium 

Morning, 

Evening 

Peak 

and 
not Very 

Important 
and Long and Not Large and 

Two-lane 

Blockage 
and -> Large 

Midday and 
not Very 

Important 
and Long and Not Large and 

Two-lane 

Blockage 
and -> Very Large 

dont_care and 
not Very 

Important 
and Long and Large and No Blockage and -> Very Large 

dont_care and 
Very 

Important 
and Long and dont_care and dont_care and -> Very Large 

Note: This table is formatted according to the FRBS coding requirement of the knowledge base step. The 

term "not” is used to negate a linguistic term, and "dont_care" is used to ignore some input variables 

 

 The membership functions are designed based on the developed DT to transform the 

crisp inputs into degrees of membership in the fuzzy functions and represent the linguistic 

terms of the fuzzy sets.  Again, this allows for a more accurate representation of expert 

knowledge. The membership functions are created by defining the shapes and parameters 

of the functions of the input and output variables. The triangles and trapezoid shapes of the 

membership functions, which are the most widely used function shapes, are used in this 

study.  The membership parameters and the number of linguistic terms/labels to include 

are derived based on the partitions of the developed DT. For example, RPART partitioned 

the queue length in the Decision Tree into three labels as small (less than 710 ft), medium 
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(less than 6,057 ft), and large (more than 6,057 ft).  The membership function of the queue 

length in the fuzzy rule base is labeled in the same manner. The developed membership 

functions of the input and output variables are shown in Figure 4-2. In Figure 4-2, the x-

axes represent the values of the input and output variables used in the decision, and the y-

axes represent the probability of a variable value being a member of each of the fuzzy 

classes. 

 

Figure 4-2: Membership Functions of the Derived Knowledge Base 
 

 In the final step of developing the FRBS system, the ‘frbs.gen’ inference engine is 

used in the R programming tool. For fuzzy inference, the Mamdani model is utilized to 

perform the inference operation using the fuzzy if-then rules.  The defuzzification process 

is conducted to obtain the crisp values from the fuzzy output set using the weighted average 

method (WAM) in the defuzzification.  
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4.1.3 Validation of the Model 

 Model validation is an important part of developing any machine learning model. 

The validation is performed to test the accuracy of the model.  Ten percent of the data 

points are randomly selected as the test sample and those are not included in training the 

model. The accuracy of the model is calculated using the following formula: 

                    Accuracy of the model (%) =
Number of Correct Prediction

Total Number of Prediction
 x 100              (4-1) 

 The model's overall accuracy is found to be 77%, with a 5% mean absolute error. 

The mean absolute error is calculated as the absolute value of the difference between the 

model output value (g/C ratio increase (%)) and the actual change in g/C (%) as 

implemented by the expert. Table 4-2 shows the result of model validation. Comparing the 

decisions made based on the resulting fuzzy rules from applying the methodology to 

previously recorded expert decisions for the project case study indicates accurate 

recommendations for shifts in the green time (about 77% accuracy or 5 % mean absolute 

error).  The comparison is made for 10 percent of the data points randomly selected as the 

test sample and those are not included in training the model.    
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Table 4-2:  Model Validation Results 
Predicted Increase 

in g/C Ratio 

(Numerical Value) 

True Increase in 

g/C Ratio 

(Numerical Value) 

Predicted Increase 

in g/C Ratio 

(Linguistic Term) 

True Increase in g/C 

Ratio (Linguistic Term) 
Validation 

60% 69.2% Large Large Correct 

10% 26.7% Small Medium Incorrect 

100% 102.6% Very Large Very Large Correct 

31% 34.0% Medium Medium Correct 

31% 30.0% Medium Medium Correct 

60% 68.0% Large Large Correct 

0.1% 0.0% No Change No Change Correct 

31% 22.3% Medium Small Incorrect 

100% 100.0% Very Large Very Large Correct 

10% 11.5% Small Small Correct 

10% 26.7% Small Medium Incorrect 

31% 28.7% Medium Medium Correct 

0.1% 0.0% No Change No Change Correct 

Accuracy of the Model 77% 

Mean Absolute Error 5%  

 

4.1.4 Benefit Assessment 

 This study assessed the benefits of the developed automation model to decide on 

changing signal timing during non-recurrent congestion. The assessment involved 

estimating the changes in delays for the movements impacted by the event and the other 

movements of the impacted intersection(s). The evaluation of the retiming strategies is 

performed for an arterial network modeled in the VISSIM simulation tool. The simulation 

model is used to assess traffic signal operation with and without implementing the timing 

modifications.  The considered timing modifications only involve changing the green time 

of the movements impacted by the event, and the cycle length and offset were not changed 

to maintain progression.  Three real-world scenarios are selected from the real-world expert 

database and simulated in VISSIM. Scenario 1 involves one lane blocked out of three lanes. 

Scenario 2 involves two lanes blocked out of three lanes. An increase in the demand by 

1.54 times is modeled in scenario 3.  
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 The simulation model is initially calibrated using collected volume, travel time, and 

queuing data utilizing the calibration procedure recommended in the Traffic Analysis 

Toolbox Volume 3 developed by the Federal Highway Administration (Dowling et al., 

2004). The model is then further calibrated for each of the three scenarios by comparing 

the model to the data recorded by the signal timing experts. The simulated segment with 

and without incidents is calibrated first to produce the signalized intersection movement 

capacities per the HCM procedures and the capacity adjustment factors for incident zones, 

as suggested by Dowling et al. (2013).  The simulated queue length and dynamic 

animations of the three scenarios are observed to ensure that they reflect real-world 

conditions for the three scenarios.  The simulation model is run 10 times with different 

seed numbers for each simulated condition considering the stochasticity of the simulation 

model’s outputs.  The simulation is run during a 3600-second analysis period, with the first 

1800 seconds as a warm-up period. The warm-up period is not included in the performance 

estimation.  The delay on all approaches for each scenario are estimated as the average 

from the ten runs and compared with the results from simulating the base conditions of not 

changing the signal timing.   

Base Scenario Modeling: 

 The data associated with real-world scenarios are obtained from the traffic signal 

engineer’s database and used as inputs to estimate the g/C ratio and utilizing the developed 

FRBS model. When there was a one-lane blockage out of a three-lane road, and the queue 

length is medium, the model recommended a g/C increment ratio (increase) of 20 percent.   

For the second scenario with two blocked lanes out of three lanes and a medium queue 

length, the model prediction is a 37 percent increment in the g/C ratio. Scenario 3 involves 
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a demand increment from 1,722 veh/hr to 2,655 veh/hr or a demand increment ratio of 

1.54, and the FRBS model predicted a 31 percent increment of the g/C ratio for this 

scenario. The illustrations of the three scenarios in the VISSIM simulation models are 

shown in Figure 4-3. 

 
Scenario 1: One lane blocked out of three lanes 

 
Scenario 2: Two lanes blocked out of three lanes 

 
(c) Scenario 3: Demand surge 

Figure 4-3: Illustration of the Three Model Scenarios to Assess Expert’s Decision 

Automation 
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Signal Re-Timing Based on FRBS Prediction: 

 For Scenario 1, the effective green time in the incident direction increases from 77 

seconds to 92 seconds, according to the FRBS output.  This is done by taking 14 percent 

of green time from the left turn and 25 percent from the through movements of the cross-

street approaches while maintaining the same cycle length. The decisions of how to reduce 

the green times of unimpacted movements by the event is made based on the volume to 

capacity ratio of each of these movements. When two lanes are blocked out of three lanes 

in Scenario 2, the effective green time is increased from 77 seconds to 105 seconds in the 

incident direction by taking 30% and 43% of the green time from the cross-street left-turn 

and through movement, respectively. In Scenario 3, the effective green time is increased 

from 77 seconds to 105 seconds, which is done by taking 24 percent of green time from 

the left turn and 37 percent from the through movements of the cross-street approaches. 

The signal timing changes are shown in Table 4-3.   

Table 4-3: Modified Signal Timing Based on FRBS Output 

Scenarios 1: Green Time (seconds) 

Movement  WL WT SL NT EL ET NL ST 

Normal signal timing  28 77 30 45 28 77 30 45 

Modified signal timing  28 92 26 34 28 92 26 34 

Scenarios 2: Green Time (seconds) 

Movement  WL WT SL NT EL ET NL ST 

Normal signal timing  28 77 30 45 28 77 30 45 

Modified signal timing  28 105 21 26 28 105 21 26 

Scenarios 3: Green Time (seconds) 

Movement  WL WT SL NT EL ET NL ST 

Normal signal timing  28 77 30 45 28 77 30 45 

Modified signal timing  28 101 23 28 28 101 23 28 
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Delay and Queue Length Estimation: 

 The simulation results indicate that changing the green times based on the output of 

the fuzzy rules decrease the delays due to lane blockages or demand surge. The delay is 

estimated using simulation and compared with the no signal updates and signal updates for 

all three evaluation scenarios (one-lane blockage, two-lane blockage, and surge in 

demand).   The delay results based on VISSIM simulation modeling are shown in Table 4-

4.  Table 4-4 shows that when there is a one-lane blockage in the incident direction, there 

is an average reduction in delays of 95.4 seconds/vehicle and 23.8 seconds/vehicle for the 

effected approach (EB) and the whole intersection, respectively. In the case of two-lane 

blockage incidents, the delay reduction for the impacted direction (the EB) is 110.6 

seconds/vehicle, and the overall reduction in the average delay is 45.2 seconds/vehicle. For 

the surge in demand in Scenario 3, signal retiming reduces the delay of the affected 

direction by around 130 seconds/vehicle and the average delay for the intersection by about 

27.4 seconds/vehicle. 

Table 4-4:  Impact of Green Time Update Based on FRBS Output 

Events  

Critical 

Direction 

(EB) 

Opposing 

Direction 

(WB) 

Cross 

Street 

(SB) 

Cross 

Street 

(NB) 

Overall 

Intersection 

One Lane 

Blockage 

Change in Average 

Delay (s/veh) 
-95.4 -3.0 +1.6 +1.6 -23.8 

Change in Queue 

Length (ft) 
-1112 -136 +273 +257 -718 

Two Lane 

Blockage 

Change in Average 

Delay (s/veh) 
-110.6 +12.2 +7.6 +6.5 -45.2 

Change in Average 

Queue Length (ft) 
-741 -257 +418 +420 -160 

Demand 

Increment Ratio 

of 1.54 

Change in Average 

Delay (s/veh) 
-130.0 +8.2 +5.9 +6.3 -27.4 

Change in Average 

Queue Length (ft) 
-2075 -234 +426 +414 -1469 

Note: ‘-‘ sign indicates reduction and ‘+’ sign indicates increment in delay and queue length 
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4.1.5 Tool Development 

 This study develops an application tool utilizing the combination of the DT and 

FRBS model. This signal timing modification tool allows the user to modify the existing 

signal plan during non-recurrent events. This tool consists of five inputs and one output 

based on the DT and FRBS model. The output value from the tools shows the 

recommended increment in a g/C ratio. This application has the potential to benefit 

agencies by improving the efficiency of the process used to address non-recurrent 

congested conditions. The main advantage of this application is that the signal maintaining 

agencies will be able to implement this application utilizing their existing operational 

platform without requiring any infrastructural upgrades while reducing the dependence on 

expert staff in making the decisions. Figure 4-4 shows a screen capture of the signal timing 

modification tool based on the DT and FRBS model. 

 
 

 

Figure 4-4: Special Signal Timing Modification Tool 



85 

 

4.2 Clustering Results 

 The study utilizes vehicle Travel time from Bluetooth data and cycle-by-cycle signal 

performance measures from the high-resolution data in the clustering analysis to separate 

the traffic operational conditions for further analysis. At first, the travel time data for 24 

hours each day is collected and clustered. It is determined that four different clusters are 

the best number for the travel time-based clustering.  Figure 4-5 shows the four separate 

clusters derived using the K-means methods and their centers based on travel time only. 

Cluster 2 mainly represents data between 7:00 AM and 9:00 AM with heavy eastbound 

traffic, Cluster 1 represents moderate traffic in both directions during the midday and post-

peak period in the PM (between 7:00 PM and 9:00 PM), and Cluster 3 represents night 

traffic. In contrast, Cluster 4 represents the PM peak period traffic between 3:00 PM and 

7:00 PM that is heavy in the westbound direction.  Obviously, the traffic can change 

significantly within each of these periods, between days and from cycle-to-cycle. Thus, 

further portioning is needed for the data based on high-resolution controller data, as 

explained next.   

 
Figure 4-5: Travel Time Clusters 
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 Further partitioning of the traffic patterns is done by K-means clustering based on 

the GOR for the 7:00 AM to 9:00 AM peak period utilizing event-based controller data.   

Table 4-5 presents the resulting categories of traffic conditions in the AM peak based on 

the GOR of all major movements and the associated travel times of the study segment.   

This dissertation presents the results of the calibration and validation of a microscopic 

simulation model for the case study for one of the categories in Table 1 (Category 2). 

Table 4-5:  Categorization of Traffic Based on the Green Occupancy Ratio 

Category No of Data 

Points 

Average Travel 

Time (seconds) 

Through 

Movement Cluster 

Center GOR 

Left Turn Cluster 

Centers GOR 

EB WB 

EBT SBT EBL SBL 

Category 1 8 300.1 223.01 0.636 0.775 0.84 0.94 

Category 2 22 279.65 215.74 0.84 0.77 

Category 3 5 276.6 205.26 0.77 0.62 

Category 4 16 265.5 213.57 0.556 0.772 0.79 0.87 

Category 5 19 280.15 217.51 0.80 0.72 

Category 6 18 281.7 198.03 0.613 0.658 0.80 0.77 

4.3 VISSIM Model Calibration and Validation 

 In this step, a microscopic simulation model is developed and calibrated for the test 

scenario using a multi-objective optimization technique based on travel time and high-

resolution controller-based measurement. The evaluation of the calibration based on the 

multi-objective function indicates that the proposed optimization technique is able to better 

replicate intersection measures assessed based on high-resolution controller data such as 

GOR, green utilization, and arrival on green, while producing comparable errors in travel 

time to those obtained when optimizing the calibration parameters based on travel time 

measurements alone.  
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4.3.1 Calibration Results 

 As stated earlier, the NSGA-III algorithm uses a non-dominant sorting procedure and 

finds a set of Pareto-optimal solutions rather than a single optimal solution. The Pareto-

optimal solutions are the sets of solution trade-offs when all of the objectives are 

considered. Figure 4-6 shows the 3D scatter plot of the final set of the Pareto-optimal 

solution. The Pareto-optimal solution from the NSGA-III algorithm resulted in seven 

different sets of objective function values, as shown in Figure 4-6(a). Each set represents 

the trade-offs of solutions between the three objective function values used in this study 

(Equations 3-6, 3-7, and 3-8). Figure 4-6(b) shows the selected two Pareto-optimal sets in 

red dots for further evaluation.  These two sets are referred to as NSGA Set-I and NSGA 

Set-II in the remaining part of the model calibration and validation section.  Table 4-6 

shows the decision variables or driver behavior parameters for both solution sets.  Table 4-

6 also shows the GA optimization results using the travel time objective function (f(x) in 

Equation 3-4).
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Figure 4-6: Pareto-Optimal Solution from NSGA-III Output 

Table 4-6: Optimal Solutions and Corresponding Decision Variables 

Pareto 

Optimal 

Set 

Objective 

Function 

Values 

Average 

Stand Still 

Distance (ft) 

Additive Part 

of Safety 

Distance (ft) 

Multiplicative 

Part of Safety 

Distance (ft) 

Maximum 

Deceleration- 

Own (ft/s2) 

Maximum 

Deceleration- 

Trail (ft/s2) 

Waiting 

Time before 

Diffusion (s) 

Minimum 

Headway 

(ft) 

Safety 

Distance 

Factor 

Set-1 

f1 0.07003 

5.963 2.1904 2.828 -14.7358 -11.54 64.85 1.9154 0.738 f2 0.82222 

f3 0.15684 

Set-2 

f1 0.09005 

5.7823 2.1858 2.844 -14.7247 -11.545 64.60 1.8154 0.738 f2 1.46651 

f3 0.11334 

GA Optimization Results Using Equation 3-4 

 f1 0.1075 4.9889 2.09 3.18 -13.122 -9.0464 94.76 1.8121 0.8641 

 
 (b) 
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 As an example of the results, Table 4-7 presents the variation in the performance 

measures resulting from the utilization of the simulation parameters based on the three 

solutions presented in Table 4-6 for the intersection of NW 119th Street and NW 17th 

Avenue.  Compared performance measures are the travel times and the split utilization ratio 

(SUR).  Table 4-7 shows that the parameters from all three optimization solutions produced 

significantly closer travel times than the model with the existing parameters. The travel 

time errors from the three solutions are comparable. However, the utilization of the 

parameters provided by the NSGA-III Set-1 solution in the simulation produced 

significantly more accurate results in terms of the SUR parameter estimated based on high-

resolution controller data.  These results show that the utilization of the NSGA-III Set-1 

optimized parameters is able to accurately balance the objective functions providing, less 

errors in the SUR estimates. 

Table 4-7: Percentage Error in the Travel Time and SUR with or without Calibrated 

Models 
Performance 

Measures 

Direction Using Default 

Parameter Value 

GA (Minimization of 

Travel Time Error) 

NSGA-III, 

Set-1 

NSGA- III, 

Set-2 

Error (%) in 

Travel Time 

EB 20.25 9.76 4.40 8.14 

WB 5.85 4.40 7.58 5.96 

Error (%) in 

SUR 

EBT 75.53 36.18 7.89 9.21 

WBT 24.25 40.00 12.50 10.00 

SBT 17.48 19.75 13.58 19.75 

NBT 63.30 95.00 12.50 35.75 

 

4.3.2 Model Validation  

 Validation is the process of determining the degree to which a simulation model is 

an accurate representation of the real world from the perspective of the intended uses of 

the model.  The simulated and field-observed data sets are further compared to check how 

the simulation model can replicate the existing traffic conditions based on additional 
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measures not used in the calibration.  The model validation is performed using additional 

high-resolution controller intersection-based performance measures that are not used in the 

optimization, including GOR and percent arrival on green (POG). These performance 

measures ensure the model’s ability to replicate vehicle progression and congestion levels.  

Table 4-8 shows that the NSGA-III Set-1- and NSGA-III Set 2-based simulation provide a 

better representation of these parameters relative to real-world measurements, compared to 

the use of the default model parameters and the parameters optimized using the GA-based 

travel time optimization. However, according to Table 4-8, the NSGA-III Set-1-based 

simulation provides significantly lower errors for the measurements of the cross-street 

movements (southbound and northbound) than the NSGA-III Set 2-based simulation.  This 

shows that the NGSA-III Set 1 solution provides the best set of parameters based on the 

calibration and validation results. 

Table 4-8: Error (%) in the GOR and POG with or without Calibrated Models 
Performance 

Measures 

Direction With the Default 

Parameter Value 

GA (Minimization of 

Travel Time Error) 

NSGA-III, 

Set-1 

NSGA-III, 

Set-2 

Error (%) in 

GOR 

EBL 47.62 44.05 14.29 11.90 

EBT 41.82 30.82 13.21 7.23 

WBL 39.47 26.32 10.53 13.16 

WBT 53.18 18.18 11.36 13.64 

SBL 38.96 45.45 10.39 18.18 

SBT 47.10 46.32 15.25 21.31 

NBL 50.91 54.55 7.27 21.82 

NBT 33.33 25.42 3.75 18.48 

Error (%) in 

POG 

EBL 19.64 18.18 8.23 5.12 

EBT 21.71 20.22 2.97 7.25 

WBL 68.04 65.62 4.78 4.09 

WBT 18.69 19.95 1.86 1.69 
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4.4 Signal Timing Optimization  

 The main focus of this study is to provide a method for an implementable signal 

timing plan development for various types of non-recurrent congestion events, as explained 

in Chapter III.  The following section discusses the results of evaluating the generated 

signal timing plans using the signal timing optimization methodology. 

4.4.1 Evaluation for Regular Timing Settings 

 The calibrated VISSIM model for Cluster Category 1 in Table 4-5 is first used to 

evaluate the effectiveness of regular time-of-day signal timing settings under non-recurrent 

congestion.  This evaluation involves simulating three non-recurrent congestion scenarios 

in the eastbound (EB) direction upstream of the NW 119th Street and 22nd Avenue 

intersection. The three scenarios are: 

1. One out of three-lane blockage; 

2. Two out of three-lane blockage; and  

3. Demand surge (increment to 1.3 times of the regular demand). 

The Corridor Travel Time (seconds), Intersection Delay (seconds/vehicle), Vehicle 

Throughput), and Queue Length (feet) are evaluated using the simulation model outputs. 

Table 4-9 shows the performance of the evaluated regular TOD signal timing for all three 

non-recurrent scenarios compared to normal traffic conditions. The results show 

increments in vehicle delays, corridor travel times, and queue lengths upstream of the 

critical approach during the investigated non-recurrent events.
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Table 4-9: Signal Timing Performance Measures for Normal TOD Settings 

Traffic 

Conditions 

Signal 

Timing 

Strategies 

Phase Split (s) Vehicle Delay (sec/veh) Corridor 

Travel 

Time (s) 

Intersection 

Delay 

(se/veh) 

Throughput 

Queue 

Length 

(ft)   EBL WBT SBL NBT WBL EBT NBL SBT EB SB WB NB 

Normal 

Traffic 

Condition 

Regular 

Timing 

Plan  

26 88 22 64 26 88  26 64 

26.72 27.09 13.87 7.6 297.64 18.82 142 86.76 

One Lane 

Blocked 
263.19 35.8 26.06 7.58 557.54 83.16 114 1084.16 

Two Lane 

Blocked 
288.15 51.71 30.57 4 622.38 93.61 115 1685.05 

Demand 

Surge 
189.02 44.3 332.5 2.81 587 67.17 147 1401.9 

Note: EBL= Eastbound Left turn, WBT= Westbound Through movement, SBL= Southbound Left turn, NBT= Northbound Through movement, WBL= 

Westbound Left turn, EBT= Eastbound Through movement, NBL= Northbound Left turn, SBT= Southbound Through movement, 

EB= Eastbound movement, SB= Southbound movement, WB= Westbound movement, NB= Northbound movement. 
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4.4.2 NSGA-III Optimization Results 

 As described in the literature review and methodology development chapters, the 

NSGA-III algorithm minimizes the fitness value, which is linked to the objective function 

of the optimization problem in each generation by selecting the best offspring from the 

previous generations. Figure 4-7 shows the minimization of the fitness value in each 

generation for the three aforementioned non-recurrent conditions.  An important measure 

of effectiveness for the non-recurrent traffic conditions is the queue length upstream of the 

incident or critical intersection. Figures 4-8, 4-9, and 4-10 show the change in this measure 

in the process of optimizing the fitness value in the NSGA-III generations. The trend lines 

in each plot show that the queue length gradually decreased with the decrease in the travel 

time and intersection delay and increasing throughput. 

 The NSGA-III algorithm can provide optimal Pareto sets as outputs of the 

optimization process. Each set in the Pareto-optimal front resulted in the best tradeoff 

between competing objectives. For example, if one Pareto-optimal set resulted in the 

lowest travel time, it might have higher intersection delays or lower throughput than the 

other sets. Understanding the roadway conditions and agency objectives and priorities is 

important for selecting a solution from the Pareto sets.  

 Table 4-10 presents the resulted Pareto sets from the optimization for each 

investigated non-recurrent condition. Among the Pareto-optimal sets, a special signal-

timing plan for each non-recurrent condition is chosen to cause lower delay to the 

competing movements and the critical movements compared to the other solutions. In the 

case of the one-lane blockage incident, the optimization procedure decreased the cycle 
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length to 107 seconds, which is almost half of the regular signal timing settings, possibly 

indicating that double cycling can be effective when the capacity of an approach is reduced.  

 

Figure 4-7: 3-D Plot of Resulted Objective Functions in Each NSGA-III Generations 

a) One-Lane Blockage 

b) Two-Lane Blockage 

c) Demand Surge 
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Figure 4-8:  Queue Length vs. NSGA-III Fitness Values (One-Lane Blockage) 

    

 

Figure 4-9:  Queue Length vs. NSGA-III Fitness Values (Two-Lane Blockage) 
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Figure 4.10:  Queue Length vs. NSGA-III Fitness Values (Demand Surge) 
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Table 4-10: Pareto-Optimal Sets for Non-Recurrent Congestion Conditions 

Non-recurrent 

Congestions 

Phase Split (s) Vehicle Delay (s/veh) Corridor 

Travel Time 

(s) 

Intersection 

Delay 

(s/veh) 

Throughput 

Queue 

Length 

(ft)   
EBL WBT SBL NBT WBL EBT NBL SBT EB WB SB NB 

One Lane 

Blocked 

19 59 8 20 19 59 8 20 90.64 13.53 43.02 1.038 343.05 37.06 137 273.04 

17 59 9 22 17 59 8 21 92.95 9.246 41 0.92 319.51 36.03 148 294.32 

 

Two Lane 

Blocked 

17 165 10 12 17 165 10 12 104.75 11.29 8.71 30.34 331.37 36.52 145 649.4 

22 166 10 13 22 166 10 13 100.52 12.28 4.28 21.36 309.7 36.80 149 645.6 

 

Demand Surge 

17 181 8 20 17 181 8 20 81.17 10 17.43 15.63 347.55 31.057 159 768.4 

15 181 8 20 15 181 8 20 77.58 8.23 23.74 13.90 375.31 30.86 157 712.09 

17 185 8 20 17 185 8 20 85.24 10.89 23.51 4.48 353.04 31.03 158 831.35 

17 161 8 20 17 161 8 20 87.38 8.19 27.15 13.56 378.89 34.07 182 838.07 

17 161 8 21 17 161 8 21 85.19 6.35 33 13.7 345.71 34.56 183 798.23 

* Bold values are selected solutions from the Pareto sets 

Note: EBL= Eastbound Left turn movement, WBT= Westbound Through movement, SBL= Southbound Left turn movement, NBT= Northbound Through 

movement, WBL= Westbound Left turn movement, EBT= Eastbound Through movement, NBL= Northbound Left turn movement, SBT= Southbound 

Through movement, EB= Eastbound movement, SB= Southbound movement, WB= Westbound movement, NB= Northbound movement. 
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4.4.3 Comparison of the Developed Models 

 This section compares the results of the assessment of the optimization method to 

those of the assessment of the developed DT and FRBS by using the signal timing from 

experts’ decisions.   The developed DT and FRBS tool is used to estimate the needed 

increment in the g/C ratio for the non-recurrent conditions, as shown in Table 4-11. The 

output from this model recommends a 20 percent increment in the g/C ratio for the one out 

of three-lane blockage condition, and a 31 percent increment in the g/C ratio for the two 

out of three-lane blockage and the demand increment traffic situations. Table 4-12 

compares the recommended special signal timing plan from both the optimization and DT 

and FRBS model.  The DT and FRBS model output are able to reduce the existing queue 

and all other performance measures by increasing the green time in the subjected direction. 

However, the optimization results show that the special signal timing plan obtained from 

the optimization produced better performance than those from the DT and FRBS system 

for all of the non-recurrent conditions, as indicated below: 

•   For the one out of three-lane blockage incident, the DT and FRBS model decreases 

the queue length upstream of the incident by 28 percent, whereas the optimized 

signal plan decreased the queue length by 73 percent. In addition to reducing the 

queue length; the improvements in the travel time, intersection delay, and 

throughput values are higher with the optimized signal plan than the DT and FRBS 

recommended signal plan. 

•   For the two out of three-lane blockage incidents, the DT and FRBS model decreases 

the queue length upstream of the incident by 33 percent compared to a reduction of 
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62 percent with the optimized signal plan. Except for the northbound approach, the 

performance of the signal timing is better with the optimized signal plans. 

•   For the demand surge condition, the resulting performance measures of the two 

models are closer than what is mentioned above regarding the lane blockage 

conditions. The queue length is decreased by 30 percent when utilizing the DT and 

FRBS model, while the optimized signal timing plans reduced the queue length by 

45 percent.  The other performance measures are better with the optimized signal 

timing, except for the northbound direction delay, which is slightly higher with the 

optimization method.
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Table 4-11: Output from the DT and FRBS Model 

Traffic 

Conditions 
Period 

Upstream 

Cross Street 

Importance 

Queue 

Length (ft) 

Volume 

Increment 

Ratio 

Capacity 

Reduction 

Ratio 

FRBS Prediction 

(g/C Increment 

Percentage) 

Old g/C New g/C 
New Green 

Time (s) 

One Lane Blocked AM Major 1084 0 0.26 20 0.44 0.53 106 

Two Lane Blocked AM Major 1685 0 0.49 31.0 0.44 0.58 116 

Demand Surge AM Major 1401 1.6 0 31.0 0.44 0.58 116 
 

Table 4-12: Comparison of the Optimized Signal Timing Settings and DT and FRBS Model 
Traffic 

Conditions 

Signal 

Timing 

Strategies 

Phase Split (s) Vehicle Delay (s/veh) Corridor 

Travel Time 

(s) 

Intersection 

Delay 

(sec/veh) 

Throughput Queue 

Length 

(ft) EBL WBT SBL NBT WBL EBT NBL SBT EB SB WB NB 

One Lane 

Blocked 

Regular 

Timing Plan 

26 88 22 64 26 88 26 64 263.19 35.8 26.06 7.58 557.54 83.16 114 1084.16 

DT and 

FRBS 

26 106 17 51 26 106 17 51 186.93 50.18 21.95 9.11 429.45 67.04 121 782.96 

After 

Optimization 

17 59 9 22 17 59 8 21 92.95 41 9.25 0.92 319.51 36.03 148 294.32 

Two Lane 

Blocked 

Regular 

Timing Plan 

26 88 22 64 26 88 26 64 288.15 51.71 30.57 4 622.38 93.61 115 1685.05 

DT and 

FRBS 

26 116 15 43 26 116 15 43 261.19 49.37 22.43 8.55 493.92 85.4 130 1132.57 

After 

Optimization 

22 166 10 13 22 166 10 13 100.52 12.28 4.28 21.36 309.69 36.80 149 645.6 

Demand 

Surge 

Regular 

Timing Plan 

26 88 22 64 26 88 26 64 189.02 44.3 32.5 2.81 587 67.17 147 1401.9 

DT and 

FRBS 

26 116 15 43 26 116 15 43 138.88 50 14.51 8.51 467.3 52.98 153 988.97 

After 

Optimization 

17 181 8 20 17 181 8 20 81.17 17.43 10 15.63 347.55 31.06 159 768.4 

Note: EBL= Eastbound Left turn movement, WBT= Westbound Through movement, SBL= Southbound Left turn movement, NBT= Northbound 

Through movement, WBL= Westbound Left turn movement, EBT= Eastbound Through movement, NBL= Northbound Left turn movement, SBT= 

Southbound Through movement, EB= Eastbound movement, SB= Southbound movement, WB= Westbound movement, NB= Northbound movement. 



101 

 

4.4.4 Temporal Transferability Assessment 

This section discusses the temporal transferability of the developed signal timing 

plan to other days in the year with similar non-recurrent events, considering that the 

optimization is performed for the traffic operational condition of a specific day. This 

assessment is conducted by examining the difference in the performance of the special 

signal plans developed for non-recurrent events when optimized with the demands of a 

specific day compared to the performance of the plans optimized using the demands for a 

different day. The NSGA-III optimization is performed utilizing the demands for a day that 

is categorized in Category 2 (Plan 2) and for a day that is categorized in Category 1 (Plan 

1) to assess the temporal transferability of the optimization model (see Table 4-5). The 

study analyzed the difference in the performance of these two plans in terms of the 

conditions of Category 2.  The assessment results shown in Table 4-13 indicate that there 

are only small differences between the performance of the two plans, indicating a good 

transferability of the plans between the two investigated categories.  
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Table 4-13: Evaluation of Optimization Model Temporal Transferability 
Traffic 

Conditions 

Signal 

Timing 

Strategies 

Phase Split (s) Corridor 

Travel Time 

(s) 

Intersection 

Delay (s/veh) 

Throughput Queue 

Length 

(ft)   EBL WBT SBL NBT WBL EBT NBL SBT 

Normal 

Traffic 

Condition 

Regular 

Timing 

Plan 

26 88 22 64 26 88 26 64 279.03 22.28 138 64.18 

One Lane 

Blocked 

Regular 

Timing 

Plan 

26 88 22 64 26 88 26 64 566.69 98.57 124 1128.66 

Plan 2* 17 57 10 22 17 57 10 22 329.71 40.44 134 279.83 

Plan 1* 17 59 9 22 17 59 8 21 361.34 46.87 132 287.67 

Two Lane 

Blocked 

Regular 

Timing 

Plan 

26 88 22 64 26 88 26 64 470.4 67.15 124 1149.93 

Plan 2* 16 163 8 18 16 163 8 18 333.26 38.60 144 690.39 

Plan 1* 22 166 10 13 22 166 10 13 335.31 46.29 141 729.84 

Demand 

Surge 

Regular 

Timing 

Plan 

26 88 22 64 26 88 26 64 521.56 59.44 163 1359.20 

Plan 2* 14 186 8 20 14 186 8 20 440.67 26.35 165 668.46 

Plan 1* 17 181 8 20 17 181 8 20 462.60 28.75 161 675.02 

*Plan 1 is the optimized signal plan for Category 1 traffic scenario, and 

Plan 2 is the optimized signal plan for Category 2 traffic scenario. 

Note: EBL= Eastbound Left turn, WBT= Westbound Through movement, SBL= Southbound Left turn movement, NBT= 

Northbound Through movement, WBL= Westbound Left turn movement, EBT= Eastbound Through movement, NBL= 

Northbound Left turn movement, SBT= Southbound Through movement. 
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4.5 Summary 

This analysis and results chapter provided an assessment of the developed 

methodologies to select a special signal control plan during non-recurrent conditions 

utilizing both the automation of expert decision-making and signal timing optimization. 

The chapter demonstrated the prerequisites for signal timing optimization and simulation 

modeling application for the purpose of the study, such as accurate traffic movement count 

or estimation, partitioning the traffic operational conditions, and calibration of the 

simulation model.  The results showed the benefits of implementing special signal timing 

plans for non-recurrent traffic congestions for lane blockage and sudden demand surge due 

to rerouting or diversion as a result of freeway incidents. 
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CHAPTER V 

CONCLUSION AND RECOMMENDATIONS 

5.1 Summary and Conclusions 

Congestion on arterial networks continues to be a major challenge for all road users, 

policymakers, and traffic signal maintenance agencies around the nation. Non-recurrent 

congestion can occur due to lane blockages from incidents that cause significant roadway 

capacity reductions, which in turn impacts system performance. Significant congestion on 

arterials can also result from demand surges due to traffic diversions caused by incidents 

on freeways and other alternative routes. These scenarios create an unexpected increase in 

the volume over capacity ratio of the system, resulting in long vehicle queues and possible 

spillbacks to the upstream intersections.  

This study investigated methods to mitigate the above-mentioned impacts.  First, 

the study focused on automating traffic signal engineer’s/expert’s decisions to implement 

appropriate signal timing plans during non-recurrent conditions. This process utilizes a 

combination of the Decision Tree and Fuzzy Rule-Based System to recommend 

modifications to signal timings during non-recurrent events, including incidents, 

construction, and a surge in demands. One of the most important aspects of the solution is 

that it is easy to interpret in terms of the inputs and outputs, making it a viable option for 

use by agencies. The minimal resource requirements also make the solution attractive to 

agencies with limited resources. 

Although the system can be beneficial, this system only recommends the changes 

in green time to the prominent direction impacted by the event. It does not produce an 
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optimized solution that considers all movements, and it does not help in deciding how to 

optimally distribute the change in green times to other movements at the intersection. Thus, 

this study developed another method to derive an optimized signal-timing plan that 

considers the travel conditions in the critical direction, the overall corridor, and the overall 

intersection performance. A critical component of the method is identifying traffic 

operational conditions based on accurate and detailed measurements of traffic flow 

conditions. An important aspect of the method is using a microscopic simulation-based 

optimization model to derive the plans and use detailed data, including high-resolution 

controller data, to calibrate the simulation model.  

The high-resolution signal controller data and travel time data are utilized in this 

study for accurate measurement of vehicle flow, turning movement counts, and signal 

control performance measures. The performance measures based on high-resolution 

controller data are used for the first time in this study for calibrating simulation models.  

The data is used for partitioning traffic operational conditions for use in the optimization 

and in more detailed calibration and validation of simulation models. Clustering analysis 

was successfully used to categorize the traffic patterns based on segment travel time and 

the movement GOR values. The evaluation of the calibration parameters resulting from the 

multi-objective optimization based on travel time and high-resolution controller data 

indicated that the resulting simulation model produces significantly lower errors in the split 

utilization ratio, green utilization ratio, arrival on green, and travel time compared to a 

simulation model that uses the default parameters of the simulation model.  The multi-

objective optimization solution also produces slightly lower travel time errors, and 

significantly lower errors in terms of the high-resolution controller data measures, 
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compared to a simulation model calibrated based on the optimization of the single objective 

of minimizing the travel time.  

This study successfully developed and demonstrated an advanced method for the 

calibration and validation of microscopic simulation models of arterial networks utilizing 

high-resolution controller data combined with a two-level unsupervised clustering 

technique for scenario identifications and multi-objective optimization for simulation 

model calibration identification. The study introduced the use of several new parameters 

to calibrate and validate simulation models, including the split utilization ratio, green 

utilization ratio, and arrival on green, in combination with other commonly used measures 

like vehicle travel time and throughput. The utilized multi-objective optimization 

technique belongs to a set of multi-objective optimization algorithms that aim to find the 

Pareto front of compromised solutions of all objectives rather than integrating all objectives 

together in a single objective in the optimization.   

Given that the calibrated simulation models are able to replicate field traffic 

operational conditions, the NSGA-III multi-objective optimization technique is 

implemented to generate optimized signal timing plans for three types of non-recurrent 

scenarios; one out of a two-lane blockage, two out of a three-lane blockage, and demand 

surge events. All of the incident scenarios are assumed to be near the upstream of the 

subject intersection. In this study, the objective functions for signal timing optimization are 

chosen to balance delays in the system and the throughputs of the impacted movements, 

considering the overall corridor performance, as well as the signal control performance.  
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The optimized signal timing plan improved the signal and overall corridor 

performance in terms of queue length, overall throughput, intersection delay, and corridor 

travel time. In the case of a one-lane blockage, the optimization procedure decreased the 

cycle length to 107 seconds, which is almost half of the regular signal timing settings. 

These results may indicate that double cycling is useful when the capacity of an approach 

is reduced.  

This study evaluates the recommended special signal timing plan from both the 

optimization and DT and FRBS models. Although DT and FRBS model outputs are able 

to reduce the queue length and improve other performance measures, the evaluation results 

show that the special signal timing plans obtained from optimization produced better 

results in terms of various performance measures compared to the developed DT and FRBS 

model for all three investigated non-recurrent conditions.  

5.2 Study Contribution 

Despite the significant contributions of research activities to the advancements of 

AAM and ICM, there is a significant need for research to support the derivation and 

activation of special signal timing plans to mitigate non-recurrent congestion. For the first 

time, this study investigates the use of high resolution data that only became available in 

the last few years with advanced techniques, including supervised and unsupervised 

machine learning, fuzzy logic, multi-objective optimization techniques, and simulation 

modeling to identify the best method to select the signal timing plans during non-recurrent 

congestion. The study developed two different approaches that agencies can select from 

based on the capability and resources of the agencies. The first is based on machine learning 
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and the fuzzy logic system, and the second is based on microscopic simulation-based 

optimization. In addition, the developed expert’s decision learning, multi-objective 

simulation-based optimization and high-resolution data-based calibration of simulation 

models will form the basis for future research on this subject and other transportation 

system modeling and transportation system management and operations subjects. 

This dissertation also identifies methods for the use of ATSPMs based on high-

resolution controller data, which allows agencies to effectively optimize and manage traffic 

signals without extensive field data collection. Even when such data are available, the 

agencies currently lack advanced procedures and strategies to process and use such data to 

better monitor and manage signal control operations. This study proposes methods that will 

allow traffic signal personnel to identify and prioritize problem areas using microscopic 

signal performance measures and retime the signal plan accordingly. 

5.3 Recommendations for Future Research 

This study successfully developed a methodology for developing and implementing 

signal timing changes during non-recurrent conditions. Future studies to extend this 

dissertation research could include: 

• The benefit assessment of the developed special signal timing plans is 

performed using simulation models in this study. It is recommended to 

further evaluate the methodology in a real-world environment. 

• This research develops an effective method to mitigate traffic congestions 

during non-recurrent events using plans derived in an off-line environment 

but are activated in real-time environments. The methodology developed in 
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this research can be further extended by optimizing the signal timing plans 

in real time.  

• This study explores the lane blockage scenario due to incidents just 

upstream of the stop line of the subjected approach. Further analysis is 

needed for incidents at other locations of the segment. 
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