20,555 research outputs found

    Multi-objective optimisation for battery electric vehicle powertrain topologies

    Get PDF
    Electric vehicles are becoming more popular in the market. To be competitive, manufacturers need to produce vehicles with a low energy consumption, a good range and an acceptable driving performance. These are dependent on the choice of components and the topology in which they are used. In a conventional gasoline vehicle, the powertrain topology is constrained to a few well-understood layouts; these typically consist of a single engine driving one axle or both axles through a multi-ratio gearbox. With electric vehicles, there is more flexibility, and the design space is relatively unexplored. In this paper, we evaluate several different topologies as follows: a traditional topology using a single electric motor driving a single axle with a fixed gear ratio; a topology using separate motors for the front axle and the rear axle, each with its own fixed gear ratio; a topology using in-wheel motors on a single axle; a four-wheel-drive topology using in-wheel motors on both axes. Multi-objective optimisation techniques are used to find the optimal component sizing for a given requirement set and to investigate the trade-offs between the energy consumption, the powertrain cost and the acceleration performance. The paper concludes with a discussion of the relative merits of the different topologies and their applicability to real-world passenger cars

    Performance Analysis of Hybrid and Full Electrical Vehicles Equipped with Continuously Variable Transmissions

    Get PDF
    The main aim of this paper is to study the potential impacts in hybrid and full electrical vehicles performance by utilising continuously variable transmissions. This is achieved by two stages. First, for Electrical Vehicles (EVs), modelling and analysing the powertrain of a generic electric vehicle is developed using Matlab/Simulink-QSS Toolkit, with and without a transmission system of varying levels of complexity. Predicted results are compared for a typical electrical vehicle in three cases: without a gearbox, with a Continuously Variable Transmission (CVT), and with a conventional stepped gearbox. Second, for Hybrid Electrical Vehicles (HEVs), a twin epicyclic power split transmission model is used. Computer programmes for the analysis of epicyclic transmission based on a matrix method are developed and used. Two vehicle models are built-up; namely: traditional ICE vehicle, and HEV with a twin epicyclic gearbox. Predictions for both stages are made over the New European Driving Cycle (NEDC).The simulations show that the twin epicyclic offers substantial improvements of reduction in energy consumption in HEVs. The results also show that it is possible to improve overall performance and energy consumption levels using a continuously variable ratio gearbox in EVs

    Trajectory optimization and guidance law development for national aerospace plane applications

    Get PDF
    The work completed to date is comprised of the following: a simple vehicle model representative of the aerospace plane concept in the hypersonic flight regime, fuel-optimal climb profiles for the unconstrained and dynamic pressure constrained cases generated using a reduced order dynamic model, an analytic switching condition for transition to rocket powered flight as orbital velocity is approached, simple feedback guidance laws for both the unconstrained and dynamic pressure constrained cases derived via singular perturbation theory and a nonlinear transformation technique, and numerical simulation results for ascent to orbit in the dynamic pressure constrained case

    Automation of On-Board Flightpath Management

    Get PDF
    The status of concepts and techniques for the design of onboard flight path management systems is reviewed. Such systems are designed to increase flight efficiency and safety by automating the optimization of flight procedures onboard aircraft. After a brief review of the origins and functions of such systems, two complementary methods are described for attacking the key design problem, namely, the synthesis of efficient trajectories. One method optimizes en route, the other optimizes terminal area flight; both methods are rooted in optimal control theory. Simulation and flight test results are reviewed to illustrate the potential of these systems for fuel and cost savings

    4DT generator and guidance system

    Get PDF
    This thesis describes a 4D Trajectories Generator and Guidance system. 4D trajectory is a concept that will improve the capacity, efficiency and safety of airspace. First a 4D trajectories synthetizer design is proposed. A flight plan composed by a set of waypoints, aircraft dynamics model and a set of limits and constraints are assembled into an optimal control problem. Optimal solution is found by making use of an optimal control solver which uses pseudo spectral parametrization together with a generic nonlinear programming solver. A 4D Trajectories generator is implemented as a stand-alone application and combined with a graphic user interface to give rise to 4D Trajectories Research Software (4DT RS) capable to generate, compare and test optimal trajectories. A basic Tracking & Guidance system with proportional navigation concept is developed. The system is implemented as a complementary module for the 4D trajectories research software. Simulation tests have been carried out to demonstrate the functionalities and capabilities of the 4DT RS software and guidance system. Tests cases are based on fuel and time optimization on a high-traffic commercial route. A standard departure procedure is optimized in order to reduce the noise perceived by village’s population situated near airport. The tracking & guidance module is tested with a commercial flight simulator for demonstrating the performance of the optimal trajectories generated by the 4DT RS software

    Autonomous Recharging and Flight Mission Planning for Battery-operated Autonomous Drones

    Full text link
    Autonomous drones (also known as unmanned aerial vehicles) are increasingly popular for diverse applications of light-weight delivery and as substitutions of manned operations in remote locations. The computing systems for drones are becoming a new venue for research in cyber-physical systems. Autonomous drones require integrated intelligent decision systems to control and manage their flight missions in the absence of human operators. One of the most crucial aspects of drone mission control and management is related to the optimization of battery lifetime. Typical drones are powered by on-board batteries, with limited capacity. But drones are expected to carry out long missions. Thus, a fully automated management system that can optimize the operations of battery-operated autonomous drones to extend their operation time is highly desirable. This paper presents several contributions to automated management systems for battery-operated drones: (1) We conduct empirical studies to model the battery performance of drones, considering various flight scenarios. (2) We study a joint problem of flight mission planning and recharging optimization for drones with an objective to complete a tour mission for a set of sites of interest in the shortest time. This problem captures diverse applications of delivery and remote operations by drones. (3) We present algorithms for solving the problem of flight mission planning and recharging optimization. We implemented our algorithms in a drone management system, which supports real-time flight path tracking and re-computation in dynamic environments. We evaluated the results of our algorithms using data from empirical studies. (4) To allow fully autonomous recharging of drones, we also develop a robotic charging system prototype that can recharge drones autonomously by our drone management system

    Transportation Mission-Based Optimization of Heavy Combination Road Vehicles and Distributed Propulsion, Including Predictive Energy and Motion Control

    Get PDF
    This thesis proposes methodologies to improve heavy vehicle design by reducing the total cost of ownership and by increasing energy efficiency and safety.Environmental issues, consumers expectations and the growing demand for freight transport have created a competitive environment in providing better transportation solutions. In this thesis, it is proposed that freight vehicles can be designed in a more cost- and energy-efficient manner if they are customized for narrow ranges of operational domains and transportation use-cases. For this purpose, optimization-based methods were applied to minimize the total cost of ownership and to deliver customized vehicles with tailored propulsion components that best fit the given transportation missions and operational environment. Optimization-based design of the vehicle components was found to be effective due to the simultaneous consideration of the optimization of the transportation mission infrastructure, including charging stations, loading-unloading, routing and fleet composition and size, especially in case of electrified propulsion. Implementing integrated vehicle hardware-transportation optimization could reduce the total cost of ownership by up to 35% in the case of battery electric heavy vehicles. Furthermore, in this thesis, the impacts of two future technological advancements, i.e., heavy vehicle electrification and automation, on road freight transport were discussed. It was shown that automation helps the adoption of battery electric heavy vehicles in freight transport. Moreover, the optimizations and simulations produced a large quantity of data that can help users to select the best vehicle in terms of the size, propulsion system, and driving system for a given transportation assignment. The results of the optimizations revealed that battery electric and hybrid heavy combination vehicles exhibit the lowest total cost of ownership in certain transportation scenarios. In these vehicles, propulsion can be distributed over different axles of different units, thus the front units may be pushed by the rear units. Therefore, online optimal energy management strategies were proposed in this thesis to optimally control the vehicle motion and propulsion in terms of the minimum energy usage and lateral stability. These involved detailed multitrailer vehicle modeling and the design and solution of nonlinear optimal control problems

    Aeronautical Engineering: A continuing bibliography, supplement 120

    Get PDF
    This bibliography contains abstracts for 297 reports, articles, and other documents introduced into the NASA scientific and technical information system in February 1980
    • …
    corecore