

CRANFIELD UNIVERSITY

MANUEL ANGEL AMARO CARMONA

4DT GENERATOR AND GUIDANCE SYSTEM

SCHOOL OF AEROSPACE, TRANSPORT AND

MANUFACTURING

MSc-by-Research

Academic Year: 2014-2015

Supervisor: Dr. Huamin Jia

October, 2015

CRANFIELD UNIVERSITY

SCHOOL OF AEROSPACE, TRANSPORT AND

MANUFACTURING

MSc by Research

Academic Year 2014-2015

MANUEL ANGEL AMARO CARMONA

4DT GENERATOR AND GUIDANCE SYSTEM

Supervisor: Dr. Huamin Jia

October, 2015

This thesis is submitted in partial fulfilment of the requirements for

the degree of Master of Science by Research

© Cranfield University 2015. All rights reserved. No part of this

publication may be reproduced without the written permission of the

copyright owner.

i

ABSTRACT

This thesis describes a 4D Trajectories Generator and Guidance system. 4D

trajectory is a concept that will improve the capacity, efficiency and safety of

airspace. First a 4D trajectories synthetizer design is proposed. A flight plan

composed by a set of waypoints, aircraft dynamics model and a set of limits and

constraints are assembled into an optimal control problem. Optimal solution is

found by making use of an optimal control solver which uses pseudo spectral

parametrization together with a generic nonlinear programming solver.

A 4D Trajectories generator is implemented as a stand-alone application and

combined with a graphic user interface to give rise to 4D Trajectories Research

Software (4DT RS) capable to generate, compare and test optimal trajectories.

A basic Tracking & Guidance system with proportional navigation concept is

developed. The system is implemented as a complementary module for the 4D

trajectories research software.

Simulation tests have been carried out to demonstrate the functionalities and

capabilities of the 4DT RS software and guidance system.

Tests cases are based on fuel and time optimization on a high-traffic commercial

route. A standard departure procedure is optimized in order to reduce the noise

perceived by village’s population situated near airport. The tracking & guidance

module is tested with a commercial flight simulator for demonstrating the

performance of the optimal trajectories generated by the 4DT RS software.

Keywords:

Four dimensional navigation, optimal trajectories, optimization, guidance.

ii

CONTRIBUTION

This thesis makes a contribution to the scientific community in:

- Design and develop a 4D Trajectories Research Software to generate,

evaluate and compare optimal trajectories.

- Design and develop a Tracking and Guidance System to test and evaluate

optimal trajectories with a commercial flight simulator.

Furthermore, the author contributed to design, develop, integrate and test

components of Greener Aircraft Trajectories under ATM Constraints (GATAC)

framework developed by Airbus Group Innovations, Thales Avionics, German

Aerospace Center (DLR), Alenia and GSAF group (Cranfield University,

University of Malta, Technical University of Delft and Netherlands Aerospace

Centre) as part of activities carried out by Systems for Green Operations (SGO)

integrated technology demonstrator (ITD) of CleanSky programme.

Specifically, the author contributed to:

- Design, develop, integrate and test internal components (Weather and

Atmospheric Models) of Aircraft Dynamics Model (ADM)

- Test and evaluate Business and Operational Cost Models (B&O)

- Test and evaluate GATAC user interface

These tasks were carried out as part of the 80-hours/month work basis required

by CleanSky | Cranfield University.

iii

TABLE OF CONTENTS

ABSTRACT ... i

CONTRIBUTION ... ii

LIST OF FIGURES .. vii

LIST OF TABLES ... x

LIST OF EQUATIONS ... xii

LIST OF ABBREVIATIONS .. xiv

Chapter 1.. 1

1.1 Motivation ... 1

1.2 Research Methodology ... 5

1.3 Research Objectives ... 7

1.4 Report Outline ... 8

Chapter 2.. 9

2.1 Introduction ... 9

2.2 Flight Management Systems (FMS).. 9

2.2.1 Boeing FMS ... 10

2.2.2 Airbus FMS .. 12

2.3 Future Flight Management Systems (FMS) .. 14

2.4 ARINC 424 Specification .. 16

2.5 Brief Review of Existent Tools .. 17

2.5.1 Center-TRACON Automation System (CTAS) 17

2.5.2 Greener Aircraft Trajectories under ATM constraints (GATAC) 19

2.6 4D Optimal Trajectories .. 21

2.6.1 4D Trajectory Generation for Waypoints-based Navigation 22

2.6.2 4D Trajectory-based concept for Terminal Area Operations 23

2.6.3 Optimal trajectories generation for next generation FMS 26

2.6.4 4D trajectory design in presence of contrails 27

2.7 Tracking & Guidance .. 29

2.7.1 4D Green Guidance for Terminal Area Operations 29

2.7.2 4D Tracking System for Waypoint-Based Navigation 31

2.7.3 4D Descent Trajectory Guidance ... 32

2.8 Optimal Control Methods .. 35

2.9 Conclusion .. 36

Chapter 3.. 38

3.1 Introduction ... 38

3.2 Optimal Control Problem ... 38

3.3 Direct Methods .. 39

3.3.1 Direct Collocation ... 41

3.4 Tools for Solving Optimal Control Problems ... 43

3.5 Guidance using Proportional Navigation (PN) .. 46

3.6 Other Concepts ... 48

iv

3.6.1 Andrew’s Monotone Chain Convex Hull Algorithm 48

Chapter 4.. 50

4.1 Introduction ... 50

4.2 Aircraft Dynamics Model ... 50

4.3 Performance index specification ... 52

4.3.1 Reducing Fuel and Time .. 52

4.3.2 Reducing Noise .. 53

4.4 Boundaries and Constraints .. 57

4.5 Overview of 4D Trajectories Research Software (4DT RS) 60

4.6 Software Structure .. 62

4.7 4D Trajectories Generator Core .. 63

4.7.1 Exporting Results and Noise Grid .. 70

4.8 Graphic User Interface (GUI) .. 73

4.8.1 Maps, Waypoints and Data validation .. 73

4.8.2 Flight Plan Inspector... 79

4.8.3 Aircraft and Initial Conditions Inspectors .. 83

4.8.4 Noise Inspector .. 83

4.9 4DT RS Core and 4DT GUI Connection ... 87

4.10 Computing Flight Information .. 89

4.10.1 Fuel, flight cost, distance and maximum SEL 90

4.10.2 Predicted Time of Arrival .. 91

4.10.3 Top of Climb and Begin of Decent ... 93

4.11 Trajectory Representation ... 96

4.11.1 Detailed View Tool ... 98

4.12 Preferences and Help ... 100

Chapter 5.. 102

5.1 Introduction ... 102

5.2 System Overview .. 102

5.3 Tracking System ... 105

5.4 Guidance System.. 107

5.4.1 Lateral Guidance .. 107

5.4.2 Vertical Guidance ... 111

5.5 Avionics Systems Indicators ... 112

5.6 MATLAB® Simulation Framework ... 113

5.7 4DT RS Guidance Module .. 114

5.7.1 Guidance System Core .. 114

5.7.2 4DT RS Guidance Graphic User Interface (GUI) 115

5.7.3 X-Plane® UDP Communication .. 117

Chapter 6.. 120

6.1 Introduction ... 120

6.2 Test case (Fuel and Time Optimization) ... 121

6.2.1 Setting Up Testing Case in 4DT RS ... 122

v

6.3 Test case (Noise Optimization) ... 128

6.3.1 Setting Up Testing Case in 4DT RS ... 131

6.4 Test case (Trajectory evaluation using 4DT RS T&G Module) 135

6.5 Known Limits and Improvements .. 140

Chapter 7.. 142

7.1 Conclusion .. 142

7.2 Future Work .. 144

7.3 Challenges .. 145

REFERENCES ... 147

APPENDICES .. 155

Appendix A 4DT RS Overview .. 155

Appendix B Tracking & Guidance System Overview 156

Appendix C 4DT RS Functions ... 157

Appendix D MATLAB® Simulation Framework .. 163

Appendix E Noise Approximation of PW2036 engine 167

Appendix F Noise Approximation of PW2036 engineError! Bookmark not

defined.

vii

LIST OF FIGURES

Figure 1-1: Project methodology .. 6

Figure 2-1: Tools provided by CTAS suite [61] ... 19

Figure 2-2: GATAC internal structure [32] .. 20

Figure 2-3: GATAC v3 typical display format of an optimization case. 21

Figure 2-4: Schematic of 4D Trajectory-based concept [45] 24

Figure 2-5: Schematic of solution proposed by [55] ... 28

Figure 2-6: Control Loop proposed by Vaddi et al. [44]. 30

Figure 2-7: Guidance and Control System Proposed by Canino et al. [21] 32

Figure 2-8: Overview of system proposed by Canino et al. [21] 34

Figure 3-1: Missile-target engagement geometry [54] 47

Figure 3-2: Monotone Chain | Convex Angles .. 49

Figure 3-3: Convex polygon example ... 49

Figure 4-1: Noise specification empirical data example 54

Figure 4-2: PW2036-like noise data approximation .. 56

Figure 4-3: Aircraft settings example .. 59

Figure 4-4: 4DT RS Graphic User Interface ... 61

Figure 4-5: 4D Trajectories Research Software Structure 63

Figure 4-6: 4DT RS Core internal structure .. 64

Figure 4-7: MappingWGS function algorithm.. 65

Figure 4-8: Compute_noise function algorithm ... 68

Figure 4-9: Integrand_cost function algorithm .. 69

Figure 4-10: Example of data output by 4DT RS Core 70

Figure 4-11: Noise Grid .. 71

Figure 4-12: Noise Grid Computation algorithm ... 72

Figure 4-13: PlotWaypoints function algorithm ... 75

file:///C:/Users/Manuel/Google%20Drive/Sync/Msc-by-research/Final%20Report/4DT_MasterThesis_Final_corrected.docx%23_Toc437955653

viii

Figure 4-14: PlotTrajectory function algortihm .. 76

Figure 4-15: Map and Flight Plan Table ... 78

Figure 4-16: Flight Plan Inspector .. 79

Figure 4-17: Navigation Database .. 82

Figure 4-18: Aircraft and Initial Conditions Inspector .. 83

Figure 4-19: Noise Inspector .. 84

Figure 4-20: Noise Specification File .. 85

Figure 4-21: FilterNoiseGrid function algorithm .. 87

Figure 4-22: 4DT RS Core and 4DT GUI Connection 88

Figure 4-23: Flight Information ... 89

Figure 4-24: ComputeFlightData function algorithm ... 91

Figure 4-25: Compute Time of Arrival Algorithm .. 93

Figure 4-26: Predicted Time of Arrival .. 93

Figure 4-27: Top of Climb (TOC) and Begin of Descent (BOD)....................... 94

Figure 4-28: ComputeBODTOCPoints function algorithm (Part 1) 95

Figure 4-29: ComputeBODTOCPoints function algorithm (Part 2) 96

Figure 4-30: PlotGraph function example in pseudo code and C# 98

Figure 4-31: FindNearestPoint function algorithm .. 99

Figure 4-32: Detailed View Tool ... 100

Figure 4-33: Preferences and Help .. 101

Figure 5-1: Tracking & Guidance System Main Control Loop......................... 104

Figure 5-2: Compute track error loop ... 106

Figure 5-3: Lateral guidance based on static reference point 108

Figure 5-4: Compute reference point algorithm .. 110

Figure 5-5: Cross-track and altitude error indicators in PFD 112

Figure 5-6: Top-level view of tracking & guidance system 115

Figure 5-7: Tracking & Guidance System GUI ... 115

Figure 5-8: Example of reference point selection ... 116

Figure 6-1: Fuel vs Time Optimization | Map View ... 123

file:///C:/Users/Manuel/Google%20Drive/Sync/Msc-by-research/Final%20Report/4DT_MasterThesis_Final_corrected.docx%23_Toc437955695

ix

Figure 6-2: Fuel vs Time Optimization | Horizontal Profile 123

Figure 6-3: Fuel vs Time Optimization | Vertical Profile 124

Figure 6-4: Fuel vs Time Optimization | Speed Profile 126

Figure 6-5: Fuel vs Time Optimization | Fuel Consumption 126

Figure 6-6: Optimal trajectory compared to SID baseline procedures 131

Figure 6-7: Noise Exposure Level at Observer 1 (top) and Observer 2 (bottom)
 .. 132

Figure 6-8: Altitude Profile – Noise Optimization .. 133

Figure 6-9: Speed Profile – Noise Optimization.. 134

Figure 6-10: Horizontal Profile | Tracking & Guidance Module 137

Figure 6-11: Cross-track error for lateral guidance ... 137

Figure 6-12: Aircraft heading comparison .. 138

Figure 6-13: Vertical Profile | Tracking & Guidance Module 139

x

LIST OF TABLES

Table 2-1: Boeing | Honeywell FMS [39] .. 11

Table 2-2: Boeing | General Electric (GE) FMS [39] ... 11

Table 2-3: Airbus | Thales FMS [39] ... 12

Table 2-4: Airbus | Honeywell FMS [39] ... 12

Table 2-5: RTA tolerance comparison [19] ... 15

Table 2-6: Performance Index Specification [45] .. 25

Table 3-1: Comparison between Optimal Control Tools 45

Table 4-1: Comparison between real noise data and approximated data 56

Table 4-2: Control variable constraints ... 58

Table 4-3: States variables constraints .. 58

Table 4-4: Default constraints ... 58

Table 4-5: flat_point struct .. 66

Table 4-6: PSOPT boundaries variable syntaxes in C++ 66

Table 4-7: noise_data struct ... 67

Table 4-8: Example of PSOPT setting variables sintaxis in C++ 70

Table 4-9: PointLatLng struct ... 73

Table 4-10: GMapMarker struct .. 73

Table 4-11: GMapRoute struct ... 74

Table 4-12: Objects and elements used .. 74

Table 4-13: WindowsForms Controls ... 77

Table 4-14: Validation functions ... 77

Table 4-15: Database specification .. 80

Table 4-16: Functions used by SQLiteConnection and cmd objects 80

Table 4-17: Variable values for SQL queries .. 81

Table 4-18: Noise Level Contours example values .. 85

xi

Table 4-19: Convex Hull main functions ... 86

Table 4-20: Settings file parameters .. 88

Table 4-21: FlightData struct .. 90

Table 4-22: ZedGraph objects .. 97

Table 5-1: UPD_Pack specification [74] ... 118

Table 6-1: LFPG – EHAM Flight Plan ... 121

Table 6-2: Initial Conditions .. 122

Table 6-3: TOC, BOD and PTA | Time Optimization 124

Table 6-4: TOC, BOD and PTA | Fuel Optimization 125

Table 6-5: Flight Information | Time and Fuel Optimization 127

Table 6-6: Enquiries registered in 2010 [35] ... 129

Table 6-7: Visibility and Cloud configuration... 136

Table 6-8: Wind speed configuration .. 136

xii

LIST OF EQUATIONS

(3-1) .. 39

(3-2) .. 39

(3-3) .. 40

(3-4) .. 41

(3-5) .. 41

(3-6) .. 42

(3-7) .. 42

(3-8) .. 42

(3-9) .. 42

(3-10) .. 42

(4-1) .. 50

(4-2) .. 51

(4-3) .. 51

(4-4) .. 51

(4-5) .. 51

(4-6) .. 51

(4-7) .. 51

(4-8) .. 51

(4-9) .. 51

(4-10) .. 52

(4-11) .. 52

(4-12) .. 53

(4-13) .. 54

(4-14) .. 55

(4-15) .. 55

xiii

(4-16) .. 55

(4-17) .. 55

(4-18) .. 55

(4-19) .. 57

(4-20) .. 60

(4-21) .. 60

(4-22) .. 71

(4-23) .. 71

(4-24) .. 92

(4-25) .. 92

(5-1) .. 105

(5-2) .. 107

(5-3) .. 108

(5-4) .. 109

(5-5) .. 110

(5-6) .. 111

(5-7) .. 113

(5-8) .. 113

(5-9) .. 113

xiv

LIST OF ABBREVIATIONS

3DoF Three Degrees of Freedom

4DT Four Dimensional Trajectories

4DT RS 4D Trajectories Research Software

6DoF Six Degrees of Freedom

AI Attitude Indicator

ARQ Automatic Repeat Request

ATC Air Traffic Controller

ATM Air Traffic Management

BADA Base of Aircraft Data

BIG BIGGIN Waypoint

BOD Begin of Descent

CLN CLACTON Waypoint

CTA Controlled Time of Arrival

CTAS Control-TRACON Automation System

D2 Direct-to

DC Douglas Company

DCNLP Direct Collocation with Nonlinear Programming

DVR DOVER Waypoint

DYNOPT Dynamic Optimizer

EGKK London Gatwick Airport

EHAM Amsterdam Schiphol Airport

ETA Estimated Time of Arrival

FAA Federal Aviation Administration

FEC Forward Error Codding

FMS Flight Management System

FMC Flight Management Computer

GATAC Greener Aircraft Trajectories under ATM Constraints

GA Genetics Algorithms

GE General Electric

GNSS Global Navigation Satellite System

xv

GUI Graphic User Interface

HYOP Hybrid Optimizer

IFR Instrumental Flight Rules

ILS Instrument Landing System

INM Integrated Noise Model

IPOPT Internal Point Optimizer

LFPG Paris Charles de Guille Airport

MACS Multi-Aircraft Control System

MINLP Mixed Integer Nonlinear Programming

MOTS Multi-objective Tabu Search

NAS National Air Space (United States)

NASA National Aeronautics and Space Association

ND Navigation Display

NDB Non-directional beacon

NDB Navigation Database

NG-FMS Next Generation Flight Management System

NLP Nonlinear Programming

NSGAMO Non-dominated Sorting Genetic Algorithm Multiple Optimization

OCP Optimal Control Problem

PFD Primary Flight Display

PMM Point Mass Model

PSOPT Pseudo Spectral Optimal Control Solver

RNP Required Navigation Performance

RTA Required Time of Arrival

SEL Sound Exposure Level

SESAR Single European Sky ATM Research

SGO Systems for Green Operations

SID Instrument Standard Departure

SNOPT Sparse Nonlinear Optimizer

STAR Standard Arrival

T&G Tracking & Guidance

TOC Top of Climb

VOR VHF Omnidirectional Range

1

Chapter 1

INTRODUCTION

This chapter describes a background about current systems that include four

dimensional trajectories and the reasons that inspired to carry out this project.

Then a formal thesis definition is presented, including the general and specific

objectives of this research and the methodology to achieve these objectives.

Finally a report outline provides the reader with an overview of chapters contained

in this document.

1.1 Motivation

Four dimensional trajectory based operations (4D-TBO) is considered a key

improvement for future Air Traffic Management systems [38].

Strategies involving arrival sequences based on a time of arrival while

maintaining optimum flight profiles contributes to increase the airspace capacity,

efficiency and safety. The main purpose of using 4D trajectories is to increase the

predictability of this environment.

Despite a few efforts done by industry, progress in the use of four dimensional

trajectories in both air and ground system is limited.

Smiths Aerospace (GE Aviation), is responsible for manufacturing the most

recent flight management systems for Boeing B737-NG (-700, -800 and -900).

Smith has implemented initial four dimensional capabilities in their FMS GE

U10.7, by including a Required Time of Arrival (RTA) function [27].

2

This function operates based on predicted trajectory while associating the

required time of arrival (input by crew) with the estimated time of arrival (ETA).

Subsequently, aircraft is guided to the target waypoint so the predicted time of

arrival matches as much as possible with the required time of arrival.

Similar functions has been included in many other Flight Management Systems

manufactured by Honeywell or Thales and are mentioned in [18], [24], [31], [34]

and [39].

One of the problems related to the use of RTA functions in the current airspace

is that not all aircraft are provided with flight management systems capable to

meet required time of arrival conditions. This input a homogeneity issue to

airspace, since aircraft that are not equipped with RTA functions have to be

accommodated in airspace along with others that include these functions. A

transition period is ahead, and RTA traffic has to be compatible with non-RTA

traffic, at least for terminal based operations. A key feature to achieve this, is the

capacity to accurate predict optimal trajectories so RTA flights will be easier to

handle.

Current scenario shows that RTA function is only available in some aircraft.

These functions try to minimize throttle activity by triggering control inputs if RTA

and ETA differs by more than a configurable tolerance. Despite this tolerance

varies from ±6 to ±30 seconds in existent flight management systems, results of

flight tests including possible future scenarios [19] show that capabilities to predict

optimal trajectories need to be improved.

Another problem is produced when using ATC speed constraints (e.g. 250 kts.

below FL100). Current RTA functions have been limited to operate at flight levels

above FL100. Late arrivals are produced because the RTA function estimates

inaccurately the time required to decelerate to constraints speeds. In some cases,

predicted trajectories by FMS do not include speeds below 250 knots, even at

levels above FL100.

Estimated Time of Arrival (ETA) is not updated frequently in current flight

management system when target speeds cannot be properly controlled. This

3

deficiency in ETA updating rate could induce to inaccuracies in computation of

flight parameters to follow the RTA condition.

Predicted optimal trajectories by current FMS are no longer reliable when RTA

specifications are input after Begin of Descent (BOD) point has passed. The

descent strategy is fixed when this point is achieved.

Current RTA tolerances are sufficient for some flight phases such as en-route or

ascent. However, reducing these tolerances will be necessary for arrival and

approach phases thus terminal area operations require more accuracy in aircraft

separation.

In current FMS-Control Display Units (CDU), RTA error is displayed numerically

[34], which could represent an issue for pilots that must have their head looking

down for a considerable amount of time. Improvements in avionics displays is

another important issue that has to be considered in the implementation of future

flight management systems. Additionally, cockpit improvements must be

complemented with GPS time inputs because it is necessary some reliable

synchronization between ground and air systems.

Another important problem is related to compatibility of avionics systems to

ground ATM tools. In situations including initial four dimensional trajectories

(i4DT) concept, where required time of arrival is involved at only few merging

points, the specific RTA condition at a sequencing fix could be negotiated by

voice communications. However, for full 4D trajectories operations, where

several sequencing fix are required, this situation has to be implemented in

different ways. For this case, prediction of 4D trajectories has to be performed in

both air and ground systems.

From the aircraft point-of-view, it is necessary to calculate the best trajectory that

fulfil its interest (e.g. predict optimal trajectory to reduce fuel consumption). In

contrast, for ground systems, it is necessary to calculate the best trajectory that

improves the air traffic flow. A solution for this observation would be implementing

optimal trajectories that meet both requirements.

4

The use of existent ATM tools such as Arrival Manager (AMAN) [30] in Europe

airspace is still under consideration. The tool supposes to provide support for

controllers by generating aircraft descent speeds on continuous descent

approach operations. However, its predictability and operational issues due to

incompatibility with avionics RTA functions requires improvements. Optimal

descent paths predicted by existent FMS systems are not compatible with AMAN

speed advisories. Another similar tool that includes a four dimensional

synthetizer, Control-TRACON Automation System (CTAS) [52] has been

developed for research and simulation purposes with an insight of NextGen

project requirements. However, possibly due to its undeveloped level, it has only

been included in small scales on Air Traffic Management Systems for research

and testing purposes.

Assuming the diversity of problems described, it is noticeable that design goals

for future air and ground systems are to generate four dimensional optimal

trajectories capable to reduce fuel consumption or flight time while maintaining

predictable paths (horizontal and vertical) and improving air traffic flow efficiency.

Current systems show that predicting optimal trajectories is far from being

perfectly implemented. Most of advanced four dimensional features in air and

ground systems are still under consideration or have not been properly developed

because of deficiencies in the estimation of four dimensional trajectories. This

project contributes to improve the predictability of four dimensional optimal

trajectories by designing and developing a four dimensional trajectories

synthetizer.

Additionally, the idea of progressing in the development of optimal trajectories

and flight profiles is considered important to environment conservation because

it reduces COx emissions and reduce noise. Also, it is considered attractive for

airlines, avionics systems manufacturers and air traffic management operators

thus it reduces aircraft fuel consumption, flight time and operational costs, while

improving the efficiency and increasing the airspace capacity.

The issue of predicting optimal trajectories restricts the current FMS-RTA

functions, to a point, where they are not reliable and accurate enough in some

5

situations. Additionally, advanced RTA functions need to be properly integrated

into flight deck displays to complete appropriate interaction with pilots. For this

reason, this project also contributes to improve current avionics systems by

proposing possible solutions to some of these issues.

1.2 Research Methodology

General requirements of the system have been analysed as part of first specific

objective of this project. Subsequently, the process to carry out this research has

been divided into two phases:

 Phase 1: Design, Implementation & Testing of 4DT Generator

 Phase 2: Design, Implementation & Testing of Tracking & Guidance System

Since project goals were evidently understood, the definition of the project was

firm and most of the technologies needed were clearly understood, it has been

used a sequential design process based on flexible and iterative Waterfall model

[28].

Figure 1-1 shows the methodology used to develop this project including two

phases following the waterfall design strategy.

Main phase boards the modelling, design and implementation of 4DT generator

system. Initial tasks were mainly focused on generating optimal trajectories by

setting up specific optimal control problems and identifying the general

characteristics of these problems. These characteristics composed an important

part of the system requirements.

Similarly, for the software design it has been considered also accessibility to tools

and software constraints such as solver selection, operating systems and

computer resources.

6

Requirements

4DT Generator & Guidance System

Design & Modelling

4DT generator

Implementation

Of 4DT core and GUI

Testing

Phase 1

Unit Testing

Design & Modelling

Tracking & Guidance

Implementation

Of 4DT core and GUI

Phase 2

Testing

Tracking &

Guidance Module

Unit Testing

4DT Research

Software

Trajectory

Evaluation

Trajectory

Evaluation

Figure 1-1: Project methodology

7

System implementation has been started when modelling & design stage was

completed. Iterative procedures between these two stages (implementation ↔

design), have been performed to include elements that were not considered in

early design stages.

Early unit testing have been performed since first versions of the synthetizer (4DT

core) were released. This phase has been concluded with the test of alpha

versions of 4DT research software which included most recent version of 4DT

generator.

The second phase has been focused on design, test and implementation of the

tracking & guidance system.

Design methodology used for this phase was similar to main phase. Waterfall

strategy has been adapted to available time for the project. In this case,

implementation stage included massive unit testing due to configuration and

testing of commercial flight simulator.

At the end of second phase, the Tracking & Guidance system has been tested

before evaluating any interaction with research software.

The completion of second phase conduced the testing and evaluation of 4DT

synthetizer results (Trajectories Evaluation) and the end of the project.

1.3 Research Objectives

This thesis aims at designing, modelling and testing a trajectory generator and

guidance system to focus on the use of 4D optimal trajectories.

In order to achieve this, it has been proposed the following specific objectives:

 Analyse the functionalities of existing Flight Management Systems (FMS).

 Study functional requirements for future 4DT/RNP-based FMS.

 Design and develop a future 4DT Generator and Guidance system for a

FMS according to the functional requirements analysed.

 Analyse and evaluate the performance of the 4DT Generator and

Guidance system.

8

1.4 Report Outline

This report is composed by the following chapters:

Introduction: this chapter provides a general overview of this master thesis by

explaining the motivation and objectives set.

Literature Study: this chapter provides an overview of current 4DT systems as

well as optimal trajectories prediction and guidance system researches.

4D Trajectory Optimization Techniques: concepts related to optimal trajectory

prediction, solving methods for optimal control problems, non-linear programming

techniques and guidance based on proportional navigation are detailed and

explained in this chapter.

4D Generator Development: this chapter provides detailed information about

the design and implementation of 4DT Generator and 4D Trajectories Research

Software v0.1.

Tracking & Guidance System: this chapter provides detailed information about

design and implementation of Tracking & Guidance system.

Test and Results: this chapter describes 4DT Trajectories Research Software

and Guidance system tests and results. Also provides an extensive analysis

about capabilities and proposed improvements for designed systems.

Conclusion and Future Work: in this chapter it is summarized the work

performed and it is contrasted with the project objectives. Finally it is given an

insight of future work.

9

Chapter 2

LITERATURE STUDY

2.1 Introduction

This chapter will briefly review current and future Flight Management Systems

(FMS) practices and requirements, 4D trajectory generation and guidance

methods as well as trajectory optimization methods. Section 2.2 analyse the

current Flight Management Systems (FMS) designs, especially FMSs equipage

on Boeing and Airbus aircraft. Section 2.3 reviews future flight management

systems, their functions and requirements. Section 2.4 describe navigation and

database specifications used on current FMSs. Section 2.5 reviews existent tools

to generate four dimensional trajectories. Section 2.6 discuss existent strategies

and methods to generate optimal trajectories. Section 2.7 discuss existent

tracking and guidance systems. Section 2.8 describes existent optimal control

methods used for generating four dimensional trajectories. Finally, Section Error!

Reference source not found. summarizes this chapter and identify the

functional requirements of this project.

2.2 Flight Management Systems (FMS)

First integrated Flight Management Systems (FMS) were introduced in late

1970s. Since then, it has been introduced more advanced functions and

capabilities such as improvements in navigation database, enhanced tracking for

vertical and horizontal paths, and basic required time of arrival functions. This

section aims at describing current FMS in the market and their functions.

10

2.2.1 Boeing FMS

First Flight Management System (FMS) was developed for Boeing 767

programme in 1978. It included a system capable to automate a variety of in-flight

tasks. In 1990, Boeing Company launched the B767-300 that included a

Honeywell Pegasus 2005 Flight Management System [39].

The airline industry required new capabilities such as the direct-to function that

describes aircraft trajectories without the need to follow navaids. For this purpose,

it has been implemented algorithms based on multiple sensors that provide more

accurate aircraft position by making use of VHF Omni-directional range (VOR),

Distance Measurement Equipment (DME) and Inertial Reference Systems (IRS).

Additionally, the increase in the demands on oceanic operations encouraged the

development of Future Air Navigation Systems (FANS) capabilities that include

the use of Global Position System (GPS), Required Navigation performance

(RNP) and data link. This supposed an important advance on airline operational

communications, more safe and reliable systems capable to track horizontal and

vertical paths with very low tolerance errors defined by RNP conditions.

Except Boeing B737 versions, most airplanes of the American company use

Flight Management Systems (FMS) manufactured by Honeywell International,

Inc. Some famous models included by Boeing are Honeywell Legacy, AIMS,

Pegasus and NextGen.

Honeywell develops a wide variety of systems that includes differences in

hardware and software. Hardware is commonly compared by its capacity to host

a Navigation Database (NDB).

FMS developed for B757/B767 (Honeywell 200K FMC) were provided with just

400KB of capacity. The introduction of Performance Base Navigation (PBN)

supposed an important increase in the demand of database capacity. Nowadays,

modern FMS developed for B747-8 (Honeywell NextGen) is provided with 100MB

[39].

11

The following Table 2-1 shows most common Honeywell systems used in Boeing

aircrafts, their Navigation Database (NDB) capacity.

Table 2-1: Boeing | Honeywell FMS [39]

Aircraft FMS Model NDB Capacity

B747-400 Honeywell 747-4 2MB

B747-8 Honeywell NextGen 100MB

B757/767 Honeywell Pegasus 7.5MB

B777 AIMS 12MB

B787 Honeywell 30MB

Most recent B737 versions (B737-NG), are provided with Flight Management

Systems developed by GE Aviation (Smiths Aerospace). Different models has

been developed for B737, some of them including new FMC hardware are

provided with up to 16MB of Navigation Database capacity.

Following table shows a comparison between different FMS manufactured by GE

for Boeing B737-NG.

Table 2-2: Boeing | General Electric (GE) FMS [39]

Aircraft FMS Model NDB Capacity

B737-NG GE U10.6, U10.7, U10.8 8MB

B737-NG GE U10.8 16MB

12

2.2.2 Airbus FMS

Most Airbus airplane models are provided with Thales Flight Management

Systems (FMS). Exception applies for some aircraft of A320 family and A330/340

thus could be equipped with Honeywell FMS [39].

Flight Management Systems 1 (FMS1) developed by Thales was introduced in

the Airbus A320 programme. The Thales FMS1 was provided with 400Kb of NDB

capacity. Next versions FMS2 REV2+ and FMS2 R1-A increased their NDB

capacity up to 7MB [39].

In the versions of A320 including Flight Management Systems manufactured by

Honeywell, it is possible to highlight the advanced-capacity Pegasus P1-A that

provided 20MB of NDB capacity.

The following Table 2-3 and Table 2-4 show most common FMS used by Airbus

aircraft. It is shown that system capacities are relatively similar to models shown

in section 2.2.1.

Table 2-3: Airbus | Thales FMS [39]

Aircraft FMS Model NDB Capacity

A319/320/321 Thales FMS2 REV2+ 5MB

A319/320/321 Thales FMS2 R1-A 7MB

A330/340 Thales FMS2 REV2+ 7MB

Table 2-4: Airbus | Honeywell FMS [39]

Aircraft FMS Model NDB Capacity

A319/320/321 Honeywell Pegasus P1 4MB

A330/340 Honeywell Pegasus P3 5.5MB

13

Boeing and Airbus use very similar Flight Management Systems (FMS) where

few variances could be detected and mostly related to the diversity of

manufacturers. Important changes in functions and the NDB capacity can be

perceived when comparing recent systems with first generation models.

Designing methods and techniques for most Flight Management Systems (FMS)

are not in public domain, however it is know that these methods relies on

managing Navigation Databases (NDB) that are defined via ARINC-424

specification [58].

From the user perspective, most differences between different Flight

Management Systems are almost imperceptible. However, there exists few

cosmetic changes in flight deck or software front-end that are visible.

Most changes are performed in the hardware, in the system implementation or in

the software design. Previous discussion boarded differences in navigation

database capacities. Furthermore, since manufacturer are different, it could exist

dissimilarities in the way trajectories are computed or in the perception of some

aircraft parameters.

A research carried out by Herndon et al. [24] from MITRE Corporation Center for

Advanced Aviation Systems Development studied the differences between Flight

Management System (FMS) and Flight Management Computers (FMC) designed

by different manufacturers. The study results show that there exists differences

below 0.1 nautical miles of the nominal radius-to-fix (RF) arc radius in the turn. In

vertical path, all tracks were followed with errors below 200-300 feet. These

results shows that differences in lateral and vertical path exists, however the

tracking deviations are within published maximum tolerances.

Another study carried out by same author [18], shows a difference between

vertical paths of diverse Flight Management Systems. The results shown that

climb paths could be more widely different than descent paths. While comparing

different FMS included in Boeing and Airbus models, vertical path constraints

were generally well met by all systems with exception of one system. However,

the author states that some tests could be affected by non-related FMS effects.

14

As a general comparison, it is possible to affirm that difference between different

manufacturers are not excessively significant, however each system is developed

by different manufacturers that sometimes input variances in each design.

2.3 Future Flight Management Systems (FMS)

Single European Sky ATM Research (SESAR) [38] programme and the United

States NextGen [26] aim at restructuring the airspace to increase the overall

capacity and efficiency by introducing more strategic-based operations instead of

current tactical operations.

Both programmes require to develop and implement the use of 4D trajectory

based operations (4D-TBO) in both air and ground systems in order to improve

the predictability of the airspace.

The premise of SESAR and NextGen is based on sequencing the air traffic by

providing each aircraft with a set of waypoints that aircraft have to reach at

required time. The required time of arrival (RTA) should be communicated to crew

by air traffic controller (could be negotiated).

From aircraft operator’s point of view, the use of 4D-TBO will result economically

interesting. Aircraft will be sequentially managed based on required time of arrival

constraints that will result in a reduction of bottle-neck effects and holding

patterns and consequently a considerable reduction of fuel consumption, hence

COx emissions.

In contrast, air traffic management systems will use 4D-TBO to increase the

overall efficiency of traffic flow. Additionally, airspace capacity will be significantly

increased due to reduction of waiting time in the air, holding patterns and airport

delays.

For operations involving few merging points, the communication of RTA could be

performed by voice commands. However, for operations involving more points, it

is necessary to modify both air and ground systems to provide this interaction in

more efficient manner. For this reason, future flight management systems require

advanced data-link functions capable to interact with ground ATM systems. The

15

process should be easier to handle than current functions by introducing more

efficient software interfaces.

Few advances has been performed in the use of four dimensional trajectories

concept in avionics systems. The most significant function is named Required

Time of Arrival (RTA) [23].

This function operates based on aircraft trajectory predictions to calculate the

Estimated Time of Arrival (ETA). Once RTA function is activated, the aircraft

speed up or down in order to maintain the difference between RTA and ETA

below a tolerance value.

The following table shows a comparison of RTA tolerance between different FMS

manufacturers:

Table 2-5: RTA tolerance comparison [19]

FMS Aircraft
RTA

Tolerance
Flight Phase

Smiths B737 Classic, NG 6 sec

Climb,

Cruise,

Descent

Thales - Smiths A320, A330, A340 30 sec

Climb,

Cruise,

Descent

Honeywell
Pegasus

A320, A330, A340

B757, B767,
MD90

30 sec Cruise

Honeywell
B777, B747-400,

MD11
30 sec Cruise

Required Time of Arrival (RTA) functions exists in modern airliners but they have

limitations and require special autopilot functions such as auto-throttle to operate.

RTA functions in current FMS do not operate for altitude below 10,000 ft. For this

reason, future flight management systems should include RTA functions capable

to operate in approach phases. Since reduced aircraft separation on terminal

16

area operations is a key requirement, lower tolerance errors for RTA functions

should be achieved.

Prediction of optimal trajectory is an important feature of flight management

systems. For the particular case of four dimensional trajectories, Estimated Time

of Arrival (ETA) is used to compute required control inputs to match the required

time of arrival. However, updating rates of estimated time of arrival is reduced

when aircraft speed do not match properly with control speed which results in

accuracies when reaching the waypoint. Future flight management systems

should include important advances in trajectory prediction that support the control

activity of RTA functions more accurately.

2.4 ARINC 424 Specification

ARINC 424 is a specification that has been released for first time in May 1975

[59]. It is maintained and developed by the industry and it is used for exchange

of communication and navigation data between avionics systems and data

providers.

This specification was created specifically for avionics systems that require

complex navigation and communication data. For this reason, ARINC-424

specification has been mainly developed thinking on its application on Flight

Management Systems (FMS) and Flight Management Computers (FMC).

The main idea behind ARINC 424 is to specify data in text files containing lines

of 132 alphanumeric characters [65]. This data is assembled and packed by

commercial suppliers. These text files are converted into binary datasets and

included into avionics systems by Flight Management Systems (FMS)

manufacturers. In this way, each Flight Management System (FMS) is provided

with a unique set of navigation and communication data.

ARINC 424 document provides a specification about how a navigation database

should be assembled and prepared by commercial suppliers. In addition, it

provides a set of rules to avionics manufacturers about how this data can be

accessed and interpreted by embedded systems. ARINC 424 specifies standard

assembly information for the following navigation elements: airports, heliports,

17

runways, waypoints, navaids (e.g. NDB, VOR, VOR-DME, TACAN, ILS), airways

and arrival/departure routes procedures (STAR, SID).

World’s largest navigation and communication database supplied by Jeppensen®

meet ARINC 424 specification [58]. This database is currently used by several

manufacturer to fly, simulate and create flight plan procedures.

Additionally ARINC 424 specifies a set of legs used for coding Terminal Area

Procedures, Standard Instrument Departure (SID) and Standard Arrival (STAR)

procedures. When this standard was introduced, it was required to implement

RNAV procedures using more elements than the few of them specified in DO-

236* standard [14]. For this reason, ARINC-424 introduced a set of 23 new legs

types in order to translate normal procedures created for compass and manual

flight into computer language (for Flight Management Systems).

2.5 Brief Review of Existent Tools

The introduction of SESAR and NextGen programmes supposed that 4D

trajectory-based operation concept became more popular in recent years. Some

tools including 4D optimization capabilities have been developed and are

described in this section.

2.5.1 Center-TRACON Automation System (CTAS)

The Aviation Systems Division of NASA Ames Research Center developed an

important suite of tools for synthetizing optimal trajectories. Center-TRACON

Automation System (CTAS) [52] is a set of tools that has been developed to

complement ATM ground systems by including a next level of automation for

planning and controlling arrival and departure traffic. The core of CTAS is

composed by a trajectory synthetizer that generates trajectories to increase fuel

efficiency, and provide automation assistance to air traffic controller in order to

reduce traffic delays.

CTAS also complements its features with En-Route Descent Advisor (EDA),

which is an internal tool that assists air traffic controllers of each airspace sector

to solve air conflicts.

18

The core of this software is a sophisticated trajectory synthetizer that aims at

predicting trajectories based on flight data information hosted in an ATC

computer. This synthetizer makes use of accurate aircraft performance models

located in this ATC database.

4D trajectories concept has been introduced in this tool in order to create

schedules for runway occupancy and final approaches. Also, the introduction of

time as new aircraft trajectory dimension allows to detect future conflicts, suggest

possible shortcuts and create more efficient descent paths.

CTAS has been focused of making use of sophisticated 4D trajectories based

functions. The En-Route Descent Advisor (EDA) and the Active-Final Approach

Spacing Tool (A-FAST) allows to generate trajectories that meet time of arrival.

According to [52], advisories are displayed by a module called Traffic

Management Advisor (TMA) in order to issue guidance commands by air traffic

controllers to avoid aircraft conflicts.

CTAS deals with operational challenges that result from predicting 4D optimal

trajectories such as human factor problems in communication or monitoring,

imprecision in execution of air traffic controllers commands by crew or automated

systems and environment uncertainties that affect trajectory predictions.

From the optimization point-of-view, an interesting tool provided by CTAS is

Direct-To (D2). In order to decrease fuel consumption and aircraft COx emissions,

D2 allows controllers to visualize and if required, to modify aircraft trajectories to

make trajectories shortcuts available in the route. If this is the case, aircraft are

capable to save time and in some cases, contributes to dynamically release the

airspace capacity.

The capabilities of CTAS have been tested and transitioned to FAA for

operational evaluation. Other modules of this suite are detailed in [52], [15] and

[61]. In addition, Figure 2-1 shows a diagram of different tools provided in CTAS

Suite in February, 2007 including their region of action.

19

Figure 2-1: Tools provided by CTAS suite [61]

2.5.2 Greener Aircraft Trajectories under ATM constraints (GATAC)

CleanSky is a joint technology initiative created by European Commission in 2008

in order to develop new technologies capable to significantly increase the

environmental performances of air transport vehicles [60]. The innovative

projects are integrated and coordinated by technology demonstrators. Cranfield

University contributes in activities related to Systems for Green Operations (SGO)

of CleanSky.

Greener Aircraft Trajectories under ATM constraints (GATAC) is a multi-model

and multi-optimization framework developed by integrated technology

demonstrators and associates of CleanSky Work Package WP3.2, which

includes GSAF (Group composed by Cranfield University, University of Malta,

NLR and TU Delft), Airbus Group Innovations, Alenia Aeronautica, DLR and

Thales.

GATAC core is composed by an optimization suite which uses different

optimization algorithms depending of user or problem requirements. These

20

algorithms are Non-dominated Sorting Genetic Algorithm Multiple Optimization

(NSGAMO), Multi-objective Tabu Search (MOTS) and Hybrid Optimizer (HYOP)

[42]

Figure 2-2 shows a structure of GATAC software. The optimization suite uses an

evaluation handler which is composed by a parameter store component and an

interface used to connect different models contained into a models suite.

Figure 2-2: GATAC internal structure [32]

From the user point-of-view, GATAC is a software compatible with Windows

operating systems. The Graphic User Interface (GUI) allows users to manage the

models and components of the optimization process represented by blocks that

can be connected to each other.

21

Figure 2-3: GATAC v3 typical display format of an optimization case.

Multi-objective and multi-model optimization characteristics convert this

framework into a powerful tool. However, due to the nature of genetics-based

algorithms, thousands of iterations are needed in order to obtain a successful

result. This implies the use of powerful CPUs and/or local area network clusters

in order to speed the optimization process up. Another important characteristic of

GATAC is that generated trajectories are exported to a data text file. Therefore,

third-party software is required to plot generated trajectories.

Main focus of GATAC is generate optimal trajectories making use of accurate

aircraft models that include many modules such as engine, aircraft dynamics and

weather conditions. At this moment it has not shown evidence of providing

support to operations involving 4D trajectories concept such as managing optimal

trajectories making use of scheduling constraints or defining a predicted time of

arrival relative to a merge point, however its flexibility could allow users to develop

models that include this functionality in the future.

2.6 4D Optimal Trajectories

In general, optimal trajectories generation is usually boarded as an optimal

control problem based on mathematical models that describes aircraft dynamics,

a cost function describing an aircraft performance specification to be minimized

(fuel consumption, flight time and others) and a set of equality and/or inequality

constraints describing the aircraft performance limits. This section describes and

22

analyses different methods and approaches to generate 4D Optimal trajectories

followed by other authors.

2.6.1 4D Trajectory Generation for Waypoints-based Navigation

Bouson and Machado [49] describe a method for generating 4D optimal

trajectories passing through a sequence of waypoints using pseudo spectral

optimization. The method described used simple navigation equations that

provide a reference velocity (𝑉𝑟𝑒𝑓), path angle 𝛾 and heading 𝜓 to enable aircraft

go through a sequence of waypoints denoted by 𝑃0, 𝑃1, 𝑃2, 𝑃3 … 𝑃𝑀.

The basic premise is to consider the time in the description of waypoints so that

each point is defined by 𝑃𝑘 = (𝜆𝑘, 𝜑𝑘, ℎ𝑘, 𝑡𝑘) where variables are longitude (𝜆),

latitude (𝜑), altitude (ℎ) and time (𝑡). Then the problem is defined as an optimal

control problem to be applied for points 𝑃0, 𝑃1, 𝑃2, 𝑃3 … 𝑃𝑀 that minimizes the arrival

delay at each point 𝑃𝑘.

Hence the following performance specification is proposed:

𝐽(𝑢) = (P𝑓 − s(τ𝑓))
𝑇

𝑄𝑓(P𝑓 − s(τ𝑓))

where s(τ𝑓) is the terminal position of aircraft, 𝑄𝑓 a positive defined matrix of

appropriate dimension, and u is the control vector of the following navigation

model [49]:

𝜆̇ =
𝑉𝑐𝑜𝑠(𝛾) sin(𝜓)

(𝑅𝑒 + ℎ)cos (𝜑)

𝜑̇ =
𝑉𝑐𝑜𝑠(𝛾) sin(𝜓)

𝑅𝑒 + ℎ

ℎ̇ = 𝑉 sin(𝛾)

𝑉̇ = 𝑢1

𝛾̇ = 𝑢2

𝜓̇ = 𝑢3

23

Where 𝜆 is longitude, 𝜑 is latitude, ℎ is altitude, 𝑉 is the velocity, 𝛾 is the flight

path angle and 𝜓 is heading. The control variables selected are acceleration,

flight path rate and heading rate.

The optimal control problem is then restricted by a set of boundaries and

constraints. The constraint defined by the following expression:

‖P𝑘 − 𝑠(𝜏𝑘)‖2 ≤ 𝜎

is used to ensure aircraft passes through all waypoints (𝑘 = 1 … 𝑚) at time

denoted by 𝜏𝑘 with a tolerance position denoted by the variable 𝜎 which

represents the radius of a circle with center fixed at the point P𝑘.

Finally, the trajectory is generated by discretizing the time dependent equations

using a pseudo spectral method based on Lagrange and Chebyshev polynomials

defined in the interval [−1, 1]. Other tests have been performed using another

Collocation method. The nonlinear programming problem obtained is then solved

using the function fmincon of MATLAB®.

The method used by the author and the reduced complexity of navigation

equations result in a significant reduction of computational resources needed to

solve the problem. Simulations using up to 25 nodes converged in optimal

solutions.

However, the results obtained show that this method introduced issues to

properly follow the aircraft along the trajectory for the particular case simulated

[49] . Some oscillations problems were solved by increasing the number of nodes.

The guidance system has been capable to track the trajectory to fulfill the

mission’s requirements, however, the accuracy obtained was not the better. The

results shows some difficulties to fulfill the time restrictions imposed to the

performance index specification.

2.6.2 4D Trajectory-based concept for Terminal Area Operations

Vaddi et al. [45], describe a unique 4D-Trajectory-based operations concept that

consists in both air and ground automation systems. The ideas proposed by the

authors are focused in a general systems improvement. For the particular case

24

of 4D trajectory generation, a method is proposed based on an optimal control

problem.

The full schematic is shown in the following figure [45],

Figure 2-4: Schematic of 4D Trajectory-based concept [45]

In this concept, the 4DT generator is performed on ground and then sent to

aircraft. Flight management System (FMS) requires to generate guidance

commands to allow aircraft to track the 4D trajectory proposed by ground

systems.

The system proposed by Vaddi et al. [45] uses a general performance index

specification that penalizes the delay, the fuel consumption and the landing time

of aircraft by the following expression:

𝑚𝑖𝑛 ∑(𝛼 𝑑𝑒𝑙𝑎𝑦 + 𝛽 𝑓𝑢𝑒𝑙) + 𝛾𝑡𝑓𝑖𝑛𝑎𝑙

𝑁

𝑖

25

Components of the general expression are proposed to be calculated based on

the following table:

Table 2-6: Performance Index Specification [45]

Objective Function Description

Reduce Time 𝑡20

Reduce Fuel Consumption 𝑚𝑓𝑢𝑒𝑙 = ∫ 𝑚̇𝑓𝑢𝑒𝑙(𝑉1…20, 𝑇1…20)

𝑡20

0

𝑑𝑡

Consequently, the equations expressed in Table 2-6 are subject to constraints

defined by aircraft limits and flight profiles defined in [45]. The mathematical

model proposed by the author to describe aircraft dynamics is composed by four

states variables:

𝑥̇ = 𝑉𝑐𝑜𝑠(𝛾)

ℎ̇ = 𝑉𝑠𝑖𝑛(𝛾)

𝑉̇ =
(𝑇 cos(∝) − 𝐷)

𝑚
− 𝑔 sin (𝛾)

𝛾̇ = −
𝑔

𝑉
𝑐𝑜𝑠(𝛾) +

𝐿

𝑚𝑉
+

𝑇 sin (∝)

𝑚𝑉

Where 𝑥 is longitudinal position, h is altitude, V is airspeed, 𝛾 is flight path angle,

𝑇 is thrust, 𝐿 is lift force, D is drag force, m is aircraft mass and ∝ is the angle of

attack. Obviously, this model is restricted and limited by a set of bounds and

constraints that are attached to aircraft dynamics limits.

No further information is provided about the method used to discretize the

dynamic equations, however, the nonlinear programming problems has been

solved using the function fmincon of MATLAB®.

Simulations executed by the author for single and multiple aircraft scenarios show

that it has been achieved realistic trajectories with the design described. For

26

single trajectories, it is shown a balance between time vs fuel optimization where

there exists a time of arrival for which fuel consumption is minimum.

2.6.3 Optimal trajectories generation for next generation FMS

Diaz et al. [51] describe an optimal control approach to generate RNP, fuel-

efficient 4D trajectories to be in line with requirements of next generation flight

management systems.

The flight path is defined by a set of 4D waypoints composed by longitude,

latitude, altitude and required time of arrival. The problem is defined by a set of

RTA and RNP constraints. Required Time of Arrival is only defined at a finite

number of waypoints while RNP condition is defined along the whole flight plan.

The aircraft dynamics are defined by a three-degrees of freedom, rigid-body

model composed by six states variables: north distance (𝑁), east distance (𝐸),

altitude (ℎ), true airspeed (𝑉), flight path angle (𝛾) and yaw angle (𝜒).

The problem is defined by an optimal control problem that find the control vector

that minimizes the following performance index:

𝐽(𝑢) =
1

2
∫(𝑢𝑇𝑅𝑢 + (𝑦 − 𝑟)𝑇𝑄(𝑦 − 𝑟))𝑑𝑡

𝑇

0

+
1

2
(𝑥(𝑇) − 𝑥𝑑)𝑇𝐹(𝑥(𝑇) − 𝑥𝑑)

Subject to the conditions:

𝑥̇ = 𝑓(𝑥, 𝑢)

𝑥(𝑡0) = 𝑥0

‖𝑦(𝑡) − 𝑟(𝜏)‖ < 𝑑, 𝑡 ∈ [0, 𝑇] and 𝜏 ∈ [0, 𝑇]

where 𝑅, 𝑄 and 𝐹 are positive defined matrix that are tuned depending of desired

flight profiles or performance index conditions.

The first term of the performance index specification 𝑢𝑇𝑅𝑢 + (𝑦 − 𝑟)𝑇𝑄(𝑦 − 𝑟)

reduces the control effort while maintaining the aircraft position within the

27

trajectory for a given RNP condition. The second term (𝑥(𝑇) − 𝑥𝑑)𝑇𝐹(𝑥(𝑇) − 𝑥𝑑)

ensures the time of arrival for each waypoint.

The optimal control problem is solved using MATLAB® by making use of a method

based on Monte Carlo simulations. The author states that this method takes

around 1.41 seconds to compute the gain matrices, linearize the model and

simulate the trajectory. Additionally, simulations took around 1000 iterations for a

flight segment of 180 seconds.

2.6.4 4D trajectory design in presence of contrails

Soler et al. [55] describes a 4D trajectory generation problem in presence of

contrails. The problem is presented as an optimal control problem that minimizes

the overall flying cost of fuel consumption, CO2 emissions, flight time, and

persistent contrails formation.

The problem is defined as an optimal control problem that minimizes the following

performance index specification:

𝐽(𝑢) = 𝐶𝑡𝑡𝑓 + (𝐶𝐹 + 𝐶𝐶𝑂2
) [∑ ∫ 𝑚̇𝑞(𝑡)𝑑𝑡

𝑡𝑞+1

𝑡𝑞

𝑛

𝑞=0

] + 𝐷

Where 𝐶𝑡 represents flight time cost, 𝐶𝐹 represent the fuel cost, 𝐶𝐶𝑂2
 represents

the cost associated to producing CO2 emissions. 𝑚̇𝑞 represents the aircraft fuel

flow during a particular phase denoted as 𝑞. Finally, 𝐷 represent the persistent

contrail formation cost which form is defined in [55].

The model used by the author is a three-degrees of freedom that considers only

aircraft forces and it is composed by seven (7) states variables: velocity (𝑉),

heading (𝜓), path angle (𝛾), altitude (ℎ), latitude (𝜃), longitude (𝜆) and mass (𝑚).

Additionally, wind is calculated by using polynomial regression method applied

on a weather numerical model downloaded from National Oceanic and

Atmospheric Administration (NOAA).

28

Additionally, the problem is restricted by a set of constraints and boundaries

conditions denoted by 𝑔(𝑥(𝑡), 𝑢(𝑡), 𝑡) < 0 and ℎ(𝑥(𝑡), 𝑢(𝑡), 𝑡) = 0. Specific

numeric values for each state and control variables are found in [55].

The process to solve the problem is formulating a mixed integer optimal control

problem (MIOCP) by describing a set of differential-algebraic functions that

represent dynamic subsystems. Subsequently, the problem is reformulated and

expressed as a conventional mixed integer optimal control problem which is

discretized using collocation method and finally converted into a mixed-integer

nonlinear programming problem (MINLP).

The MINLP is solved using a branch and bound algorithm which is implemented

in MATLAB®. The process to solve the problem by Soler et al. [55] is shown in

the Figure 2-5.

Figure 2-5: Schematic of solution proposed by [55]

Simulations performed by the author based on a defined flight plan show that

method used are valid to solve the given problem, however, the use of a very

complex aircraft dynamics model introduced significant delays in finding optimal

solution. The author [55] proposed using a simpler aircraft model including only

five (5) states variables and neglected the wind model to improve the

computational efficiency.

29

2.7 Tracking & Guidance

Several authors have focused their research in developing innovative tracking

and guidance systems. The purpose of this section is to describe existing

research about Tracking & Guidance systems.

2.7.1 4D Green Guidance for Terminal Area Operations

Vaddi et al. [44] develop a tracking and guidance algorithm based in 4D

trajectories which uses green trajectories designed for terminal area operations

as reference path.

The 4D Guidance Module receives a reference trajectory composed by x, y, z

coordinates plus time of arrival. In addition, the module receives wind,

temperature and time histories about flap position, landing gear, descent rate and

aircraft airspeed.

The guidance system generates a set of control variables composed by pitch,

bank angle, and thrust/throttle. The module also output the settings of the flaps

and landing gear.

The 4D guidance law design uses an aircraft model composed by the equation

of motion, the engine model, the pitch, the controls and the external inputs. All

the equations used in this research are restricted to the vertical plane.

The equation that describe the dynamics of the aircraft are composed by the

equation of motion in the vertical plane, the engine equations, an autopilot model,

control variables and external inputs. The full model description can be found at

[44].

A standard atmospheric model is used to compute the density and temperature

as a function of the aircraft altitude.

The altitude relative to the standard atmosphere conditions (density altitude) is

represented as a function of the density and the temperature as follows [44]:

ℎ𝑑 =
𝑇𝑜

𝑎𝑡
[1 − (

𝜌

𝜌𝑜
)

(
𝑎𝑡𝑅

𝑔+𝑎𝑡𝑅
)

]

30

where 𝑇𝑜 is the standard temperature at sea level, 𝑎𝑡 is the temperature gradient

(which is constant for values below 36,000 ft.) 𝜌𝑜is the standard density at sea

level and g is the gravity acceleration.

The trajectory design also consider the prediction of the wind effect in the aircraft

dynamics.

The recorded data is used to simulate the nominal wind as a function of North,

East, and altitude cartesian coordinates plus time.

The proposed Tracking and Guidance system is shown in the Figure 2-6. The

system is composed by the following blocks [44]:

Figure 2-6: Control Loop proposed by Vaddi et al. [44].

The primary purpose of the state transformation is to express the system as a set

of linear states with time-invariant parameters. This linear system is controlled by

defining a set of pseudo-control variables (v1 and v2).

The linear control block is a proportional controller to compute the control

variables mentioned (v1 and v2) plus an integrator state introduced in order to

reduce the steady-state errors. The gains were adjusted empirically after some

experiments.

This block provides the inverse transformation of the pseudo controls inputs. This

will be achieved only if the matrix gij is invertible.

31

The control inputs define the response of the dynamics of the aircraft. This block

computes the values of the aircraft states that are used as an output (and

feedback signal).

2.7.2 4D Tracking System for Waypoint-Based Navigation

Bousson and Machado [49] initially described a process to generate a 4D

trajectory (section 2.6.1). Subsequently, they have developed a tracking system

to evaluate the trajectory generated.

The aircraft dynamics model is described by eight (8) states: velocity (𝑉), flight

path angle (𝛾), heading (𝜓), bank angle (𝜙), pitch angle (𝜃), roll (𝑝), pitch (𝑞) and

yaw (𝑟) rates.

Their guidance system is based on the theory of one-step predictive control

where the model is represented as a combination of two subsystems:

𝑥̇1 = 𝑓1(𝑥)

𝑥̇2 = 𝑔(𝑥, 𝑢)

The two equations are approximated1 using Taylor series expansion in order to

obtain a discretised system so that the expressions 𝑥1𝑘+1 and 𝑥2𝑘+1 are defined:

𝑥1𝑘+1 = 𝑥1𝑘 + ∆𝜏𝑓1(𝑥𝑘) + (
(∆𝜏)2

2
)[𝐹1𝑓1(𝑥𝑘) + 𝐹2𝑓2(𝑥𝑘) + 𝐵(𝑥𝑘)𝑢𝑘̅̅ ̅]

𝑥2𝑘+1 = 𝑥2𝑘 + ∆𝜏(𝑓2(𝑥𝑘) + 𝐵(𝑥𝑘)𝑢𝑘̅̅ ̅)

where

𝐹1 = (
𝜕𝑓1(𝑥)

𝜕𝑥1
)

𝑥=𝑥𝑘

𝐹2 = (
𝜕𝑓2(𝑥)

𝜕𝑥2
)

𝑥=𝑥𝑘

1 More detailed description of the approximation method is available in [49]

32

The problem is solved as an optimization problem, where the objective function

is designed in order to minimize the difference between a reference vector Xref

and the current position of the aircraft Xk+1.

𝐽(𝑢) =
1

2
𝑒𝑇

1𝑘+1𝑄𝑒1𝑘+1 +
1

2
𝑒𝑇

2𝑘+1𝑄𝑒2𝑘+1

where e1 and e2 are the difference between the current track and the aircraft

position for each instance of k.

2.7.3 4D Descent Trajectory Guidance

Canino et al. [21] develop a 4D tracking & guidance system based in a

conventional 6-degree of freedom point mass model for descent phase with

acceptable accuracy at low computational cost.

The errors computed for the tracking phase are the maximum along track

deviation, the maximum altitude track deviation respect to foreseen vertical

descent profile and the maximum lateral deviation.

Their guidance system is shown in Figure 2-7:

Current
Wind

Aircraft Dynamics

4D FMS

Save current
Trajectory Tf

3D Flight Plan

4D Predicted Trajectory

State Vector

The 4D FMS guidance system computes command values for thrust, bank angle

and path angle using the predicted trajectory and the current state vector

provided by the aircraft dynamic model.

Figure 2-7: Guidance and Control System Proposed by Canino et al. [21]

33

The lateral and vertical guidance in the 4D FMS model described is based on

traditional LNAV and VNAV methods of 3D FMS. The overview of the system

proposed by Canino et al. is shown in Figure 2-8. First, it is visible that an

estimated 4D trajectory is joined to the flight plan states to compute longitudinal

guidance commands and maintain the altitude inside the predicted aircraft 4D

trajectory. Second, lateral guidance commands are only computed in case

aircraft is in descent phase.

The along track guidance algorithm used in this system corrects and computes

the along track deviation (𝑑𝑙) at each instant i and is defined as follows:

𝑑𝑙 = (𝑥𝑓𝑖 − 𝑥0𝑖, 𝑦𝑓𝑖 − 𝑦0𝑖) 𝑢𝑖

Where 𝑥𝑓𝑖 and 𝑦𝑓𝑖 is the final position of aircraft at instant i. Tracking dl is

performed using speed changes by computing a new true airspeed in order to

maintain the ground vector using the following expression:

𝑇𝐴𝑆𝑓 = (𝐺𝑆2 + 𝑊𝑓
2 − 2 𝐺𝑆0𝑊𝑓 𝑐𝑜𝑠𝐵𝑓)

1
2

Where 𝑊𝑓 is the current wind direction, GS is the ground speed and 𝐵𝑓 =

|𝜔ℎ_𝑓 + 𝜑| and 𝜔ℎ_𝑓 is the current wind direction.

The tracking 𝑑𝑙 can also be achieved from the lateral deviation. This procedure

consists in creating a lateral path that allows the aircraft to increase the descent

profile. The lateral paths are computed using new waypoints inserted on both

sides of the route.

The distance error could be calculated using the following expression:

𝑑𝑙 =
𝑑𝑙 + ∆𝑡𝑢𝑟𝑛

2 (1 − cos (𝛼))

where ∆𝑡𝑢𝑟𝑛 is the dynamic turn rate and 𝛼 is the angle between aircraft and the

interception point.

34

If the reference path is below the current aircraft position and thrust is at idle

position, it is necessary to compute a new drag value to increase the rate of

descent.

𝐷𝑓 = 𝑘𝐷 ∗ 𝐷0

3D Flight Plan

Flight Plan States

4D Forecast Trajectory

Longitudinal Guidance

Descending?

Vertical Guidance

Flight Plan States

Calculate input controls

Control Variables

Yes

No

4D
 G

ui
da

n
ce

 S
ta

te
s

Figure 2-8: Overview of system proposed by Canino et al. [21]

35

where the factor 𝑘𝐷 is defined by:

𝑘𝐷 = 1 +
𝑚𝑔

𝐷0 𝑇𝐴𝑆 𝐸𝑆𝐹
 ∆𝑧̇

Tracking 𝑑ℎ can be also achieved by a lateral deviation by computing a new

waypoint. This procedure is similar to the one used for lateral deviation while

tracking the longitudinal error in the along-track guidance.

2.8 Optimal Control Methods

Optimal control problems can be solved using different strategies and methods.

Direct methods has been widely applied in trajectory optimization problems.

Various discretization methods can be applied in order to convert the problem

into a Nonlinear Programming (NLP) problem. Numerous solvers are available to

solve the NLP problem.

Bouson and Machado [49] use pseudo spectral parametrization of time

dependent variables to discretize the problem. The time-dependent variables are

discretized by making use of Chebyshev and Lagrange polynomials. The process

to approximate the variables is based on Legendre method built on Chebyshev

nodes defined, as usual, in the interval [-1, 1]. Then Lagrange interpolating

polynomials are defined based on Chebyshev nodes.

Once problem is discretized, the problem is converted into a Nonlinear

Programming (NLP) problem. The MATLAB® function fmincon is used to solve

the resultant NLP problem and obtain an optimal solution.

Some significant oscillations in one of the control variables have been detected

in the results. This problem has been solved by the author while increasing the

number of nodes used in the pseudo spectral parametrization.

Soler et al. [55] implement a discretization method of states and control variables

by applying a collocation method based on Hermite-Simpson Gauss-Lobatto

quadrature rules. They convert the problem into a mixed integer nonlinear

programming problem (MINLP).

36

Furthermore, this problem is solved by using a branch and bound algorithm

described in [55]. In order to use the Bonmin open-source solver, the problem is

modelled using AMPL modelling language.

Geiger et al. [17] describe a technique to generate optimal trajectory for an UAV

using Direct Collocation with Nonlinear Programming (DCNLP). The problem is

discretized using direct collocation method based on third-order Hermite

polynomials. Subsequently, the problem is converted into a NLP problem and

solved by MATLAB® function fmincon.

Tian and Zong [40] suggest an adaptive Gauss pseudo spectral method to

optimize an ascent phase aircraft trajectory. The problem has been solved using

Sparse Nonlinear Optimizer (SNOPT®).

Grüning et al. [46] use pseudo spectral optimizer (PSOPT) to solve an optimal

control problem in the design of a feedforward control for a four-rotor UAV.

Most researches about optimal trajectories generation use MATLAB® fmincon

function to solve nonlinear programming problems. The flexibility that offers

MATLAB® is considerable with respect to other software. However, there are

many other discretization methods that several authors have applied to solve

optimal control problems for applications different than aircraft trajectory

optimization. Consequently, many researches in aerospace applications make

use of other tools different than MATLAB® such as IPOPT, SNOPT®, PSOPT,

and DYNOPT.

Additionally, other authors [51] [42] use stochastic methods such as Monte Carlo

simulations implemented in MATLAB® or Genetics Algorithms (GA) implemented

in stand-alone Java applications.

2.9 Conclusion

Several projects have been developed in order to generate 4D optimal

trajectories. Most of previous authors used an optimal control theory approach to

find the best solution. The approach of Bouson et al. [49] has the advantage of

using a waypoint-based optimization that could be applied to any flight plan.

37

However, the use of aircraft dynamics instead of navigation equations will ensure

the aircraft is capable to fly the optimized trajectory. Similar characteristics of

simplicity are shown in Vaddi et al. [45] research. The optimization process and

mathematical model was designed for vertical profile. The use of a 3D model is

required so that aircraft trajectory is optimized in vertical and horizontal profile. In

contrast, using complex models rises the number of states variables and

consequently the execution time when solving the optimal control problem is

increased.

Different approaches can be followed to design the performance index

specification. In the particular case of Soler et al. [55] optimization was carried

out based on total flight cost by adding fuel cost, time cost and COx emissions

cost in the same performance index specification. However, the use of this

approach requires to properly balance the total equation, for example, by making

use of weights factors.

Most authors used direct methods to solve the optimal control problem. The time-

dependent variables are discretized and then the resultant non-linear

programming (NLP) problem is solved using a sparse matrix solver. The most

common NLP solver used is fmincon included in MATLAB software. Despite the

simplicity of this method, it is not suitable for stand-alone applications given that

it requires third-party compilers. In addition, there exist other methods that are

free and open source. It is required to use an optimal control solver capable to be

used in stand-alone applications.

38

Chapter 3

4D TRAJECTORY & GUIDANCE OPTIMIZATION

TECHNIQUES

3.1 Introduction

This chapter describes optimization techniques which are used to develop the 4D

Trajectory Generator & Guidance system. The optimal control problem (OCP) is

described in section 3.2. Section 3.3 describes the methods to solve OCP.

Section 3.4 describes and compares the different software tools for solving OCP

and section 3.5 describes the concept of proportional navigation.

3.2 Optimal Control Problem

Optimal control is defined as the process of determining control and states

trajectories for a dynamic system over a period of time to minimise a performance

index [36].

In order to solve an optimal control problem, it is necessary to identify:

1. A mathematical model of the system to be optimized

2. A cost function or specification of performance index

3. Boundaries and constraints specifications for system variables

Our objective is to seek an optimal control law vector 𝑢 which minimises the

expected total cost of a system for starting at a given [𝑥(𝑡0); 𝑡0] and ending

at [𝑥(𝑡𝑓); 𝑡𝑓].

39

Therefore, the optimal control problem can be expressed as minimize the cost

functional (also known as performance index 𝐽(𝑥, 𝑢)):

𝐽(𝑥, 𝑢) = 𝜑(𝑥(𝑡𝑓), 𝑡𝑓) + ∫ 𝐿(𝑥(𝑡), 𝑢(𝑡), 𝑡)𝑑𝑡
𝑡𝑓

𝑡0

 (3-1)

in order to find the control vector 𝑢[𝑡0, 𝑡𝑓]subject to the dynamic constraints:

𝑥̇(𝑡) = 𝑓(𝑥(𝑡), 𝑢(𝑡), 𝑡), 𝑥(𝑡0) = 𝑥0 (3-2)

This problem is generally known as Bolza problem [36]. If the performance index

takes the from:

𝐽(𝑥, 𝑢) = ∫ 𝐿(𝑥(𝑡), 𝑢(𝑡), 𝑡)𝑑𝑡
𝑡𝑓

𝑡0

it is known as the Lagrange problem [36]. Similarly, if performance index takes

the from:

 𝐽(𝑥, 𝑢) = 𝜑(𝑡0, 𝑥(𝑡0), 𝑡𝑓 , 𝑥(𝑡𝑓))

the problem becomes the Mayer problem [36].

The problem formulation is completed by defining a set of boundaries and

constraints as follows:

𝑔(𝑥(𝑡), 𝑢(𝑡), 𝑡) ≤ 0

ℎ(𝑥(𝑡), 𝑢(𝑡), 𝑡) = 0

Complex optimal control problems cannot be solved using analytical approaches.

For this reason, extensive use of computers supposes an important progress for

optimal control.

3.3 Direct Methods

The traditional analytical approaches cannot solve real-world complex optimal

control problems, such as 4D trajectory optimization problems. Many numerical

methods have been investigated to solve optimal control problems over the last

few decades, including direct solution methods and indirect solution methods.

40

indirect methods rely in the Pontryaing’s Maximum Principle [1]. These methods

attempts to find a minimum point indirectly, by solving the necessary conditions

of optimality in an optimal control problem. The problem is converted into a

boundary value problem.

Most common numerical methods used to deal with boundary value problems are

Gradient-based, Shooting-based (Single and Multiple) and Indirect Collocation

methods.

Despite of their high accuracy, indirect methods solutions are very sensitive to

small changes, which is a disadvantage when dealing with high constrained

problems.

Additionally Indirect methods convergence depends on the good estimation of

initial values. Another important aspect is that they are hard to apply when there

exist path constraints or singular arcs.

In contrast, a direct method attempts to find a minimum to the cost function by

constructing a sequence of points converging to that minimum. The main idea of

direct methods relies on discretizing the problem (usually control and state

variables) in order to convert the system into a Nonlinear Programming (NLP)

problem. [37].

The general NLP problem tries to find the n-vector 𝑥𝑇 = (𝑥1, … , 𝑥𝑛) that minimizes

the function [37]

𝐹(𝑥) (3-3)

subject to the constraints

𝑐𝐿 ≤ 𝑐(𝑥) ≤ 𝑐𝑈

and the simple bounds

𝑥𝐿 ≤ 𝑥 ≤ 𝑥𝑈

Direct methods are appropriate to deal with problems involving path constraints

with relatively low computational cost [16].

41

3.3.1 Direct Collocation

Direct collocation methods aims at finding the best solution of a set of candidate

solutions denoted by polynomials, so that optimal solution is satisfied at certain

points called collocation knots. Depending on how collocation points are chosen,

the collocation method could be: orthogonal or standard [29].

Orthogonal collocation methods rely in the use of quadrature nodes to

approximate continuous functions. Quadrature rules are often determined by

Legendre or Chebyshev polynomials in famous orthogonal collocation methods

[29] [11] [70]. It is known that quadrature produces accurate results if the function

f(x) is approximated in the interval [-1, 1].

Pseudo spectral collocation methods are suitable for approximating smooth

functions, integrations, and differentiations [36], for this reason its use in optimal

control problems has been extended.

The use of Legendre polynomials are popular in collocation methods. Using these

polynomials for solving differential equations in optimal control problems was

proposed by Elnagar et al. in 1995 [11].

A Legendre polynomial is orthogonal over the interval [-1, 1] and it is generated

from:

𝐿𝑁(𝜏) =
1

2𝑁𝑁!

𝑑𝑁

𝑑𝜏𝑁
(𝜏2 − 1)𝑁 (3-4)

where

𝜏 ←
2

𝑡𝑓 − 𝑡0
𝑡 −

𝑡𝑓 + 𝑡0

𝑡𝑓 − 𝑡0
 (3-5)

Some examples of Legendre polynomials are shown in [70]:

𝐿0(𝜏) = 1

𝐿1(𝜏) = 𝜏

𝐿2(𝜏) =
1

2
(3𝜏2 − 1)

42

𝐿3(𝜏) =
1

2
(5𝜏3 − 3𝜏)

If 𝐿(𝜏) is a general smooth function, then its integral over 𝜏 ∈ [−1, 1] can be

approximated as follows:

∫ 𝐿(𝜏)𝑑𝜏 ≈ ∑ 𝐿(𝜏𝑘)𝜔𝑘

𝑁

𝑘=0

1

−1

 (3-6)

where 𝜔𝑘 are weights given by:

𝜔𝑘 =
2

𝑁(𝑁 + 1)

1

[𝐿𝑁(𝜏𝑘)]2
 (3-7)

The pseudo spectral Legendre Method is explained in [11]: “Given the function

𝐹(𝑡) defined over [-1, 1] we construct its Nth degree interpolating polynomial as

follows: Define the Lagrange polynomials

∅𝑙(𝑡) =
2

𝑁(𝑁 + 1)

1

𝐿𝑁(𝑡𝑙)
∙

(𝑡1 − 1)𝐿𝑁(𝑡)

𝑡 − 𝑡𝑙
, (𝑙 = 0, 1, ⋯ , 𝑁) (3-8)

The Nth degree interpolation polynomial, 𝐹𝑁(𝑡), to 𝐹(𝑡) is given by:”

𝐹𝑁(𝑡) = ∑ 𝐹(𝑡𝑙)∅𝑙(𝑡)

𝑁

𝑘=0

 (3-9)

Elnagar et al. [11] explain that 𝐹𝑁(𝑡) can be obtained differentiating the equation

(3-9) and the result is a matrix multiplication given by:

𝐹̇𝑁(𝑡𝑚) = ∑ 𝐷𝑚𝑙𝐹(𝑡𝑙)

𝑁

𝑙=0

 (3-10)

where 𝐷 is a (𝑁 + 1) × (𝑁 + 1) matrix (defined in [11]).

43

3.4 Tools for Solving Optimal Control Problems

Several tools based on direct methods have been developed to solve optimal

control problems. Many of them focus on solving NLP problem while allowing the

user to choose the most appropriate method to discretize the problem.

SNOPT© is a popular sparse nonlinear programming solver written in FORTRAN

by Gill et al. [71]. The solver has been written mainly in FORTRAN but it has been

released in C, C++ and MATLAB® versions.

SNOPT© is based on sparse SQP algorithm based on quasi-Newton

approximations to the Hessian of Lagrangian. SNOPT© is distributed with

proprietary license [71]. It is commercially available with different licenses for

commercial, student and single use.

It is used by several applications and software packages due to its considerable

stability. Some of these software packages are AeroSpace Trajectory

Optimization & Software (ASTOS) [75], General Mission Analysis Tool (GMAT)

[76], and Optimal Trajectories by Implicit Simulation (OTIS) [77].

Another important aspect of this nonlinear programming solver are its capabilities

to support modelling languages such as “A Mathematical Programming

Language” (AMPL) which is an algebraic modelling language for describing

complex mathematical problems.

Another software tool for solving NLP is Interior Point Optimizer (IPOPT) [67]. It

is a large-scale nonlinear programming solver written in C++ and distributed as

Eclipse Public License (EPL). The code has been written by Wächter and Laird.

IPOPT is very famous due to its extensive environments where it can be used on.

Linux, Windows© and Mac OS X and with versions in Java, MATLAB® and

FORTRAN are examples of IPOPT flexibility.

Some other tools such as DYNOPT [62] also provide capabilities for discretizing

the time dependent variables and solving the problem using one of the popular

nonlinear programming solvers.

44

The problem is solved using total discretization with orthogonal collocation on

finite elements. The software uses Lagrange interpolation polynomials to

approximate states and control vectors. The algorithm used to develop this tool

is based on the work of Biegler et al. [7].

An important feature of DYNOPT is the capability to integrate with the popular

MATLAB® Optimal Control Toolbox and making use of the function fmincon.

Therefore, DYNOPT requires MATLAB to work since it has been implemented

using this proprietary software.

Pseudo Spectral OPTimal Control Solver (PSOPT) is a C++ framework delivered

as a set of libraries that have been developed by Becerra [70].

PSOPT uses direct collocation methods including pseudo spectral and local

discretization. Pseudo spectral discretization methods use Chebyshev or

Legendre functions to approximate the time-dependent variables. Local

discretization approximates the time dependent functions using splines. The

problem is solved using total discretization with orthogonal collocation on finite

elements.

PSOPT is free and distributed under GNU license; it can be compiled on GNU

Linux or Microsoft© Windows® 7. Currently, there exists some installers that

speed-up the installation process.

There are several advantages of using PSOPT. Its flexibility for using the most

important nonlinear programming solvers (IPOPT or SNOPT) is a powerful

capability thus it allows the user to compare results of the same optimal control

problem by just making few changes in the source code (switching NLP solver).

Another important aspect is the capability to utilize different discretization

methods.

The National Aerospace laboratory of Netherlands (NLR) has included PSOPT

as a key tool for optimizing trajectories in order to reduce fuel and noise [70]. This

has been carried out as part of NLR activities involved in CleanSky European

Project.

45

Additionally, it is used to develop optimal trajectories in the project ASTER [43],

a Brazilian mission to asteroid “2001 SN263” planned to be launched in 2016.

PSOPT structure is described in the provided user manual [70].

The following table summarizes and compares different optimal control tools with

respect to PSOPT:

Table 3-1: Comparison between Optimal Control Tools

Tool Method Language License Details

SNOPT SQL
FORTRAN,

C++, MATLAB®
Proprietary

Control Problem

requires to be

converted to NLP

IPOPT NLP

C, C++, Java,

FORTRAN,

MATLAB®

Free

Control Problem

requires to be

converted to NLP.

DYNOPT Collocation MATLAB® Free
Uses Control

Toolbox

PSOPT
Collocation

(Legendre)
C++ Free

Uses IPOPT or

SNOPT

Control

Toolbox
 MATLAB® Proprietary

As shown in Table 3-1, some tools are proprietary license. This makes difficult its

use into a stand-alone application since there is not access to their source code.

Despite their high capabilities in optimal control, other applications such as

DYNOPT, requires third-party compilers provided by MATLAB® to create

executable files, which could be an important limitation when trying to run in other

computer.

46

PSOPT seem to be a suitable option for using into a stand-alone application since

they are free open source and provides powerful performance while being

implemented in C++. Another important advantage is that PSOPT can be setup

to use two different non-linear programming solvers: IPOPT or SNOPT. This is

considered an useful feature to compare and evaluate the results.

Other applications were neglected for this comparison because they were

considered stand-alone software with limited integration capabilities.

3.5 Guidance using Proportional Navigation (PN)

Proportional Navigation (PN) is a concept that was introduced in 40’s in the

United States as a control law used for missile guidance [13]. In second World’s

War, some steps towards were implemented by German scientists. In the 50’s,

the use of PN for missile guidance was considerably extended. Currently there

exists numerous variations of the proportional navigation.

Despite new advances in Control Theory achieved in recent years, proportional

navigation is still used in most modern missile guidance systems. Example of this

is AIM-9 Sidewinder [57]. The main reasons of this, are that proportional

navigation is cheap to implement and has demonstrated effective guidance in

missiles.

Proportional navigation has some limitations related to evasive manoeuvres

when the pursuer is close to target. For example, proportional navigation

becomes considerable less effective if evader performs fast accelerations or zig-

zag movements when missile is approaching.

The basic idea behind proportional navigation is to generate missile acceleration

commands in proportion to its line-of-sight (LOS).

Figure 3-1 shows the two-dimensional engagement geometry of a missile which

pursues a non-maneuvering target.

The equations of motion of this system based on Point-Mass-Model (PMM) can

be found in [54].

47

The proportional navigation (PN) guidance law focuses on finding a guidance

command that ensures that missile rate of rotation is proportional to target rate of

rotation (based on missile line-of-sight (LOS)).

Figure 3-1: Missile-target engagement geometry [54]

This is equivalent to:

𝛼̇𝑀 = 𝑁𝜃̇

where 𝑁 is the navigation constant. 𝛼 and 𝜃 are shown in Figure 3-1 above.

In addition, there exists enhanced PN-based guidance laws such as Pure

Proportional Navigation (PPN), True Proportional Navigation (TPN) and Ideal

Proportional Navigation (IPN) [54].

Most notable research about Proportional Navigation were carried out by

Guelman [3] in 1971 and extended by Ghawgawe and Ghose [12] in 1996.

It is well-known that Pure Proportional Navigation (PPN) has been mostly

extended on missile guidance applications. However, True Proportional

Navigation (TPN) has been extended into several other fields such robotics,

space travel, spacecraft landing and aeronautical applications due to its wide

availability of literature.

48

There exists several applications of Proportional Navigation (PN) to aeronautics

and guidance systems. Smith [25] used PN with adaptive terminal guidance for

aircraft rendezvous. Han and Bang [56] applied Proportional Navigation (PN) in

the design of an Avoidance Collision strategy for Unmanned Air Vehicles.

Yamasaki and Balakrishnan [33] introduced a high performance pure pursuit

guidance method for UAV rendezvous and chase with a cooperative aircraft.

3.6 Other Concepts

This section describes other concepts that are considered useful topics to

understand this thesis.

3.6.1 Andrew’s Monotone Chain Convex Hull Algorithm

Convex Hull algorithms are used to find convex polygons based on a list of two

dimensional points. This section gives an overview of Andrew’s Monotone Chain

Convex Hull algorithm [6].

The algorithm starts on a basis that all points are initially sorted by their 𝑥

coordinate.

Then, there are selected tow points, 𝑃𝑎(𝑥𝑎, 𝑦𝑎) and 𝑃𝑏(𝑥𝑏 , 𝑦𝑏) so that:

𝑥𝑎 = min (𝑋)

𝑥𝑏 = max (𝑋)

where 𝑋 is the domain of size 𝑛 that contains all 𝑥 coordinate values

(𝑥1, 𝑥2, 𝑥3 … 𝑥𝑛).

Then the set of points can be divided into two different lists depending of the point

position with respect to the vector 𝑃𝑎𝑃𝑏
̅̅ ̅̅ ̅̅ . It is obtained an upper hull list and a lower

hull list.

Each element is checked so if a vector between one point and next point is

clockwise oriented with respect to previous vector, it is a convex angle. Otherwise

the point is removed from the list.

49

The idea is expressed in Figure 3-2. Vector composed by points 𝑃1 and 𝑃2 is

clockwise oriented with respect to vector composed by point 𝑃0 and 𝑃1. Similarly

vector 𝑃2𝑃3
̅̅ ̅̅ ̅̅ is clockwise oriented with respect to 𝑃1𝑃2

̅̅ ̅̅ ̅̅ . A point is removed from

the list when vector orientation turns to left (counter clockwise) with respect to

previous one.

Figure 3-2: Monotone Chain | Convex Angles

Once all points are checked, upper and lower hull lists are then joined. Only

remaining points in both lists are the ones that creates a convex polygon as

shown in Figure 3-3.

Figure 3-3: Convex polygon example

50

Chapter 4

4DT GENERATOR DEVELOPMENT

4.1 Introduction

This chapter describes the design and development of 4D trajectories generator.

It covers aircraft dynamics model for trajectory generator in section 4.2,

performance index specification for reducing fuel, time and noise is described in

section 4.3, and boundaries & constraints are described in section 4.4.

Furthermore 4D Trajectory Research software is introduced in section 4.5, then

it is explained the software structure in section 4.6. 4DT RS Core in described in

section 4.7 and graphic user interface in section 4.8, detailed information about

computing flight data in section 4.10. Finally some additional tools and trajectory

representation functions are explained in sections 4.11 and 4.12.

4.2 Aircraft Dynamics Model

Commercial aircraft trajectories usually have limited and small rotation motions.

Therefore, the dynamic model used for the 4D trajectory generation is based on

a 3DoF point-mass aircraft model. The model state 𝐱 vector consists of seven

states 𝐱 = [𝑥, 𝑦, 𝑧, 𝑉, 𝜓, 𝛾, 𝑚]T: north distance, east distance, altitude, heading,

path angle, bank angle and mass. The model control vector 𝐮 consists of three

variables 𝐮 = [𝜙, 𝛼, 𝑇]T: bank angle, angle of attack and thrust [20].

𝑥̇ = 𝑉𝑐𝑜𝑠(𝛾) cos(𝜓) (4-1)

51

𝑦̇ = 𝑉𝑐𝑜𝑠(𝛾) sin(𝜓) (4-2)

𝑧̇ = 𝑉𝑠𝑖𝑛(𝛾) (4-3)

𝑉̇ = (
𝑔

𝑚
) [𝑇𝑐𝑜𝑠(𝛼) − 𝐷 − 𝑚 𝑠𝑖𝑛(𝛾)] (4-4)

𝜓̇ = (
𝑔

𝑚𝑉𝑐𝑜𝑠(𝛾)
) (𝑇𝑠𝑖𝑛(𝜀) + 𝐿)sin (𝜙) (4-5)

𝛾̇ = (
𝑔

𝑚𝑉
) (𝑇𝑠𝑖𝑛(𝛼) + 𝐿) cos(𝜙) − 𝑚 cos(𝛾) (4-6)

𝑚̇ = −𝜂 𝑇 𝐶𝑓𝑐𝑟 (4-7)

where

𝑥, 𝑦 are north and east position

𝑧 is the altitude

𝑉 is velocity

𝜓, 𝛾, 𝜙 are heading, path angle and bank angle respectively

𝑚 is aircraft mass

𝑔 is gravity constant

𝛼 is angle of attack

𝐶𝑓𝑐𝑟 is the cruise fuel flow coefficient

𝐷 is the drag and 𝐿 is the lift defined as follows:

𝐷 =
1

2
𝐶𝐷𝜌𝑆𝑉2 (4-8)

𝐿 =
1

2
𝐶𝐿𝜌𝑆𝑉2 (4-9)

52

where 𝐶𝐷, 𝐶𝐿 and 𝑆 are variables unique for each airplane and they are the drag

and lift coefficients and the wing platform area respectively. 𝜌 is the density of the

atmosphere and 𝜂 is the specific fuel consumption that is defined by BADA [78]

as follows:

𝜂 = 𝐶𝑓1 (1 +
𝑉

𝐶𝑓2
) (4-10)

where 𝐶𝑓1 and 𝐶𝑓2are fuel coefficients unique for each aircraft.

Wind is considered an important component because of its effect in fuel

consumption and estimation of time of arrival. However, experience in practice

and theory shows that the use of a simple aircraft model is necessary to solve

the optimal control problem when there exists limited computational resources

[16] [49] [55]. This computational efficiency was necessary to perform fast tests

to early versions of the synthetizer. Therefore, the wind effect has been neglected

for the first version of the 4DT generator.

4.3 Performance index specification

Cost functions are expressed as performance index specification in order to

reduce fuel, time or noise. These functions have been implemented internally. A-

priori conditions could be defined by a flight profile before generating 4DT

trajectories.

4.3.1 Reducing Fuel and Time

The Fuel performance index is defined as follows:

𝐽𝑓𝑢𝑒𝑙(𝑡) = ∫ (
(𝑚(𝑡) − 𝑚(𝑡0))

𝑚𝑚𝑎𝑥

2

+
(𝑧(𝑡) − 𝑧𝑝)

𝑧𝑚𝑎𝑥

2

)

𝑡𝑓

𝑡0

𝑑𝑡 (4-11)

where.

𝑧𝑚𝑎𝑥 is the maximum altitude

𝑧𝑝 is the altitude at target point

53

𝑚𝑚𝑎𝑥is the maximum mass

𝑚(𝑡0) is the initial mass

The performance index 𝐽𝑓𝑢𝑒𝑙(𝑡) attempts to maintain the initial mass 𝑚(𝑡0) while

following the reference altitude 𝑧𝑝. In order to normalize the scale of performance

index, each element of equation (4-11) is divided by maximum mass 𝑚𝑚𝑎𝑥 and

maximum altitude 𝑧𝑚𝑎𝑥 constants.

Time performance index is defined as follows:

𝐽𝑡𝑖𝑚𝑒(𝑡) = ∫ (
(𝑉(𝑡) − 𝑉𝑚𝑎𝑥)2

𝑉𝑚𝑎𝑥
+

(𝑧(𝑡) − 𝑧𝑝)

𝑧𝑚𝑎𝑥

2

)

𝑡𝑓

𝑡0

𝑑𝑡 (4-12)

where,

𝑉𝑚𝑎𝑥 is the maximum aircraft velocity

The performance index 𝐽𝑡𝑖𝑚𝑒(𝑡) attempts to maintain aircraft maximum velocity

𝑉𝑚𝑎𝑥 while follows the reference altitude.

Following the same approach proposed by Sabatini et al. [53], once defined a

flight profile, scaling factors could be assigned in order to balance performance

index function to selected requirements. Some test were performed using

different scaling factors.

4.3.2 Reducing Noise

Sound Exposure Level (SEL) is defined as a logarithmic measure of the sound

pressure perceived at a reference location. This reference location is addressed

as observer.

Predicting noise produced by an aircraft is an extremely complex task. Currently,

there no evidence of existing continuous models capable to predict aircraft noise

accurately. Existent models utilised by previous researchers in optimal control

problems depend of engine parameters that are difficult to obtain in public

domains and their accuracy has been demonstrated only on specific cases.

54

Additionally, noise is generated by different components. In the case of departure

phase, main source of noise is generated by aircraft engine(s), which usually are

set to generate maximum thrust during take-off. However, in cruise and mainly in

approach phases, aircraft surfaces such as slats, spoilers, flaps and landing gear

generate significant amount of noise which could comparable to the one

produced by engines [8].

Empirical data has been used in order to represent aircraft engine noise. Since

surfaces or any other component has not been considered to represent aircraft

noise, optimization process regarding to noise reduction has been limited only to

departure phases.

Noise specification empirical data contains different parameters such as engine

model, type of measure, operation, thrust setting and sound level measured at

different distances defined by distance values from 200 to 25,000 feet as follows:

Figure 4-1: Noise specification empirical data example

A typical Sound Exposure Level (SEL) with respect to distance for a common jet

engine is shown in Figure 4-2 (blue). In contrast, green/red colour lines represent

the result of approximating SEL distribution by using a piecewise-defined

function:

𝑆𝐸𝐿 = {

𝐴1 log (𝑥) + 𝐵1 → 0 ≤ 𝑥 ≤ 4000

𝐴2 𝑥 + 𝐵2 → 4000 < 𝑥 ≤ 25000
 (4-13)

For the first part of this piecewise function, if only two (2) points are given, then a

logarithm expression 𝐴1 log (𝑥) + 𝐵1 could be obtained by solving the equation

system and obtaining 𝐴1 and 𝐵1 coefficients:

55

{

𝑦1 = 𝐴1 log(𝑥1) + 𝐵1

𝑦2 = 𝐴1 log(𝑥2) + 𝐵1

 (4-14)

However, since it is provided a set of 𝑚 points, it is taken into account all available

points by calculating different values of coefficients 𝐴1 and 𝐵1 for each possible

pair of points. Then these values are sum and divided by the number available of

points to obtain an average value of 𝐴1 and 𝐵1. This process is summarized in

the following equations:

𝐵count = ∑
𝑦𝑖 log(𝑥(2𝑚−𝑖+1)) − 𝑦(2𝑚−𝑖+1)log (𝑥𝑖)

log(𝑥(2𝑚−𝑖+1)) − log (𝑥𝑖)

𝑖=𝑚

𝑖=1

 𝐵1 =
𝐵𝑐𝑜𝑢𝑛𝑡

𝑚
 (4-15)

𝐴count = ∑
𝑦𝑖 − 𝐵1

log (𝑥𝑖)

𝑖=𝑚

𝑖=1

 𝐴1 =
𝐴𝑐𝑜𝑢𝑛𝑡

𝑚
 (4-16)

For the second part of this piecewise function, the linear expression 𝐴2 𝑥 + 𝐵2 is

simply calculated following a similar process than logarithmic expression.

𝐴2 =
𝑦𝑚 − 𝑦𝑗

𝑥𝑚 − 𝑥𝑗
 (4-17)

𝐵2 = 𝑦𝑗 (4-18)

Where 𝑗 refers to position where 𝑥 = 4000ft and piecewise function changes to

linear approximation. MATLAB® code for this particular case can be found in

Appendix E.

The result of applying this approximation method, is a piecewise function

represented in Figure 4-2. First part of this function (green) uses a logarithm

approximation, while second part is a linear approximation (red).

Table 4-1 shows a comparison between real values of sound exposure level of

an engine similar to Pratt & Whitney PW-2036 versus approximated values using

piecewise function. It is visible that maximum approximation error obtained is -

56

2.5 dB which is an acceptable value considering the distance of the observer

(10,000 ft).

Figure 4-2: PW2036-like noise data approximation

Table 4-1: Comparison between empirical noise data and approximated data

Distance

(ft)

Empirical

Value (dB)

Piecewise

function (dB)

Error

(dB)

Error

(%)

200 90.2 91.2 -1 1.10

400 86.3 85.9 0.4 0.46

630 83.3 82.5 0.8 0.96

1,000 79.9 79.1 0.8 1.00

2,000 74.2 73.8 0.4 0.53

4,000 67.2 67.2 0 0

6,300 61.9 63.5 -1.6 2.58

10,000 55.2 57.7 -2.5 4.52

57

16,000 47.2 48.2 -1 2.11

25,000 34.0 34.0 0 0

Equations described in (4-15) is used to compute Sound Exposure Level (SEL)

relative to two (2) observers.

The 4DT generator has been designed to reduce noise during take-off and

departure phases in a particular area. The main idea behind the use of observers

is that they should be placed in the edge of populated areas or villages affected

by noise so that flying close to them is avoided.

Optimization process tries to find a solution so that noise levels at these

observers are minimal.

SEL value is used to calculate a Noise performance index which aims at minimize

noise while following the target altitude:

𝐽𝑛𝑜𝑖𝑠𝑒(𝑡) = ∫ ((𝐾1𝐿𝐸1(𝑡) + 𝐾2𝐿𝐸2(𝑡))2 +
(𝑧(𝑡) − 𝑧𝑝)

𝑧𝑚𝑎𝑥

2

)

𝑡𝑓

𝑡0

𝑑𝑡 (4-19)

Where 𝐿𝐸1 and 𝐿𝐸2 denote the SEL relative to observers 1 and 2. Also 𝐾1 and 𝐾2

are big-enough scaling factors that are selected depending of the level of

importance of each observer with respect to its geographic location (e.g. one of

the observers could be more important, if this is closer to a populated area than

other).

4.4 Boundaries and Constraints

The boundaries and constraints used for defining the optimal control problem are

defined by aircraft performance limits and flight plan.The states and control

variable limits are defined by:

58

Table 4-2: Control variable constraints

Control variables

𝛼𝑚𝑖𝑛 < 𝛼(𝑡) < 𝛼𝑚𝑎𝑥

𝜙𝑚𝑖𝑛 < 𝜙(𝑡) < 𝜙𝑚𝑎𝑥

𝑇𝑚𝑖𝑛 < 𝑇(𝑡) < 𝑇𝑚𝑎𝑥

Table 4-3: States variables constraints

State variables

𝑥𝑚𝑖𝑛 < 𝑥(𝑡) < 𝑥𝑚𝑎𝑥

𝑦𝑚𝑖𝑛 < 𝑦(𝑡) < 𝑦𝑚𝑎𝑥

𝑧𝑚𝑖𝑛 < 𝑧(𝑡) < 𝑧𝑚𝑎𝑥

𝑉𝑚𝑖𝑛 < 𝑉(𝑡) < 𝑉𝑚𝑎𝑥

𝜓𝑚𝑖𝑛 < 𝜓(𝑡) < 𝜓𝑚𝑎𝑥

𝛾𝑚𝑖𝑛 < 𝛾(𝑡) < 𝛾𝑚𝑎𝑥

𝑚𝑚𝑖𝑛 < 𝑚(𝑡) < 𝑚𝑚𝑎𝑥

Constraints for variables 𝑥 and 𝑦 are defined by flight plan segments. Each

segment is composed by two waypoints, therefore the limits of 𝑥 and 𝑦 variables

of the segment are defined within the initial and final (target) waypoint.

Additionally, the heading (𝜓) constraint is defined by minimum value 0 degree

and maximum value 359 degrees.

Table 4-4: Default constraints

Variable Maximum Value Minimum value

East distance (𝑥) Target point east distance Previous point east distance

North distance(𝑦) Target point north distance Previous point north distance

Heading (𝜓) 0º 359º

59

Other constraints are different for each particular case and cannot be specified a

particular interval because they depend of aircraft performance limits.

Each aircraft has different performance limits, for this reason, the optimal control

problem has been designed to obtain this information from an aircraft settings

text file.

An example of the constraints for a C-17 Globemaster III aircraft, containing

upper and lower boundaries for altitude (𝑧), velocity (𝑉), path angle (𝛾), bank

angle (𝜙), angle of attack (𝛼), thrust (𝑇) and aircraft mass (𝑚) is shown in Figure

4-3.

Figure 4-3: Aircraft settings example

Speed values are expressed in knots, angle values in angles, thrust in pounds

(force), mass in pounds and altitude values in feet.

Additionally to states variables, initial and final time constraints are described

based on following equations:

60

𝑡𝑝+1 (𝑚𝑖𝑛) = 𝑡𝑝 (𝑚𝑖𝑛) +
𝑑𝑝

𝑉𝑚𝑎𝑥
 (4-20)

𝑡𝑝+1 (𝑚𝑎𝑥) = 𝑡𝑝 (𝑚𝑎𝑥) +
𝑑𝑝

𝑉𝑚𝑖𝑛
 (4-21)

Where 𝑡𝑝+1and 𝑡𝑝 is time at next and previous segment respectively, 𝑉𝑚𝑎𝑥 and

𝑉𝑚𝑖𝑛is aircraft maximum and minimum velocity respectively; finally 𝑑 is defined

as the orthodomic distance from initial to target waypoint 𝑝.

4.5 Overview of 4D Trajectories Research Software (4DT RS)

4D Trajectories Research Software Suite (4DT RS) is a software package that

has been designed and implemented based on the 4DT generator. The software

has been designed to generate, analyse and test optimal trajectories in order to

reduce fuel, time and noise.

Trajectories are created based on a given flight plan that must be composed by

waypoints.

4D Trajectories Research Software includes a user-friendly graphic interface and

an installer for Microsoft© Windows® 7 or superior. User interface is shown in

Figure 4-4.

4DT RS uses PSOPT [70] as internal optimal control solver which uses pseudo-

spectral methods to solve the problem.

61

Figure 4-4: 4DT RS Graphic User Interface

Once application starts, the user could select whether loading a previously

defined case or building a new case by creating / importing a flight plan. For

creating flight plans it has been included a waypoints database which contains

more than 150,000 airports, fixes, NDB and VOR stations. Additionally, initial

conditions, aircraft model, and typical optimal control problem are input

parameters that can be added by the user.

Generated trajectories parameters are represented in a map, vertical and

horizontal profiles are shown in plots. Optionally, trajectory data can be exported

as data files to be used in other software.

4DT RS has been provided with a Tracking & Guidance module linked to a

commercial flight simulator using an UDP connection. This module is used to

simulate a guidance system as well as testing and validating the generated

trajectories. Tracking & guidance module is described in Chapter 5.

Additionally, 4DT RS provides the user with more utilities such as: detailed view

tool, importing & exporting flight plans, noise levels contours and trajectories

comparison capabilities.

The following sections describe the structure and components of this software.

62

4.6 Software Structure

4DT RS structure is mainly composed by a set of algorithms that setup a generic

optimal control problem and generate a 4D optimal trajectory. These algorithms

have been assembled into one single module responsible for building and solving

the optimal control problem. This module is known as 4D Trajectories Generator

Core (4DT RS Core) and basically includes all the concepts boarded in sections

4.2 and 4.3.

Additionally to 4DT RS Core, it has been implemented a Graphic User Interface

(GUI) that contains the functions used to input data into 4DT RS Core and also

includes tools that compute flight data relative to optimal trajectories synthetized

and it is useful to evaluate and compare the optimal trajectories

Figure 4-5 shows a top-level overview of 4DT RS structure. A full view of 4DT RS

structure is available in Appendix A.

The block located at top-right represents the 4DT RS Core. This core receives

data via text files from data input modules named Inspectors. Each inspector

provides a different type of data relative to the optimal trajectory problem. For

example, Flight Plan Inspector provides inputs relative to trajectory flight plan

such as waypoints latitude, longitude, name or altitude. Similarly, aircraft

inspector provides inputs relative to aircraft performance model and noise

inspector inputs data relative to noise computation.

Other data is computed directly inside the 4DT RS Core (e.g. OCP time limits or

aircraft dynamics model). Elements relative to inputs (Inspectors) are

represented by blocks located at left side of Figure 4-5.

4DT RS Core solution is exported via text files and data is processed to be shown

in the graphic user interface via Inspectors and Plots.

63

4DT RS Core

Inspectors

Data Files
(Input)

Data Files

(Output)
Post Processing Engine

Plots

PSOPT

Figure 4-5: 4D Trajectories Research Software Structure

4.7 4D Trajectories Generator Core

The 4DT Generator Core is a C++ executable stand-alone application that uses

a general flight plan in order to generate predicted aircraft optimal trajectories

focused on reducing a performance index specification. This application is

considered the nucleus of the 4DT Research Software and it has been compiled

and tested on GNU Linux Ubuntu 14 and Microsoft© Windows® 7.

The 4DT generator core has been designed and implemented as an application

that setup an optimal control problem using the information provided by the user.

Subsequently, the optimal control problem is solved by PSOPT [70]. Pseudo-

spectral discretization of time-dependent variables is performed using Legendre

method (by default). The resultant NLP problem is solved using IPOPT

(alternatively, SNOPT [71] non-linear programming solver can be used).

Figure 4-6 shows 4DT RS Core structure. It is composed by elements described

in previous sections: aircraft dynamics mathematical model (4.2), performance

64

index specification (4.3), set of boundaries/constraints (4.4), Optimal Control

Solver functions (PSOPT libraries), and Nonlinear programming solver (IPOPT).

4DT RS Core receives four (4) main inputs:

1) A set of waypoints (flight plan)

2) A set of states and control constraints (aircraft performance limits)

3) Noise data specification (empirical data to calculate noise)

4) A set of PSOPT setup variables (discretization method, tolerance…)

Initially, flight plan is decomposed in different segments in order to treat the

problem as a multiphase optimal control problem so that each phase is

referenced to one segment. Each phase is linked to previous phase so that total

solution results as optimal for the whole trajectory. This is achieved by making

use of internal PSOPT linkages functions (ref. PSOPT Manual [70]).

Aircraft Limits

NLP Solver
Tolerance

Max. Iterations

Waypoints
Mapping to North-
East Coordinates

System

Performance
Index

Time Guess

Discretization
Method?
Legendre
Chevishev

Number Nodes

Non Linear Programming Solver
(IPOPT or SNOPT)

Number of Phases

Boundaries
Conditions

Noise Data
Noise

Approximation

4DT Generator Core

Figure 4-6: 4DT RS Core internal structure

65

Waypoints are mapped from geographical coordinates to a north-east

coordinates (flat point) system by using a World Geodetic System (WGS)-based

function that basically converts units from degrees to standard longitude units by

mapping each waypoint with respect to a reference point.

Figure 4-7 shows the mapping function algorithm. Also, a detailed C# version of

this function is available in Appendix C.

Create Flat

Point

Compute Delta

Values

Compute

North Distance

Compute East

Distance

Last Waypoint?

No

Increase Waypoint

Index

YesEND

Figure 4-7: MappingWGS function algorithm

Returned value by MappingWGS() function is a flat_point structure which is

described in the following table:

66

Table 4-5: flat_point struct

Value Type Description

north_dist double Y distance from reference point to waypoint

east_dist double X distance from reference point to waypoint

Additionally, the number of waypoints is used to obtain the number of phases that

contains the optimal control problem. Each segment composed by initial waypoint

and final waypoint is processed as one problem phase.

Aircraft limits compose most of the constraints used to describe the optimal

control problem. Values are imported from the aircraft performance limits file

(shown previously in Figure 4-3), processed and included into PSOPT solution

by using the upper and lower bounds structures (similarly are included the initial

conditions).

Following table shows a typical PSOPT syntaxes of states and control boundaries

structures.

Table 4-6: PSOPT boundaries variable syntaxes in C++

 // Lower bounds (states)

 problem.phases(i).bounds.lower.states(1) = lon_lower[i-1];

 problem.phases(i).bounds.lower.states(2) = lat_lower[i-1];

 problem.phases(i).bounds.lower.states(3) = alt_lower[i-1];

 problem.phases(i).bounds.lower.states(4) = velocity_lower[i-1];

 problem.phases(i).bounds.lower.states(5) = heading_lower[i-1];

 problem.phases(i).bounds.lower.states(6) = path_angle_lower[i-1];

 problem.phases(i).bounds.lower.states(7) = mass_lower[i-1];

 // Upper bounds (states)

 problem.phases(i).bounds.upper.states(1) = lon_upper[i-1];

 problem.phases(i).bounds.upper.states(2) = lat_upper[i-1];

 problem.phases(i).bounds.upper.states(3) = alt_upper[i-1];

 problem.phases(i).bounds.upper.states(4) = velocity_upper[i-1];

 problem.phases(i).bounds.upper.states(5) = heading_upper[i-1];

 problem.phases(i).bounds.upper.states(6) = path_angle_upper[i-1];

 problem.phases(i).bounds.upper.states(7) = mass_upper[i-1];

 // Lower bounds (control)

 problem.phases(i).bounds.lower.controls(2) = bank_angle_lower[i-1];

67

 problem.phases(i).bounds.lower.controls(1) = angle_attack_lower[i-1];

 problem.phases(i).bounds.lower.controls(3) = thrust_lower[i-1];

 // Upper bounds (control)

 problem.phases(i).bounds.upper.controls(2) = bank_angle_upper[i-1];

 problem.phases(i).bounds.upper.controls(1) = angle_attack_upper[i-1];

 problem.phases(i).bounds.upper.controls(3) = thrust_upper[i-1];

Additionally, these limits are used by time guess function in order to compute

maximum and minimum time constraints by using the equations (4-20) and

(4-21).

Noise data is received and converted into a vector of noise_data objects. Each

object noise_data is composed by the following information:

Table 4-7: noise_data struct

Value Type Description

OP string Operation (departure by default)

MET string Type of noise (SEL by default)

ENGINE string Engine Model

noise200 double Noise perceived at 200 ft

noise400 double Noise perceived at 400 ft

noise630 double Noise perceived at 630 ft

noise1000 double Noise perceived at 1,000 ft

noise2000 double Noise perceived at 2,000 ft

noise4000 double Noise perceived at 4,000 ft

noise 6300 double Noise perceived at 6,300 ft

noise10000 double Noise perceived at 10,000 ft

68

noise20000 double Noise perceived at 20,000 ft

noise25000 double Noise perceived at 25,000 ft

This data is used to compute Sound Exposure Levels (SEL) by using the

piecewise function described in equation (4-13) and shown in the following figure:

Distance < 4000

Last Value?

Compute Vector

Index

Compute Partial

A1 and B1

values

Increase A1 and

B1 Counters

Return Noise

(Logarithmic Part of

Piecewise Function)

YES

NO

Compute Slope

Return Noise

(Linear Part of

Piecewise

Function)

NO

Figure 4-8: Compute_noise function algorithm

69

The performance specifications are calculated in a function named

integrand_cost(). This function contains the performance index specifications for

fuel, time and noise described in section 4.3 and basically selects one of them,

depending of user choice.

Figure 4-9 shows the decision algorithm implemented in integrand_cost()

function.

Time?

Yes

Compute

Time Cost

No

Fuel?

Compute

Fuel Cost

Yes

Noise?

Compute

Noise Cost

Yes

No

Figure 4-9: Integrand_cost function algorithm

PSOPT requires some configuration parameters such as discretization method,

nonlinear programming solver, tolerance and maximum number of iterations.

These parameters are read from a general settings file and input into a

input_settings struct, which is an object that contains general configuration

parameters for PSOPT and 4DT RS Core.

70

Table 4-8: Example of PSOPT setting variables sintaxis in C++

 algorithm.nlp_iter_max = input_settings.max_iter;

 algorithm.nlp_tolerance = input_settings.tolerance;

 algorithm.nlp_method = input_settings.nlp;

 algorithm.scaling = "automatic";

 algorithm.derivatives = "automatic";

 algorithm.print_level = 1;

Once optimal control problem is formulated, it is called the function that executes

PSOPT: psopt(solution, problem, algorithm) in order to find a solution to the

problem.

4.7.1 Exporting Results and Noise Grid

If optimal solution is found, a new trajectory is defined by the optimal values of

states and control variables at each collocation point (node). The total number of

values is equivalent to number of nodes x number of flight plan segments.

These variables are exported independently as files that are used to represent

the trajectory by the Graphic User Interface (GUI).

For each state and control variable it is exported one text file with the name of

that variable (e.g altitude.dat, heading.dat, thrust.dat). A set of optimal trajectory

latitude values output file example is shown in Figure 4-10.

49.0097 49.0097 49.0097 49.0097 49.0098

49.0103 49.0117 49.0148 49.0205 49.0298

49.0436 49.0635 49.091 49.1276 49.174

49.2294 49.292 49.3591 49.4288 49.4989

49.568 49.6346 49.6981 49.7576 49.8132

49.8649 49.913 49.9579 49.9997 50.0386

50.0743 50.1066 50.1352 50.1598 50.1803

50.197 50.21 50.2195 50.2255 50.2281

Figure 4-10: Example of data output by 4DT RS Core

71

For PSOPT particular case, data regarding to each iteration is exported

independently in a text file. This data is available to the user via an integrated

built-in text viewer.

In order to produce noise level contours, it is calculated the maximum Sound

Exposure Level (SEL) perceived at each point of a terminal/departure area.

A grid is defined by points separated by distances 𝐶𝑙𝑎𝑡 in Y axis and 𝐶𝑙𝑜𝑛in X axis:

𝐶𝑙𝑎𝑡 = |
𝐿𝑎𝑡𝑖 − 𝐿𝑎𝑡𝑓

𝐾
| (4-22)

𝐶𝑙𝑜𝑛 = |
𝐿𝑜𝑛𝑖 − 𝐿𝑜𝑛𝑓

𝐾
| (4-23)

where 𝐾 is a value which defines the grid size. Since noise optimization is carried

out for departure phases which usually involve areas with limited size, it has been

determined that 𝐾 = 20 provides an acceptable balance between noise grid

resolution and processing CPU time.

Figure 4-11 shows the matrix of elements exported as noise grid.

Figure 4-11: Noise Grid

72

The noise is computed for each point of the grid and the distance is calculated

respect to aircraft trajectory. Since aircraft position varies along the trajectory,

SEL value is calculated for each grid point as many as aircraft position entries

are available in trajectory files output by PSOPT (number of nodes x number of

phases).

Is last point?

Compute noise

NO

Noise > Current_Noise at Point?

Replace Noise

Value

Increase grid

point Index

NO

YES

End YES

Initialize Grid

Figure 4-12: Noise Grid Computation algorithm

A resultant vector containing grid points and maximum SEL value perceived is

obtained. For noise computation, it is obviously used the same compute_noise()

function used for noise performance index specification (equation (4-13).

73

4.8 Graphic User Interface (GUI)

A graphic user interface includes a set of components that make data input

process more user-friendly. Also it contains functions and elements that are used

for comparing, representing and evaluating the resultant trajectory data. This

section describes the different components included in GUI and shows important

aspects of structure and tools of 4DT RS.

4.8.1 Maps, Waypoints and Data validation

Before running the optimization, flight plan is represented by waypoints in a built-

in 2D map that is rendered by GreatMaps libraries [64].

GreatMaps is a set of C# libraries for .NET framework [68]. These libraries

includes a set of functions that can be used to create, edit and interact with two-

dimensional maps.

The base object of these libraries is the object PointLatLng

Table 4-9: PointLatLng struct

Value Type Description

Latitude double Latitude in degree

Longitude double Longitude in degree

In case of representing a PointLatLng object in a map, it is necessary to create a

map marker. A map marker is represented by objects GMapMarker. Basically this

object links the latitude and longitude position to its relevant position over an

image. For this reason, this object is constructed by a PointLatLng element and

a Bitmap image that represent the marker icon.

Table 4-10: GMapMarker struct

Value Type Description

Point PointLatLng Point to be represented

Icon Bitmap Icon to be rendered

74

In case of representing a line in a map, this is performed by making use of the

object GMapRoute that basically receives a list of PointLatLng elements.

Table 4-11: GMapRoute struct

Value Type Description

Route List<PointLatLng> List of points that create a path

Name String Name of the route

GMapMarker or GMapRoute objects are grouped by layers of type GMapOverlay.

These layers can group several markers, routes or other objects such as

polygons over a map. For this reason it has been created a GMapOverlay layers

for waypoints, trajectories, observers and polygons.

Finally, each layer of type GMapOverlay is linked to a GMapControl which is the

graphic element linked to a map provider and is placed into the GUI main form.

There are few map providers, for this software it has been used

OpenStreetMaps.org which is a free map provider.

In summary the main objects used from GreatMaps libraries for this software are:

Table 4-12: Objects and elements used

Element Object Description

Point PointLatLng Point which contains geographical information data

Line GMapRoute List of points which contains a path or route

Marker GMapMarker Object that associates a PointLatLng to an image

Layer GMapOverlay Object that groups several objects GMapMarkers

Map GMapControl A graphic element linked to a map provider.

For representing waypoints, it has been created the function PlotWaypoints() that

basically receives data of one or more waypoints from a text file and plots the

waypoints into a GMapControl element. This is achieved by creating a point,

creating a marker, adding it to a layer and finally adding the layer to the map.

75

Read Flight

Plan file

Last Waypoint?

Create Point

Create Marker

Add Layer to

Marker List

NO

Add Layer to

Map
YES

End

Figure 4-13: PlotWaypoints function algorithm

GMapMarker elements are also provided with different components that can be

adjusted in order to obtain different rendering effects. For markers, it is possible

to add text and to adjust how the information is shown. Adjusting properly all

these elements contributes to obtain the user-friendly interface of 4DT RS.

For representing trajectories, it has been created the function PlotTrajectory(),

which basically reads the trajectory files exported by 4DT RS Core (lat.dat and

lon.dat), creates an object GMapRoute and adds this object to the relevant layer,

which is then plotted on the map.

Similar than markers, GMapRoute visual properties are adjusted in order to

change line colours and stroke. Thinking on possible comparison between

76

optimal trajectories, PlotTrajectory() function includes a routine that changes line

colour property each time it is executed (includes a limit of 3 times). This routine

has been hidden in the function definition of this document to simplify the function

overview.

Read

Trajectory

file

Create Route

Add Route to

Layer list

Add Layer to

Map

End

Figure 4-14: PlotTrajectory function algortihm

Additionally to GreatMaps elements described, some WindowsForms elements

contained in .NET Framework has been used to create the user graphic interface.

Since the extensive amount of components contained in WindowsForms .NET

class, more information of control and objects of this framework can be found at

[68].

However, a summary of most used elements to represent 4DT RS GUI is shown

in the following table:

77

Table 4-13: WindowsForms Controls

Element Object Description

Table DataGridView Control used to represent tables

Text Field TextBox Control used to represent text field

Button Button Control used to represent button

Tabs TabControl Control used to sort information in tabs

Select ComboBox Control used to create selection boxes

Track Bar TrackBar Control used to show trackbar

Toolbar Icon TootStripButton Control used to create icons in the toolbar

Toolbar Item ToolStripMenu Control used to create entries in menu

Input data for waypoints, observers and initial conditions is provided by the user

via TextBox controls. Data validation is carried out to provide consistent values

of latitude, longitude, altitude, and heading, as well as to guarantee that no

waypoint is repeated. Validation is carried out by the following set of functions:

Table 4-14: Validation functions

Function Description

IsHeading Returns true if input data is in the interval [0, 360]

IsLatitude Returns true if input data is in the interval [-90, 90]

IsLongitude Returns true if input data is in the interval [-180, 180]

IsValidName Returns true if input is a no-repeated alphanumeric

IsPositiveNumeric Returns true if input data is a positive number

IsNumeric Returns true if input data is a number

TypeCheck Returns true if a string is “TIME”, “FUEL” or “NOISE”

78

Once data is validated, it is copied from the TextBox controls to Flight Plan table,

which is represented by a DataGridView control. Once a new entry is added to

Flight Plan table, it is called the function PlotWaypoints() to plot the waypoints.

It is guaranteed that every time the user inputs data into the Flight Plan table, the

waypoint is represented into the map, including a tooltip to show the name of the

waypoint.

This idea is shown in the following Figure 4-15. It is visible an example of the

Flight Plan table (DataGridView control), the map (GMapControl) and some

waypoint markers (GMapMarkers).

Figure 4-15: Map and Flight Plan Table

79

In this section, it has been introduced the idea that data is input by TextBox fields.

These textbox fields are used to input different type of data such as flight plan,

noise or aircraft performance data. In order to design a graphic interface thinking

on an experience as much as user-friendly as possible, most of TextBox controls

have been grouped into elements named Inspectors. There are different

Inspectors depending of the type of data they are meant to input to the 4D

Generator. In the following sections, it is described the available inspectors.

4.8.2 Flight Plan Inspector

From the user point-of-view, the flight plan is the most important input. A flight

plan defines the waypoints that aircraft has to fly-by/over before arriving to final

destination. Flight plans for flight management systems are defined in ARINC 424

standard [65], [58]. A simplified version of this standard has been implemented in

4DT RS where each waypoint is composed by three dimensional points in the

space defined by latitude, longitude and altitude.

The main idea of this editor is to provide to user with a friendly and responsive

way to create a flight plan. Data is also reproduced for visualization into a table.

Figure 4-16: Flight Plan Inspector

Once it has been defined proper values for latitude, longitude and altitude a new

waypoint entry is added to Flight Plan table, located in the upper-middle part of

the GUI. Additionally, a new point and tag is added to the map.

In addition, directly interaction between maps and editor fields can be achieved

by using the mouse pointer. In this manner, if user clicks on map, the latitude and

80

longitude of its location is copied into editor relevant fields. Since map provides

2D information, altitude field has to be directly filled by user.

Despite of adding latitude and longitude values by clicking on the map is a very

practical method, it is not considered quite accurate. For this reason, it has been

added a navigation database where information regarding to real navigation data

could be easily accessed.

ARINC 424 provides a standard format to represent flight plans on flight

management systems. This database is composed by waypoints that represent

different navigation elements mentioned in ARINC 424 standard. The database

specification is shown in Table 4-15:

Table 4-15: Database specification

Table Details Entries

NDB Non-directional bacon station (2-3 characters)

11,126
VOR VHF Omni-directional range station (2-3 characters)

Airport Airport identified by ICAO code (4 characters) 44,684

FIX FIX waypoint (5 characters) 119,721

 175,531

Accessing to database is performed using SQLite connection functions. A new

object of SQLiteConnection is created with the file path of the database. The

following table shows the functions used to connect to database connection.

Table 4-16: Functions used by SQLiteConnection and cmd objects

Function Description

SQLiteConnection Construct a new SQLiteConnection object

Open Opens a database connection

CreateCommand
Creates a new cmd object that will be used to

execute a database query

81

CommandText Specifies a SQL query

ExecuteReader Executes the SQL query provided by CommandText

Close Closes a database connection

By using functions above, it has been implemented the function

SearchDatabase() that opens a new database connection and creates a new

CommandText object:

CommandText = "SELECT " + fields + " FROM " + table + extra;

This object contains a string that executes a different SQL query depending of

the user choice. To understand this, note that fields, table and extra are string

variables that can get different values depending of the table Airport, VOR-NDB

or FIX. For this reason, these variables are previously configured according to

the following table:

Table 4-17: Variable values for SQL queries

Type Values

APT
table = "airports";

fields = "ident, latitude, longitude, name";

VOR

table = "navaids";

fields = "ident, latitude, longitude, name";

extra = " WHERE type = 'VOR-DME'";

NDB

table = "navaids";

fields = "ident, latitude, longitude, name";

extra = " WHERE type = 'NDB'";

FIX
table = "fixes";

fields = "ident, latitude, longitude";

Once data is retrieved from database, a new list is created and loaded into a

DataGridView control. Finally the connection is closed.

82

From the user point-of-view, this data can be accessed by clicking on a plus (+)

icon supplied in the flight plan editor. Information has been sorted in four different

tabs: Airports, VOR, NDB and FIX.

Since the quantity of entries to be loaded into grid is considerable (total of

175,531), this process could take some time. For this reason, part of this data is

loaded when application is executed and this process could delay loading forms

and other application components. However, once data is loaded, it can be

accessed directly by using the database viewer with no delay.

Figure 4-17 shows a typical representation of waypoints entries in navigation

database form. Once selected, the waypoint information is added to flight plan

editor fields and consequently it can be added to current flight plan table.

Figure 4-17: Navigation Database

Besides adding a set of waypoints using this editor, it is possible to export a

defined flight plan. If this is the case, a text file contained relevant information

about waypoints is generated. This file can be used to import the flight plan into

4DT RS in the future.

83

4.8.3 Aircraft and Initial Conditions Inspectors

Aircraft parameters used by 3DoF model are imported from aircraft settings. This

includes aircraft performance limits, aerodynamics coefficients and fuel flow

consumption coefficients.

Aircraft inspector is used to select aircraft models. Once loaded it shows all

aircraft files contained in directory named “Aircraft” located in the 4DT RS root

folder.

Figure 4-18: Aircraft and Initial Conditions Inspector

Additionally, fuel price (US dollars) and fuel consumption rate (lb/hour) are

parameters requested to user. These parameters are used to calculate flight

information once an optimal trajectory is found (described in section 4.10). In

addition, cruise altitude is used to compute TOC and BOD points. 4DT RS has

been provided with a built-in function that automatically fills this field in when

importing a new flight plan composed by more than two (2) waypoints.

Initial conditions inspector is used to receive aircraft initial parameters. This is

initial speed, commonly defined by aircraft V2 speed which depends of

atmospheric conditions, weight and other parameters, initial mass which depends

of loaded fuel into aircraft before departing and initial heading which depends of

airport and runway.

4.8.4 Noise Inspector

In previous section 4.7, it has been discussed the process to reduce noise and

the noise grid computation. As described in that section, noise computations are

performed based on noise data provided by the user. This data is converted into

84

text files and finally input into 4DT RS Core. The noise inspector is used to input

observer’s position, noise data file path and priority via TextBox controls.

In addition, it is possible to select a noise settings file where empirical data about

aircraft engine is provided. This is achieved by making use of a ComboBox

control.

As detailed in section 4.3.2, Sound Exposure Level (SEL) is measured respect to

a reference location named observer.

Figure 4-19: Noise Inspector

By using the scaling factor feature, it is possible to select which observer should

receive greater importance level. This TrackBar control basically changes the

values of 𝐾1 and 𝐾2 in equation (4-19). If scaling factor control is set at the middle,

both observers are considered to have same importance.

In section 6.3, it is demonstrated a full noise optimization case carried out around

London Gatwick Airport (EGKK) that makes use of the observer’s concept.

Noise model empirical data is specified into a text file that follows a similar format

than used by Integrated Noise Model (INM) [66]. This file path read by 4DT RS

Core and it is used by the compute_noise() function to calculate SEL using the

piecewise function described in previous sections.

85

Figure 4-20 shows a typical noise settings file used by 4DT RS.

Figure 4-20: Noise Specification File

Noise data grid calculated by 4DT RS Core is used to generate noise levels

contours. In order to calculate these contours, initially a set of boundaries is

defined in the Noise Level Contour form. By default, these levels values are

defined in Table 4-18.

Table 4-18: Noise Level Contours example values

Layer Sound Exposure Level (dB)

1 30 < SEL < 45

2 55 < SEL < 65

3 70 < SEL < 75

4 85 < SEL

Noise level contour is obtained by making use of a convex-hull algorithm

described in section 3.6.1, which creates convex polygons by connecting external

points. In this way, noise of internal points that are surrounded by the polygon,

will be always less or equal to layer’s boundary values.

Convex Hull algorithm designed is a modified version of a standard ConvexHull

.NET algorithm that has been modified to allow its use with PointLatLng-based

functions. Basically this algorithm makes use of the following functions:

86

Table 4-19: Convex Hull main functions

Function Description

FindConvexPolygon
Creates upper and lower hulls based on a list of

PointLatLng objects

ConvexHullCore

Check each PointLatLng object and select them

by checking if angle between three (3) points is

convex.

IsAngleConvex
Returns true if angle between three(3)

PointLatLng points is convex

The main idea of using this algorithm is that it is capable to easily create polygons

based on a set of constraints. This function provides the user with capabilities to

evaluate the different scenarios by utilizing different noise distributions. Once the

upper and lower limits of the layers are selected, a set of function steps are

followed to filtering the noise grid data.

Figure 4-21 shows the function FilterNoiseGrid which check each noise grid node.

If the noise associated to current node is between maximum and minimum noise

level selected by the user, the node is saved into a list that contains all the filtered

points.

Once noise data is filtered, PointLatLng objects are saved into noise list. Finally,

a function called FindConvexPolygon() is called to obtain the contours for grid

points filtered. This process is repeated for each layer.

In section 6.5, it is suggested to make use of algorithms that produce concave

polygons to obtain more accurate noise contour results.

87

Min_limit < Noise < max_limit

Create Point

Add Point to

Noise List

Create Marker

Add Marker to

Layer

YES

Read Noise

Last Node?

NO

NO

Increase Node

Index

YESEND

Figure 4-21: FilterNoiseGrid function algorithm

4.9 4DT RS Core and 4DT GUI Connection

4DT RS Core is a stand-alone application. Once a testing case has been properly

setup, optimization parameters are sent to 4DT RS Core. This process is

performed automatically via text files.

88

Settings File

MET = E
OP = D
ENGINE = 2CF650

----- OBSERVERS -----
NUM_OBSERVERS = 2

OBS1_LON = 2.7
OBS1_LAT = 49.30
OBS1_ALT = 83
OBS1_WEI = 729

OBS2_LON = 2.59
OBS2_LAT = 49.10
OBS2_ALT = 83
OBS2_WEI = 1000

----- ENGINE NOISE DATA -----
113
108.6
105.2
101.5
95.6
88.2
83.1
77.5
70.8
63.3

I
4 version
0
9
1 LFPG 0 49.0097 2.5478 50
11 CNH 0 49.8261 2.7553 28000
11 LAD 0 49.9125 2.84 28000
11 LGDR 0 50.2281 3.1515 28000
11 FSA 0 50.4042 3.275 28000
11 POI 0 50.515 3.3617 28000
11 LKJ 0 50.9126 3.637 28000
11 AHUH 0 51.2353 3.869 28000
1 EHAM 0 52.3081 4.7642 200

AIRCRAFT_MODEL = C-17 Glob
ENGINE_MODEL = PW2000

----- AIRCRAFT LIMITS -----
MIN_SPD = 140
MAX_SPD = 400
MIN_PATH_ANGLE = -5
MAX_PATH_ANGLE = 5
MIN_BANK_ANGLE = -15
MAX_BANK_ANGLE = 15
MIN_ATTACK_ANGLE = -5
MAX_ATTACK_ANGLE = 5
MIN_THRUST = 0
MAX_THRUST = 161200
MIN_MASS = 185000
MAX_MASS = 585000
MAX_ALTITUDE = 30000

----- AIRCRAFT DATA -----
CL0 = 0.0269
CL1 = 1.7
CD0 = 0.0490
CD1 = 0.2990
CD2 = -0.041
CF1 = 0.00000387
CF2 = 54.114
CFCR = 0.75
WING_SURFACE = 3802.00

Figure 4-22: 4DT RS Core and 4DT GUI Connection

As shown in Figure 4-22, flight plan and aircraft files are linked to a unique file

named Settings.dat file. This means that their paths are written in a general

settings file which acts like a connector between 4DT RS Core and GUI. Table

4-20 shows all parameters contained in settings file.

Table 4-20: Settings file parameters

Parameter Possible Value

METHOD Legendre | Chebyshev

NLP IPOPT | SNOPT

TYPE TIME | FUEL | NOISE

FLIGHTPLAN flightplan.fms

AIRCRAFT Selected on Aircraft Editor

MAX_NODES 20 | 40 | 60 | 80

MIN_NODES 10

89

MAX_ITER 2000+

TOLERANCE 0.01<

INITIAL_MASS max_mass > value > min_mass

INITIAL_HEADING 355 > value > 0

INITIAL_VELOCITY max_speed > value > min_speed

These settings are loaded into 4DT RS Core to setups the optimal control

problem. Noise data is processed only if the value of TYPE variable is equal to

string “NOISE”.

Once optimization process is completed, 4DT RS Core exports the states, control

variables, noise grid and noise perceived at each observer into result files. Finally

4DT GUI uses these files to plot results and calculating flight information.

4.10 Computing Flight Information

Despite of 4DT RS main purpose is generating optimal trajectories; some

functions have been developed in order to compute additional and

complementary information about the flight. These features were designed in

order to provide the user with top-level or management information related to

consumed fuel or total flight costs that could be used to compare with baseline.

Figure 4-23 shows a typical representation of flight information calculated by 4DT

RS.

Figure 4-23: Flight Information

90

4.10.1 Fuel, flight cost, distance and maximum SEL

In order to calculate fuel, flight cost and distance, it has been implemented an

object type FlightData() which is composed by the elements shown in Table 4-21:

Table 4-21: FlightData struct

Variable Type Description

Fuel Cost double 𝐶𝑜𝑠𝑡𝑢𝑠𝑑 = 𝐹𝑢𝑒𝑙𝑔𝑎𝑙 × 𝐶𝑜𝑠𝑡𝑝𝑒𝑟 𝑔𝑎𝑙

Fuel Consumed
(gallons)

double 𝐹𝑢𝑒𝑙𝑔𝑎𝑙 =
𝑀𝑖 − 𝑀𝑓

6,79

Fuel Consumption Rate

(lb / hr)
double 𝐹𝑢𝑒𝑙𝑙𝑏/ℎ𝑟 =

(𝑀𝑖 − 𝑀𝑓) × 60

𝑇𝑡𝑜𝑡𝑎𝑙

Fuel Consumption Rate

(gal / n. miles)
double 𝐹𝑢𝑒𝑙𝑔𝑎𝑙/𝑚𝑖𝑙𝑒 =

𝐹𝑢𝑒𝑙𝑔𝑎𝑙

𝐷𝑡𝑜𝑡𝑎𝑙

Fuel Cost Rate

(US dollars / hr)
double 𝐶𝑜𝑠𝑡𝑢𝑠𝑑/ℎ𝑟 =

𝐶𝑜𝑠𝑡𝑢𝑠𝑑 × 60

𝑇𝑡𝑜𝑡𝑎𝑙

Orthodomic Distance

(n. miles)
double 𝐷𝑖𝑠𝑡𝑎𝑛𝑐𝑒𝑚𝑖𝑙𝑒 = √𝐷𝑒𝑎𝑠𝑡

2 + 𝐷𝑛𝑜𝑟𝑡ℎ
2

Additional flight data calculation is carried out by ComputeFlightData() function,

which basically receives time, mass, latitude and longitude vectors from 4DT RS

Core solution and uses equations described in Table 4-21 to calculate the

relevant flight data. Values are exported in an object type FlightData().

Figure 4-24 shows the ComputeFlightData function algorithm. The function

makes use of text files mass, latitude and longitude as well as fuel price (input by

user in the aircraft Inspector).

91

Create

FlightData

object

Compute

Orthodomic

Distance

Compute Total

Distance

Compute Final

Mass

Compute Fuel

Consumed

Compute Fuel

Cost

End

Reading

Mass File

Reading

Position File

Reading

fuel price

Figure 4-24: ComputeFlightData function algorithm

4.10.2 Predicted Time of Arrival

One of the most important characteristics of 4D trajectories is the presence of a

Required Time of Arrival (RTA). This parameter would be commonly assigned by

Air Traffic Controller (ATC). Once this parameter is set, it is expected to take

place a negotiation process between crew and ATC.

92

From one side, ATC must manage airspace based on this required time of arrival.

On the other side, crew must negotiate the controlled time of arrival so it could be

reached in order to avoid holding patterns while optimizing the trajectory.

Predicted Time of Arrival is calculated by 4DT RS in order to give to crew a clue

about the capacities of aircraft performance given that aircraft should be capable

to reach each waypoint at proposed predicted time of arrival.

ComputeTimeOfArrival() function makes use of time, latitude and longitude

vectors obtained from optimal trajectory and flight plan input by user.

This function calculates predicted time of arrival by obtaining the flight time at the

point where the following pair of inequalities is true:

∆∅𝑖 ≤ 𝜀

 ∆𝜆𝑖 ≤ 𝜀

where 𝜀 is the radius of a circle centred at waypoint 𝑖 (minimum fly-by distance)

and ∆∅ and ∆𝜆 refers to error distance between aircraft and flight plan waypoint

𝑖.

∆∅𝑖 = |∅𝑖 − ∅𝑓𝑝| (4-24)

∆𝜆𝑖 = |𝜆𝑖 − 𝜆𝑓𝑝| (4-25)

The time of arrival is exported as a List<double> object and is loaded into a

DataGridView control.

Figure 4-25 shows the ComputeTimeOfArrival function algorithm which return a

list with all predicted time of arrival values.

93

Create List

Add time to list

Last Aircraft

Position?

Distance_to_waypoint < ε ?

Yes

No

Increase

Position Index
No

End Yes

Figure 4-25: Compute Time of Arrival Algorithm

Figure 4-26 shows a typical result of predicted time of arrival computed by the

software after an optimal solution has been found.

Figure 4-26: Predicted Time of Arrival

4.10.3 Top of Climb and Begin of Decent

Top of climb (TOC) point can be defined as the location where aircraft altitude is

equal to cruise altitude. At this point, cruise phase begins, hence thrust levels and

fuel flow decrease and aircraft is maintained at steady-state. This is considered

an important point for flight planning and navigation; also for ATC, this means

94

that aircraft altitude and speed becomes constant, which could affect the way

aircraft is processed in airspace management (air traffic controllers decrease their

stress when aircraft altitude and speed are constants). Figure 4-27 shows top of

climb point.

Figure 4-27: Top of Climb (TOC) and Begin of Descent (BOD)

4DT RS calculates latitude, longitude and time when:

|𝑧 − 𝑧𝑐𝑟𝑢𝑖𝑠𝑒| < 𝜀𝑧

where 𝑧 and 𝜀𝑧 are aircraft altitude and altitude tolerance respectively. By default

the value of tolerance 𝜀𝑧 has been set to 50 ft.

This logic has been implemented in the function ComputeBODTOCPoints() that

basically goes through position vectors and applies the expression described

above. A section of this function is shown in the following figure.

95

Last altitude

Point?

| altitude - cruise_alt | < ε

Obtain Aircraft

Position

YES

Increase

Altitude Point

Index

NO

Read

Altitude file

Figure 4-28: ComputeBODTOCPoints function algorithm (Part 1)

Begin of descent (BOD) point is defined as the location where cruise phase is

completed. Therefore aircraft altitude decreases to approach phase altitude or

final approach altitude (in case of a Continuous Descent Approach (CDA)

procedure is performed). Thrust usually is set to idle and speed decreases. Figure

4-27 shows begin of descent point.

This point is calculated by using the following equation:

|𝑧𝑖 − 𝑧𝑐𝑟𝑢𝑖𝑠𝑒| ≥ 𝜀𝑧 and 𝑡𝑖 > 𝑡𝑇𝑂𝐶

where 𝑖 represents the index of the current waypoint and 𝑧𝑐𝑟𝑢𝑖𝑠𝑒 is the cruise

altitude defined in the flight plan.

By following the same procedure than TOC point, the second part of function

ComputeBODTOCPoints() goes through position vectors to compute BOD point.

96

The index of variable BOD starts in the value of the TOC index variable. This is

done in order to ensure that 𝑡𝑖 > 𝑡𝑇𝑂𝐶.

Last altitude

Point?

altitude < cruise_alt – ε

Obtain Aircraft

Position

YES

Increase

Altitude Point

Index

NO

Read

Altitude file

Figure 4-29: ComputeBODTOCPoints function algorithm (Part 2)

4.11 Trajectory Representation

Optimal values for states and control variables, noise and time data is obtained

from data files exported by 4DT RS Core. These files are used to create several

plots.

First, it is used the function PlotTrajectory() described in section 4.8.1 to plot the

horizontal trajectory (longitude vs latitude) in the GMapControl.

Additionally, it is used the libraries ZedGraph [73] to produce a set of scientific

plots that provides extra features to the user such as zoom, detailed values, set

axis scales or export data to image files.

97

The base control of these libraries is ZedGraphControl, which is an element that

is used to link a set of lists of type List<double> to a graphic plot included in the

4DT RS GUI.

Since a ZedGraphControl object can be associated to one or more plots, this

information is given to control by another object named GraphPane. The

GraphPane object contains properties relative to plot window such as title, axis

labels or plot size. The data to be plotted (the trajectory curve) is represented by

another object of type LineItem. This object contains properties of curve such as

smoothness, colour, line width and tension.

In summary, it has been used the following ZedGraph objects.

Table 4-22: ZedGraph objects

Element Object Description

Control ZedGraphControl It is the control where data is plot.

Plot GraphPane
It is an object that contains plot

information

Curve LineItem Curve or line to be ploted

Different plots are created for each trajectory. Horizontal and vertical trajectories

show aircraft situation in different planes. States and control variables shows

aircraft status with respect to time. For this reason, it has been implemented the

function PlotGraph() that is generic for any type of plot on a ZedGraphControl

element. This function receives all the parameters needed to create a plot such

as title, axis labels and type of plot symbol.

However, the lists of type List<double> are previously created by pre-processing

functions that simply read the relevant files exported by 4DT RS Core (e.g.

heading.dat, altitude.dat or time.dat) and convert data into a list.

This pre-processing functions also convert angles from radians to degrees and

validate the data contained in trajectory files.

98

Function: PlotGraph

Inputs: x_list, y_list, title, x_label, y_label, symbol, zed_control

Output: n/a

1) Create Pane

 Control.GraphPane;

2) Settings titles and labels

 Pane.Title.Text = title;

 Pane.XAxis.Title.Text = xtitle;

 Pane.YAxis.Title.Text = ytitle;

3) Add the curve

 LineItem curve;

 curve = Pane.AddCurve(title, x_arr, y_arr, color, symbol);

 curve.Line.Width = 1.5F;

4) Make the curve smooth with cardinal splines

 curve.Line.IsSmooth = true;

 curve.Line.SmoothTension = 0.6F;

5) Fill the symbols with white to make them opaque

 curve.Symbol.Fill = new Fill(Color.White);

 curve.Symbol.Size = 10;

6) End

Figure 4-30: PlotGraph function example in pseudo code and C#

4.11.1 Detailed View Tool

4DT RS has been provided with a special tool that allows checking aircraft status

parameters such as fuel consumed, time, heading and altitude with respect to its

position.

Behind Detailed View tool there is a set of functions that plot points for each

optimization node and retrieves automatically data from different sources relative

to this point.

This data is shown when user moves mouse cursor from one node to another,

however, since there is limited number of points, it is necessary to find the nearest

point to cursor position.

99

Functions FindNearestPoint() and FindIndexPositionVector() are used to obtain

this position and retrieve interesting data from trajectory result files.

Is Nearest?

Plot Point

Retrieve Point

Information

Add Marker to

Layer and Map

Yes

Increase

Position Index
No

Read Files(Altitude,

Heading, Mass...)

End

Figure 4-31: FindNearestPoint function algorithm

An object PointLatLng is obtained from the function GMapMouseMove() which

return the mouse position on the map. Then, it is used the function IsNear() to

obtain nearest trajectory point to mouse position. Finally, trajectory information

such as altitude, fuel consumed or heading is obtained from returned point.

Information is shown using a tooltip property contained in GMapMarker objects.

100

Figure 4-32 shows the “Detailed View” tool. Note that blue dots represent the

optimal collocation points, and the box is showing relevant data relative to the

green (selected) point.

Figure 4-32: Detailed View Tool

From the user point-of-view this is a really powerful tool to understand aspects of

the optimal trajectory and the discretization process, for example, the tooltip

shows where collocation nodes have been located during optimization process.

But also shows the fuel burn by aircraft from take-off to selected point or aircraft

heading at that moment.

This information could be interpolated to guess aircraft status at each point of the

optimal trajectory or alternatively, the number of nodes could be increased to

obtain more accurate information.

4.12 Preferences and Help

Preferences provides control of configuration parameters to the user.

Preferences form receives PSOPT configuration preferences on TextBox

controls. The data is saved/loaded to/from a text file named preferences file. From

this form it is possible to change almost all parameters mentioned in previous

section 4.7.

101

Also it is possible to switch on/off the capability to show the optimization

calculation process in a command symbol system window instead of running 4DT

RS Core in background.

In addition, a complete Help section with pre-defined samples cases has been

developed and implemented in HTML code, so user can easily get access to

required information. It has been created a set of HTML files for each section

contained on the help. Then it has been compiled into a Microsoft Compiled

HTML help file that is loaded when user click on help button or alternatively press

F1 key shortcut.

Preferences and Help forms is shown in the following figure.

Figure 4-33: Preferences and Help

102

Chapter 5

TRAJECTORY TRACKING & GUIDANCE

5.1 Introduction

This chapter describes the trajectory Tracking and Guidance system that has

been developed as a complementary module for 4DT RS. It covers a system

overview in section 5.2, tracking system design is described in section 5.3,

guidance system in section 5.4, avionics systems indicators are covered in

section 5.5, a simulation framework used to test initial versions of the tracking

and guidance system is described in section 5.6. Finally the T&G module for 4DT

RS is described in section 5.7

5.2 System Overview

Tracking & Guidance (T&G) system module aims at testing and validating the

trajectories generated by 4D Trajectories Research Software v0.1a (4DT RS).

Two main objectives are pursuit in this tracking and guidance system:

1. Provide pilots with guidance by making use of visual indicators located in

Primary Flight Display (PFD) and Navigation Display (ND).

2. Provide aircraft with automatic guidance based on heading, altitude and

vertical speed. These values are aimed to be used in the aircraft

automatic flight control system.

The system initially calculates the cross-track error and altitude error based on

the aircraft position and the reference trajectory (generated by 4DT RS). If cross-

103

track error is greater than a specified tolerance, it computes vertical and

horizontal guidance commands to allow aircraft to follow the reference trajectory.

Guidance commands are sent to autopilot system, therefore horizontal guidance

command is aircraft’s heading which is also displayed in the Navigation Display

(ND) and vertical guidance command is vertical speed and altitude which are

displayed in the Primary Flight Display (PFD).

Figure 2-6 shows the Tracking and Guidance module’s main control loop (Also a

complete schema of this system can be found in Appendix B).

In order to properly describe this system, it has been divided into two sections:

Tracking system which describes how errors are computed and Guidance system

which describes how vertical and horizontal control commands are calculated

and sent to autopilot system.

Early versions of tracking & guidance system, has been implemented using

MATLAB®. For this, it has been developed a simulation framework that describes

aircraft dynamics for lateral guidance. The framework used simple equations for

point displacement in flat surface.

Furthermore, in order to obtain more accurate results, the simple equations have

been replaced by realistic aircraft dynamics by creating a C# guidance module

and linking the guidance system to a commercial flight simulator via User

Datagram Protocol (UDP). The result is a stand-alone guidance module that can

be executed once a reference trajectory is generated by 4DT RS. Therefore, the

reference trajectory can be simulated and evaluated in a more realistic

environment.

104

Start

Obtain Latitude, Obtain Longitude

Obtain Altitude

Mapping Position WGS-based model

Compute Cross-Track

Error

Min Track Error?

Computing Reaction Distance

Computing Reference Point

Compute New Heading (HDG)

Computing New Interception

Angle (sigma)

Detecting Reference Trajectory

Direction

Send data to Primary Flight Display (PFD) and

Navigation Display (ND)

Yes

No

Compute New Vertical Speed

(VS)

Figure 5-1: Tracking & Guidance System Main Control Loop

105

5.3 Tracking System

Tracking system has been designed to maintain a Required Navigation

Performance (RNP) condition. According to main control loop shown in Figure

5-1, first algorithm step is receiving aircraft position. It is expected that the

tracking system make use of aircraft GNSS capabilities in order to obtain aircraft

latitude, longitude and altitude. This step relies on an ideal GNSS system, this

means that errors introduced by GNSS related to atmosphere conditions,

distance or surface for computing aircraft position has been neglected during the

designing process.

Following same strategy used on 4DT RS trajectories, geographic coordinates

system are converted to North-East coordinate system by using WGS-based

function described in section 4.7.

Therefore, it is possible to compute cross-track error in distance units by using

orthodomic distance equations. Cross-track error is defined by the minimum

value of 𝑒𝑖:

𝑒𝑖 = √(𝑥𝑖 − 𝑥𝑎𝑖𝑟)2 + (𝑦𝑖 − 𝑦𝑎𝑖𝑟)2 (5-1)

given that 𝑖 ∈ [0, 𝑁] and 𝑁 = 𝑁𝑛𝑜𝑑𝑒𝑠 × 𝑊𝑃

where.

𝑥𝑖 and 𝑦𝑖 are the east and north distances of a reference node 𝑖

𝑥𝑎𝑖𝑟 and 𝑦𝑎𝑖𝑟 are aircraft east and north distances

𝑁𝑛𝑜𝑑𝑒𝑠 is the number of collocation points used to solve the optimal control

problem.

𝑊𝑃 is the number of waypoints of flight plan

106

Note that 𝑁𝑛𝑜𝑑𝑒𝑠 value correspond to size of vectors exported by 4DT RS that

defines aircraft lateral position.

Computing cross-track error sub-loop tries to find the closest point to aircraft

position by making use of equation (5-1). This algorithm is shown in Figure 5-2.

Compute Track

Error

Last Point?

Distance to

current point?

closer

Current Point is

closest

farder

Yes

Return Closer

Point ID

No

Figure 5-2: Compute track error loop

Once the closest point is obtained (cross-track error node), it is computed the

altitude error. To compute this error it is used the predicted trajectory exported by

4DT RS. Altitude error is computed by comparing aircraft altitude with cross-track

error node’s altitude. In this way, altitude error is calculated using the following

expression:

107

𝑒𝑎𝑙𝑡 = 𝑧𝑖 − 𝑧𝑎𝑖𝑟 (5-2)

where,

𝑧𝑖 is the cross-track error node altitude

𝑧𝑎𝑖𝑟 is the aircraft altitude

Note that if aircraft altitude is greater than reference path altitude, altitude error is

negative. This peculiarity is used when computing vertical speed guidance

command.

5.4 Guidance System

The guidance system accepts the tracking errors and generates guidance

commands according the types of tracking errors. It has been designed to only

get triggered if minimum track-error or altitude error conditions are exceeded

beyond a defined tolerance.

If the tracking errors are greater than defined tolerance, the guidance commands

for lateral and vertical trajectories are calculated based on two different loops.

Figure 5-1 shows that lateral and vertical loops.

5.4.1 Lateral Guidance

Lateral guidance has been designed inspired on the Proportional Navigation

concept discussed in section 3.5. A simple static target point approach has been

used. Aircraft acceleration is not taken into account thus is considered aircraft

speed is constant.

The main idea relies on computing the aircraft heading to follow a target

(reference point) that is selected based on the distance 𝑑𝑟𝑒𝑎𝑐𝑡𝑖𝑜𝑛 which is the

distance between aircraft and the interception point.

108

Figure 5-3: Lateral guidance based on static reference point

The distance 𝑑𝑟𝑒𝑎𝑐𝑡𝑖𝑜𝑛 is variable and depends on the interception angle (𝜎) which

also varies proportionally to the cross-track error (𝑒𝑐𝑡).

𝑑𝑟𝑒𝑎𝑐𝑡𝑖𝑜𝑛 =
𝑒𝑐𝑡

sin (𝜎)
 (5-3)

Figure 5-3 shows a typical situation where aircraft is off of reference trajectory.

This figure shows cross-track error computed by tracking system. Note that

reference point position must change when reaction distance or interception

angle change(s).

Guidance has been designed in order to intercept reference as soon as possible.

For this reason, interception angle changes proportionally to cross-track error. It

is calculated using the following expression:

109

𝜎 = 𝑚𝑖𝑛((𝐾𝑝 ∙ 𝑒𝑐𝑡) , 𝜎𝑚𝑎𝑥) (5-4)

where,

𝐾𝑝 = Proportional Control Factor

𝑒𝑐𝑡 = Cross-track error

𝜎𝑚𝑖𝑛= Minimum interception angle

This means that if aircraft position is considered far from reference trajectory,

interception angle will be more perpendicular to reference trajectory and therefore

reference node will be closer to cross-track error node. In the opposite situation,

in case aircraft is at a position considered close from reference trajectory, this

interception angle becomes narrower.

For this particular case, the concept of “far” and “close” is directly defined by the

constant 𝐾𝑝, which is empirically adjusted depending of the guidance system

desired behaviour.

A design value 𝜎𝑚𝑎𝑥 is defined to limit the maximum interception angle available

(e.g. interception angle could be limited to 30 degrees).

Once reaction distance is obtained, it is possible to obtain reference point based

the algorithm shown in Figure 5-4.

110

Compute
Reference Point

Last Point?

Compare current
point to previous

closer

Current Point is
closer to reaction

distance

farder

Yes

Return reaction
distance point

No

Reaction Distance = Track Error /
Sin(sigma)

Figure 5-4: Compute reference point algorithm

Algorithm represented in previous figure aims at finding the node/point (𝑥𝑟𝑒𝑓, 𝑦𝑟𝑒𝑓)

that closest matches the reaction distance (𝑑𝑟𝑒𝑎𝑐𝑡𝑖𝑜𝑛) inside the position vectors.

Commands for lateral guidance are represented by aircraft heading. This heading

is computed using the following expression:

𝜑 = (
180

𝜋
∙ tan−1 (

𝑦𝑎𝑖𝑟 − 𝑦𝑟𝑒𝑓

𝑥𝑎𝑖𝑟 − 𝑥𝑟𝑒𝑓
)) − 90 (5-5)

where,

𝑎𝑖𝑟 = current aircraft position

𝑟𝑒𝑓 = reference point position

111

Once heading command is calculated, a new interception angle is calculated for

next loop iteration.

5.4.2 Vertical Guidance

Vertical guidance has been designed in order to generate vertical speed

commands so aircraft maintain reference altitude. Unlike lateral guidance,

altitude reference point is not located far in advance and does not depends of

interception angle.

Once tracking system computes cross-track error, an altitude reference value is

obtained from the node next to cross-track error. This is the most immediate (and

possibly parallel to aircraft position) node.

The vertical guidance command is defined by aircraft vertical speed required to

achieve the reference altitude proportionally to a design factor (𝐾𝑠). Therefore,

vertical speed command is calculated based on equation:

𝑉𝑠 = 𝐾𝑠 ∙ (𝑧𝑖+1 − 𝑧𝑎𝑖𝑟) (5-6)

where,

𝐾𝑠 = Proportional Vertical Control Factor

𝑖 = index of current cross-track error reference error

𝑎𝑖𝑟 = refers to current aircraft vertical position

Following same design line used in previous section, vertical guidance command

is limited by design factors depending of aircraft performance. The following

interval has been taken into account for vertical guidance.

𝑉𝑠 ∈ [𝑉𝑠𝑚𝑖𝑛, 𝑉𝑠𝑚𝑎𝑥]

112

5.5 Avionics Systems Indicators

Guidance commands are usually linked to aircraft flight control system or

autopilot system. However, visual indicators should be used in order to show the

correct path to crew. This section aims at explain a proposed solution for this

problem.

Lateral guidance command is represented by aircraft heading. However, this

command does not indicate how far the reference point is with respect to aircraft

position. Similarly, vertical guidance command is represented by vertical speed,

but an explicit difference between aircraft altitude and reference altitude should

be indicated to crew.

Following the same strategy used in Instrument Landing Systems (ILS) in modern

aircraft [34], reference trajectory is indicated using lateral and vertical bars

located on the Attitude Indicator (AI) on the Primary Flight Display (PFD) as

shown in Figure 5-5.

For lateral guidance, a vertical bar moves proportionally to cross-track error from

left-to-right or in the other way. In order to obtain this effect, aircraft relative

position with respect to current path is calculated in main guidance loop (Figure

5-1).

Figure 5-5: Cross-track and altitude error indicators in PFD

113

In order to calculate the relative position, it is used the sign of 𝑙𝑟, which is the

determinant of vectors (𝐴𝐵̅̅ ̅̅ , 𝐴𝑀̅̅ ̅̅̅) where 𝑀(𝑥, 𝑦) is the aircraft position and 𝐴 and

𝐵 are the points that compose the path. This determinant is calculated using

following expression:

𝑙𝑟 = (𝑥𝑟𝑒𝑓 − 𝑥𝑖−1) ∙ (𝑦𝑎𝑖𝑟 − 𝑦𝑖−1) − (𝑦𝑟𝑒𝑓 − 𝑦𝑖−1) ∙ (𝑥𝑎𝑖𝑟 − 𝑥𝑖−1) (5-7)

where,

𝑖 = index of current cross-track error reference error

𝑥 = East position

𝑦 = North position

𝑎𝑖𝑟 = refers to current aircraft position

𝑟𝑒𝑓 = reference point position

5.6 MATLAB® Simulation Framework

First part of guidance module has been implemented and tested using MATLAB®.

For this, a rapid simulation environment for unit testing has been created.

This simulation framework has been created using simple equations for point

displacement in flat surface as follows:

𝑥 = 𝑥𝑎𝑖𝑟 + 𝑉𝑠𝑖𝑛(𝜑) (5-8)

𝑦 = 𝑦𝑎𝑖𝑟 + 𝑉𝑐𝑜𝑠(𝜑) (5-9)

where,

𝑥 = aircraft new north distance

𝑦 = aircraft new east distance

𝑎𝑖𝑟 = refers to current aircraft

V = aircraft speed

𝜑 = aircraft heading

114

This framework has been used to test preliminary aspects of tracking system

such as cross-track error computation and features of guidance system such as

heading, reaction distance and reference point calculation.

Complete code of this framework as well as an initial version of Tracking &

Guidance system can be found in Appendix D.

5.7 4DT RS Guidance Module

The 4DT RS Guidance module has been coded in C# and compiled to support

Windows® operating system.

This guidance module is composed by the following components:

1) Guidance System Core

2) 4DT RS Guidance Graphic User Interface (GUI)

3) X-Plane® UDP Communication interface

5.7.1 Guidance System Core

Guidance system core is based on the implementation of the guidance algorithm

explained in previous section.

The core is composed by functions that synthetize aircraft position from GNSS

system, a main control loop makes use of a timer element [68]. This means that

each iteration is executed at each timer_tick event and finally a set of guidance

commands which is composed by heading, vertical speed, reference altitude and

vertical/horizontal displacement for attitude indicator bars.

Figure 5-6 shows the main control loop and its interaction with aircraft dynamics

model.

115

Aircraft Position Guidance System
Guidance
Command

Aircraft Dynamics
Model

Figure 5-6: Top-level view of tracking & guidance system

Note that basically, the guidance system core involves all the components of the

guidance system excepting those that are related to aircraft dynamics.

The guidance system has been designed to use any aircraft model. However, for

practical and more realistic purposes this model has been replaced with data

received from a commercial flight simulator.

5.7.2 4DT RS Guidance Graphic User Interface (GUI)

From the user point-of-view, the guidance module is shown as window which

contains information relevant to Tracking & Guidance system.

Figure 5-7: Tracking & Guidance System GUI

116

The graphic user interface is divided in three sections: aircraft status, guidance

and Attitude Indicator (AI) simulation.

First section shows relevant information regarding to aircraft position, this is

latitude, longitude and altitude.

Second section shows information related to tracking and guidance. Cross-track

error is expressed in nautical miles. Next to cross-track error and reaction

distance fields, the node number in equivalent to its vectors position is shown

between brackets.

For example, if cross-track error field shows “5 (12)” this means that aircraft

position is 5 nautical miles off reference trajectory. This distance is being

measured with respect to node in position 12 of reference trajectory vector. This

information is quite useful specially for showing how reference point changes to

a farer position when cross-track error is close to RNP condition.

Figure 5-8: Example of reference point selection

117

An example of this effect is shown in following Figure 5-8, where it is visible that

blue aircraft heads to a reference point located farer from cross-track node in

comparison with red aircraft’s reference point. In practical environment this effect

is responsible for creating an arc-shaped path by aircraft when flying back to

reference trajectory.

Third section is represented by indicators proposed to be shown in Attitude

Indicator (AI) of Primary Flight Display (PFD). Indicators are represented by two

bars that move horizontally and vertically in proportion to cross-track error and

altitude error respectively.

For this effect, it has been implemented a function that moves bar images a

defined number of pixels in up/down or right/left directions, depending of the value

of errors computed by tracking system. Obviously, this movement has been

limited to the attitude indicator area.

Finally, an on/off button represented by a checkbox object has been added in

order to provide more control to the user about guidance system. Once Guidance

Module GUI is launched, this button is switched off by default.

5.7.3 X-Plane® UDP Communication

Preliminary unit tests were performed while designing this tracking and guidance

system using the MATLAB® simulation framework mentioned in previous section.

However, in order to properly test and validate this guidance system it is

necessary to make use of more realistic flight dynamics. For this reason is has

been used a commercial flight simulator.

X-Plane® is a commercial flight simulator developed by Laminar Research [72].

This simulation software provides advanced communication features that allows

user to create external plugins or add-on by making use of a standard

communication protocol. In addition, X-Plane® provides to the user an interface

to export to data files almost any parameter resultant from aircraft dynamics. This

is aircraft position, heading, speeds and pitch-roll-yaw angles.

118

X-Plane® uses a standard communication protocol named User Datagram

Protocol [5]. This protocol allows sending and receiving data to external software

and its interaction with aircraft flight dynamics in runtime. It is known that UDP

communication does not support advanced communication error detection and

correction methods such as Automatic Repeat Request (ARQ) or Forward Error

Correction (FEC) [22], which makes vulnerable for critical applications that

requires these features. In this case, making use of ARINC communication

standards is necessary. However, for this particular case, where a computer

simulation is carried out, making use of UDP protocol has been considered

enough.

4DT RS Guidance Module communication interface has been implemented as a

stand-alone part by making use of UDP communication libraries developed by

Amaro et al. [74].

Methods for sending and receiving datagrams and its future conversion to

decimal base is provided by these libraries by making use of a structure named

UDP_Pack.

An UDP_Pack is composed by ten (10) fields of double type as shown in the

following Table 5-1.

Table 5-1: UPD_Pack specification [74]

Field Description Units

AUTO_ALT Autopilot panel Altitude Hold Feet

AUTO_HDG Autopilot Panel Heading Hold Degrees

AUTO_SPD Autopilot Panel IAS Hold Knots

AUTO_VS Autopilot Panel Vertical Speed Hold Feet / Minute

Curr_ALT Current Aircraft Altitude Feet

Curr_LON Current Aircraft Longitude (from GNSS) Degrees

119

Curr_LAT Current Aircraft Latitude (from GNSS) Degrees

Curr_HDG Current Aircraft Heading (from HDG) Degrees

Curr_TSPD Current Aircraft True Airspeed Knots

Curr_SPD Current Aircraft Indicated Airspeed Knots

First four (4) fields are used to send data to aircraft autopilot control panel. Last

six (6) fields are used to receive data from aircraft systems. Position related

information (latitude and longitude) is received from GNSS aircraft systems.

120

Chapter 6

TEST AND RESULTS

6.1 Introduction

Activities carried out to test the 4DT generator and guidance system were

focused on fuel, time and noise reduction. For this section, it has been prepared

three complete testing cases to demonstrate the functionalities and capabilities

of developed system.

In section 6.2, it is presented a test case based on fuel and time reduction for a

full flight between Paris (LFPG) and Amsterdam (EHAM) airports.

Section 6.3 it is proposed a solution to a real noise problem around Gatwick

airport vicinities by optimizing a section of the instrumental departure procedure

of this airport.

Lastly, in section 6.4 it is evaluated a trajectory generated by the 4D trajectory

generator by carrying out a flight simulation using the 4DT RS Tracking &

Guidance module.

121

6.2 Test case (Fuel and Time Optimization)

Flight Plan Selected: Paris Charles de Guille (LFPG) to Amsterdam Schiphol

(EHAM)

Paris - Amsterdam is an important route that covers a total distance of 313 miles.

According to statistics released by Amsterdam Airport Report [50] in 2013, Paris-

Charles de Gaulle is the third busiest route from Schiphol airport handling more

than 1.1 million passengers per year. The top airlines demanding this route are

Air France and KLM [50].

A standard flight plan between LFPG and EHAM has been composed by a total

of nine (9) waypoints defined as shown in the following Table 6-1.

Table 6-1: LFPG – EHAM Flight Plan

Waypoint Latitude (deg) Longitude (deg)

LFPG 49.0097 2.5478

NURMO 49.8261 2.7553

PERON 49.9125 2.8400

CMB 50.2281 3.1515

VEKIN 50.4042 3.2750

ADUTO 50.5150 3.3617

FERDI 50.9126 3.6370

HELEN 51.2353 3.8690

EHAM 52.3081 4.7642

LFPG to EHAM is a high-traffic route, however most crossroads and congested

areas are present between fixes CMB and FERDI. Also, holding patterns in the

vicinities of these airports during approach and descending phases are often

needed due to limited airport landing capacities. Optimizing this trajectory could

prevent performing these holding patterns and could improve traffic flow around

conflicting points.

The main idea of this testing case is to demonstrate and validate the capabilities

of 4D Trajectories Research Software v0.1a developed in this project by

122

optimizing a full flight plan while reducing Fuel or Time. Also providing a predicted

time of arrival for each route is the first step to perform four dimensional

procedures by future Flight Management Systems (FMS) and ATM Ground

Systems.

6.2.1 Setting Up Testing Case in 4DT RS

Paris Charles de Guille (LFPG) airport is composed by four runways heading to

East-West direction (09-27 or 08-26). Runway 09R has been used for this testing

case. Initial parameters were used for speed, mass and heading as shown in

Table 6-2.

Table 6-2: Initial Conditions

Parameter Initial Value

Heading (deg) 090

Speed (knots) 180

Mass (lb) 185,000

Each waypoint has been input in the software using Database Viewer Tool and

Fight Plan Editor method. It has been decided to run two different cases for same

flight plan so it is possible to compare and analyse the difference between fuel

and time optimized trajectories. A first case has been run using Flight Time as

main performance index and another case has been setup to reduce Fuel

Consumption. Total optimization CPU-time was around 4 minutes for each case

using a 2.63 GHz dual-core processor and 8GB of RAM.

Results of both trajectories are shown and can be easily contrasted using the

embedded map feature. Also vertical and horizontal profiles could be compared

using embedded plots. Figure 6-1 shows the map view obtained from 4DT RS.

Figure 6-2 and Figure 6-3 show the trajectory horizontal and vertical profiles.

123

Figure 6-1: Fuel vs Time Optimization | Map View

Figure 6-2: Fuel vs Time Optimization | Horizontal Profile

124

Figure 6-3: Fuel vs Time Optimization | Vertical Profile

Predicted time of arrival, TOC and BOD points have been exported and are

shown in the following Table 6-3 and Table 6-4.

Table 6-3: TOC, BOD and PTA | Time Optimization

Waypoint Latitude (deg) Longitude (deg) PTA (min)

LFPG 49.0097 2.5478 -

NURMO 49.8261 2.7553 8.15

TOC 49.86 2.76 8.36

PERON 49.9125 2.8400 8.94

CMB 50.2281 3.1515 13.07

VEKIN 50.4042 3.2750 15.09

ADUTO 50.5150 3.3617 16.32

FERDI 50.9126 3.6370 20.76

HELEN 51.2353 3.8690 24.43

BOD 51.25 3.88 25.68

EHAM 52.3081 4.7642 37.05

PTA = Predicted time of arrival

125

Table 6-4: TOC, BOD and PTA | Fuel Optimization

Waypoint Latitude (deg) Longitude (deg) PTA (min)

LFPG 49.0097 2.5478 -

NURMO 49.8261 2.7553 8.45

TOC 49.82 2.75 9.14

PERON 49.9125 2.8400 9.27

CMB 50.2281 3.1515 14.33

VEKIN 50.4042 3.2750 16.83

ADUTO 50.5150 3.3617 18.34

FERDI 50.9126 3.6370 23.99

HELEN 51.2353 3.8690 27.92

BOD 51.62 4.19 33.6

EHAM 52.3081 4.7642 40.62

PTA = Predicted time of arrival

In one hand, aircraft speed has been maximal for almost whole trajectory while

reducing flight time. In the other hand, fuel reduction case results shown an

average of 337.2 knots which is equivalent to 1% slower than Time case (390.2

knots).

Predicted time of arrival (PTA) has been calculated based on fly-by waypoints.

For these particular cases, predicted time of arrival shows a fast ascending

phase. Top of Climb (TOC) point is obtained around 8-10 minutes after take-off.

Descending phase evaluation for both cases is different than ascending phases

comparison. Results of Figure 6-3 show remarkable continuous descent paths.

However, descent trajectory has been extended for 13 minutes on Time

optimization results while Fuel optimization results shows a faster descending

phase.

126

Figure 6-4: Fuel vs Time Optimization | Speed Profile

Fuel consumption has been reduced in 16% with respect to Time optimization

case. In contrast, flight time has been reduced 8.5% with respect to Fuel

optimization case. Figure 6-5 shows mass reduction comparison between both

trajectories.

Figure 6-5: Fuel vs Time Optimization | Fuel Consumption

127

Detailed View Tool has been used to obtain aircraft status at each optimization

node along the flight plan. It can be considered as a useful tool to follow aircraft

trajectory and detecting possible errors in optimization process.

Different flight data values regarding to flight cost and flight cost per hour can be

obtained by changing price per hour parameter in Aircraft Editor. Flight

Information using a standard Jet-A1 fuel price at Paris Charles De Guille

published in September 2015 Fuel Survey [63], is shown in the following Table

6-5.

Table 6-5: Flight Information | Time and Fuel Optimization

Parameter Trajectory-F Trajectory-T

Total Time (min) 41.64 38.06

Total Distance (nautical miles) 273.48 273.48

Fuel Consumption Rate (lb / hr) 9,761.51 12,811.83

Fuel Consumption Rate (gal / m) 3.7 4.44

Fuel Consumed (gal) 1,011.04 1213.13

Fuel Consumed (lb) 6,774 8,128

Fuel Cost per hour (usd) 4,370.83 1,986.64

Fuel Cost (usd) 3,033.13 1,261.4

Trajectory-T = trajectory resultant from time optimization

Trajectory-F = trajectory results from fuel optimization

128

6.3 Test case (Noise Optimization)

Airport Selected: London Gatwick Airport (EGKK)

London Gatwick airport is the UK second largest airport and the busiest single-

runway international airport of the world servicing over 31 million passengers in

2010. In order to demonstrate the capabilities of 4DT Generator Research

Software, a Noise Optimization test has been run in order to solve a potential

problem related to Gatwick's Standard Departure Procedures.

This testing case in based on information provided in Flight Evaluation Report

released in 2010 [35] by Gatwick Airport (EGKK) Flight Evaluation Unit (FEU).

Gatwick Airport is equipped with noise monitors situated exactly 6.5km from the

roll point of the runways. Noise levels are registered at each monitor when aircraft

take-off. If noise registered is greater than noise limits fixed by Department of

Transport, a noise infringement is registered.

Despite of no infringements were registered for any of total 120,249 departures

registered in 2010, the number of enquiries registered in that year raised to its

maximum value since 2006. A total of 6,936 enquiries from 409 callers have been

registered [35]. Aircraft noise, low flying and night flights are some of common

causes of these enquiries. Also, it could be inferred that low flying and night flights

complaints could be also related to aircraft noise. An important fact is that biggest

amount of these enquiries were registered in populated areas located more than

10 miles away from Gatwick Airport where noise optimization procedures can be

applied.

Hever, Marsh Green and Edenbridge are villages located around 12-13 miles

East of Gatwick Airport's runway. Around 56% of all enquiries were registered in

these villages, which is equivalent to more than 1000 enquiries from each area.

Other villages such as Lingfield, Dorking and Crawley registered less than 300

enquiries. Table 6-6 shows most important enquiries registered in 2010.

129

Table 6-6: Enquiries registered in 2010 [35]

Village Enquiries Callers

East Gringstead 1,378 13

Marsh Green 721 2

Hever 568 4

Edenbridge 459 29

Lingfield 331 8

Dorking 132 25

Crawley 73 50

Current Noise Abatement procedures forbid overflying Horley and Crawley

villages located at North and South of airport respectively. However, the location

of more affected areas mentioned above matches with trajectories defined by

Gatwick Standard Instrumental Departure (SID) procedures for exits CLN 5P/5W,

DVR 2P/2W and BIG 3P/3W. Marsh Green, Hever and Edenbridge registered a

total of 1748 enquiries. Note that East Gringstead does not match with this SID

therefore it has been neglected for this case.

There are three different departure procedures that head to East or North-East

exit waypoints: CLACTON (CLN), DOVER (DVR) and BIGGIN (BIG). The main

problem occurs between airport and intermediary fix TUNBY (N51 10.1 E00 19.5)

located at 14 miles off airport. Navigation charts inform to maintain a 4% minimum

climb gradient until 3000ft, however no procedures exist in order to avoid flying

over affected populated areas in these aircraft routes towards TUNBY fix.

The mentioned three SID procedures have been mixed in just one figure. The

problem exists in the red section which connects Gatwick Airport to TUNBY fix.

The affected villages have been highlighted in order to show the problem.

130

131

6.3.1 Setting Up Testing Case in 4DT RS

The main idea of this case is to show how it is possible to optimize aircraft

trajectory in order to reduce noise levels on departure phase with respect to

affected villages.

Two noise observers were positioned in the testing scenario. One of them was

located at Marsh Green village boarder and the other was located at Hever village

border. The idea is to optimize the trajectory around these two observers. Initial

waypoint is located at runway 08R/26L and final waypoint is located at TUNBY

fix (N51 10.1, E00 19.5, 6000 ft).

Initial heading has been set 80 (Runway 08R) and approximate value for aircraft

V2 speed has been set as initial speed. Also, aircraft limits has been set to obtain

speed values no greater than 250 knots due to airspace limitations for flight level

below 10.000 ft.

Testing case has been run using noise performance index and 50% of balance

between observer 1 and observer 2 (This means there is not special preference

to optimize with respect to one of the observers). The following figure shows the

testing case screenshot run in 4DT Trajectory Research Software. Noise level

tool has been used to draw a contour plot composed by four noise levels of 30

(dark red), 45 (orange), 65 (yellow) and 90 dB. Engine noise model used for this

case was PW2036 at maximum thrust.

Figure 6-6: Optimal trajectory compared to SID baseline procedures

132

Figure 6-6 above shows optimal trajectory generated by 4DT Research Software

(blue) contrasted to current SID baseline procedures for exits DVN, CLN and BIG

(black).

Optimization results show an important change in aircraft trajectory with respect

to current SID. Noise levels perceived at Observers 1 and 2 are shown in Figure

6-7.

Figure 6-7: Noise Exposure Level at Observer 1 (top) and Observer 2 (bottom)

Maximum noise levels perceived at observers are around 78 dB. It is important

to highlight that these results show most pessimist scenario. In order to obtain a

more likely scenario, it should be considered that these observers were located

at the border of affected villages (Marsh Green and Hever). In addition, it has

133

been considered that engines produce always maximum possible noise (max.

thrust) during optimization process, however, trajectory results shows that thrust

average was 88,262 lb (54.75% of total thrust). This means that actually

maximum sound levels perceived at populated areas of these villages would be

considerable lower in most departure operations.

Current SID procedures strategy is that aircraft follows runway 08R heading (080)

for 3 nautical miles up to 338 GE point and then heading changes to 92 degrees

until arriving to TUMBY fix. Optimal trajectory shows a significant difference with

respect to these SID procedures. Aircraft heading changed from the very

beginning to avoid flying close to affected villages. TUMBY is intersected with a

final heading of 62 degrees which could be beneficial for North-East exits

(CLACTON and BIGGIN).

Altitude profile is defined by changes in vertical speed, especially between 3000ft

to 4000ft where vertical speed changes from 400 ft/min to 1000 ft/min. 6000 ft.

are reached at 6.42 min which result in an average of 940 ft/min which is

equivalent to a climb gradient no greater than 3%.

Altitude profile and speed profile are shown in Figure 6-8 and Figure 6-9.

Figure 6-8: Altitude Profile – Noise Optimization

134

Figure 6-9: Speed Profile – Noise Optimization

135

6.4 Test case (Trajectory evaluation using 4DT RS T&G Module)

A testing case has been created based on the reference trajectory obtained from

Section 6.2 in order to test and evaluate generated trajectory. This is a full flight

from Paris Charles de Guille airport (LFPG) to Amsterdam Schiphol airport

(EHAM) exported using 4D Trajectories Research Software.

This testing case has been designed in order to test the following aspects:

1. Test and validate trajectories generated by 4DT Research Software by

carrying out a full flight along the trajectory.

2. Test the aircraft response capability to return to reference trajectory when

for any reason it loses its normal course.

3. Test tracking system capabilities when computing lateral and vertical

errors.

4. Test guidance system capabilities to calculate guidance commands that

allows aircraft follow a reference trajectory.

5. Test Tracking & Guidance module graphic user interface and

communication interface.

6. Test guidance indicators proposed for Primary Flight Display (PFD) and

existent indicators for Navigation Display (ND) when setting up values in

the autopilot control panel.

Initial setup of Tracking & Guidance module was performed before carrying out

this test. It has been exported the trajectory generated by 4DT RS and imported

into the 4D RS Guidance Module.

It has been configured X-Plane® in order to allow interaction with external

software following procedures explained in its documentation [72]. Subsequently,

it has been tested the sending/receiving functions of guidance module.

It has been created a new flight simulation environment using a standard jet

aircraft with similar characteristics that the one used to generate the trajectory.

136

Additionally, weather parameters have been setup as shown in the following

Table 6-7.

Table 6-7: Visibility and Cloud configuration

Cloud Layer 1 Altitude (ft) 10,000

Cloud Layer 2 Altitude (ft) 20,000

Cloud Layer 3 Altitude (ft) 26,000

Visibility (miles) 12.5

For this test case, also three (3) wind layers2 has been setup as shown in

following Table 6-8.

Table 6-8: Wind speed configuration

Wind Layer Altitude (ft) Wind Speed (kts)

5,000 12

7,500 21

25,000 18

Aircraft initial position has been set to 7 nautical miles off and 4,000 feet below a

randomly-selected point located at middle of trajectory. In this way, it has been

possible to measure the reaction capacity of tracking and guidance system to

return aircraft to reference course and track.

Figure 6-10 shows aircraft initial position in horizontal plane, reference trajectory

and aircraft trajectory followed once tracking & guidance module has been

activated. Additionally, it has been added a simulation result of MATLAB®

simulation framework generated for lateral guidance unit testing.

2 X-Plane® v9.7 weather setup limits the number of available wind layers to three (3)

137

Figure 6-10: Horizontal Profile | Tracking & Guidance Module

Once reference trajectory was intercepted, guidance commands allowed aircraft

to follow its course along this trajectory until reaching last waypoint (EHAM).

Figure 6-11: Cross-track error for lateral guidance

138

Cross-track error is shown in Figure 6-11. It is visible that error maintains below

1.5 nm until 400 seconds. It has been detected that algorithm for guidance is

sensitive to arc shaped trajectories that require a constant computation of new

heading. This is evidenced after 400 seconds when cross-track error oscillates

around 4 nautical miles.

Figure 6-12 shows that aircraft heading obtained from X-Plane® realistic

simulation also matches similar values than obtained using MATLAB® Simulation

Framework.

Figure 6-12: Aircraft heading comparison

Figure 6-13 shows aircraft vertical profile obtained from X-Plane® simulation

contrasted with Reference Trajectory. It is shown the difference of 4,000 feet

below reference path for initial aircraft position.

First seconds of simulation, guidance system allows aircraft to increase vertical

speed in order to reduce altitude error. Cruise altitude is maintained until descend

phase.

Descent is started some seconds before by aircraft. This effect is produced

because of reference trajectory information is taken with respect to far in advance

139

by guidance system. Reference node for vertical guidance has been

implemented to be always the following node of cross-track error point.

Autopilot control is quite effective and interprets guidance commands with no-

delay. Despite of descending phase has been started aircraft trajectory tends to

maintain similar descending rate than reference path.

Figure 6-13: Vertical Profile | Tracking & Guidance Module

Guidance visual indicators on Attitude Indicator in Primary Flight Display moved

correctly according to direction of reference trajectory. For descending phase,

horizontal bar maintained a position below center line which means that aircraft

required to expedite its descending rate. This effect has been produced due to

same reasons explained before, reference node detected was always taken far

in advance with respect to aircraft current position.

Non-smoothness has been detected at some points for Time optimization results

in tests explained in Section 6.2. However, no special effort has been

experienced by aircraft/autopilot system to follow the trajectory around these

points. Nevertheless, since this is a particular case where non-smoothness

detected has not affected aircraft course, an exhaustive analysis of the

140

optimization framework and NLP might be required in order to understand the

cause of these non-smooth points in order to prevent undesired effects of this

issues in future tests.

As mentioned in previous chapter, SNOPT solver has been properly linked to

4DT core, however no tests have been carried out yet using this NLP solver.

6.5 Known Limits and Improvements

Current 4DT generator and guidance system runs properly. Important efforts

have been carried out in order to create a stable version. However, since this is

a first version some non-smoothness effects has been detected while finding an

optimal solution. Some errors and bugs have been identified in testing milestone;

this section pretends the user to be aware of them.

The system aims at predicting almost any trajectory defined by almost any flight

plan. However, it is known that computer resources are limited. Some actions

have been taken in order to adjust the number of nodes (and consequently

memory) allocated by PSOPT. These adjustments are totally dependent of the

number of waypoints. Even thought, according to tests performed, flight plans

composed by more than 25-30 waypoints produce a general application crash

due to a lack of memory.

Since Top of Climb (TOC) point coincides with first waypoint, the position of first

waypoint is important. The optimal control solver could diverge while finding an

optimal solution if cruise altitude is set to be reached too early. It is important that

input flight plan information be as much as consistent as possible with equations

(4-11), (4-12), (4-20) and (4-21).

Despite of database contains a considerable amount of entries (150,000+), it is

known that this database should be improved with more significant data by

containing more navaids or arrival/departure procedures.

It is known that convex hull-based algorithms are an efficient way to produce

polygons based on a set of points. Their application in noise grid computation is

valid and works properly. However, using algorithms that produce concave

141

polygons would be more appropriate in order to obtain more accurate noise

contour plots. Nevertheless, concave polygon algorithms are known for their

extreme complexity and unlike convex solutions, they do not produce an

exclusive solution. For this reason, making use of them has been neglected in

this project.

It is known that 4DT Core could take a considerable amount of time to generate

a trajectory when a medium-large flight plan is input. This effect has been

detected in Windows platform. It has not carried out a formal testing case aiming

at comparing the performance for different platforms, however a priori it is

possible to detect that execution time on Linux systems is considerable shorter

than Windows systems.

By decreasing the number of nodes to be used by PSOPT it has been possible

to reduce the amount of execution time. However, it is known that reliability and

time execution efficiency are important factors to take into account for on-board

systems. For this reason, it is considered that execution time could be a potential

improvement for future versions.

142

Chapter 7

CONCLUSIONS AND FUTURE WORK

7.1 Conclusion

The main objective of this project was developing a 4D Trajectories Generator

and Guidance System.

This project resulted on developing 4D Trajectories Research Software v0.1. A

Software Suite that involves a 4D Trajectories Generator, a set of tools to

evaluate and compare optimal trajectories and a Tracking & Guidance system

that can be used to validate and test these trajectories by using a commercial

flight simulator. Based on the experiences obtained while developing and testing

this system and contrasting with proposed objective, it is possible to drawn the

following conclusions:

An extensive review of current Flight Management Systems (FMS) and Flight

Management Computer (FMC) functionalities including Required Time of Arrival

(RTA) features has been carried out. This review phase compared different

options existing in the current market. It has been determined that there exists

current features that could be enhanced in order to fulfil the new requirements

proposed by future Avionics and Air Traffic Management (ATM) systems.

4D Trajectories Generator has been designed, developed and included into the

core of 4D Trajectories Research Software. This trajectory synthetizer allows user

to obtain optimal trajectories in order to reduce time, fuel or noise while providing

143

an easy method for configuring, testing and comparing generated trajectories.

The trajectory generator assembles the data input by the user, which is mainly

composed by aircraft performance data, flight plan and initial conditions to

subsequent generate an optimal trajectory. This is achieved by setting up an

Optimal Control Problem (OCP) and using PSOPT solver to find a solution, if

exists.

4D Trajectories Research Software also provides a set of tools embedded into a

user-friendly graphic interface that allows user to analyse, compare and setup

testing cases. Detailed view, navigation database, noise contours and multi-

trajectory plotting are some of features including in this software. Most optimal

control solver preferences can be configured using the graphic user interface.

Lastly, all these tools are properly explicated into the integrated Help form, which

also includes several examples about how to use this software.

4D Tracking & Guidance system has been developed in order to test and validate

optimal trajectories developed by 4DT Generator. It has been integrated as a 4DT

RS module. Aircraft dynamics data for Tracking & Guidance module is obtained

from a commercial flight simulator that is connected to external applications by

using a User Datagram Protocol (UDP).

Numerous tests has been carried out in order to check and validate the

capabilities of 4D Trajectories Research Software including all its modules.

A particular case has been based on a high-traffic European route between Paris

and Amsterdam in order to test and validate the trajectory generation capabilities

of the software. This test has been focused based on reducing fuel consumption

and flight time.

Noise reduction tests have been carried out based on a real problem which is

affecting vicinities of London Gatwick airport. This test resulted into a proposal to

modify part of standard instrumental departure based on resultant noise optimal

trajectory.

144

Predicted trajectory of first testing case has been validated by simulating this flight

using the Tracking & Guidance module. Results shown that aircraft can follow the

trajectory with an error below 4 nautical miles.

Finally, it has been analysed the existence of possible improvements that could

be taken into account for future works of this project.

7.2 Future Work

This project has been completed based on objectives proposed. However, it has

been identified several features or improvement that could be achieved in the

future.

Performance computation and execution time seems to be one of the most critical

applications for future development. It has been proved that 4DT Core executes

faster in Linux-based systems. Developing a Graphic User Interface (GUI) for this

operating system would extend the domain of usability of 4DT RS. However, on-

board applications or embedded systems requiring real time capabilities, it would

be necessary to significantly improve computation time by optimizing the code

execution.

A wind model has been neglected for this trajectory generator. Despite

performance computation and execution time could be affected by the use of a

more complex model. The wind effect in fuel consumption and time of arrival is

important to improve the accuracy of the solution. Therefore it is suggested to

improve this synthetizer by including a wind model with components in

translational axis.

Synthetizing optimal trajectories based on noise reduction is limited to departure

phases including two reference points. Noise data available reflects aircraft

engine noise, and it is demonstrated that other aircraft components have to be

taken into account (e.g. flaps, slats, landing gear) for arrival phases. It is

considered that including noise reduction capabilities for arrival phases including

more than two observers could be a challenging and interesting work for the

future.

145

It is considered that success on finding an optimal trajectory depends of how

smart-enough is the optimal control setup. However, the presence of non-smooth

points have been detected in some solutions. It is suspected that this could be

matter of the non-linear programming solver (IPOPT). As mentioned before,

SNOPT is linked to PSOPT, however no tests has been carried out using this

NLP solver.

Database included in this software is limited to a set of most-used navaids (FIX,

VOR, NDB) and airports. Future work could turn around improving the

components included in database by adding capabilities to support STAR, SID,

Jet/Victor airways and any of path terminators explained in ARINC-424

specification.

7.3 Challenges

It has been spent one year in development of this project. The journey from

concept to 4DT Generator & Guidance System has been challenging and

exciting. Current version works properly and it is close to be a computational

stable version. Some of challenges experienced while developed this project are

explained in this section.

It has been put a considerable amount of time and effort into studying control

theory and finding the best way to use an optimal control solver into a stand-alone

application. After performing numerous tests using DYNOPT, MATLAB® fmincon,

IPOPT and other solvers, it has been decided the best option for this project was

making use of PSOPT libraries.

Installing and using PSOPT libraries was exceptionally challenging in the first

phase of the project. Continuous communication with its developer (Dr. Victor

Becerra) and collaborators (Dr. Markus Sauermann) has carried out in order to

successfully compile these libraries.

As typical in aerospace field, deficiency of information in public domain has been

another challenge of this project. Obtaining access to BADA files or real flight

data to compare costs, fuel consumption and validate tests has input few delays

in the project. Most of these issues were solved with extra-time worked.

146

Finally, a considerable amount of time has been put in carrying out numerous

tests by the author and other collaborators. Fortunately, several bugs and

improvements have been obtained from these tests and contributed to obtain

more stables versions.

147

REFERENCES

[1] V. Boltyanskii, R. Gamkrelidze, L. Pontryagin. (1956). К теории

оптимальных процессов [Towards a Theory of Optimal Processes]. Dokl.

Akad. Nauk SSSR (in Russian) 110 (1): 7–10.

[2] L. Pontryagin (1962), “Mathematical Theory of Optimal Processes”. New

York: John Wiley & Sons.

[3] M. Guelman (1971). “A qualitative study of proportional navigation.” IEEE

- Transactions on Aerospace and Electronic Systems, Vol. 7, No. 4, 637-

643.

[4] A. Bryson, Y. Ho (1975), “Applied Optimal Control”, John Wiley & Sons,

New York, NY.

[5] D. Reed. “RF-768 User Datagram Protocol” Internet Standard. (1980).

[Online] [Last Visited 17/09/15] https://tools.ietf.org/html/rfc768

[6] P. Preparata, M. Shamos. “Convex-hull: Basic Algorithms”. Springer New

York. (1985).

[7] J. Logsdon, L. Biegler (1989), “Accurate solution of differential-algebraic

optimization problems”, Chem. Eng. Sci., (28):1628 - 1639.

[8] M. Smith (1989). “Aircraft Noise”. Cambridge University Press.

[9] O. Stryk, R. Bulish (1992). “Direct and Indirect Methods for Trajectory

Optimization”. Annals of Operations Research. Vol 37. 357-373. [Online]

[Last Visited 17/09/15]

https://personalrobotics.ri.cmu.edu/files/courses/papers/Stryk92-

optimization.pdf

[10] B. Etkin, L. Reid (1995), “Dynamics of Flight: Stability and Control”, 3rd

edition, Wiley.

[11] G. Elnagar, M. Kazemi, M. Razzaghi (1995). “The Pseudospectral

Legende Method for Discretizing Optimal Control Problems”. IEEE

Transactions on automatic Control, Vol 40. No 10, October 1995.

https://tools.ietf.org/html/rfc768
https://personalrobotics.ri.cmu.edu/files/courses/papers/Stryk92-optimization.pdf
https://personalrobotics.ri.cmu.edu/files/courses/papers/Stryk92-optimization.pdf

148

[12] S. Ghawghawe, D. Ghose (1996). “Pure proportional navigation against

time-varying target maneuvers.” IEEE - Transactions on Aerospace and

Electronic Systems, Vol 32, No. 4, 1336-1347, October 1996

[13] N. Shneydor (1998). “Missile Guidance & Pursuit: Kinematics, Dynamics

and Control.” Woodhead Publishing. First Edition. January, 1998.

[14] “*DO236B. Minimum Aviation System Performance Standards: Required

Navigation Performance for Area Navigation”. Radio Technical Comission

for Aeronutics (RTCA). October, 2003.

[15] T. Prevot, V. Battiste, E. Palmer, S. Shelder (2003). “Air Traffic Concept

Utilizing 4D Trajectories and Airborne Separation Distance”. American

Institude of Aeronautics and Astronautics (AIAA). [Online] [Last Visited

09/17/15]

http://humanfactors.arc.nasa.gov/ihh/DAG_WEB/public/publications/AIA

A-2003-5770-GNC.pdf

[16] V. Becerra (2004) “Solving optimal control problems with state constraints

using nonlinear programming and simulation tools”. IEEE Transactions

on Education, 47(3):377-384.

[17] B. Geiger, J. Horn, A. DeLullo, L. Long, A. Niessner (2006). “Optimal

Path Planning of UAVs Using Direct Collocation with Nonlinear

Programming”. GNC Conference at American Institute of Aeronautics

and Astronautics.

[18] A. Herndon, M. Cramer, K. Sprong, R. Mayer (2007). “Analysis of

Advanced Flight Management Systems (FMS), Flight Management

Computer (FMC) Field Observations Trials, Vertical Path”. IEEE-26th

Digital Avionics Systems Conference

[19] D. Smedt, G. Berz (2007). “Study of the Required Time of Arrival

function of current FMS in an ATM Context”. IEEE and 26th Digital

Avionics Systems Conference.

[20] D. Hull (2007), “Fundamentals of Airplane Flight Mechanics”, Springer.

[21] J. Canino, L. Deniz, J. Garcia, J Besada and J. Casar (2007). “A Model

to 4D Descent Trajectory Guidance”. Institute of Electrical and Electronic

Engineers (IEEE).

http://humanfactors.arc.nasa.gov/ihh/DAG_WEB/public/publications/AIAA-2003-5770-GNC.pdf
http://humanfactors.arc.nasa.gov/ihh/DAG_WEB/public/publications/AIAA-2003-5770-GNC.pdf

149

[22] M. Mörz. (2007) “Analog Signal Processing in Forward Error Correction

(FEC) Decoders”.

[23] “NextGen Avionics Roadmap Version 1.0,” Joint Planning and

Development Office, 24 October 2008.

[24] A. Herndon, M. Cramer, K. Sprong (2008). “Analysis of Advanced Flight

Management Systems (FMS), Flight Management Computer (FMC) Field

Observations Trials, Radius-To-Fix Path Terminators”. 27th Digital

Avionics Systems Conference.

[25] A. Smith (2008) "Proportional Navigation with Adaptive Terminal

Guidance for Aircraft Rendezvous", Journal of Guidance, Control, and

Dynamics, Vol. 31, No. 6, pp. 1832-1836.

[26] “Air Traffic NextGen Briefing” Federal Aviation Administration (FAA).

(2009). [Online] [Last Visited 25/03/15]

http://www.faa.gov/air_traffic/briefing/

[27] J. Klooster, A. Amo, P. Manzi, (2009). “Controlled Time-of-Arrival Flight

Trials”. Eighth USA/Europe Air Traffic Management Research and

Development Seminar.

[28] R. Mall (2009). “Fundamentals of Software Engineering”. 3rd Edition.

PHI Learning Private Limited.

[29] A. Rao, (2009). “Survey of Numerical Methods for Optimal Control,” 2009

AAS/AIAA Astrodynamics Specialist Conference, AAS Paper 09-334,

Pittsburgh, PA.

[30] “Arrival Manager (AMAN): Implementation Guidelines and Lesson

Learned”. EUROCONTROL. Edition Number 0.1. December, 2010.

[31] C. Sinclair (2014), “Honeywell Next Generation Flight Management

System Meets New Air Traffic Requirements”. Honeywell Aerospace

Media Center (2010). [Online] [Last Visited 26/01/14]

http://www51.honeywell.com/honeywell/news-events/press-

releasesdetails/03.04.10HONNextGenNewAirTrafficRequirements.html

[32] K. Chircop, M. Xuereb, D. Zammit, E. Cachia, (2010). “A Generic

Framework for Multi-Parameter Optimization Of Flight Trajectories”.

University of Malta and Cranfield University. ICAS 2010.

http://www.faa.gov/air_traffic/briefing/
http://www51.honeywell.com/honeywell/news-events/press-releasesdetails/03.04.10HONNextGenNewAirTrafficRequirements.html
http://www51.honeywell.com/honeywell/news-events/press-releasesdetails/03.04.10HONNextGenNewAirTrafficRequirements.html

150

[33] T. Yamasaki, S. Balakrishnan, (2010). “Sliding Mode Based Pure Pursuit

Guidance for UAV Rendezvous and Chase with A Cooperative Aircraft”.

American Control Conference (ACC), 5544-5549.

[34] “787-8 Flight Crew Operations Manual”. The Boeing Company (2007-

2010).

[35] “Flight Performance Team 2011 Annual Report”. Gatwick Airport. [Online]

[Last Visited 09/15/15]

http://www.gatwickairport.com/globalassets/publicationfiles/business_an

d_community/all_public_publications/2011/flight_performance_team_20

11_annual_report.pdf

[36] D. Naidu (2003). “Optimal Control Systems”. CRC Press.

[37] J. Betts (2011), “Practical Methods for Optimal Control Using Nonlinear

Programming”. Advances in Design and Control. SIAM. PP 85-87.

[38] “SESAR Factsheet: I-4D - Flying a new dimension” Single European Sky

Research Team (SESAR). (2012). Nº 01/2012.

[39] A. Herndon (2012). “Flight Management Computer (FMC) Navigation

Database Capacity”. Integrated Communication Navigation and

Surveillance (ICNS) Conference.

[40] B. Tian, Q. Zong (2012). “3DOF Ascent Phase Trajectory Optimization

for Aircraft Based on Adaptive Gauss Pseudospectral Method”. Third

International Conference on Intelligent Control and Information

Processing.

[41] J. Anderson (2012), “Introduction to Flight”, University of Maryland, Mc.

Graw Hill.

[42] M. Xuereb, K. Chircop, D. Zammit (2012). “GATAC – A Generic

Framework for Multi-Parameter Optimization of Flight Trajectories”. AIAA

Modeling and Simulation Technologies Conference. Minneapolis,

Minnesota, USA.

[43] O. Winter, H. de Campos, V. Carruba, (2012). “ASTER: A Brazilian

Mission to an asteroid”. Asteroids Comets Meteors.

[44] S. Vaddi, G. Sweriduk, M. Tandale (2012). “4D Green Trajectory Design

for Terminal Area Operations using Non-linear Optimization Techniques”.

http://www.gatwickairport.com/globalassets/publicationfiles/business_and_community/all_public_publications/2011/flight_performance_team_2011_annual_report.pdf
http://www.gatwickairport.com/globalassets/publicationfiles/business_and_community/all_public_publications/2011/flight_performance_team_2011_annual_report.pdf
http://www.gatwickairport.com/globalassets/publicationfiles/business_and_community/all_public_publications/2011/flight_performance_team_2011_annual_report.pdf

151

Guidance, Navigation and Control Conference. Minneapolis, Minnesota,

USA.

[45] S. Vaddi, G. Sweriduk, M. Tandale (2012). “Design and Evaluation of

Guidance Algorithms for 4D-Trajectory-Based Terminal Airspace

Operations”. 12th AIAA Aviation Technology Integration and Operations

(ATIO) Conference.

[46] T. Gruning, A. Rauh, H. Aschemann (2012). "Feedforward control

design for a four-rotor UAV using direct and indirect methods" Methods

and Models in Automation and Robotics (MMAR), 2012 17th

International Conference.

[47] “20-year Forecast of Annual Number of IFR Flights (2012 - 2035)”.

EUROCONTROL. (2013).

[48] Federation of American Scientist (2013) “AFPAM 10-1403” [Online] [Last

Visited 26/03/15] http://www.fas.org/man/dod-101/usaf/docs/afpam10-

1403.htm

[49] K. Bousson, P. Machado (2013). “4D Trajectory Generation and Tracking

for Waypoint-Based Aerial Navigation”, WSEAS Transactions on Systems

and Control, 3 (vol. 8), pp. 105-119.

[50] “Traffic Review 2013”. Schiphol Amsterdam Airport. [Online] [Last Visited

29/03/15] http://trafficreview2013.schipholmagazines.nl/traffic-review-

2013.pdf

[51] Y. Diaz, S. Lee, M. Egerstedt, S. Young, (2013). “Optimal Trajectory

Generation for Next Generation Flight Management Systems”, 32nd

Digital Avionics Systems Conference.

[52] “Historical Foundation for ATM Research”. NASA – Aviation Systems

Divisions (2014). [Online] [Last Visited 09/16/15]

http://www.aviationsystemsdivision.arc.nasa.gov/research/foundations/in

dex.shtml

[53] A. Gardi, R. Sabatini, S. Ramasamy, T. Kistan (2014). “Real­Time

Trajectory Optimization Models for Next Generation Air Traffic

Management Systems”, Applied Mechanics and Materials, vol. 629, pp.

327­332, Trans Tech Publications.

http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=6347849&isnumber=6347808
http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=6347849&isnumber=6347808
http://www.fas.org/man/dod-101/usaf/docs/afpam10-1403.htm
http://www.fas.org/man/dod-101/usaf/docs/afpam10-1403.htm
http://trafficreview2013.schipholmagazines.nl/traffic-review-2013.pdf
http://trafficreview2013.schipholmagazines.nl/traffic-review-2013.pdf
http://www.aviationsystemsdivision.arc.nasa.gov/research/foundations/index.shtml
http://www.aviationsystemsdivision.arc.nasa.gov/research/foundations/index.shtml

152

[54] D. Ghose (2014). “Guidance of Missiles”. National Program me on

Technology Enhanced Learning (NPTEL).

[55] M. Soler, B. Zou, M. Hansen (2014). “Flight trajectory design in the

presence of contrails: Application to a multiphase mixed­integer optimal

control approach”, Transportation Research Part C, 48, pp. 172­194.

[56] S. Han, H. Bang (2014). “Proportional Navigation-Based Optimal

Colission Avoidance for UAV”. International Conference of Autonomous

Robots and Agents.

[57] “AIM-9 Sidewinder”. Federal of American Scientists (FAS). [Online] [Last

Visited 17/09/15] http://fas.org/man/dod-101/sys/missile/aim-9.htm

[58] “ARINC 424 Navigational Data”. Jeppensen Sanderson. [Online] [Last

Visited 09/17/15] http://ww1.jeppesen.com/industry-

solutions/aviation/government/arinc-424-navigational-data-service.jsp

[59] “ARINC 424 Specification”. EUROCONTROL [Online] [Last Visited

09/17/15] http://www.eurocontrol.int/articles/arinc424-specification

[60] “CleanSky – About” [Online] [Last Visited 17/09/15] www.cleansky.eu

[61] “CTAS Tools Gallery”. NASA – Aviation Systems Divisions. [Online] [Last

Visited 09/09/15]

http://www.aviationsystemsdivision.arc.nasa.gov/multimedia/ctas/index.s

html

[62] “DYNOPT”. M. Fikar, M. Čižniar. Department of Information Engineering

and Process Control, Faculty of Chemical and Food Technology, Slovak

University of Technology in Bratislava. [Online] [Last Visited 26/03/15]

http://www.kirp.chtf.stuba.sk/moodle/mod/page/view.php?id=5460

[63] “Fuel Price Survey - September 2015”. European, Middle East & African

Aviation Fuel Price Survey. [Online] [Last Visited 17/09/15]

http://tmdg.co.uk/misc/fuel.php

[64] “GreatMaps Libraries for .NET Framework”. Published at CodePlex

https://greatmaps.codeplex.com/

[65] “Instrument Procedures Handbook”. Federal Aviation Administration

(FAA). (2014). [Online] [Last Visited 17/09/15]

http://fas.org/man/dod-101/sys/missile/aim-9.htm
http://ww1.jeppesen.com/industry-solutions/aviation/government/arinc-424-navigational-data-service.jsp
http://ww1.jeppesen.com/industry-solutions/aviation/government/arinc-424-navigational-data-service.jsp
http://www.eurocontrol.int/articles/arinc424-specification
http://www.cleansky.eu/
http://www.aviationsystemsdivision.arc.nasa.gov/multimedia/ctas/index.shtml
http://www.aviationsystemsdivision.arc.nasa.gov/multimedia/ctas/index.shtml
http://www.kirp.chtf.stuba.sk/moodle/mod/page/view.php?id=5460
http://tmdg.co.uk/misc/fuel.php
https://greatmaps.codeplex.com/

153

http://www.faa.gov/regulations_policies/handbooks_manuals/aviation/inst

rument_procedures_handbook/media/FAA-H-8083-16.pdf

[66] “Integrated Noise Model”. Federal Aviation Administration (FAA).

[Online] [Last Visited on 09/21/15]

https://www.faa.gov/about/office_org/headquarters_offices/apl/research/

models/inm_model/

[67] “IPOPT Project” [Online] [Last Visited 26/03/15] https://projects.coin-

or.org/Ipopt

[68] “Microsoft .NET Home Website”. Microsoft Corporation. [Online][Last

Visited 09/20/15] http://www.microsoft.com/net

[69] “Microsoft HTML Help 1.4”. Windows Dev Center, Microsoft

Corporation. [Online] [Last Visited 09/20/15]

https://msdn.microsoft.com/en-

us/library/windows/desktop/ms670169(v=vs.85).aspx

[70] “PSOPT – Pseudo Spectral Optimization Solver”. V. Becerra. [Online]

[Last Visited 26/03/15] http://www.psopt.org

[71] “SNOPT – Standford Bussiness Software Inc.” [Online] [Last Visited

26/03/15] http://www.sbsi-sol-optimize.com/

[72] “X-Plane Documentation”. Laminar Research. [Online] [Last Visited

17/09/15] http://wiki.x-plane.com/Chapter_5:_X-

Plane_Menus#Data_Input_.26_Output

[73] “ZedGraph Libraries”. Published at SourceForge under LGPLv2 License.

http://zedgraph.sourceforge.net/samples.html

[74] M. Amaro, C. Barrado, D. Rudinskas (2015). “Design of a flight

management system to support four-dimensional trajectories.” Aviation

Tailor & Francis Vol 19. 58-65.

[75] “Aerospace Trajectory Optimization Software | Products”. ASTOS

Solutions. [Online] [Last Visited 01/10/15]. https://www.astos.de/

[76] “General Mission Analysis Tool (GMAT)”. National Aeronautics and

Space Administration (NASA). [Online] [Last Visited 01/10/15]

https://gmat.gsfc.nasa.gov/

http://www.faa.gov/regulations_policies/handbooks_manuals/aviation/instrument_procedures_handbook/media/FAA-H-8083-16.pdf
http://www.faa.gov/regulations_policies/handbooks_manuals/aviation/instrument_procedures_handbook/media/FAA-H-8083-16.pdf
https://www.faa.gov/about/office_org/headquarters_offices/apl/research/models/inm_model/
https://www.faa.gov/about/office_org/headquarters_offices/apl/research/models/inm_model/
https://projects.coin-or.org/Ipopt
https://projects.coin-or.org/Ipopt
http://www.microsoft.com/net
https://msdn.microsoft.com/en-us/library/windows/desktop/ms670169(v=vs.85).aspx
https://msdn.microsoft.com/en-us/library/windows/desktop/ms670169(v=vs.85).aspx
http://www.psopt.org/
http://www.sbsi-sol-optimize.com/
http://wiki.x-plane.com/Chapter_5:_X-Plane_Menus#Data_Input_.26_Output
http://wiki.x-plane.com/Chapter_5:_X-Plane_Menus#Data_Input_.26_Output
http://zedgraph.sourceforge.net/samples.html
https://www.astos.de/
https://gmat.gsfc.nasa.gov/

154

[77] “Optimal Trajectories by Implicit Simulation (OTIS)”. Charles Hargraves,

Steve Paris. Boeing Company & NASA. [Online] [Last Visited 01/10/15]

https://otis.grc.nasa.gov/authors.html

[78] “User Manual for Base of Aircraft Data (BADA)”, EUROCONTROL

Experiment Center, Bretigny, France, 2004

https://otis.grc.nasa.gov/authors.html

155

APPENDICES

Appendix A 4DT RS Overview

156

Appendix B Tracking & Guidance System Overview

Primary Flight Display (PFD)

Heading
Start

Obtain Latitude
Obtain Longitude
Obtain Altitude

Mapping Position
WGS-based model

Compute Cross-
Track Error

Min Track Error?

Computing Reaction Distance

Computing Reference Point

Compute New Heading (HDG)

Computing New Interception Angle (sigma)

Detecting Reference Trajectory Direction

Sending data to Primary Flight Display (PFD)
and Navigation Display (ND)

Yes

No

Compute New Vertical Speed (VS)

Creating new UDP
Pack (datagram)

Open new socket

Receving new UDP
datagram

Converting from bits
to decimal

Spliting Pack

Receive UDP

Compute Track
Error

Last Point?

Compare current
point and previous

closer

Current Point is
closer

farder

Yes

Return Closer Point
ID

Request

No

UDP Pack

Compute Reference
Point

Last Point?

Compare current
point to previous

closer

Current Point is
closer to reaction

distance

farder

Yes

Return reaction
distance point

No

Reaction Distance = Track Error / Sin(sigma)

Sigma, cross-track error

Reference point

Computing interception angle (σ)

Vertical Speed (Vs)

Detecting Reference Trajectory Direction

 Sign +/- of Lr

Send UDP

Creating new UDP
Pack (datagram)

Open new socket

Converting from
decimal to bits

Sending UDP
datagram

Close socket

HDG, ALT, VS

ALT, VS, HDG, Displacement | ARINC Standard Protocol

Cranfield University | 2015

 Module: Guidance and Tracking System
 Author: Manuel Amaro Carmona

 -

 Key Data

Top Level Process

Detailed Process

-------- Data to/from subprocess

_____ Data flow

157

Appendix C 4DT RS Functions

Function: MappingWGS

Inputs: latitude1, longitude1, latitude2, longitude2

Output: flat_point

1) Create a flat point

2) Compute delta values

 delta_lat = lat2 - lat1

 delta_lon = lon2 - lon1

3) Compute Latitude and Longitude in Feet

 north_distance = delta_lat * KM2FT(110.54)

 east_distance = delta_lon * KM2FT(111.32) * cos(DEG2RAD(lon_avg))

4) End

Description: Computing Time Constraints

// Computing End Time Lower

double EndTime_lower = pow((pow((flat_waypoints[i].east_dist - flat_waypoints[i-
1].east_dist), 2.0) + pow((flat_waypoints[i].north_dist - flat_waypoints[i-
1].north_dist), 2.0)), 0.5) / (velocity_upper[i-1]);

// Computing End Time Upper

double EndTime_upper = pow((pow((flat_waypoints[i].east_dist - flat_waypoints[i-
1].east_dist), 2.0) + pow((flat_waypoints[i].north_dist - flat_waypoints[i-
1].north_dist), 2.0)), 0.5) / (velocity_lower[i-1]);

Function: integand_cost

Inputs: control, states, dot_states

Output: Cost

1) If (Type = “Time”)

 Cost = (velocity - velocity_max)2/velocity_max +

 … (altitude – ref_altitude)2 / altitude_max;

2) If (Type = “Noise”)

 Cost = Total_SEL + (altitude – ref_altitude)2 / altitude_max;

3) If (Type = “Fuel”)

Cost = (mass – initial_mass) + (altitude – ref_altitude)2 / altitude_max;

158

Function: compute_noise

Inputs: noise_vector, distance_vector, observer_distance

Output: SEL

1) if (observer_distance <= 4000)

1.1) while (i < m)

1.1.1) Compute vector index

 far = m – i - 1;

 near = i;

1.1.2) Compute partial A1 and B1 values

 B1 = (Noise[near]*log10(Dist[far]) -
Noise[far]*log10(Dist[near]))

 … / (log10(Dist[far]) - log10(Dist[near]));

 A1 = (Noise[near] - B1) / log10(Dist[near]);

1.1.3) Compute A1 and B1 counters

 A_count = A_count + A1;

 B_count = B_count + B1;

 end while

 1.2) Compute A1 and B1 final values

 A1 = A_count / m;

 B1 = B_count / m;

 1.3) Compute noise value

 noise = A*log10(R) + B;

2) else

 2.1) Compute slope

 slope = (noise_at_25000 – noise_at_4000) / (25000 - 4000);

 2.2) Compute slope

 noise = slope * (R - 4000) + noise_data.noise4000;

1) End

159

Function: PlotWaypoints

Inputs: n/a

Output: n/a

1) Read data from Flight Plan file
List<waypoint> waypoints = ReadFlightPlanDataGrid();

2) For each waypoint

2.1) Create point
 new PointLatLng(point.lat, point.lon);

2.2) Create marker

 new GMarkerGoogle(route_waypoint, … new Bitmap(path_icons);

2.3) Add marker to layer list

 markersOverlay.Markers.Add(marker);

3) Add layer to map

 gMapControl1.Overlays.Add(markersOverlay);

2) End

Function: PlotTrajectory

Inputs: n/a

Output: n/a

1) Read data from trajectory files
route = ReadTrajectoryFile();

2) Create route
GMapRoute Grout = new GMapRoute(route, "Trajectory");

3) Adding route to layer list

 routes.Routes.Add(Grout);

4) Add layer to map
gMapControl1.Overlays.Add(routes);

3) End

160

Function: FillNoiseGrid

Inputs: noise_grid, max_limit, min_limit

Output: list_points_db

1) For each point in noise grid

1.1) If (min_limit < SEL < max_limit)

1.1.1) Create new point

 PointLatLng noise_waypoint = new PointLatLng(point.lat, point.lon);

1.1.2) Add point to a noise list

list_points_db.Add(noise_waypoint);

1.1.3) Create new marker

 new GMarkerGoogle(noise_waypoint, grid_icon);

1.1.4) Add marker to layer

 NoiseGridOverlay.Markers.Add(marker);

2) End

Function: ComputeFlightData

Inputs: latitude, longitude, mass

Output: flight_data

1) Create new FlightData object

 new FlightData();

2) Computing orthodomic distance

 delta_lon = Math.Abs(lon[0] - lon[lon.Count - 1]);

 delta_lat = Math.Abs(lat[0] - lat[lat.Count - 1]);

 north_dist = delta_lat * KM2FT(110.54);

 east_dist = delta_lon * KM2FT(111.32) * Math.Cos(DEG2RAD(delta_lon));

3) Compute Total distance in miles

 flight_data.distance = Math.Sqrt(Math.Pow(east_dist, 2) +

 … Math.Pow(north_dist, 2)) * 0.00018939;

4) Computing Final Mass

 flight_data.fuel_consumed_lb = mass.Max() - mass.Min();

 flight_data.fuel_consumed_gal = flight_data.fuel_consumed_lb / 6.7;

 flight_data.fuel_cost = flight_data.fuel_consumed_gal * fuel_price_gal;

5) Computing Fuel Consumed and Price

161

 flight_data.total_time = time.Max() / 60;

 flight_data.fuel_consumed_hour = flight_data.fuel_consumed_lb * 60 /

 … flight_data.total_time;

 flight_data.fuel_consumed_mile = flight_data.fuel_consumed_gal /

 … flight_data.distance;

 flight_data.price_hour_flight = flight_data.fuel_cost * 60 /

 … flight_data.total_time;

6) End

Function: ComputeFlightData

Inputs: latitude, longitude, mass

Output: flight_data

1) Create new list

 List<double> TimeOfArrival = new List<double>();

2) For each aircraft_position

 2.1) if distance_to_waypoint < 0.1

 2.1.1) Add time of arrival to list

 TimeOfArrival.Add(time_of_arrival);

3) End

Function: ComputeBODTOCPoints (Part 1)

Inputs: latitude, longitude, time, cruise_alt

Output: TOC

1) For each altitude

1.1) Obtain TOC point index

 Math.Abs(altitude[i] - cruise_alt) < 50

2) Obtain time at TOC point

 TOC_lat = latitude[i];

 TOC_lon = longitude[i];

3) End Part 1

162

Function: ComputeBODTOCPoints (Part 2)

Inputs: latitude, longitude, time, cruise_alt

Output: BOD

1) For each altitude (start at point where first part stopped)

4.1) Obtain BOD point index

 altitude[j] < cruise_alt – 400

2) Obtain time at TOC point

 BOD_lat = latitude[i];

 BOD_lon = longitude[i];

3) End

Function: FindNearestPoint

Inputs: cursor_position

Output: n/a

1) Find nearest point

 Find(IsNear(point.Lat, point.Lng));

2) Finding index of nearest point

 index = FindIndexInPositionVector(found);

3) Plotting the point

new GMarkerGoogle(found, new Bitmap(path_icon);

4) Retrieve point information (altitude, position, heading…)

5) Add marker to layer

 nearpoints_marker.Markers.Add(marker);

6) End

163

Appendix D MATLAB® Simulation Framework
% ---
% Lateral Guidance System Simulation Test (Simple version)
% Created by Manuel Amaro
% Cranfield University | 2014 - 2015
% ---

clear all

% Loading data from 4DT_RS
time = load('Dataset/time.dat');
speed = load('Dataset/velocity.dat');
lat = load('Dataset/lat.dat');
lon = load('Dataset/lon.dat');
alt = load('Dataset/altitude.dat');
lon_avg = abs(lon(1) - lon(length(lon)));

lat_simulator = load('Dataset/lat_sim.txt');
lon_simulator = load('Dataset/lon_sim.txt');
hdg_simulator = load('Dataset/hdg_sim.txt');
alt_simulator = load('Dataset/alt_sim.txt');
crosserror_simulator = load('Dataset/crosstrack_error.txt');

% Simulation parameters
simtime_prev = 1; % Used to record previous

simulation time
total_simulation_time = 300000; % Total simulation time

(maximum)
reaction_time = 130; % Reaction time in seconds
sigma = 30; % Angle at which aircraft

intercepts reference path in degrees
RNP = 1; % Required Navigation

Performance parameter in nautical miles

% Initial conditions
aircraft_hdg = 90; % Heading in Degrees
aircraft_lat = 50.37876; % Latitude in Degrees
aircraft_lon = 3.37269; % Longitude in Degrees
aircraft_TAS = 49; % Aircraft speed
aircraft_alt = 20000;

% Mapping 4DT_RS data to WGS model
for t = 1:length(lat)
 [lon_nm(t), lat_nm(t)] = MappingWGS(lat(1), lon(1), lat(t), lon(t),

lon_avg);
end

% Creating a standarized time vector
 for i=1:length(alt_simulator)
 time_general(i) = i;
 end

% Maping WGS model and converting aircraft position to nautical miles
[aircraft_lon_nm, aircraft_lat_nm] = MappingWGS(lat(1), lon(1),

aircraft_lat, aircraft_lon, lon_avg);

164

% Computing error and obtaining error index
track_error_nm = inf;
for i = 1:length(lat_nm)
 if(sqrt((lat_nm(i) - aircraft_lat_nm)^2 + (lon_nm(i) -

aircraft_lon_nm)^2) < track_error_nm)
 track_error_nm = sqrt((lat_nm(i) - aircraft_lat_nm)^2 +

(lon_nm(i) - aircraft_lon_nm)^2);
 track_error_index = i;
 end
end

 % Uncomment to test
 % hold on;
 % plot(lon(node_index), lat_nm(node_index), 'o')
 % plot(lon_nm(track_error_index), lat_nm(track_error_index), 'o')
 % plot(lon_nm, lat_nm);

 for sim_time = 1 : total_simulation_time

 if(track_error_nm > RNP)

 % Computing reaction distance

 % Based on a fixed reaction time
 % reaction_dist = KTS2KTSS(aircraft_TAS) * reaction_time;

 % Based on cross-track error
 reaction_dist = track_error_nm / sind(sigma);

 % Calculating node at which distance is closer to reaction

distance
 react_dist_tolerance = inf;
 for i = 1:length(lat_nm)
 if((abs(sqrt((lat_nm(i) - aircraft_lat_nm)^2 +

(lon_nm(i) - aircraft_lon_nm)^2) - reaction_dist) <

react_dist_tolerance) && i > track_error_index)
 react_dist_tolerance = abs(sqrt((lat_nm(i) -

aircraft_lat_nm)^2 + (lon_nm(i) - aircraft_lon_nm)^2) -

reaction_dist);
 node_index = i;
 end
 end

 % Uncomment to test
 % hold on;
 % plot(lon_nm(track_error_index), lat_nm(track_error_index), 'x')
 % plot(lon_nm(node_index), lat_nm(node_index), 'o')
 % plot(lon_nm(track_error_index), lat_nm(track_error_index), 'o')
 % plot(lon_nm, lat_nm);

 % Computing new aircraft heading
 m = (aircraft_lat_nm - lat_nm(node_index)) / (aircraft_lon_nm -

lon_nm(node_index));
 aircraft_hdg = -(57.29 * atan(m) - 90);
 aircraft_hdg_vec(sim_time) = aircraft_hdg;
 end

165

 % Moving aircraft
 aircraft_lat_nm = aircraft_lat_nm + (KTS2KTSS(aircraft_TAS) *

cosd(aircraft_hdg));
 aircraft_lon_nm = aircraft_lon_nm + (KTS2KTSS(aircraft_TAS) *

sind(aircraft_hdg));

 % Mapping aircraft position back
 [aircraft_lon, aircraft_lat] = MappingWGS_back(lat(1), lon(1),

aircraft_lat_nm, aircraft_lon_nm, lon_avg);

 % Moving reference point (Proportional navigation typical

characteristic)
 if(abs(simtime_prev - sim_time) > 10)
 node_index = node_index + 1;
 if(node_index > length(lat))
 node_index = length(lat);
 end
 simtime_prev = sim_time;
 end

 % Computing error and obtaining error index
 track_error_nm = inf;
 for i = 1:length(lat_nm)
 if(sqrt((lat_nm(i) - aircraft_lat_nm)^2 + (lon_nm(i) -

aircraft_lon_nm)^2) < track_error_nm)
 track_error_nm = sqrt((lat_nm(i) - aircraft_lat_nm)^2

+ (lon_nm(i) - aircraft_lon_nm)^2);
 track_error_index = i;
 end
 end
 track_error_vec(sim_time) = track_error_nm;

 % Stop if aircraft is at final point
 if(track_error_index == length(lat))
 break;
 end

 % Plotting aircraft movement
 aircraft_lon_vec(sim_time) = aircraft_lon;
 aircraft_lat_vec(sim_time) = aircraft_lat;

 end

 % Plotting results
 figure;
 grid on;
 hold on;

 plot(lon, lat, 'b', 'LineWidth',2);
 plot(aircraft_lon_vec, aircraft_lat_vec, 'r--', 'LineWidth',2);
 plot(lon_simulator, lat_simulator, 'g--', 'LineWidth',2);

 figure;
 %plot(track_error_vec);
 hold on;
 plot(crosserror_simulator, 'g');

166

 figure;
 hold on;
 time_mov = time_general/7.6998 + time(88);
 plot(time_mov, alt_simulator, 'g');
 plot(time, alt,'b');

 figure;
 hold on;
 plot(aircraft_hdg_vec,'r--', 'LineWidth',2);
 plot(hdg_simulator,'g--', 'LineWidth',2);

167

Appendix E Noise Approximation of PW2036 engine

% ---
% MATLAB Script
% Noise approximation of PW2036-like engine using piecewise function
% Created by Manuel Amaro (m.a.amarocarmona@cranfield.ac.uk)
% Cranfield University | 2015
% ---

clear all;
Dist = [200 400 630 1000 2000 4000];
Dist1 = [200 400 630 1000 2000 4000 6300 10000 16000 25000];
Noise = [90.2 86.3 83.3 79.9 74.2 67.2];
Noise1 = [90.2 86.3 83.3 79.9 74.2 67.2 61.9 55.2 47.2 34.0];
plot(Dist1, Noise1);

x1 = [1:Dist(length(Dist))];
x2 = [Dist(length(Dist)):Dist1(length(Dist1))];
x = [1:25000];

% Computing first part
A_count = 0;
B_count = 0;

m = 3;

for i = 1:m
 far = length(Dist)-i+1;
 near = i;
 B1 = (Noise(near)*log(Dist(far)) -

Noise(far)*log(Dist(near)))/(log(Dist(far)) - log(Dist(near)));
 A1 = (Noise(near) - B1)/log(Dist(near));
 A_count = A_count + A1;
 B_count = B_count + B1;
end

A = A_count / m;
B = B_count / m;

slope = (Noise1(10) - Noise1(6)) / (Dist1(10) - Dist1(6));

hold on;
plot(x1, A*log(x1)+B, 'r');

% Computing second part
slope = (Noise1(10) - Noise1(6)) / (Dist1(10) - Dist1(6));
plot(x2, (slope*(x2 - 4000) + 67.2), 'g');

168

Appendix F Functional Requirements

Sl. No. Requirement Description

1
The generator should predict a path to be flown in relation to the

vertical and horizontal dimensions.

2 The path should comply with the maximum limits of aircraft.

3
The path should be optimized according to different profiles in

order to reduce fuel consumption, flight time and noise levels.

4
The predicted trajectory requires to comply with the altitude/FL

constraints of the flight plan.

5
The predicted trajectory requires to comply with the speed

constraints of the flight plan.

6
The guidance system requires to comply with the RNP parameters

of the flight plan.

7

The trajectory synthetizer requires to include an estimation of the

maximum and minimum time of arrival to each waypoint in order to

meet RTA requirements of the Flight Plan.

8
The trajectory must be represented graphically by points separated

by distance/time frames along the flight plan route.

9

Maximum response time for full flight plan prediction including flight

legs and waypoints shall be reasonable. This requirement applies

to flight plans of a reasonable size and complexity.

10
All the data should be referenced according to the Earth Model

WGS-86.

11
All altitude data should be referenced to the MSL geoid and

standard atmospheric pressure model.

12
The system should include a parameter that defines the Path

Definition Error (PDE).

