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ABSTRACT 

This thesis describes a 4D Trajectories Generator and Guidance system. 4D 

trajectory is a concept that will improve the capacity, efficiency and safety of 

airspace. First a 4D trajectories synthetizer design is proposed. A flight plan 

composed by a set of waypoints, aircraft dynamics model and a set of limits and 

constraints are assembled into an optimal control problem. Optimal solution is 

found by making use of an optimal control solver which uses pseudo spectral 

parametrization together with a generic nonlinear programming solver. 

A 4D Trajectories generator is implemented as a stand-alone application and 

combined with a graphic user interface to give rise to 4D Trajectories Research 

Software (4DT RS) capable to generate, compare and test optimal trajectories. 

A basic Tracking & Guidance system with proportional navigation concept is 

developed. The system is implemented as a complementary module for the 4D 

trajectories research software. 

Simulation tests have been carried out to demonstrate the functionalities and 

capabilities of the 4DT RS software and guidance system. 

Tests cases are based on fuel and time optimization on a high-traffic commercial 

route. A standard departure procedure is optimized in order to reduce the noise 

perceived by village’s population situated near airport. The tracking & guidance 

module is tested with a commercial flight simulator for demonstrating the 

performance of the optimal trajectories generated by the 4DT RS software. 
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CONTRIBUTION 

This thesis makes a contribution to the scientific community in: 

- Design and develop a 4D Trajectories Research Software to generate, 

evaluate and compare optimal trajectories. 

- Design and develop a Tracking and Guidance System to test and evaluate 

optimal trajectories with a commercial flight simulator. 

Furthermore, the author contributed to design, develop, integrate and test 

components of Greener Aircraft Trajectories under ATM Constraints (GATAC) 

framework developed by Airbus Group Innovations, Thales Avionics, German 

Aerospace Center (DLR), Alenia and GSAF group (Cranfield University, 

University of Malta, Technical University of Delft and Netherlands Aerospace 

Centre) as part of activities carried out by Systems for Green Operations (SGO) 

integrated technology demonstrator (ITD) of CleanSky programme. 

Specifically, the author contributed to: 

- Design, develop, integrate and test internal components (Weather and 

Atmospheric Models) of Aircraft Dynamics Model (ADM) 

- Test and evaluate Business and Operational Cost Models (B&O) 

- Test and evaluate GATAC user interface 

These tasks were carried out as part of the 80-hours/month work basis required 

by CleanSky | Cranfield University. 
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Chapter 1  

INTRODUCTION 

This chapter describes a background about current systems that include four 

dimensional trajectories and the reasons that inspired to carry out this project. 

Then a formal thesis definition is presented, including the general and specific 

objectives of this research and the methodology to achieve these objectives. 

Finally a report outline provides the reader with an overview of chapters contained 

in this document. 

1.1 Motivation 

Four dimensional trajectory based operations (4D-TBO) is considered a key 

improvement for future Air Traffic Management systems [38]. 

Strategies involving arrival sequences based on a time of arrival while 

maintaining optimum flight profiles contributes to increase the airspace capacity, 

efficiency and safety. The main purpose of using 4D trajectories is to increase the 

predictability of this environment. 

Despite a few efforts done by industry, progress in the use of four dimensional 

trajectories in both air and ground system is limited. 

Smiths Aerospace (GE Aviation), is responsible for manufacturing the most 

recent flight management systems for Boeing B737-NG (-700, -800 and -900). 

Smith has implemented initial four dimensional capabilities in their FMS GE 

U10.7, by including a Required Time of Arrival (RTA) function [27]. 
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This function operates based on predicted trajectory while associating the 

required time of arrival (input by crew) with the estimated time of arrival (ETA). 

Subsequently, aircraft is guided to the target waypoint so the predicted time of 

arrival matches as much as possible with the required time of arrival. 

Similar functions has been included in many other Flight Management Systems 

manufactured by Honeywell or Thales and are mentioned in [18], [24], [31], [34] 

and [39]. 

One of the problems related to the use of RTA functions in the current airspace 

is that not all aircraft are provided with flight management systems capable to 

meet required time of arrival conditions. This input a homogeneity issue to 

airspace, since aircraft that are not equipped with RTA functions have to be 

accommodated in airspace along with others that include these functions. A 

transition period is ahead, and RTA traffic has to be compatible with non-RTA 

traffic, at least for terminal based operations. A key feature to achieve this, is the 

capacity to accurate predict optimal trajectories so RTA flights will be easier to 

handle. 

Current scenario shows that RTA function is only available in some aircraft. 

These functions try to minimize throttle activity by triggering control inputs if RTA 

and ETA differs by more than a configurable tolerance. Despite this tolerance 

varies from ±6 to ±30 seconds in existent flight management systems, results of 

flight tests including possible future scenarios [19] show that capabilities to predict 

optimal trajectories need to be improved. 

Another problem is produced when using ATC speed constraints (e.g. 250 kts. 

below FL100). Current RTA functions have been limited to operate at flight levels 

above FL100. Late arrivals are produced because the RTA function estimates 

inaccurately the time required to decelerate to constraints speeds. In some cases, 

predicted trajectories by FMS do not include speeds below 250 knots, even at 

levels above FL100. 

Estimated Time of Arrival (ETA) is not updated frequently in current flight 

management system when target speeds cannot be properly controlled. This 
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deficiency in ETA updating rate could induce to inaccuracies in computation of 

flight parameters to follow the RTA condition. 

Predicted optimal trajectories by current FMS are no longer reliable when RTA 

specifications are input after Begin of Descent (BOD) point has passed. The 

descent strategy is fixed when this point is achieved. 

Current RTA tolerances are sufficient for some flight phases such as en-route or 

ascent. However, reducing these tolerances will be necessary for arrival and 

approach phases thus terminal area operations require more accuracy in aircraft 

separation. 

In current FMS-Control Display Units (CDU), RTA error is displayed numerically 

[34], which could represent an issue for pilots that must have their head looking 

down for a considerable amount of time. Improvements in avionics displays is 

another important issue that has to be considered in the implementation of future 

flight management systems. Additionally, cockpit improvements must be 

complemented with GPS time inputs because it is necessary some reliable 

synchronization between ground and air systems. 

Another important problem is related to compatibility of avionics systems to 

ground ATM tools. In situations including initial four dimensional trajectories 

(i4DT) concept, where required time of arrival is involved at only few merging 

points, the specific RTA condition at a sequencing fix could be negotiated by 

voice communications. However, for full 4D trajectories operations, where 

several sequencing fix are required, this situation has to be implemented in 

different ways. For this case, prediction of 4D trajectories has to be performed in 

both air and ground systems. 

From the aircraft point-of-view, it is necessary to calculate the best trajectory that 

fulfil its interest (e.g. predict optimal trajectory to reduce fuel consumption). In 

contrast, for ground systems, it is necessary to calculate the best trajectory that 

improves the air traffic flow. A solution for this observation would be implementing 

optimal trajectories that meet both requirements.  
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The use of existent ATM tools such as Arrival Manager (AMAN) [30] in Europe 

airspace is still under consideration. The tool supposes to provide support for 

controllers by generating aircraft descent speeds on continuous descent 

approach operations. However, its predictability and operational issues due to 

incompatibility with avionics RTA functions requires improvements. Optimal 

descent paths predicted by existent FMS systems are not compatible with AMAN 

speed advisories. Another similar tool that includes a four dimensional 

synthetizer, Control-TRACON Automation System (CTAS) [52] has been 

developed for research and simulation purposes with an insight of NextGen 

project requirements. However, possibly due to its undeveloped level, it has only 

been included in small scales on Air Traffic Management Systems for research 

and testing purposes. 

Assuming the diversity of problems described, it is noticeable that design goals 

for future air and ground systems are to generate four dimensional optimal 

trajectories capable to reduce fuel consumption or flight time while maintaining 

predictable paths (horizontal and vertical) and improving air traffic flow efficiency. 

Current systems show that predicting optimal trajectories is far from being 

perfectly implemented. Most of advanced four dimensional features in air and 

ground systems are still under consideration or have not been properly developed 

because of deficiencies in the estimation of four dimensional trajectories. This 

project contributes to improve the predictability of four dimensional optimal 

trajectories by designing and developing a four dimensional trajectories 

synthetizer. 

Additionally, the idea of progressing in the development of optimal trajectories 

and flight profiles is considered important to environment conservation because 

it reduces COx emissions and reduce noise. Also, it is considered attractive for 

airlines, avionics systems manufacturers and air traffic management operators 

thus it reduces aircraft fuel consumption, flight time and operational costs, while 

improving the efficiency and increasing the airspace capacity. 

The issue of predicting optimal trajectories restricts the current FMS-RTA 

functions, to a point, where they are not reliable and accurate enough in some 
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situations. Additionally, advanced RTA functions need to be properly integrated 

into flight deck displays to complete appropriate interaction with pilots. For this 

reason, this project also contributes to improve current avionics systems by 

proposing possible solutions to some of these issues. 

1.2 Research Methodology 

 
General requirements of the system have been analysed as part of first specific 

objective of this project. Subsequently, the process to carry out this research has 

been divided into two phases: 

 Phase 1: Design, Implementation & Testing of 4DT Generator 

 Phase 2: Design, Implementation & Testing of Tracking & Guidance System 

Since project goals were evidently understood, the definition of the project was 

firm and most of the technologies needed were clearly understood, it has been 

used a sequential design process based on flexible and iterative Waterfall model 

[28]. 

Figure 1-1 shows the methodology used to develop this project including two 

phases following the waterfall design strategy. 

Main phase boards the modelling, design and implementation of 4DT generator 

system. Initial tasks were mainly focused on generating optimal trajectories by 

setting up specific optimal control problems and identifying the general 

characteristics of these problems. These characteristics composed an important 

part of the system requirements. 

Similarly, for the software design it has been considered also accessibility to tools 

and software constraints such as solver selection, operating systems and 

computer resources. 
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Figure 1-1: Project methodology 
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System implementation has been started when modelling & design stage was 

completed. Iterative procedures between these two stages (implementation ↔ 

design), have been performed to include elements that were not considered in 

early design stages. 

Early unit testing have been performed since first versions of the synthetizer (4DT 

core) were released. This phase has been concluded with the test of alpha 

versions of 4DT research software which included most recent version of 4DT 

generator. 

The second phase has been focused on design, test and implementation of the 

tracking & guidance system. 

Design methodology used for this phase was similar to main phase. Waterfall 

strategy has been adapted to available time for the project. In this case, 

implementation stage included massive unit testing due to configuration and 

testing of commercial flight simulator. 

At the end of second phase, the Tracking & Guidance system has been tested 

before evaluating any interaction with research software. 

The completion of second phase conduced the testing and evaluation of 4DT 

synthetizer results (Trajectories Evaluation) and the end of the project. 

1.3 Research Objectives 

This thesis aims at designing, modelling and testing a trajectory generator and 

guidance system to focus on the use of 4D optimal trajectories. 

In order to achieve this, it has been proposed the following specific objectives: 

 Analyse the functionalities of existing Flight Management Systems (FMS). 

 Study functional requirements for future 4DT/RNP-based FMS. 

 Design and develop a future 4DT Generator and Guidance system for a 

FMS according to the functional requirements analysed. 

 Analyse and evaluate the performance of the 4DT Generator and 

Guidance system. 
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1.4 Report Outline 

This report is composed by the following chapters: 

Introduction: this chapter provides a general overview of this master thesis by 

explaining the motivation and objectives set. 

Literature Study: this chapter provides an overview of current 4DT systems as 

well as optimal trajectories prediction and guidance system researches. 

4D Trajectory Optimization Techniques: concepts related to optimal trajectory 

prediction, solving methods for optimal control problems, non-linear programming 

techniques and guidance based on proportional navigation are detailed and 

explained in this chapter. 

4D Generator Development: this chapter provides detailed information about 

the design and implementation of 4DT Generator and 4D Trajectories Research 

Software v0.1. 

Tracking & Guidance System: this chapter provides detailed information about 

design and implementation of Tracking & Guidance system. 

Test and Results: this chapter describes 4DT Trajectories Research Software 

and Guidance system tests and results. Also provides an extensive analysis 

about capabilities and proposed improvements for designed systems. 

Conclusion and Future Work: in this chapter it is summarized the work 

performed and it is contrasted with the project objectives. Finally it is given an 

insight of future work. 
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Chapter 2  

LITERATURE STUDY 

2.1 Introduction 

This chapter will briefly review current and future Flight Management Systems 

(FMS) practices and requirements, 4D trajectory generation and guidance 

methods as well as trajectory optimization methods. Section 2.2 analyse the 

current Flight Management Systems (FMS) designs, especially FMSs equipage 

on Boeing and Airbus aircraft. Section 2.3 reviews future flight management 

systems, their functions and requirements. Section 2.4 describe navigation and 

database specifications used on current FMSs. Section 2.5 reviews existent tools 

to generate four dimensional trajectories. Section 2.6 discuss existent strategies 

and methods to generate optimal trajectories. Section 2.7 discuss existent 

tracking and guidance systems. Section 2.8 describes existent optimal control 

methods used for generating four dimensional trajectories. Finally, Section Error! 

Reference source not found. summarizes this chapter and identify the 

functional requirements of this project. 

2.2 Flight Management Systems (FMS) 

First integrated Flight Management Systems (FMS) were introduced in late 

1970s. Since then, it has been introduced more advanced functions and 

capabilities such as improvements in navigation database, enhanced tracking for 

vertical and horizontal paths, and basic required time of arrival functions. This 

section aims at describing current FMS in the market and their functions. 



 

10 

2.2.1 Boeing FMS 

First Flight Management System (FMS) was developed for Boeing 767 

programme in 1978. It included a system capable to automate a variety of in-flight 

tasks. In 1990, Boeing Company launched the B767-300 that included a 

Honeywell Pegasus 2005 Flight Management System [39].  

The airline industry required new capabilities such as the direct-to function that 

describes aircraft trajectories without the need to follow navaids. For this purpose, 

it has been implemented algorithms based on multiple sensors that provide more 

accurate aircraft position by making use of VHF Omni-directional range (VOR), 

Distance Measurement Equipment (DME) and Inertial Reference Systems (IRS).  

Additionally, the increase in the demands on oceanic operations encouraged the 

development of Future Air Navigation Systems (FANS) capabilities that include 

the use of Global Position System (GPS), Required Navigation performance 

(RNP) and data link. This supposed an important advance on airline operational 

communications, more safe and reliable systems capable to track horizontal and 

vertical paths with very low tolerance errors defined by RNP conditions. 

Except Boeing B737 versions, most airplanes of the American company use 

Flight Management Systems (FMS) manufactured by Honeywell International, 

Inc. Some famous models included by Boeing are Honeywell Legacy, AIMS, 

Pegasus and NextGen. 

Honeywell develops a wide variety of systems that includes differences in 

hardware and software. Hardware is commonly compared by its capacity to host 

a Navigation Database (NDB). 

FMS developed for B757/B767 (Honeywell 200K FMC) were provided with just 

400KB of capacity. The introduction of Performance Base Navigation (PBN) 

supposed an important increase in the demand of database capacity. Nowadays, 

modern FMS developed for B747-8 (Honeywell NextGen) is provided with 100MB 

[39].  



 

11 

The following Table 2-1 shows most common Honeywell systems used in Boeing 

aircrafts, their Navigation Database (NDB) capacity. 

Table 2-1: Boeing | Honeywell FMS [39] 

Aircraft FMS Model NDB Capacity 

B747-400 Honeywell 747-4 2MB 

B747-8 Honeywell NextGen 100MB 

B757/767 Honeywell Pegasus 7.5MB 

B777 AIMS 12MB 

B787 Honeywell 30MB 

Most recent B737 versions (B737-NG), are provided with Flight Management 

Systems developed by GE Aviation (Smiths Aerospace). Different models has 

been developed for B737, some of them including new FMC hardware are 

provided with up to 16MB of Navigation Database capacity. 

Following table shows a comparison between different FMS manufactured by GE 

for Boeing B737-NG. 

Table 2-2: Boeing | General Electric (GE) FMS [39] 

Aircraft FMS Model NDB Capacity 

B737-NG GE U10.6, U10.7, U10.8 8MB 

B737-NG GE U10.8 16MB 
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2.2.2 Airbus FMS 

Most Airbus airplane models are provided with Thales Flight Management 

Systems (FMS). Exception applies for some aircraft of A320 family and A330/340 

thus could be equipped with Honeywell FMS [39]. 

Flight Management Systems 1 (FMS1) developed by Thales was introduced in 

the Airbus A320 programme. The Thales FMS1 was provided with 400Kb of NDB 

capacity. Next versions FMS2 REV2+ and FMS2 R1-A increased their NDB 

capacity up to 7MB [39]. 

In the versions of A320 including Flight Management Systems manufactured by 

Honeywell, it is possible to highlight the advanced-capacity Pegasus P1-A that 

provided 20MB of NDB capacity. 

The following Table 2-3 and Table 2-4 show most common FMS used by Airbus 

aircraft. It is shown that system capacities are relatively similar to models shown 

in section 2.2.1.  

Table 2-3: Airbus | Thales FMS [39] 

Aircraft FMS Model NDB Capacity 

A319/320/321 Thales FMS2 REV2+ 5MB 

A319/320/321 Thales FMS2 R1-A 7MB 

A330/340 Thales FMS2 REV2+ 7MB 

Table 2-4: Airbus | Honeywell FMS [39] 

Aircraft FMS Model NDB Capacity 

A319/320/321 Honeywell Pegasus P1 4MB 

A330/340 Honeywell Pegasus P3 5.5MB 
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Boeing and Airbus use very similar Flight Management Systems (FMS) where 

few variances could be detected and mostly related to the diversity of 

manufacturers. Important changes in functions and the NDB capacity can be 

perceived when comparing recent systems with first generation models. 

Designing methods and techniques for most Flight Management Systems (FMS) 

are not in public domain, however it is know that these methods relies on 

managing Navigation Databases (NDB) that are defined via ARINC-424 

specification [58]. 

From the user perspective, most differences between different Flight 

Management Systems are almost imperceptible. However, there exists few 

cosmetic changes in flight deck or software front-end that are visible. 

Most changes are performed in the hardware, in the system implementation or in 

the software design. Previous discussion boarded differences in navigation 

database capacities. Furthermore, since manufacturer are different, it could exist 

dissimilarities in the way trajectories are computed or in the perception of some 

aircraft parameters. 

A research carried out by Herndon et al. [24] from MITRE Corporation Center for 

Advanced Aviation Systems Development studied the differences between Flight 

Management System (FMS) and Flight Management Computers (FMC) designed 

by different manufacturers. The study results show that there exists differences 

below 0.1 nautical miles of the nominal radius-to-fix (RF) arc radius in the turn. In 

vertical path, all tracks were followed with errors below 200-300 feet. These 

results shows that differences in lateral and vertical path exists, however the 

tracking deviations are within published maximum tolerances. 

Another study carried out by same author [18], shows a difference between 

vertical paths of diverse Flight Management Systems. The results shown that 

climb paths could be more widely different than descent paths. While comparing 

different FMS included in Boeing and Airbus models, vertical path constraints 

were generally well met by all systems with exception of one system. However, 

the author states that some tests could be affected by non-related FMS effects. 
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As a general comparison, it is possible to affirm that difference between different 

manufacturers are not excessively significant, however each system is developed 

by different manufacturers that sometimes input variances in each design. 

2.3 Future Flight Management Systems (FMS) 

Single European Sky ATM Research (SESAR) [38] programme and the United 

States NextGen [26] aim at restructuring the airspace to increase the overall 

capacity and efficiency by introducing more strategic-based operations instead of 

current tactical operations. 

Both programmes require to develop and implement the use of 4D trajectory 

based operations (4D-TBO) in both air and ground systems in order to improve 

the predictability of the airspace. 

The premise of SESAR and NextGen is based on sequencing the air traffic by 

providing each aircraft with a set of waypoints that aircraft have to reach at 

required time. The required time of arrival (RTA) should be communicated to crew 

by air traffic controller (could be negotiated). 

From aircraft operator’s point of view, the use of 4D-TBO will result economically 

interesting. Aircraft will be sequentially managed based on required time of arrival 

constraints that will result in a reduction of bottle-neck effects and holding 

patterns and consequently a considerable reduction of fuel consumption, hence 

COx emissions. 

In contrast, air traffic management systems will use 4D-TBO to increase the 

overall efficiency of traffic flow. Additionally, airspace capacity will be significantly 

increased due to reduction of waiting time in the air, holding patterns and airport 

delays. 

For operations involving few merging points, the communication of RTA could be 

performed by voice commands. However, for operations involving more points, it 

is necessary to modify both air and ground systems to provide this interaction in 

more efficient manner. For this reason, future flight management systems require 

advanced data-link functions capable to interact with ground ATM systems. The 
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process should be easier to handle than current functions by introducing more 

efficient software interfaces. 

Few advances has been performed in the use of four dimensional trajectories 

concept in avionics systems. The most significant function is named Required 

Time of Arrival (RTA) [23]. 

This function operates based on aircraft trajectory predictions to calculate the 

Estimated Time of Arrival (ETA). Once RTA function is activated, the aircraft 

speed up or down in order to maintain the difference between RTA and ETA 

below a tolerance value. 

The following table shows a comparison of RTA tolerance between different FMS 

manufacturers: 

Table 2-5: RTA tolerance comparison [19] 

FMS Aircraft 
RTA 

Tolerance 
Flight Phase 

Smiths B737 Classic, NG 6 sec 

Climb, 

Cruise, 

Descent 

Thales - Smiths A320, A330, A340 30 sec 

Climb, 

Cruise, 

Descent 

Honeywell 
Pegasus 

A320, A330, A340 

B757, B767, 
MD90 

30 sec Cruise 

Honeywell 
B777, B747-400, 

MD11 
30 sec Cruise 

Required Time of Arrival (RTA) functions exists in modern airliners but they have 

limitations and require special autopilot functions such as auto-throttle to operate. 

RTA functions in current FMS do not operate for altitude below 10,000 ft. For this 

reason, future flight management systems should include RTA functions capable 

to operate in approach phases. Since reduced aircraft separation on terminal 
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area operations is a key requirement, lower tolerance errors for RTA functions 

should be achieved. 

Prediction of optimal trajectory is an important feature of flight management 

systems. For the particular case of four dimensional trajectories, Estimated Time 

of Arrival (ETA) is used to compute required control inputs to match the required 

time of arrival. However, updating rates of estimated time of arrival is reduced 

when aircraft speed do not match properly with control speed which results in 

accuracies when reaching the waypoint. Future flight management systems 

should include important advances in trajectory prediction that support the control 

activity of RTA functions more accurately. 

2.4 ARINC 424 Specification 

ARINC 424 is a specification that has been released for first time in May 1975 

[59]. It is maintained and developed by the industry and it is used for exchange 

of communication and navigation data between avionics systems and data 

providers. 

This specification was created specifically for avionics systems that require 

complex navigation and communication data. For this reason, ARINC-424 

specification has been mainly developed thinking on its application on Flight 

Management Systems (FMS) and Flight Management Computers (FMC). 

The main idea behind ARINC 424 is to specify data in text files containing lines 

of 132 alphanumeric characters [65]. This data is assembled and packed by 

commercial suppliers. These text files are converted into binary datasets and 

included into avionics systems by Flight Management Systems (FMS) 

manufacturers. In this way, each Flight Management System (FMS) is provided 

with a unique set of navigation and communication data. 

ARINC 424 document provides a specification about how a navigation database 

should be assembled and prepared by commercial suppliers. In addition, it 

provides a set of rules to avionics manufacturers about how this data can be 

accessed and interpreted by embedded systems. ARINC 424 specifies standard 

assembly information for the following navigation elements: airports, heliports, 
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runways, waypoints, navaids (e.g. NDB, VOR, VOR-DME, TACAN, ILS), airways 

and arrival/departure routes procedures (STAR, SID). 

World’s largest navigation and communication database supplied by Jeppensen® 

meet ARINC 424 specification [58]. This database is currently used by several 

manufacturer to fly, simulate and create flight plan procedures. 

Additionally ARINC 424 specifies a set of legs used for coding Terminal Area 

Procedures, Standard Instrument Departure (SID) and Standard Arrival (STAR) 

procedures. When this standard was introduced, it was required to implement 

RNAV procedures using more elements than the few of them specified in DO-

236* standard [14]. For this reason, ARINC-424 introduced a set of 23 new legs 

types in order to translate normal procedures created for compass and manual 

flight into computer language (for Flight Management Systems). 

2.5 Brief Review of Existent Tools 

The introduction of SESAR and NextGen programmes supposed that 4D 

trajectory-based operation concept became more popular in recent years. Some 

tools including 4D optimization capabilities have been developed and are 

described in this section. 

2.5.1 Center-TRACON Automation System (CTAS) 

The Aviation Systems Division of NASA Ames Research Center developed an 

important suite of tools for synthetizing optimal trajectories. Center-TRACON 

Automation System (CTAS) [52] is a set of tools that has been developed to 

complement ATM ground systems by including a next level of automation for 

planning and controlling arrival and departure traffic. The core of CTAS is 

composed by a trajectory synthetizer that generates trajectories to increase fuel 

efficiency, and provide automation assistance to air traffic controller in order to 

reduce traffic delays. 

CTAS also complements its features with En-Route Descent Advisor (EDA), 

which is an internal tool that assists air traffic controllers of each airspace sector 

to solve air conflicts. 
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The core of this software is a sophisticated trajectory synthetizer that aims at 

predicting trajectories based on flight data information hosted in an ATC 

computer. This synthetizer makes use of accurate aircraft performance models 

located in this ATC database. 

4D trajectories concept has been introduced in this tool in order to create 

schedules for runway occupancy and final approaches. Also, the introduction of 

time as new aircraft trajectory dimension allows to detect future conflicts, suggest 

possible shortcuts and create more efficient descent paths. 

CTAS has been focused of making use of sophisticated 4D trajectories based 

functions. The En-Route Descent Advisor (EDA) and the Active-Final Approach 

Spacing Tool (A-FAST) allows to generate trajectories that meet time of arrival. 

According to [52], advisories are displayed by a module called Traffic 

Management Advisor (TMA) in order to issue guidance commands by air traffic 

controllers to avoid aircraft conflicts. 

CTAS deals with operational challenges that result from predicting 4D optimal 

trajectories such as human factor problems in communication or monitoring, 

imprecision in execution of air traffic controllers commands by crew or automated 

systems and environment uncertainties that affect trajectory predictions. 

From the optimization point-of-view, an interesting tool provided by CTAS is 

Direct-To (D2). In order to decrease fuel consumption and aircraft COx emissions, 

D2 allows controllers to visualize and if required, to modify aircraft trajectories to 

make trajectories shortcuts available in the route. If this is the case, aircraft are 

capable to save time and in some cases, contributes to dynamically release the 

airspace capacity. 

The capabilities of CTAS have been tested and transitioned to FAA for 

operational evaluation. Other modules of this suite are detailed in [52], [15] and 

[61]. In addition, Figure 2-1 shows a diagram of different tools provided in CTAS 

Suite in February, 2007 including their region of action. 
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Figure 2-1: Tools provided by CTAS suite [61] 

2.5.2 Greener Aircraft Trajectories under ATM constraints (GATAC) 

CleanSky is a joint technology initiative created by European Commission in 2008 

in order to develop new technologies capable to significantly increase the 

environmental performances of air transport vehicles [60]. The innovative 

projects are integrated and coordinated by technology demonstrators. Cranfield 

University contributes in activities related to Systems for Green Operations (SGO) 

of CleanSky. 

Greener Aircraft Trajectories under ATM constraints (GATAC) is a multi-model 

and multi-optimization framework developed by integrated technology 

demonstrators and associates of CleanSky Work Package WP3.2, which 

includes GSAF (Group composed by Cranfield University, University of Malta, 

NLR and TU Delft), Airbus Group Innovations, Alenia Aeronautica, DLR and 

Thales. 

GATAC core is composed by an optimization suite which uses different 

optimization algorithms depending of user or problem requirements. These 
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algorithms are Non-dominated Sorting Genetic Algorithm Multiple Optimization 

(NSGAMO), Multi-objective Tabu Search (MOTS) and Hybrid Optimizer (HYOP) 

[42] 

Figure 2-2 shows a structure of GATAC software. The optimization suite uses an 

evaluation handler which is composed by a parameter store component and an 

interface used to connect different models contained into a models suite. 

 

Figure 2-2: GATAC internal structure [32] 

From the user point-of-view, GATAC is a software compatible with Windows 

operating systems. The Graphic User Interface (GUI) allows users to manage the 

models and components of the optimization process represented by blocks that 

can be connected to each other. 
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Figure 2-3: GATAC v3 typical display format of an optimization case. 

Multi-objective and multi-model optimization characteristics convert this 

framework into a powerful tool. However, due to the nature of genetics-based 

algorithms, thousands of iterations are needed in order to obtain a successful 

result. This implies the use of powerful CPUs and/or local area network clusters 

in order to speed the optimization process up. Another important characteristic of 

GATAC is that generated trajectories are exported to a data text file. Therefore, 

third-party software is required to plot generated trajectories. 

Main focus of GATAC is generate optimal trajectories making use of accurate 

aircraft models that include many modules such as engine, aircraft dynamics and 

weather conditions. At this moment it has not shown evidence of providing 

support to operations involving 4D trajectories concept such as managing optimal 

trajectories making use of scheduling constraints or defining a predicted time of 

arrival relative to a merge point, however its flexibility could allow users to develop 

models that include this functionality in the future. 

2.6 4D Optimal Trajectories 

In general, optimal trajectories generation is usually boarded as an optimal 

control problem based on mathematical models that describes aircraft dynamics, 

a cost function describing an aircraft performance specification to be minimized 

(fuel consumption, flight time and others) and a set of equality and/or inequality 

constraints describing the aircraft performance limits. This section describes and 
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analyses different methods and approaches to generate 4D Optimal trajectories 

followed by other authors. 

2.6.1 4D Trajectory Generation for Waypoints-based Navigation 

Bouson and Machado [49] describe a method for generating 4D optimal 

trajectories passing through a sequence of waypoints using pseudo spectral 

optimization. The method described used simple navigation equations that 

provide a reference velocity (𝑉𝑟𝑒𝑓), path angle 𝛾 and heading 𝜓 to enable aircraft 

go through a sequence of waypoints denoted by 𝑃0, 𝑃1, 𝑃2, 𝑃3 … 𝑃𝑀. 

The basic premise is to consider the time in the description of waypoints so that 

each point is defined by 𝑃𝑘 = (𝜆𝑘, 𝜑𝑘, ℎ𝑘, 𝑡𝑘) where variables are longitude (𝜆), 

latitude (𝜑), altitude (ℎ) and time (𝑡). Then the problem is defined as an optimal 

control problem to be applied for points 𝑃0, 𝑃1, 𝑃2, 𝑃3 … 𝑃𝑀 that minimizes the arrival 

delay at each point 𝑃𝑘. 

Hence the following performance specification is proposed: 

𝐽( 𝑢) = (P𝑓 − s(τ𝑓))
𝑇

𝑄𝑓(P𝑓 − s(τ𝑓)) 

where s(τ𝑓) is the terminal position of aircraft, 𝑄𝑓 a positive defined matrix of 

appropriate dimension, and u is the control vector of the following navigation 

model [49]: 

𝜆̇ =
𝑉𝑐𝑜𝑠(𝛾) sin(𝜓)

(𝑅𝑒 + ℎ)cos (𝜑)
 

𝜑̇ =
𝑉𝑐𝑜𝑠(𝛾) sin(𝜓)

𝑅𝑒 + ℎ
 

ℎ̇ = 𝑉 sin(𝛾) 

𝑉̇ = 𝑢1 

𝛾̇ = 𝑢2 

𝜓̇ = 𝑢3 
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Where 𝜆 is longitude, 𝜑 is latitude, ℎ is altitude, 𝑉 is the velocity, 𝛾 is the flight 

path angle and 𝜓 is heading. The control variables selected are acceleration, 

flight path rate and heading rate. 

The optimal control problem is then restricted by a set of boundaries and 

constraints. The constraint defined by the following expression:  

‖P𝑘 − 𝑠(𝜏𝑘)‖2 ≤ 𝜎 

is used to ensure aircraft passes through all waypoints (𝑘 = 1 … 𝑚) at time 

denoted by 𝜏𝑘 with a tolerance position denoted by the variable 𝜎 which 

represents the radius of a circle with center fixed at the point P𝑘. 

Finally, the trajectory is generated by discretizing the time dependent equations 

using a pseudo spectral method based on Lagrange and Chebyshev polynomials 

defined in the interval [−1, 1]. Other tests have been performed using another 

Collocation method. The nonlinear programming problem obtained is then solved 

using the function fmincon of MATLAB®. 

The method used by the author and the reduced complexity of navigation 

equations result in a significant reduction of computational resources needed to 

solve the problem. Simulations using up to 25 nodes converged in optimal 

solutions. 

However, the results obtained show that this method introduced issues to 

properly follow the aircraft along the trajectory for the particular case simulated 

[49] . Some oscillations problems were solved by increasing the number of nodes. 

The guidance system has been capable to track the trajectory to fulfill the 

mission’s requirements, however, the accuracy obtained was not the better. The 

results shows some difficulties to fulfill the time restrictions imposed to the 

performance index specification. 

2.6.2 4D Trajectory-based concept for Terminal Area Operations 

Vaddi et al. [45], describe a unique 4D-Trajectory-based operations concept that 

consists in both air and ground automation systems. The ideas proposed by the 

authors are focused in a general systems improvement. For the particular case 
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of 4D trajectory generation, a method is proposed based on an optimal control 

problem. 

The full schematic is shown in the following figure [45], 

 

Figure 2-4: Schematic of 4D Trajectory-based concept [45] 

In this concept, the 4DT generator is performed on ground and then sent to 

aircraft. Flight management System (FMS) requires to generate guidance 

commands to allow aircraft to track the 4D trajectory proposed by ground 

systems. 

The system proposed by Vaddi et al. [45] uses a general performance index 

specification that penalizes the delay, the fuel consumption and the landing time 

of aircraft by the following expression: 

𝑚𝑖𝑛 ∑(𝛼 𝑑𝑒𝑙𝑎𝑦 + 𝛽 𝑓𝑢𝑒𝑙) + 𝛾𝑡𝑓𝑖𝑛𝑎𝑙

𝑁

𝑖
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Components of the general expression are proposed to be calculated based on 

the following table: 

Table 2-6: Performance Index Specification [45] 

Objective Function Description 

Reduce Time 𝑡20 

Reduce Fuel Consumption 𝑚𝑓𝑢𝑒𝑙 = ∫ 𝑚̇𝑓𝑢𝑒𝑙(𝑉1…20, 𝑇1…20)

𝑡20

0

𝑑𝑡 

Consequently, the equations expressed in Table 2-6 are subject to constraints 

defined by aircraft limits and flight profiles defined in [45]. The mathematical 

model proposed by the author to describe aircraft dynamics is composed by four 

states variables: 

𝑥̇ = 𝑉𝑐𝑜𝑠(𝛾) 

ℎ̇ = 𝑉𝑠𝑖𝑛(𝛾) 

𝑉̇ =
(𝑇 cos(∝) − 𝐷)

𝑚
− 𝑔 sin (𝛾) 

𝛾̇ = −
𝑔

𝑉
𝑐𝑜𝑠(𝛾) +

𝐿

𝑚𝑉
+

𝑇 sin (∝)

𝑚𝑉
 

Where 𝑥 is longitudinal position, h is altitude, V is airspeed, 𝛾 is flight path angle, 

𝑇 is thrust, 𝐿 is lift force, D is drag force, m is aircraft mass and ∝ is the angle of 

attack. Obviously, this model is restricted and limited by a set of bounds and 

constraints that are attached to aircraft dynamics limits. 

No further information is provided about the method used to discretize the 

dynamic equations, however, the nonlinear programming problems has been 

solved using the function fmincon of MATLAB®. 

Simulations executed by the author for single and multiple aircraft scenarios show 

that it has been achieved realistic trajectories with the design described. For 
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single trajectories, it is shown a balance between time vs fuel optimization where 

there exists a time of arrival for which fuel consumption is minimum. 

2.6.3 Optimal trajectories generation for next generation FMS 

Diaz et al. [51] describe an optimal control approach to generate RNP, fuel-

efficient 4D trajectories to be in line with requirements of next generation flight 

management systems. 

The flight path is defined by a set of 4D waypoints composed by longitude, 

latitude, altitude and required time of arrival. The problem is defined by a set of 

RTA and RNP constraints. Required Time of Arrival is only defined at a finite 

number of waypoints while RNP condition is defined along the whole flight plan. 

The aircraft dynamics are defined by a three-degrees of freedom, rigid-body 

model composed by six states variables: north distance (𝑁), east distance (𝐸), 

altitude (ℎ), true airspeed (𝑉), flight path angle (𝛾) and yaw angle (𝜒). 

The problem is defined by an optimal control problem that find the control vector 

that minimizes the following performance index: 

𝐽(𝑢) =
1

2
∫(𝑢𝑇𝑅𝑢 + (𝑦 − 𝑟)𝑇𝑄(𝑦 − 𝑟))𝑑𝑡

𝑇

0

+
1

2
(𝑥(𝑇) − 𝑥𝑑)𝑇𝐹(𝑥(𝑇) − 𝑥𝑑) 

Subject to the conditions: 

𝑥̇ = 𝑓(𝑥, 𝑢) 

𝑥(𝑡0) = 𝑥0 

‖𝑦(𝑡) − 𝑟(𝜏)‖ < 𝑑,    𝑡 ∈ [0, 𝑇] and 𝜏 ∈ [0, 𝑇] 

where 𝑅, 𝑄 and 𝐹 are positive defined matrix that are tuned depending of desired 

flight profiles or performance index conditions. 

The first term of the performance index specification 𝑢𝑇𝑅𝑢 + (𝑦 − 𝑟)𝑇𝑄(𝑦 − 𝑟) 

reduces the control effort while maintaining the aircraft position within the 
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trajectory for a given RNP condition. The second term (𝑥(𝑇) − 𝑥𝑑)𝑇𝐹(𝑥(𝑇) − 𝑥𝑑) 

ensures the time of arrival for each waypoint. 

The optimal control problem is solved using MATLAB® by making use of a method 

based on Monte Carlo simulations. The author states that this method takes 

around 1.41 seconds to compute the gain matrices, linearize the model and 

simulate the trajectory. Additionally, simulations took around 1000 iterations for a 

flight segment of 180 seconds. 

2.6.4 4D trajectory design in presence of contrails 

Soler et al. [55] describes a 4D trajectory generation problem in presence of 

contrails. The problem is presented as an optimal control problem that minimizes 

the overall flying cost of fuel consumption, CO2 emissions, flight time, and 

persistent contrails formation. 

The problem is defined as an optimal control problem that minimizes the following 

performance index specification: 

𝐽(𝑢) = 𝐶𝑡𝑡𝑓 + (𝐶𝐹 + 𝐶𝐶𝑂2
) [∑ ∫ 𝑚̇𝑞(𝑡)𝑑𝑡

𝑡𝑞+1

𝑡𝑞

𝑛

𝑞=0

] + 𝐷 

Where 𝐶𝑡 represents flight time cost, 𝐶𝐹 represent the fuel cost, 𝐶𝐶𝑂2
 represents 

the cost associated to producing CO2 emissions. 𝑚̇𝑞 represents the aircraft fuel 

flow during a particular phase denoted as 𝑞. Finally, 𝐷 represent the persistent 

contrail formation cost which form is defined in [55]. 

The model used by the author is a three-degrees of freedom that considers only 

aircraft forces and it is composed by seven (7) states variables: velocity (𝑉), 

heading (𝜓), path angle (𝛾), altitude (ℎ), latitude (𝜃), longitude (𝜆) and mass (𝑚). 

Additionally, wind is calculated by using polynomial regression method applied 

on a weather numerical model downloaded from National Oceanic and 

Atmospheric Administration (NOAA). 
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Additionally, the problem is restricted by a set of constraints and boundaries 

conditions denoted by 𝑔(𝑥(𝑡), 𝑢(𝑡), 𝑡) < 0 and ℎ(𝑥(𝑡), 𝑢(𝑡), 𝑡) = 0. Specific 

numeric values for each state and control variables are found in [55]. 

The process to solve the problem is formulating a mixed integer optimal control 

problem (MIOCP) by describing a set of differential-algebraic functions that 

represent dynamic subsystems. Subsequently, the problem is reformulated and 

expressed as a conventional mixed integer optimal control problem which is 

discretized using collocation method and finally converted into a mixed-integer 

nonlinear programming problem (MINLP). 

The MINLP is solved using a branch and bound algorithm which is implemented 

in MATLAB®. The process to solve the problem by Soler et al. [55] is shown in 

the Figure 2-5. 

 

Figure 2-5: Schematic of solution proposed by [55] 

Simulations performed by the author based on a defined flight plan show that 

method used are valid to solve the given problem, however, the use of a very 

complex aircraft dynamics model introduced significant delays in finding optimal 

solution. The author [55] proposed using a simpler aircraft model including only 

five (5) states variables and neglected the wind model to improve the 

computational efficiency. 
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2.7 Tracking & Guidance 

Several authors have focused their research in developing innovative tracking 

and guidance systems. The purpose of this section is to describe existing 

research about Tracking & Guidance systems.  

2.7.1 4D Green Guidance for Terminal Area Operations 

Vaddi et al. [44] develop a tracking and guidance algorithm based in 4D 

trajectories which uses green trajectories designed for terminal area operations 

as reference path. 

The 4D Guidance Module receives a reference trajectory composed by x, y, z 

coordinates plus time of arrival. In addition, the module receives wind, 

temperature and time histories about flap position, landing gear, descent rate and 

aircraft airspeed. 

The guidance system generates a set of control variables composed by pitch, 

bank angle, and thrust/throttle. The module also output the settings of the flaps 

and landing gear. 

The 4D guidance law design uses an aircraft model composed by the equation 

of motion, the engine model, the pitch, the controls and the external inputs. All 

the equations used in this research are restricted to the vertical plane. 

The equation that describe the dynamics of the aircraft are composed by the 

equation of motion in the vertical plane, the engine equations, an autopilot model, 

control variables and external inputs. The full model description can be found at 

[44]. 

A standard atmospheric model is used to compute the density and temperature 

as a function of the aircraft altitude.  

The altitude relative to the standard atmosphere conditions (density altitude) is 

represented as a function of the density and the temperature as follows [44]: 

ℎ𝑑 =
𝑇𝑜

𝑎𝑡
[1 − (

𝜌

𝜌𝑜
)

(
𝑎𝑡𝑅

𝑔+𝑎𝑡𝑅
)

] 
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where 𝑇𝑜 is the standard temperature at sea level, 𝑎𝑡 is the temperature gradient 

(which is constant for values below 36,000 ft.) 𝜌𝑜is the standard density at sea 

level and g is the gravity acceleration. 

The trajectory design also consider the prediction of the wind effect in the aircraft 

dynamics. 

The recorded data is used to simulate the nominal wind as a function of North, 

East, and altitude cartesian coordinates plus time. 

The proposed Tracking and Guidance system is shown in the Figure 2-6. The 

system is composed by the following blocks [44]: 

 

Figure 2-6: Control Loop proposed by Vaddi et al. [44]. 

The primary purpose of the state transformation is to express the system as a set 

of linear states with time-invariant parameters. This linear system is controlled by 

defining a set of pseudo-control variables (v1 and v2). 

The linear control block is a proportional controller to compute the control 

variables mentioned (v1 and v2) plus an integrator state introduced in order to 

reduce the steady-state errors. The gains were adjusted empirically after some 

experiments. 

This block provides the inverse transformation of the pseudo controls inputs. This 

will be achieved only if the matrix gij is invertible. 



 

31 

The control inputs define the response of the dynamics of the aircraft. This block 

computes the values of the aircraft states that are used as an output (and 

feedback signal). 

2.7.2 4D Tracking System for Waypoint-Based Navigation 

Bousson and Machado [49] initially described a process to generate a 4D 

trajectory (section 2.6.1). Subsequently, they have developed a tracking system 

to evaluate the trajectory generated. 

The aircraft dynamics model is described by eight (8) states: velocity (𝑉), flight 

path angle (𝛾), heading (𝜓), bank angle (𝜙), pitch angle (𝜃), roll (𝑝), pitch (𝑞) and 

yaw (𝑟) rates. 

Their guidance system is based on the theory of one-step predictive control 

where the model is represented as a combination of two subsystems: 

𝑥̇1 = 𝑓1(𝑥) 

𝑥̇2 = 𝑔(𝑥, 𝑢) 

The two equations are approximated1 using Taylor series expansion in order to 

obtain a discretised system so that the expressions 𝑥1𝑘+1 and 𝑥2𝑘+1 are defined: 

𝑥1𝑘+1 = 𝑥1𝑘 + ∆𝜏𝑓1(𝑥𝑘) + (
(∆𝜏)2

2
)[𝐹1𝑓1(𝑥𝑘) + 𝐹2𝑓2(𝑥𝑘) + 𝐵(𝑥𝑘)𝑢𝑘̅̅ ̅] 

𝑥2𝑘+1 = 𝑥2𝑘 + ∆𝜏(𝑓2(𝑥𝑘) + 𝐵(𝑥𝑘)𝑢𝑘̅̅ ̅) 

where 

𝐹1 = (
𝜕𝑓1(𝑥)

𝜕𝑥1
)

𝑥=𝑥𝑘

 

𝐹2 = (
𝜕𝑓2(𝑥)

𝜕𝑥2
)

𝑥=𝑥𝑘

 

 

                                            

1 More detailed description of the approximation method is available in [49] 
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The problem is solved as an optimization problem, where the objective function 

is designed in order to minimize the difference between a reference vector Xref 

and the current position of the aircraft Xk+1. 

𝐽(𝑢) =
1

2
𝑒𝑇

1𝑘+1𝑄𝑒1𝑘+1 +
1

2
𝑒𝑇

2𝑘+1𝑄𝑒2𝑘+1 

where e1 and e2 are the difference between the current track and the aircraft 

position for each instance of k. 

2.7.3 4D Descent Trajectory Guidance 

Canino et al. [21] develop a 4D tracking & guidance system based in a 

conventional 6-degree of freedom point mass model for descent phase with 

acceptable accuracy at low computational cost.  

The errors computed for the tracking phase are the maximum along track 

deviation, the maximum altitude track deviation respect to foreseen vertical 

descent profile and the maximum lateral deviation. 

Their guidance system is shown in Figure 2-7: 

 

Current
Wind

Aircraft Dynamics

4D FMS

Save current
Trajectory Tf

3D Flight Plan

4D Predicted Trajectory

State Vector

 

 

The 4D FMS guidance system computes command values for thrust, bank angle 

and path angle using the predicted trajectory and the current state vector 

provided by the aircraft dynamic model. 

Figure 2-7: Guidance and Control System Proposed by Canino et al. [21] 
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The lateral and vertical guidance in the 4D FMS model described is based on 

traditional LNAV and VNAV methods of 3D FMS. The overview of the system 

proposed by Canino et al. is shown in Figure 2-8. First, it is visible that an 

estimated 4D trajectory is joined to the flight plan states to compute longitudinal 

guidance commands and maintain the altitude inside the predicted aircraft 4D 

trajectory. Second, lateral guidance commands are only computed in case 

aircraft is in descent phase. 

The along track guidance algorithm used in this system corrects and computes 

the along track deviation (𝑑𝑙) at each instant i and is defined as follows: 

𝑑𝑙 = (𝑥𝑓𝑖 − 𝑥0𝑖, 𝑦𝑓𝑖 − 𝑦0𝑖) 𝑢𝑖 

Where 𝑥𝑓𝑖 and 𝑦𝑓𝑖 is the final position of aircraft at instant i. Tracking dl is 

performed using speed changes by computing a new true airspeed in order to 

maintain the ground vector using the following expression: 

𝑇𝐴𝑆𝑓 = (𝐺𝑆2 + 𝑊𝑓
2 − 2 𝐺𝑆0𝑊𝑓 𝑐𝑜𝑠𝐵𝑓)

1
2 

Where 𝑊𝑓 is the current wind direction, GS is the ground speed and 𝐵𝑓 =

|𝜔ℎ_𝑓 + 𝜑| and 𝜔ℎ_𝑓 is the current wind direction. 

The tracking 𝑑𝑙 can also be achieved from the lateral deviation. This procedure 

consists in creating a lateral path that allows the aircraft to increase the descent 

profile. The lateral paths are computed using new waypoints inserted on both 

sides of the route. 

The distance error could be calculated using the following expression: 

𝑑𝑙 =
𝑑𝑙 + ∆𝑡𝑢𝑟𝑛

2 (1 − cos (𝛼))
 

where ∆𝑡𝑢𝑟𝑛 is the dynamic turn rate and 𝛼 is the angle between aircraft and the 

interception point. 
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If the reference path is below the current aircraft position and thrust is at idle 

position, it is necessary to compute a new drag value to increase the rate of 

descent. 

𝐷𝑓 = 𝑘𝐷 ∗ 𝐷0 

3D Flight Plan

Flight Plan States

4D Forecast Trajectory

Longitudinal Guidance

Descending?

Vertical Guidance

Flight Plan States

Calculate input controls

Control Variables

Yes

No

4D
 G

ui
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n
ce

 S
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s

 

 

Figure 2-8: Overview of system proposed by Canino et al. [21] 
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where the factor 𝑘𝐷 is defined by: 

𝑘𝐷 = 1 +
𝑚𝑔

𝐷0 𝑇𝐴𝑆 𝐸𝑆𝐹
 ∆𝑧̇ 

Tracking 𝑑ℎ can be also achieved by a lateral deviation by computing a new 

waypoint. This procedure is similar to the one used for lateral deviation while 

tracking the longitudinal error in the along-track guidance. 

2.8 Optimal Control Methods 

Optimal control problems can be solved using different strategies and methods. 

Direct methods has been widely applied in trajectory optimization problems. 

Various discretization methods can be applied in order to convert the problem 

into a Nonlinear Programming (NLP) problem. Numerous solvers are available to 

solve the NLP problem. 

Bouson and Machado [49] use pseudo spectral parametrization of time 

dependent variables to discretize the problem. The time-dependent variables are 

discretized by making use of Chebyshev and Lagrange polynomials. The process 

to approximate the variables is based on Legendre method built on Chebyshev 

nodes defined, as usual, in the interval [-1, 1]. Then Lagrange interpolating 

polynomials are defined based on Chebyshev nodes. 

Once problem is discretized, the problem is converted into a Nonlinear 

Programming (NLP) problem. The MATLAB® function fmincon is used to solve 

the resultant NLP problem and obtain an optimal solution. 

Some significant oscillations in one of the control variables have been detected 

in the results. This problem has been solved by the author while increasing the 

number of nodes used in the pseudo spectral parametrization. 

Soler et al. [55] implement a discretization method of states and control variables 

by applying a collocation method based on Hermite-Simpson Gauss-Lobatto 

quadrature rules. They convert the problem into a mixed integer nonlinear 

programming problem (MINLP). 
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Furthermore, this problem is solved by using a branch and bound algorithm 

described in [55]. In order to use the Bonmin open-source solver, the problem is 

modelled using AMPL modelling language. 

Geiger et al. [17] describe a technique to generate optimal trajectory for an UAV 

using Direct Collocation with Nonlinear Programming (DCNLP). The problem is 

discretized using direct collocation method based on third-order Hermite 

polynomials. Subsequently, the problem is converted into a NLP problem and 

solved by MATLAB® function fmincon. 

Tian and Zong [40] suggest an adaptive Gauss pseudo spectral method to 

optimize an ascent phase aircraft trajectory. The problem has been solved using 

Sparse Nonlinear Optimizer (SNOPT®).  

Grüning et al. [46] use pseudo spectral optimizer (PSOPT) to solve an optimal 

control problem in the design of a feedforward control for a four-rotor UAV. 

Most researches about optimal trajectories generation use MATLAB® fmincon 

function to solve nonlinear programming problems. The flexibility that offers 

MATLAB® is considerable with respect to other software. However, there are 

many other discretization methods that several authors have applied to solve 

optimal control problems for applications different than aircraft trajectory 

optimization. Consequently, many researches in aerospace applications make 

use of other tools different than MATLAB® such as IPOPT, SNOPT®, PSOPT, 

and DYNOPT. 

Additionally, other authors [51] [42]  use stochastic methods such as Monte Carlo 

simulations implemented in MATLAB® or Genetics Algorithms (GA) implemented 

in stand-alone Java applications. 

2.9 Conclusion 

Several projects have been developed in order to generate 4D optimal 

trajectories. Most of previous authors used an optimal control theory approach to 

find the best solution. The approach of Bouson et al. [49] has the advantage of 

using a waypoint-based optimization that could be applied to any flight plan. 
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However, the use of aircraft dynamics instead of navigation equations will ensure 

the aircraft is capable to fly the optimized trajectory. Similar characteristics of 

simplicity are shown in Vaddi et al. [45] research. The optimization process and 

mathematical model was designed for vertical profile. The use of a 3D model is 

required so that aircraft trajectory is optimized in vertical and horizontal profile. In 

contrast, using complex models rises the number of states variables and 

consequently the execution time when solving the optimal control problem is 

increased. 

Different approaches can be followed to design the performance index 

specification. In the particular case of Soler et al. [55] optimization was carried 

out based on total flight cost by adding fuel cost, time cost and COx emissions 

cost in the same performance index specification. However, the use of this 

approach requires to properly balance the total equation, for example, by making 

use of weights factors. 

Most authors used direct methods to solve the optimal control problem. The time-

dependent variables are discretized and then the resultant non-linear 

programming (NLP) problem is solved using a sparse matrix solver. The most 

common NLP solver used is fmincon included in MATLAB software. Despite the 

simplicity of this method, it is not suitable for stand-alone applications given that 

it requires third-party compilers. In addition, there exist other methods that are 

free and open source. It is required to use an optimal control solver capable to be 

used in stand-alone applications. 
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Chapter 3  

4D TRAJECTORY & GUIDANCE OPTIMIZATION 

TECHNIQUES 

3.1 Introduction 

This chapter describes optimization techniques which are used to develop the 4D 

Trajectory Generator & Guidance system. The optimal control problem (OCP) is 

described in section 3.2. Section 3.3 describes the methods to solve OCP. 

Section 3.4 describes and compares the different software tools for solving OCP 

and section 3.5 describes the concept of proportional navigation. 

3.2 Optimal Control Problem 

Optimal control is defined as the process of determining control and states 

trajectories for a dynamic system over a period of time to minimise a performance 

index [36]. 

In order to solve an optimal control problem, it is necessary to identify: 

1. A mathematical model of the system to be optimized  

2. A cost function or specification of performance index 

3. Boundaries and constraints specifications for system variables 

Our objective is to seek an optimal control law vector 𝑢 which minimises the 

expected total cost of a system for starting at a given [𝑥(𝑡0); 𝑡0] and ending 

at [𝑥(𝑡𝑓); 𝑡𝑓].  
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Therefore, the optimal control problem can be expressed as minimize the cost 

functional (also known as performance index 𝐽(𝑥, 𝑢)): 

𝐽(𝑥, 𝑢) = 𝜑(𝑥(𝑡𝑓), 𝑡𝑓) + ∫ 𝐿(𝑥(𝑡), 𝑢(𝑡), 𝑡)𝑑𝑡
𝑡𝑓

𝑡0

 (3-1) 

in order to find the control vector 𝑢[𝑡0, 𝑡𝑓]subject to the dynamic constraints: 

𝑥̇(𝑡) = 𝑓(𝑥(𝑡), 𝑢(𝑡), 𝑡), 𝑥(𝑡0) = 𝑥0 (3-2) 

This problem is generally known as Bolza problem [36]. If the performance index 

takes the from: 

𝐽(𝑥, 𝑢) = ∫ 𝐿(𝑥(𝑡), 𝑢(𝑡), 𝑡)𝑑𝑡
𝑡𝑓

𝑡0

 

it is known as the Lagrange problem [36]. Similarly, if performance index takes 

the from: 

 𝐽(𝑥, 𝑢) = 𝜑(𝑡0, 𝑥(𝑡0), 𝑡𝑓 , 𝑥(𝑡𝑓)) 

the problem becomes the Mayer problem [36].  

The problem formulation is completed by defining a set of boundaries and 

constraints as follows: 

𝑔(𝑥(𝑡), 𝑢(𝑡), 𝑡) ≤ 0 

ℎ(𝑥(𝑡), 𝑢(𝑡), 𝑡) = 0 

Complex optimal control problems cannot be solved using analytical approaches. 

For this reason, extensive use of computers supposes an important progress for 

optimal control. 

3.3 Direct Methods 

The traditional analytical approaches cannot solve real-world complex optimal 

control problems, such as 4D trajectory optimization problems.  Many numerical 

methods have been investigated to solve optimal control problems over the last 

few decades, including direct solution methods and indirect solution methods.  
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indirect methods rely in the Pontryaing’s Maximum Principle [1]. These methods 

attempts to find a minimum point indirectly, by solving the necessary conditions 

of optimality in an optimal control problem. The problem is converted into a 

boundary value problem. 

Most common numerical methods used to deal with boundary value problems are 

Gradient-based, Shooting-based (Single and Multiple) and Indirect Collocation 

methods. 

Despite of their high accuracy, indirect methods solutions are very sensitive to 

small changes, which is a disadvantage when dealing with high constrained 

problems.  

Additionally Indirect methods convergence depends on the good estimation of 

initial values. Another important aspect is that they are hard to apply when there 

exist path constraints or singular arcs. 

In contrast, a direct method attempts to find a minimum to the cost function by 

constructing a sequence of points converging to that minimum. The main idea of 

direct methods relies on discretizing the problem (usually control and state 

variables) in order to convert the system into a Nonlinear Programming (NLP) 

problem. [37]. 

The general NLP problem tries to find the n-vector 𝑥𝑇 = (𝑥1, … , 𝑥𝑛) that minimizes 

the function [37] 

𝐹(𝑥) (3-3) 

subject to the constraints 

𝑐𝐿 ≤ 𝑐(𝑥) ≤ 𝑐𝑈 

and the simple bounds 

𝑥𝐿 ≤ 𝑥 ≤ 𝑥𝑈 

Direct methods are appropriate to deal with problems involving path constraints 

with relatively low computational cost [16]. 
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3.3.1 Direct Collocation 

Direct collocation methods aims at finding the best solution of a set of candidate 

solutions denoted by polynomials, so that optimal solution is satisfied at certain 

points called collocation knots. Depending on how collocation points are chosen, 

the collocation method could be: orthogonal or standard [29]. 

Orthogonal collocation methods rely in the use of quadrature nodes to 

approximate continuous functions. Quadrature rules are often determined by 

Legendre or Chebyshev polynomials in famous orthogonal collocation methods 

[29] [11] [70]. It is known that quadrature produces accurate results if the function 

f(x) is approximated in the interval [-1, 1].  

Pseudo spectral collocation methods are suitable for approximating smooth 

functions, integrations, and differentiations [36], for this reason its use in optimal 

control problems has been extended. 

The use of Legendre polynomials are popular in collocation methods. Using these 

polynomials for solving differential equations in optimal control problems was 

proposed by Elnagar et al. in 1995 [11].  

A Legendre polynomial is orthogonal over the interval [-1, 1] and it is generated 

from: 

𝐿𝑁(𝜏) =  
1

2𝑁𝑁!

𝑑𝑁

𝑑𝜏𝑁
(𝜏2 − 1)𝑁 (3-4) 

where 

𝜏 ←
2

𝑡𝑓 − 𝑡0
𝑡 −

𝑡𝑓 + 𝑡0

𝑡𝑓 − 𝑡0
 (3-5) 

Some examples of Legendre polynomials are shown in [70]: 

𝐿0(𝜏) = 1 

𝐿1(𝜏) = 𝜏 

𝐿2(𝜏) =
1

2
(3𝜏2 − 1) 
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𝐿3(𝜏) =
1

2
(5𝜏3 − 3𝜏) 

If 𝐿(𝜏) is a general smooth function, then its integral over 𝜏 ∈ [−1, 1] can be 

approximated as follows: 

∫ 𝐿(𝜏)𝑑𝜏 ≈ ∑ 𝐿(𝜏𝑘)𝜔𝑘

𝑁

𝑘=0

1

−1

 (3-6) 

where 𝜔𝑘 are weights given by: 

𝜔𝑘 =
2

𝑁(𝑁 + 1)

1

[𝐿𝑁(𝜏𝑘)]2
 (3-7) 

The pseudo spectral Legendre Method is explained in [11]: “Given the function 

𝐹(𝑡) defined over [-1, 1] we construct its Nth degree interpolating polynomial as 

follows: Define the Lagrange polynomials 

∅𝑙(𝑡) =
2

𝑁(𝑁 + 1)

1

𝐿𝑁(𝑡𝑙)
∙

(𝑡1 − 1)𝐿𝑁(𝑡)

𝑡 − 𝑡𝑙
, (𝑙 = 0, 1, ⋯ , 𝑁) (3-8) 

The Nth degree interpolation polynomial, 𝐹𝑁(𝑡), to 𝐹(𝑡) is given by:” 

𝐹𝑁(𝑡) = ∑ 𝐹(𝑡𝑙)∅𝑙(𝑡)

𝑁

𝑘=0

 (3-9) 

Elnagar et al. [11] explain that 𝐹𝑁(𝑡) can be obtained differentiating the equation 

(3-9) and the result is a matrix multiplication given by: 

𝐹̇𝑁(𝑡𝑚) = ∑ 𝐷𝑚𝑙𝐹(𝑡𝑙)

𝑁

𝑙=0

 (3-10) 

where 𝐷 is a (𝑁 + 1) × (𝑁 + 1) matrix (defined in [11]). 
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3.4 Tools for Solving Optimal Control Problems 

Several tools based on direct methods have been developed to solve optimal 

control problems. Many of them focus on solving NLP problem while allowing the 

user to choose the most appropriate method to discretize the problem.  

SNOPT© is a popular sparse nonlinear programming solver written in FORTRAN 

by Gill et al. [71]. The solver has been written mainly in FORTRAN but it has been 

released in C, C++ and MATLAB® versions. 

SNOPT© is based on sparse SQP algorithm based on quasi-Newton 

approximations to the Hessian of Lagrangian. SNOPT© is distributed with 

proprietary license [71]. It is commercially available with different licenses for 

commercial, student and single use.  

It is used by several applications and software packages due to its considerable 

stability. Some of these software packages are AeroSpace Trajectory 

Optimization & Software (ASTOS) [75], General Mission Analysis Tool (GMAT) 

[76], and Optimal Trajectories by Implicit Simulation (OTIS) [77]. 

Another important aspect of this nonlinear programming solver are its capabilities 

to support modelling languages such as “A Mathematical Programming 

Language” (AMPL) which is an algebraic modelling language for describing 

complex mathematical problems. 

Another software tool for solving NLP is Interior Point Optimizer (IPOPT) [67]. It 

is a large-scale nonlinear programming solver written in C++ and distributed as 

Eclipse Public License (EPL). The code has been written by Wächter and Laird. 

IPOPT is very famous due to its extensive environments where it can be used on. 

Linux, Windows© and Mac OS X and with versions in Java, MATLAB® and 

FORTRAN are examples of IPOPT flexibility.  

Some other tools such as DYNOPT [62] also provide capabilities for discretizing 

the time dependent variables and solving the problem using one of the popular 

nonlinear programming solvers. 
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The problem is solved using total discretization with orthogonal collocation on 

finite elements. The software uses Lagrange interpolation polynomials to 

approximate states and control vectors. The algorithm used to develop this tool 

is based on the work of Biegler et al. [7]. 

An important feature of DYNOPT is the capability to integrate with the popular 

MATLAB® Optimal Control Toolbox and making use of the function fmincon. 

Therefore, DYNOPT requires MATLAB to work since it has been implemented 

using this proprietary software. 

Pseudo Spectral OPTimal Control Solver (PSOPT) is a C++ framework delivered 

as a set of libraries that have been developed by Becerra [70]. 

PSOPT uses direct collocation methods including pseudo spectral and local 

discretization. Pseudo spectral discretization methods use Chebyshev or 

Legendre functions to approximate the time-dependent variables. Local 

discretization approximates the time dependent functions using splines. The 

problem is solved using total discretization with orthogonal collocation on finite 

elements. 

PSOPT is free and distributed under GNU license; it can be compiled on GNU 

Linux or Microsoft© Windows® 7. Currently, there exists some installers that 

speed-up the installation process. 

There are several advantages of using PSOPT. Its flexibility for using the most 

important nonlinear programming solvers (IPOPT or SNOPT) is a powerful 

capability thus it allows the user to compare results of the same optimal control 

problem by just making few changes in the source code (switching NLP solver). 

Another important aspect is the capability to utilize different discretization 

methods. 

The National Aerospace laboratory of Netherlands (NLR) has included PSOPT 

as a key tool for optimizing trajectories in order to reduce fuel and noise [70]. This 

has been carried out as part of NLR activities involved in CleanSky European 

Project. 
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Additionally, it is used to develop optimal trajectories in the project ASTER [43], 

a Brazilian mission to asteroid “2001 SN263” planned to be launched in 2016.  

PSOPT structure is described in the provided user manual [70]. 

The following table summarizes and compares different optimal control tools with 

respect to PSOPT: 

Table 3-1: Comparison between Optimal Control Tools 

Tool Method Language License Details 

SNOPT SQL 
FORTRAN, 

C++, MATLAB® 
Proprietary 

Control Problem 

requires to be 

converted to NLP 

IPOPT NLP 

C, C++, Java, 

FORTRAN, 

MATLAB® 

Free 

Control Problem 

requires to be 

converted to NLP. 

DYNOPT Collocation MATLAB® Free 
Uses Control 

Toolbox 

PSOPT 
Collocation 

(Legendre) 
C++ Free 

Uses IPOPT or 

SNOPT 

Control 

Toolbox 
 MATLAB® Proprietary  

As shown in Table 3-1, some tools are proprietary license. This makes difficult its 

use into a stand-alone application since there is not access to their source code. 

Despite their high capabilities in optimal control, other applications such as 

DYNOPT, requires third-party compilers provided by MATLAB® to create 

executable files, which could be an important limitation when trying to run in other 

computer. 
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PSOPT seem to be a suitable option for using into a stand-alone application since 

they are free open source and provides powerful performance while being 

implemented in C++. Another important advantage is that PSOPT can be setup 

to use two different non-linear programming solvers: IPOPT or SNOPT. This is 

considered an useful feature to compare and evaluate the results. 

Other applications were neglected for this comparison because they were 

considered stand-alone software with limited integration capabilities. 

3.5 Guidance using Proportional Navigation (PN) 

Proportional Navigation (PN) is a concept that was introduced in 40’s in the 

United States as a control law used for missile guidance [13]. In second World’s 

War, some steps towards were implemented by German scientists. In the 50’s, 

the use of PN for missile guidance was considerably extended. Currently there 

exists numerous variations of the proportional navigation. 

Despite new advances in Control Theory achieved in recent years, proportional 

navigation is still used in most modern missile guidance systems. Example of this 

is AIM-9 Sidewinder [57]. The main reasons of this, are that proportional 

navigation is cheap to implement and has demonstrated effective guidance in 

missiles. 

Proportional navigation has some limitations related to evasive manoeuvres 

when the pursuer is close to target. For example, proportional navigation 

becomes considerable less effective if evader performs fast accelerations or zig-

zag movements when missile is approaching. 

The basic idea behind proportional navigation is to generate missile acceleration 

commands in proportion to its line-of-sight (LOS). 

Figure 3-1 shows the two-dimensional engagement geometry of a missile which 

pursues a non-maneuvering target.  

The equations of motion of this system based on Point-Mass-Model (PMM) can 

be found in [54]. 
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The proportional navigation (PN) guidance law focuses on finding a guidance 

command that ensures that missile rate of rotation is proportional to target rate of 

rotation (based on missile line-of-sight (LOS)). 

 

Figure 3-1: Missile-target engagement geometry [54] 

This is equivalent to: 

𝛼̇𝑀 = 𝑁𝜃̇ 

where 𝑁 is the navigation constant. 𝛼 and 𝜃 are shown in Figure 3-1 above. 
 
In addition, there exists enhanced PN-based guidance laws such as Pure 

Proportional Navigation (PPN), True Proportional Navigation (TPN) and Ideal 

Proportional Navigation (IPN) [54]. 

Most notable research about Proportional Navigation were carried out by 

Guelman [3] in 1971 and extended by Ghawgawe and Ghose [12] in 1996. 

It is well-known that Pure Proportional Navigation (PPN) has been mostly 

extended on missile guidance applications. However, True Proportional 

Navigation (TPN) has been extended into several other fields such robotics, 

space travel, spacecraft landing and aeronautical applications due to its wide 

availability of literature. 
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There exists several applications of Proportional Navigation (PN) to aeronautics 

and guidance systems. Smith [25] used PN with adaptive terminal guidance for 

aircraft rendezvous. Han and Bang [56] applied Proportional Navigation (PN) in 

the design of an Avoidance Collision strategy for Unmanned Air Vehicles. 

Yamasaki and Balakrishnan [33] introduced a high performance pure pursuit 

guidance method for UAV rendezvous and chase with a cooperative aircraft. 

3.6 Other Concepts 

This section describes other concepts that are considered useful topics to 

understand this thesis. 

3.6.1 Andrew’s Monotone Chain Convex Hull Algorithm 

Convex Hull algorithms are used to find convex polygons based on a list of two 

dimensional points. This section gives an overview of Andrew’s Monotone Chain 

Convex Hull algorithm [6]. 

The algorithm starts on a basis that all points are initially sorted by their 𝑥 

coordinate. 

Then, there are selected tow points,  𝑃𝑎(𝑥𝑎, 𝑦𝑎) and 𝑃𝑏(𝑥𝑏 , 𝑦𝑏) so that: 

𝑥𝑎 = min (𝑋) 

𝑥𝑏 = max (𝑋) 

where 𝑋 is the domain of size 𝑛 that contains all 𝑥 coordinate values 

(𝑥1, 𝑥2, 𝑥3 … 𝑥𝑛). 

Then the set of points can be divided into two different lists depending of the point 

position with respect to the vector 𝑃𝑎𝑃𝑏
̅̅ ̅̅ ̅̅ . It is obtained an upper hull list and a lower 

hull list. 

Each element is checked so if a vector between one point and next point is 

clockwise oriented with respect to previous vector, it is a convex angle. Otherwise 

the point is removed from the list. 
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The idea is expressed in Figure 3-2. Vector composed by points 𝑃1 and 𝑃2 is 

clockwise oriented with respect to vector composed by point 𝑃0 and 𝑃1. Similarly 

vector 𝑃2𝑃3
̅̅ ̅̅ ̅̅  is clockwise oriented with respect to 𝑃1𝑃2

̅̅ ̅̅ ̅̅ . A point is removed from 

the list when vector orientation turns to left (counter clockwise) with respect to 

previous one. 

 

Figure 3-2: Monotone Chain | Convex Angles 

Once all points are checked, upper and lower hull lists are then joined. Only 

remaining points in both lists are the ones that creates a convex polygon as 

shown in Figure 3-3. 

 

Figure 3-3: Convex polygon example 
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Chapter 4  

4DT GENERATOR DEVELOPMENT 

4.1 Introduction 

This chapter describes the design and development of 4D trajectories generator. 

It covers aircraft dynamics model for trajectory generator in section 4.2, 

performance index specification for reducing fuel, time and noise is described in 

section 4.3, and boundaries & constraints are described in section 4.4. 

Furthermore 4D Trajectory Research software is introduced in section 4.5, then 

it is explained the software structure in section 4.6. 4DT RS Core in described in 

section 4.7 and graphic user interface in section 4.8, detailed information about 

computing flight data in section 4.10. Finally some additional tools and trajectory 

representation functions are explained in sections 4.11 and 4.12. 

4.2 Aircraft Dynamics Model 

Commercial aircraft trajectories usually have limited and small rotation motions. 

Therefore, the dynamic model used for the 4D trajectory generation is based on 

a 3DoF point-mass aircraft model. The model state 𝐱 vector consists of seven 

states 𝐱 = [𝑥, 𝑦, 𝑧, 𝑉, 𝜓, 𝛾, 𝑚]T: north distance, east distance, altitude, heading, 

path angle, bank angle and mass. The model control vector 𝐮 consists of three 

variables 𝐮 = [𝜙, 𝛼, 𝑇]T: bank angle, angle of attack and thrust [20]. 

𝑥̇ = 𝑉𝑐𝑜𝑠(𝛾) cos(𝜓) (4-1) 
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𝑦̇ = 𝑉𝑐𝑜𝑠(𝛾) sin(𝜓) (4-2) 

𝑧̇ = 𝑉𝑠𝑖𝑛(𝛾) (4-3) 

𝑉̇ = (
𝑔

𝑚
) [𝑇𝑐𝑜𝑠(𝛼) −  𝐷 − 𝑚 𝑠𝑖𝑛(𝛾)] (4-4) 

𝜓̇ = (
𝑔

𝑚𝑉𝑐𝑜𝑠(𝛾)
) (𝑇𝑠𝑖𝑛(𝜀) + 𝐿)sin (𝜙) (4-5) 

𝛾̇ = (
𝑔

𝑚𝑉
) (𝑇𝑠𝑖𝑛(𝛼) + 𝐿) cos(𝜙) − 𝑚 cos(𝛾) (4-6) 

𝑚̇ =  −𝜂 𝑇 𝐶𝑓𝑐𝑟 (4-7) 

 

where 

𝑥, 𝑦 are north and east position 

𝑧 is the altitude 

𝑉 is velocity 

𝜓, 𝛾, 𝜙 are heading, path angle and bank angle respectively 

𝑚 is aircraft mass 

𝑔 is gravity constant 

𝛼 is angle of attack 

𝐶𝑓𝑐𝑟 is the cruise fuel flow coefficient 

𝐷 is the drag and 𝐿 is the lift defined as follows: 

𝐷 =
1

2
𝐶𝐷𝜌𝑆𝑉2 (4-8) 

𝐿 =
1

2
𝐶𝐿𝜌𝑆𝑉2 (4-9) 
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where 𝐶𝐷, 𝐶𝐿 and 𝑆 are variables unique for each airplane and they are the drag 

and lift coefficients and the wing platform area respectively. 𝜌 is the density of the 

atmosphere and 𝜂 is the specific fuel consumption that is defined by BADA [78] 

as follows: 

𝜂 = 𝐶𝑓1 (1 +
𝑉

𝐶𝑓2
) (4-10) 

where 𝐶𝑓1 and 𝐶𝑓2are fuel coefficients unique for each aircraft. 

Wind is considered an important component because of its effect in fuel 

consumption and estimation of time of arrival. However, experience in practice 

and theory shows that the use of a simple aircraft model is necessary to solve 

the optimal control problem when there exists limited computational resources 

[16] [49] [55]. This computational efficiency was necessary to perform fast tests 

to early versions of the synthetizer. Therefore, the wind effect has been neglected 

for the first version of the 4DT generator. 

4.3 Performance index specification 

Cost functions are expressed as performance index specification in order to 

reduce fuel, time or noise. These functions have been implemented internally. A-

priori conditions could be defined by a flight profile before generating 4DT 

trajectories. 

4.3.1 Reducing Fuel and Time 

The Fuel performance index is defined as follows: 

𝐽𝑓𝑢𝑒𝑙(𝑡) =  ∫ (
(𝑚(𝑡) − 𝑚(𝑡0))

𝑚𝑚𝑎𝑥

2

+
(𝑧(𝑡) − 𝑧𝑝)

𝑧𝑚𝑎𝑥

2

)

𝑡𝑓

𝑡0

𝑑𝑡 (4-11) 

where. 

𝑧𝑚𝑎𝑥 is the maximum altitude 

𝑧𝑝 is the altitude at target point 
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𝑚𝑚𝑎𝑥is the maximum mass 

𝑚(𝑡0) is the initial mass 

The performance index 𝐽𝑓𝑢𝑒𝑙(𝑡) attempts to maintain the initial mass 𝑚(𝑡0) while 

following the reference altitude 𝑧𝑝. In order to normalize the scale of performance 

index, each element of equation (4-11) is divided by maximum mass 𝑚𝑚𝑎𝑥 and 

maximum altitude 𝑧𝑚𝑎𝑥 constants. 

Time performance index is defined as follows: 

𝐽𝑡𝑖𝑚𝑒(𝑡) =  ∫ (
(𝑉(𝑡) − 𝑉𝑚𝑎𝑥)2

𝑉𝑚𝑎𝑥
+

(𝑧(𝑡) − 𝑧𝑝)

𝑧𝑚𝑎𝑥

2

)

𝑡𝑓

𝑡0

𝑑𝑡 (4-12) 

where, 

𝑉𝑚𝑎𝑥 is the maximum aircraft velocity 

The performance index 𝐽𝑡𝑖𝑚𝑒(𝑡) attempts to maintain aircraft maximum velocity 

𝑉𝑚𝑎𝑥 while follows the reference altitude. 

Following the same approach proposed by Sabatini et al. [53], once defined a 

flight profile, scaling factors could be assigned in order to balance performance 

index function to selected requirements. Some test were performed using 

different scaling factors. 

4.3.2 Reducing Noise 

Sound Exposure Level (SEL) is defined as a logarithmic measure of the sound 

pressure perceived at a reference location. This reference location is addressed 

as observer. 

Predicting noise produced by an aircraft is an extremely complex task. Currently, 

there no evidence of existing continuous models capable to predict aircraft noise 

accurately. Existent models utilised by previous researchers in optimal control 

problems depend of engine parameters that are difficult to obtain in public 

domains and their accuracy has been demonstrated only on specific cases. 
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Additionally, noise is generated by different components. In the case of departure 

phase, main source of noise is generated by aircraft engine(s), which usually are 

set to generate maximum thrust during take-off. However, in cruise and mainly in 

approach phases, aircraft surfaces such as slats, spoilers, flaps and landing gear 

generate significant amount of noise which could comparable to the one 

produced by engines [8]. 

Empirical data has been used in order to represent aircraft engine noise. Since 

surfaces or any other component has not been considered to represent aircraft 

noise, optimization process regarding to noise reduction has been limited only to 

departure phases. 

Noise specification empirical data contains different parameters such as engine 

model, type of measure, operation, thrust setting and sound level measured at 

different distances defined by distance values from 200 to 25,000 feet as follows: 

 

Figure 4-1: Noise specification empirical data example 

A typical Sound Exposure Level (SEL) with respect to distance for a common jet 

engine is shown in Figure 4-2 (blue). In contrast, green/red colour lines represent 

the result of approximating SEL distribution by using a piecewise-defined 

function: 

𝑆𝐸𝐿 = {

𝐴1 log (𝑥) + 𝐵1 → 0 ≤ 𝑥 ≤ 4000

𝐴2 𝑥 + 𝐵2 → 4000 < 𝑥 ≤ 25000
 (4-13) 

 
For the first part of this piecewise function, if only two (2) points are given, then a 

logarithm expression 𝐴1 log (𝑥) + 𝐵1 could be obtained by solving the equation 

system and obtaining 𝐴1 and 𝐵1 coefficients: 
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{

𝑦1 = 𝐴1 log(𝑥1) + 𝐵1

𝑦2 = 𝐴1 log(𝑥2) + 𝐵1

 (4-14) 

However, since it is provided a set of 𝑚 points, it is taken into account all available 

points by calculating different values of coefficients 𝐴1 and 𝐵1 for each possible 

pair of points. Then these values are sum and divided by the number available of 

points to obtain an average value of 𝐴1 and 𝐵1. This process is summarized in 

the following equations: 

𝐵count = ∑
𝑦𝑖 log(𝑥(2𝑚−𝑖+1)) − 𝑦(2𝑚−𝑖+1)log (𝑥𝑖)

log(𝑥(2𝑚−𝑖+1)) − log (𝑥𝑖)

𝑖=𝑚

𝑖=1

 𝐵1 =
𝐵𝑐𝑜𝑢𝑛𝑡

𝑚
 (4-15) 

𝐴count = ∑
𝑦𝑖 − 𝐵1

log (𝑥𝑖)

𝑖=𝑚

𝑖=1

 𝐴1 =
𝐴𝑐𝑜𝑢𝑛𝑡

𝑚
 (4-16) 

For the second part of this piecewise function, the linear expression 𝐴2 𝑥 + 𝐵2 is 

simply calculated following a similar process than logarithmic expression. 

𝐴2 =
𝑦𝑚 − 𝑦𝑗

𝑥𝑚 − 𝑥𝑗
 (4-17) 

𝐵2 = 𝑦𝑗 (4-18) 

Where 𝑗 refers to position where 𝑥 = 4000ft and piecewise function changes to 

linear approximation. MATLAB® code for this particular case can be found in 

Appendix E. 

The result of applying this approximation method, is a piecewise function 

represented in Figure 4-2. First part of this function (green) uses a logarithm 

approximation, while second part is a linear approximation (red). 

Table 4-1 shows a comparison between real values of sound exposure level of 

an engine similar to Pratt & Whitney PW-2036 versus approximated values using 

piecewise function. It is visible that maximum approximation error obtained is -
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2.5 dB which is an acceptable value considering the distance of the observer 

(10,000 ft). 

 

 

Figure 4-2: PW2036-like noise data approximation 

Table 4-1: Comparison between empirical noise data and approximated data 

Distance 

(ft) 

Empirical 

Value (dB) 

Piecewise 

function (dB) 

Error 

(dB) 

Error 

(%) 

200 90.2 91.2 -1 1.10 

400 86.3 85.9 0.4 0.46 

630 83.3 82.5 0.8 0.96 

1,000 79.9 79.1 0.8 1.00 

2,000 74.2 73.8 0.4 0.53 

4,000 67.2 67.2 0 0 

6,300 61.9 63.5 -1.6 2.58 

10,000 55.2 57.7 -2.5 4.52 
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16,000 47.2 48.2 -1 2.11 

25,000 34.0 34.0 0 0 

Equations described in (4-15) is used to compute Sound Exposure Level (SEL) 

relative to two (2) observers. 

The 4DT generator has been designed to reduce noise during take-off and 

departure phases in a particular area. The main idea behind the use of observers 

is that they should be placed in the edge of populated areas or villages affected 

by noise so that flying close to them is avoided. 

Optimization process tries to find a solution so that noise levels at these 

observers are minimal. 

SEL value is used to calculate a Noise performance index which aims at minimize 

noise while following the target altitude: 

𝐽𝑛𝑜𝑖𝑠𝑒(𝑡) =  ∫ ((𝐾1𝐿𝐸1(𝑡) + 𝐾2𝐿𝐸2(𝑡))2 +
(𝑧(𝑡) − 𝑧𝑝)

𝑧𝑚𝑎𝑥

2

)

𝑡𝑓

𝑡0

𝑑𝑡 (4-19) 

Where 𝐿𝐸1 and 𝐿𝐸2 denote the SEL relative to observers 1 and 2. Also 𝐾1 and  𝐾2 

are big-enough scaling factors that are selected depending of the level of 

importance of each observer with respect to its geographic location (e.g. one of 

the observers could be more important, if this is closer to a populated area than 

other). 

4.4 Boundaries and Constraints 

The boundaries and constraints used for defining the optimal control problem are 

defined by aircraft performance limits and flight plan.The states and control 

variable limits are defined by: 
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Table 4-2: Control variable constraints 

Control variables 

𝛼𝑚𝑖𝑛 <  𝛼(𝑡) < 𝛼𝑚𝑎𝑥 

𝜙𝑚𝑖𝑛 <  𝜙(𝑡) < 𝜙𝑚𝑎𝑥 

𝑇𝑚𝑖𝑛 <  𝑇(𝑡) < 𝑇𝑚𝑎𝑥 

Table 4-3: States variables constraints 

State variables 

𝑥𝑚𝑖𝑛 <  𝑥(𝑡) < 𝑥𝑚𝑎𝑥 

𝑦𝑚𝑖𝑛 <  𝑦(𝑡) < 𝑦𝑚𝑎𝑥 

𝑧𝑚𝑖𝑛 <  𝑧(𝑡) < 𝑧𝑚𝑎𝑥 

𝑉𝑚𝑖𝑛 <  𝑉(𝑡) < 𝑉𝑚𝑎𝑥 

𝜓𝑚𝑖𝑛 <  𝜓(𝑡) < 𝜓𝑚𝑎𝑥 

𝛾𝑚𝑖𝑛 <  𝛾(𝑡) < 𝛾𝑚𝑎𝑥 

𝑚𝑚𝑖𝑛 <  𝑚(𝑡) < 𝑚𝑚𝑎𝑥 

Constraints for variables 𝑥 and 𝑦 are defined by flight plan segments. Each 

segment is composed by two waypoints, therefore the limits of  𝑥 and 𝑦 variables 

of the segment are defined within the initial and final (target) waypoint.  

Additionally, the heading (𝜓) constraint is defined by minimum value 0 degree 

and maximum value 359 degrees. 

Table 4-4: Default constraints 

Variable Maximum Value Minimum value 

East distance (𝑥) Target point east distance Previous point east distance 

North distance(𝑦) Target point north distance Previous point north distance 

Heading (𝜓) 0º 359º 
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Other constraints are different for each particular case and cannot be specified a 

particular interval because they depend of aircraft performance limits.  

Each aircraft has different performance limits, for this reason, the optimal control 

problem has been designed to obtain this information from an aircraft settings 

text file. 

An example of the constraints for a C-17 Globemaster III aircraft, containing 

upper and lower boundaries for altitude (𝑧), velocity (𝑉), path angle (𝛾), bank 

angle (𝜙), angle of attack (𝛼), thrust (𝑇) and aircraft mass (𝑚) is shown in Figure 

4-3. 

 

Figure 4-3: Aircraft settings example 

Speed values are expressed in knots, angle values in angles, thrust in pounds 

(force), mass in pounds and altitude values in feet. 

Additionally to states variables, initial and final time constraints are described 

based on following equations: 
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𝑡𝑝+1 (𝑚𝑖𝑛) = 𝑡𝑝 (𝑚𝑖𝑛) +
𝑑𝑝

𝑉𝑚𝑎𝑥 
 (4-20) 

 

𝑡𝑝+1 (𝑚𝑎𝑥) = 𝑡𝑝 (𝑚𝑎𝑥) +
𝑑𝑝

𝑉𝑚𝑖𝑛 
 (4-21) 

Where 𝑡𝑝+1and 𝑡𝑝 is time at next and previous segment respectively, 𝑉𝑚𝑎𝑥 and 

𝑉𝑚𝑖𝑛is aircraft maximum and minimum velocity respectively; finally 𝑑 is defined 

as the orthodomic distance from initial to target waypoint 𝑝. 

4.5 Overview of 4D Trajectories Research Software (4DT RS) 

4D Trajectories Research Software Suite (4DT RS) is a software package that 

has been designed and implemented based on the 4DT generator. The software 

has been designed to generate, analyse and test optimal trajectories in order to 

reduce fuel, time and noise. 

Trajectories are created based on a given flight plan that must be composed by 

waypoints. 

4D Trajectories Research Software includes a user-friendly graphic interface and 

an installer for Microsoft© Windows® 7 or superior. User interface is shown in 

Figure 4-4. 

4DT RS uses PSOPT [70] as internal optimal control solver which uses pseudo-

spectral methods to solve the problem. 
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Figure 4-4: 4DT RS Graphic User Interface 

Once application starts, the user could select whether loading a previously 

defined case or building a new case by creating / importing a flight plan. For 

creating flight plans it has been included a waypoints database which contains 

more than 150,000 airports, fixes, NDB and VOR stations. Additionally, initial 

conditions, aircraft model, and typical optimal control problem are input 

parameters that can be added by the user. 

Generated trajectories parameters are represented in a map, vertical and 

horizontal profiles are shown in plots. Optionally, trajectory data can be exported 

as data files to be used in other software. 

4DT RS has been provided with a Tracking & Guidance module linked to a 

commercial flight simulator using an UDP connection. This module is used to 

simulate a guidance system as well as testing and validating the generated 

trajectories. Tracking & guidance module is described in Chapter 5. 

Additionally, 4DT RS provides the user with more utilities such as: detailed view 

tool, importing & exporting flight plans, noise levels contours and trajectories 

comparison capabilities. 

The following sections describe the structure and components of this software. 
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4.6 Software Structure 

4DT RS structure is mainly composed by a set of algorithms that setup a generic 

optimal control problem and generate a 4D optimal trajectory. These algorithms 

have been assembled into one single module responsible for building and solving 

the optimal control problem. This module is known as 4D Trajectories Generator 

Core (4DT RS Core) and basically includes all the concepts boarded in sections 

4.2 and 4.3. 

Additionally to 4DT RS Core, it has been implemented a Graphic User Interface 

(GUI) that contains the functions used to input data into 4DT RS Core and also 

includes tools that compute flight data relative to optimal trajectories synthetized 

and it is useful to evaluate and compare the optimal trajectories 

Figure 4-5 shows a top-level overview of 4DT RS structure. A full view of 4DT RS 

structure is available in Appendix A. 

The block located at top-right represents the 4DT RS Core. This core receives 

data via text files from data input modules named Inspectors. Each inspector 

provides a different type of data relative to the optimal trajectory problem. For 

example, Flight Plan Inspector provides inputs relative to trajectory flight plan 

such as waypoints latitude, longitude, name or altitude. Similarly, aircraft 

inspector provides inputs relative to aircraft performance model and noise 

inspector inputs data relative to noise computation.  

Other data is computed directly inside the 4DT RS Core (e.g. OCP time limits or 

aircraft dynamics model). Elements relative to inputs (Inspectors) are 

represented by blocks located at left side of Figure 4-5. 

4DT RS Core solution is exported via text files and data is processed to be shown 

in the graphic user interface via Inspectors and Plots. 
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Figure 4-5: 4D Trajectories Research Software Structure 

4.7 4D Trajectories Generator Core 

The 4DT Generator Core is a C++ executable stand-alone application that uses 

a general flight plan in order to generate predicted aircraft optimal trajectories 

focused on reducing a performance index specification. This application is 

considered the nucleus of the 4DT Research Software and it has been compiled 

and tested on GNU Linux Ubuntu 14 and Microsoft© Windows® 7. 

The 4DT generator core has been designed and implemented as an application 

that setup an optimal control problem using the information provided by the user. 

Subsequently, the optimal control problem is solved by PSOPT [70]. Pseudo-

spectral discretization of time-dependent variables is performed using Legendre 

method (by default). The resultant NLP problem is solved using IPOPT 

(alternatively, SNOPT [71] non-linear programming solver can be used). 

Figure 4-6 shows 4DT RS Core structure. It is composed by elements described 

in previous sections: aircraft dynamics mathematical model (4.2), performance 
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index specification (4.3), set of boundaries/constraints (4.4), Optimal Control 

Solver functions (PSOPT libraries), and Nonlinear programming solver (IPOPT). 

4DT RS Core receives four (4) main inputs: 

1) A set of waypoints (flight plan) 

2) A set of states and control constraints (aircraft performance limits) 

3) Noise data specification (empirical data to calculate noise) 

4) A set of PSOPT setup variables (discretization method, tolerance…) 

Initially, flight plan is decomposed in different segments in order to treat the 

problem as a multiphase optimal control problem so that each phase is 

referenced to one segment. Each phase is linked to previous phase so that total 

solution results as optimal for the whole trajectory. This is achieved by making 

use of internal PSOPT linkages functions (ref. PSOPT Manual [70]). 

Aircraft Limits

NLP Solver
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Max. Iterations

Waypoints
Mapping to North-
East Coordinates 

System

Performance 
Index

Time Guess

Discretization
Method?
Legendre
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Non Linear Programming Solver
(IPOPT or SNOPT)

Number of Phases

Boundaries 
Conditions

Noise Data
Noise 

Approximation

4DT Generator Core

 

Figure 4-6: 4DT RS Core internal structure 
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Waypoints are mapped from geographical coordinates to a north-east 

coordinates (flat point) system by using a World Geodetic System (WGS)-based 

function that basically converts units from degrees to standard longitude units by 

mapping each waypoint with respect to a reference point. 

Figure 4-7 shows the mapping function algorithm. Also, a detailed C# version of 

this function is available in Appendix C. 

Create Flat 
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Compute Delta 
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Compute 
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Compute East 

Distance

Last Waypoint?

No

Increase Waypoint

Index
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Figure 4-7: MappingWGS function algorithm 

Returned value by MappingWGS() function is a flat_point structure which is 

described in the following table:  
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Table 4-5: flat_point struct 

Value Type Description 

north_dist double Y distance from reference point to waypoint 

east_dist double X distance from reference point to waypoint 

Additionally, the number of waypoints is used to obtain the number of phases that 

contains the optimal control problem. Each segment composed by initial waypoint 

and final waypoint is processed as one problem phase. 

Aircraft limits compose most of the constraints used to describe the optimal 

control problem. Values are imported from the aircraft performance limits file 

(shown previously in Figure 4-3), processed and included into PSOPT solution 

by using the upper and lower bounds structures (similarly are included the initial 

conditions). 

Following table shows a typical PSOPT syntaxes of states and control boundaries 

structures. 

Table 4-6: PSOPT boundaries variable syntaxes in C++ 

 

   // Lower bounds (states) 

   problem.phases(i).bounds.lower.states(1)     = lon_lower[i-1]; 

   problem.phases(i).bounds.lower.states(2)     = lat_lower[i-1]; 

   problem.phases(i).bounds.lower.states(3)     = alt_lower[i-1]; 

   problem.phases(i).bounds.lower.states(4)     = velocity_lower[i-1]; 

   problem.phases(i).bounds.lower.states(5)     = heading_lower[i-1]; 

   problem.phases(i).bounds.lower.states(6)     = path_angle_lower[i-1]; 

   problem.phases(i).bounds.lower.states(7)     = mass_lower[i-1]; 

    

   // Upper bounds (states) 

   problem.phases(i).bounds.upper.states(1)     = lon_upper[i-1]; 

   problem.phases(i).bounds.upper.states(2)     = lat_upper[i-1]; 

   problem.phases(i).bounds.upper.states(3)     = alt_upper[i-1]; 

   problem.phases(i).bounds.upper.states(4)     = velocity_upper[i-1]; 

   problem.phases(i).bounds.upper.states(5)     = heading_upper[i-1]; 

   problem.phases(i).bounds.upper.states(6)     = path_angle_upper[i-1]; 

   problem.phases(i).bounds.upper.states(7)     = mass_upper[i-1]; 

    

   // Lower bounds (control) 

   problem.phases(i).bounds.lower.controls(2)   = bank_angle_lower[i-1]; 



 

67 

   problem.phases(i).bounds.lower.controls(1)   = angle_attack_lower[i-1]; 

   problem.phases(i).bounds.lower.controls(3)   = thrust_lower[i-1]; 

 

   // Upper bounds (control) 

   problem.phases(i).bounds.upper.controls(2)   = bank_angle_upper[i-1]; 

   problem.phases(i).bounds.upper.controls(1)   = angle_attack_upper[i-1]; 

   problem.phases(i).bounds.upper.controls(3)   = thrust_upper[i-1]; 

 

 

Additionally, these limits are used by time guess function in order to compute 

maximum and minimum time constraints by using the equations (4-20) and 

(4-21). 

Noise data is received and converted into a vector of noise_data objects. Each 

object noise_data is composed by the following information: 

Table 4-7: noise_data struct 

Value Type Description 

OP string Operation (departure by default) 

MET string Type of noise (SEL by default) 

ENGINE string Engine Model 

noise200 double Noise perceived at 200 ft 

noise400 double Noise perceived at 400 ft 

noise630 double Noise perceived at 630 ft 

noise1000 double Noise perceived at 1,000 ft 

noise2000 double Noise perceived at 2,000 ft 

noise4000 double Noise perceived at 4,000 ft 

noise 6300 double Noise perceived at 6,300 ft 

noise10000 double Noise perceived at 10,000 ft 
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noise20000 double Noise perceived at 20,000 ft 

noise25000 double Noise perceived at 25,000 ft 

This data is used to compute Sound Exposure Levels (SEL) by using the 

piecewise function described in equation (4-13) and shown in the following figure: 
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Figure 4-8: Compute_noise function algorithm 
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The performance specifications are calculated in a function named 

integrand_cost(). This function contains the performance index specifications for 

fuel, time and noise described in section 4.3 and basically selects one of them, 

depending of user choice. 

Figure 4-9 shows the decision algorithm implemented in integrand_cost() 

function. 
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Figure 4-9: Integrand_cost function algorithm 

PSOPT requires some configuration parameters such as discretization method, 

nonlinear programming solver, tolerance and maximum number of iterations. 

These parameters are read from a general settings file and input into a 

input_settings struct, which is an object that contains general configuration 

parameters for PSOPT and 4DT RS Core. 
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Table 4-8: Example of PSOPT setting variables sintaxis in C++ 

   

   algorithm.nlp_iter_max                = input_settings.max_iter; 

   algorithm.nlp_tolerance               = input_settings.tolerance; 

   algorithm.nlp_method                  = input_settings.nlp; 

   algorithm.scaling                     = "automatic"; 

   algorithm.derivatives                 = "automatic"; 

   algorithm.print_level             = 1; 

 

 

Once optimal control problem is formulated, it is called the function that executes 

PSOPT: psopt(solution, problem, algorithm) in order to find a solution to the 

problem. 

4.7.1 Exporting Results and Noise Grid 

If optimal solution is found, a new trajectory is defined by the optimal values of 

states and control variables at each collocation point (node). The total number of 

values is equivalent to number of nodes x number of flight plan segments.  

These variables are exported independently as files that are used to represent 

the trajectory by the Graphic User Interface (GUI). 

For each state and control variable it is exported one text file with the name of 

that variable (e.g altitude.dat, heading.dat, thrust.dat). A set of optimal trajectory 

latitude values output file example is shown in Figure 4-10.  

49.0097 49.0097 49.0097 49.0097 49.0098 

49.0103 49.0117 49.0148 49.0205 49.0298 

49.0436 49.0635 49.091 49.1276 49.174 

49.2294 49.292 49.3591 49.4288 49.4989 

49.568 49.6346 49.6981 49.7576 49.8132 

49.8649 49.913 49.9579 49.9997 50.0386 

50.0743 50.1066 50.1352 50.1598 50.1803 

50.197 50.21 50.2195 50.2255 50.2281 

Figure 4-10: Example of data output by 4DT RS Core 
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For PSOPT particular case, data regarding to each iteration is exported 

independently in a text file. This data is available to the user via an integrated 

built-in text viewer. 

In order to produce noise level contours, it is calculated the maximum Sound 

Exposure Level (SEL) perceived at each point of a terminal/departure area. 

A grid is defined by points separated by distances 𝐶𝑙𝑎𝑡 in Y axis and 𝐶𝑙𝑜𝑛in X axis:  

𝐶𝑙𝑎𝑡 = |
𝐿𝑎𝑡𝑖 − 𝐿𝑎𝑡𝑓

𝐾
| (4-22) 

  

𝐶𝑙𝑜𝑛 = |
𝐿𝑜𝑛𝑖 − 𝐿𝑜𝑛𝑓

𝐾
| (4-23) 

where 𝐾 is a value which defines the grid size. Since noise optimization is carried 

out for departure phases which usually involve areas with limited size, it has been 

determined that 𝐾 = 20 provides an acceptable balance between noise grid 

resolution and processing CPU time. 

Figure 4-11 shows the matrix of elements exported as noise grid. 

 

Figure 4-11: Noise Grid 



 

72 

The noise is computed for each point of the grid and the distance is calculated 

respect to aircraft trajectory. Since aircraft position varies along the trajectory, 

SEL value is calculated for each grid point as many as aircraft position entries 

are available in trajectory files output by PSOPT (number of nodes x number of 

phases). 
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Figure 4-12: Noise Grid Computation algorithm 

A resultant vector containing grid points and maximum SEL value perceived is 

obtained. For noise computation, it is obviously used the same compute_noise() 

function used for noise performance index specification (equation (4-13). 
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4.8 Graphic User Interface (GUI) 

A graphic user interface includes a set of components that make data input 

process more user-friendly.  Also it contains functions and elements that are used 

for comparing, representing and evaluating the resultant trajectory data. This 

section describes the different components included in GUI and shows important 

aspects of structure and tools of 4DT RS. 

4.8.1 Maps, Waypoints and Data validation 

Before running the optimization, flight plan is represented by waypoints in a built-

in 2D map that is rendered by GreatMaps libraries [64]. 

GreatMaps is a set of C# libraries for .NET framework [68]. These libraries 

includes a set of functions that can be used to create, edit and interact with two-

dimensional maps. 

The base object of these libraries is the object PointLatLng 

Table 4-9: PointLatLng struct 

Value Type Description 

Latitude double Latitude in degree 

Longitude double Longitude in degree 

In case of representing a PointLatLng object in a map, it is necessary to create a 

map marker. A map marker is represented by objects GMapMarker. Basically this 

object links the latitude and longitude position to its relevant position over an 

image. For this reason, this object is constructed by a PointLatLng element and 

a Bitmap image that represent the marker icon. 

Table 4-10: GMapMarker struct 

Value Type Description 

Point PointLatLng Point to be represented 

Icon Bitmap Icon to be rendered 
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In case of representing a line in a map, this is performed by making use of the 

object GMapRoute that basically receives a list of PointLatLng elements. 

Table 4-11: GMapRoute struct 

Value Type Description 

Route List<PointLatLng> List of points that create a path 

Name String Name of the route 

GMapMarker or GMapRoute objects are grouped by layers of type GMapOverlay. 

These layers can group several markers, routes or other objects such as 

polygons over a map. For this reason it has been created a GMapOverlay layers 

for waypoints, trajectories, observers and polygons. 

Finally, each layer of type GMapOverlay is linked to a GMapControl which is the 

graphic element linked to a map provider and is placed into the GUI main form. 

There are few map providers, for this software it has been used 

OpenStreetMaps.org which is a free map provider. 

In summary the main objects used from GreatMaps libraries for this software are: 

Table 4-12: Objects and elements used 

Element Object Description 

Point PointLatLng Point which contains geographical information data 

Line GMapRoute List of points which contains a path or route 

Marker GMapMarker Object that associates a PointLatLng to an image 

Layer GMapOverlay Object that groups several objects GMapMarkers 

Map GMapControl A graphic element linked to a map provider. 

For representing waypoints, it has been created the function PlotWaypoints() that 

basically receives data of one or more waypoints from a text file and plots the 

waypoints into a GMapControl element. This is achieved by creating a point, 

creating a marker, adding it to a layer and finally adding the layer to the map. 
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Figure 4-13: PlotWaypoints function algorithm 

GMapMarker elements are also provided with different components that can be 

adjusted in order to obtain different rendering effects. For markers, it is possible 

to add text and to adjust how the information is shown. Adjusting properly all 

these elements contributes to obtain the user-friendly interface of 4DT RS. 

For representing trajectories, it has been created the function PlotTrajectory(), 

which basically reads the trajectory files exported by 4DT RS Core (lat.dat and 

lon.dat), creates an object GMapRoute and adds this object to the relevant layer, 

which is then plotted on the map. 

Similar than markers, GMapRoute visual properties are adjusted in order to 

change line colours and stroke. Thinking on possible comparison between 
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optimal trajectories, PlotTrajectory() function includes a routine that changes line 

colour property each time it is executed (includes a limit of 3 times). This routine 

has been hidden in the function definition of this document to simplify the function 

overview.  
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Add Layer to 
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End

 

Figure 4-14: PlotTrajectory function algortihm 

Additionally to GreatMaps elements described, some WindowsForms elements 

contained in .NET Framework has been used to create the user graphic interface. 

Since the extensive amount of components contained in WindowsForms .NET 

class, more information of control and objects of this framework can be found at 

[68]. 

However, a summary of most used elements to represent 4DT RS GUI is shown 

in the following table: 
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Table 4-13: WindowsForms Controls 

Element Object Description 

Table DataGridView Control used to represent tables 

Text Field TextBox Control used to represent text field 

Button Button Control used to represent button 

Tabs TabControl Control used to sort information in tabs 

Select ComboBox Control used to create selection boxes 

Track Bar TrackBar Control used to show trackbar 

Toolbar Icon TootStripButton Control used to create icons in the toolbar 

Toolbar Item ToolStripMenu Control used to create entries in menu 

Input data for waypoints, observers and initial conditions is provided by the user 

via TextBox controls. Data validation is carried out to provide consistent values 

of latitude, longitude, altitude, and heading, as well as to guarantee that no 

waypoint is repeated. Validation is carried out by the following set of functions: 

Table 4-14: Validation functions 

Function Description 

IsHeading Returns true if input data is in the interval [0, 360] 

IsLatitude Returns true if input data is in the interval [-90, 90] 

IsLongitude Returns true if input data is in the interval [-180, 180] 

IsValidName Returns true if input is a no-repeated alphanumeric 

IsPositiveNumeric Returns true if input data is a positive number 

IsNumeric Returns true if input data is a number 

TypeCheck Returns true if a string is “TIME”, “FUEL” or “NOISE” 
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Once data is validated, it is copied from the TextBox controls to Flight Plan table, 

which is represented by a DataGridView control. Once a new entry is added to 

Flight Plan table, it is called the function PlotWaypoints() to plot the waypoints. 

It is guaranteed that every time the user inputs data into the Flight Plan table, the 

waypoint is represented into the map, including a tooltip to show the name of the 

waypoint. 

This idea is shown in the following Figure 4-15. It is visible an example of the 

Flight Plan table (DataGridView control), the map (GMapControl) and some 

waypoint markers (GMapMarkers). 

 

Figure 4-15: Map and Flight Plan Table 
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In this section, it has been introduced the idea that data is input by TextBox fields. 

These textbox fields are used to input different type of data such as flight plan, 

noise or aircraft performance data. In order to design a graphic interface thinking 

on an experience as much as user-friendly as possible, most of TextBox controls 

have been grouped into elements named Inspectors. There are different 

Inspectors depending of the type of data they are meant to input to the 4D 

Generator. In the following sections, it is described the available inspectors. 

4.8.2 Flight Plan Inspector 

From the user point-of-view, the flight plan is the most important input. A flight 

plan defines the waypoints that aircraft has to fly-by/over before arriving to final 

destination. Flight plans for flight management systems are defined in ARINC 424 

standard [65], [58]. A simplified version of this standard has been implemented in 

4DT RS where each waypoint is composed by three dimensional points in the 

space defined by latitude, longitude and altitude. 

The main idea of this editor is to provide to user with a friendly and responsive 

way to create a flight plan. Data is also reproduced for visualization into a table. 

 

Figure 4-16: Flight Plan Inspector 

Once it has been defined proper values for latitude, longitude and altitude a new 

waypoint entry is added to Flight Plan table, located in the upper-middle part of 

the GUI. Additionally, a new point and tag is added to the map. 

In addition, directly interaction between maps and editor fields can be achieved 

by using the mouse pointer. In this manner, if user clicks on map, the latitude and 
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longitude of its location is copied into editor relevant fields. Since map provides 

2D information, altitude field has to be directly filled by user. 

Despite of adding latitude and longitude values by clicking on the map is a very 

practical method, it is not considered quite accurate. For this reason, it has been 

added a navigation database where information regarding to real navigation data 

could be easily accessed. 

ARINC 424 provides a standard format to represent flight plans on flight 

management systems. This database is composed by waypoints that represent 

different navigation elements mentioned in ARINC 424 standard. The database 

specification is shown in Table 4-15: 

Table 4-15: Database specification 

Table Details Entries 

NDB Non-directional bacon station (2-3 characters) 

11,126 
VOR VHF Omni-directional range station (2-3 characters) 

Airport Airport identified by ICAO code (4 characters) 44,684 

FIX FIX waypoint (5 characters) 119,721 

  175,531 

Accessing to database is performed using SQLite connection functions. A new 

object of SQLiteConnection is created with the file path of the database. The 

following table shows the functions used to connect to database connection. 

Table 4-16: Functions used by SQLiteConnection and cmd objects 

Function Description 

SQLiteConnection Construct a new SQLiteConnection object 

Open Opens a database connection 

CreateCommand 
Creates a new cmd object that will be used to 

execute a database query 
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CommandText Specifies a SQL query 

ExecuteReader Executes the SQL query provided by CommandText 

Close Closes a database connection 

By using functions above, it has been implemented the function 

SearchDatabase() that opens a new database connection and creates a new 

CommandText object: 

CommandText = "SELECT " + fields + " FROM " + table + extra; 

This object contains a string that executes a different SQL query depending of 

the user choice. To understand this, note that fields, table and extra are string 

variables that can get different values depending of the table Airport, VOR-NDB 

or FIX. For this reason, these variables are previously configured according to 

the following table: 

Table 4-17: Variable values for SQL queries 

Type Values 

APT 
table = "airports"; 

fields = "ident, latitude, longitude, name"; 

VOR 

table = "navaids"; 

fields = "ident, latitude, longitude, name"; 

extra = " WHERE type = 'VOR-DME'"; 

NDB 

table = "navaids"; 

fields = "ident, latitude, longitude, name"; 

extra = " WHERE type = 'NDB'"; 

FIX 
table = "fixes"; 

fields = "ident, latitude, longitude"; 

 

Once data is retrieved from database, a new list is created and loaded into a 

DataGridView control. Finally the connection is closed. 
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From the user point-of-view, this data can be accessed by clicking on a plus (+) 

icon supplied in the flight plan editor. Information has been sorted in four different 

tabs: Airports, VOR, NDB and FIX. 

Since the quantity of entries to be loaded into grid is considerable (total of 

175,531), this process could take some time. For this reason, part of this data is 

loaded when application is executed and this process could delay loading forms 

and other application components. However, once data is loaded, it can be 

accessed directly by using the database viewer with no delay. 

Figure 4-17 shows a typical representation of waypoints entries in navigation 

database form. Once selected, the waypoint information is added to flight plan 

editor fields and consequently it can be added to current flight plan table. 

 

Figure 4-17: Navigation Database 

Besides adding a set of waypoints using this editor, it is possible to export a 

defined flight plan. If this is the case, a text file contained relevant information 

about waypoints is generated. This file can be used to import the flight plan into 

4DT RS in the future. 
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4.8.3 Aircraft and Initial Conditions Inspectors 

Aircraft parameters used by 3DoF model are imported from aircraft settings. This 

includes aircraft performance limits, aerodynamics coefficients and fuel flow 

consumption coefficients. 

Aircraft inspector is used to select aircraft models. Once loaded it shows all 

aircraft files contained in directory named “Aircraft” located in the 4DT RS root 

folder. 

 

Figure 4-18: Aircraft and Initial Conditions Inspector 

Additionally, fuel price (US dollars) and fuel consumption rate (lb/hour) are 

parameters requested to user. These parameters are used to calculate flight 

information once an optimal trajectory is found (described in section 4.10). In 

addition, cruise altitude is used to compute TOC and BOD points. 4DT RS has 

been provided with a built-in function that automatically fills this field in when 

importing a new flight plan composed by more than two (2) waypoints. 

Initial conditions inspector is used to receive aircraft initial parameters. This is 

initial speed, commonly defined by aircraft V2 speed which depends of 

atmospheric conditions, weight and other parameters, initial mass which depends 

of loaded fuel into aircraft before departing and initial heading which depends of 

airport and runway. 

4.8.4 Noise Inspector 

In previous section 4.7, it has been discussed the process to reduce noise and 

the noise grid computation. As described in that section, noise computations are 

performed based on noise data provided by the user. This data is converted into 
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text files and finally input into 4DT RS Core. The noise inspector is used to input 

observer’s position, noise data file path and priority via TextBox controls. 

In addition, it is possible to select a noise settings file where empirical data about 

aircraft engine is provided. This is achieved by making use of a ComboBox 

control. 

As detailed in section 4.3.2, Sound Exposure Level (SEL) is measured respect to 

a reference location named observer. 

 

Figure 4-19: Noise Inspector 

By using the scaling factor feature, it is possible to select which observer should 

receive greater importance level. This TrackBar control basically changes the 

values of 𝐾1 and 𝐾2 in equation (4-19). If scaling factor control is set at the middle, 

both observers are considered to have same importance. 

In section 6.3, it is demonstrated a full noise optimization case carried out around 

London Gatwick Airport (EGKK) that makes use of the observer’s concept. 

Noise model empirical data is specified into a text file that follows a similar format 

than used by Integrated Noise Model (INM) [66]. This file path read by 4DT RS 

Core and it is used by the compute_noise() function to calculate SEL using the 

piecewise function described in previous sections.  
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Figure 4-20 shows a typical noise settings file used by 4DT RS. 

 

Figure 4-20: Noise Specification File 

Noise data grid calculated by 4DT RS Core is used to generate noise levels 

contours. In order to calculate these contours, initially a set of boundaries is 

defined in the Noise Level Contour form. By default, these levels values are 

defined in Table 4-18. 

Table 4-18: Noise Level Contours example values 

Layer Sound Exposure Level (dB) 

1 30 < SEL < 45 

2 55 < SEL < 65 

3 70 < SEL < 75 

4 85 < SEL 

Noise level contour is obtained by making use of a convex-hull algorithm 

described in section 3.6.1, which creates convex polygons by connecting external 

points. In this way, noise of internal points that are surrounded by the polygon, 

will be always less or equal to layer’s boundary values. 

Convex Hull algorithm designed is a modified version of a standard ConvexHull 

.NET algorithm that has been modified to allow its use with PointLatLng-based 

functions. Basically this algorithm makes use of the following functions: 



 

86 

Table 4-19: Convex Hull main functions 

Function Description 

FindConvexPolygon 
Creates upper and lower hulls based on a list of 

PointLatLng objects 

ConvexHullCore 

Check each PointLatLng object and select them 

by checking if angle between three (3) points is 

convex. 

IsAngleConvex 
Returns true if angle between three(3) 

PointLatLng points is convex 

The main idea of using this algorithm is that it is capable to easily create polygons 

based on a set of constraints. This function provides the user with capabilities to 

evaluate the different scenarios by utilizing different noise distributions. Once the 

upper and lower limits of the layers are selected, a set of function steps are 

followed to filtering the noise grid data. 

Figure 4-21 shows the function FilterNoiseGrid which check each noise grid node. 

If the noise associated to current node is between maximum and minimum noise 

level selected by the user, the node is saved into a list that contains all the filtered 

points. 

Once noise data is filtered, PointLatLng objects are saved into noise list. Finally, 

a function called FindConvexPolygon() is called to obtain the contours for grid 

points filtered. This process is repeated for each layer. 

In section 6.5, it is suggested to make use of algorithms that produce concave 

polygons to obtain more accurate noise contour results. 
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Figure 4-21: FilterNoiseGrid function algorithm 

4.9 4DT RS Core and 4DT GUI Connection 

4DT RS Core is a stand-alone application. Once a testing case has been properly 

setup, optimization parameters are sent to 4DT RS Core. This process is 

performed automatically via text files. 
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Settings File

MET = E
OP = D
ENGINE = 2CF650

-----   OBSERVERS   -----
NUM_OBSERVERS = 2

OBS1_LON = 2.7
OBS1_LAT = 49.30
OBS1_ALT = 83
OBS1_WEI = 729

OBS2_LON = 2.59
OBS2_LAT = 49.10
OBS2_ALT = 83
OBS2_WEI = 1000

-----   ENGINE NOISE DATA   -----
113
108.6
105.2
101.5
95.6
88.2
83.1
77.5
70.8
63.3

I
4 version
0
9
1 LFPG 0 49.0097 2.5478 50
11 CNH 0 49.8261 2.7553 28000
11 LAD 0 49.9125 2.84 28000
11 LGDR 0 50.2281 3.1515 28000
11 FSA 0 50.4042 3.275 28000
11 POI 0 50.515 3.3617 28000
11 LKJ 0 50.9126 3.637 28000
11 AHUH 0 51.2353 3.869 28000
1 EHAM 0 52.3081 4.7642 200

AIRCRAFT_MODEL  = C-17 Glob
ENGINE_MODEL = PW2000

-----               AIRCRAFT LIMITS -----
MIN_SPD = 140
MAX_SPD = 400
MIN_PATH_ANGLE = -5
MAX_PATH_ANGLE = 5
MIN_BANK_ANGLE = -15
MAX_BANK_ANGLE = 15
MIN_ATTACK_ANGLE = -5
MAX_ATTACK_ANGLE = 5
MIN_THRUST = 0
MAX_THRUST = 161200
MIN_MASS = 185000
MAX_MASS = 585000
MAX_ALTITUDE = 30000

-----               AIRCRAFT DATA -----
CL0 = 0.0269 
CL1 = 1.7
CD0 = 0.0490
CD1 = 0.2990
CD2 = -0.041
CF1 = 0.00000387
CF2 = 54.114
CFCR = 0.75
WING_SURFACE = 3802.00

 

Figure 4-22: 4DT RS Core and 4DT GUI Connection 

As shown in Figure 4-22, flight plan and aircraft files are linked to a unique file 

named Settings.dat file. This means that their paths are written in a general 

settings file which acts like a connector between 4DT RS Core and GUI. Table 

4-20 shows all parameters contained in settings file. 

Table 4-20:  Settings file parameters 

Parameter Possible Value 

METHOD Legendre | Chebyshev 

NLP IPOPT | SNOPT 

TYPE TIME | FUEL | NOISE 

FLIGHTPLAN flightplan.fms 

AIRCRAFT Selected on Aircraft Editor 

MAX_NODES 20 | 40 | 60 | 80 

MIN_NODES 10 
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MAX_ITER 2000+ 

TOLERANCE 0.01< 

INITIAL_MASS     max_mass > value > min_mass 

INITIAL_HEADING     355 > value > 0 

INITIAL_VELOCITY     max_speed > value > min_speed 

These settings are loaded into 4DT RS Core to setups the optimal control 

problem. Noise data is processed only if the value of TYPE variable is equal to 

string “NOISE”. 

Once optimization process is completed, 4DT RS Core exports the states, control 

variables, noise grid and noise perceived at each observer into result files. Finally 

4DT GUI uses these files to plot results and calculating flight information. 

4.10 Computing Flight Information 

Despite of 4DT RS main purpose is generating optimal trajectories; some 

functions have been developed in order to compute additional and 

complementary information about the flight. These features were designed in 

order to provide the user with top-level or management information related to 

consumed fuel or total flight costs that could be used to compare with baseline. 

Figure 4-23 shows a typical representation of flight information calculated by 4DT 

RS. 

 

Figure 4-23: Flight Information 
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4.10.1 Fuel, flight cost, distance and maximum SEL 

In order to calculate fuel, flight cost and distance, it has been implemented an 

object type FlightData() which is composed by the elements shown in Table 4-21: 

Table 4-21: FlightData struct 

Variable Type Description 

Fuel Cost double 𝐶𝑜𝑠𝑡𝑢𝑠𝑑 = 𝐹𝑢𝑒𝑙𝑔𝑎𝑙  ×  𝐶𝑜𝑠𝑡𝑝𝑒𝑟 𝑔𝑎𝑙 

Fuel Consumed 
(gallons) 

double 𝐹𝑢𝑒𝑙𝑔𝑎𝑙 =
𝑀𝑖 − 𝑀𝑓

6,79
 

Fuel Consumption Rate 

(lb / hr) 
double 𝐹𝑢𝑒𝑙𝑙𝑏/ℎ𝑟 =

(𝑀𝑖 − 𝑀𝑓) × 60

𝑇𝑡𝑜𝑡𝑎𝑙
 

Fuel Consumption Rate 

(gal / n. miles) 
double 𝐹𝑢𝑒𝑙𝑔𝑎𝑙/𝑚𝑖𝑙𝑒 =

𝐹𝑢𝑒𝑙𝑔𝑎𝑙

𝐷𝑡𝑜𝑡𝑎𝑙
 

Fuel Cost Rate 

(US dollars / hr) 
double 𝐶𝑜𝑠𝑡𝑢𝑠𝑑/ℎ𝑟 =

𝐶𝑜𝑠𝑡𝑢𝑠𝑑  ×  60

𝑇𝑡𝑜𝑡𝑎𝑙
 

Orthodomic Distance 

(n. miles) 
double 𝐷𝑖𝑠𝑡𝑎𝑛𝑐𝑒𝑚𝑖𝑙𝑒 = √𝐷𝑒𝑎𝑠𝑡

2 + 𝐷𝑛𝑜𝑟𝑡ℎ
2 

Additional flight data calculation is carried out by ComputeFlightData() function, 

which basically receives time, mass, latitude and longitude vectors from 4DT RS 

Core solution and uses equations described in Table 4-21 to calculate the 

relevant flight data. Values are exported in an object type FlightData(). 

Figure 4-24 shows the ComputeFlightData function algorithm. The function 

makes use of text files mass, latitude and longitude as well as fuel price (input by 

user in the aircraft Inspector). 
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Figure 4-24: ComputeFlightData function algorithm 

4.10.2 Predicted Time of Arrival 

One of the most important characteristics of 4D trajectories is the presence of a 

Required Time of Arrival (RTA). This parameter would be commonly assigned by 

Air Traffic Controller (ATC). Once this parameter is set, it is expected to take 

place a negotiation process between crew and ATC. 
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From one side, ATC must manage airspace based on this required time of arrival. 

On the other side, crew must negotiate the controlled time of arrival so it could be 

reached in order to avoid holding patterns while optimizing the trajectory. 

Predicted Time of Arrival is calculated by 4DT RS in order to give to crew a clue 

about the capacities of aircraft performance given that aircraft should be capable 

to reach each waypoint at proposed predicted time of arrival. 

ComputeTimeOfArrival() function makes use of time, latitude and longitude 

vectors obtained from optimal trajectory and flight plan input by user. 

This function calculates predicted time of arrival by obtaining the flight time at the 

point where the following pair of inequalities is true: 

∆∅𝑖 ≤  𝜀 

 ∆𝜆𝑖 ≤  𝜀 

where 𝜀 is the radius of a circle centred at waypoint 𝑖 (minimum fly-by distance) 

and ∆∅ and ∆𝜆 refers to error distance between aircraft and flight plan waypoint 

𝑖. 

∆∅𝑖 = |∅𝑖 − ∅𝑓𝑝| (4-24) 

∆𝜆𝑖 = |𝜆𝑖 − 𝜆𝑓𝑝| (4-25) 

The time of arrival is exported as a List<double> object and is loaded into a 

DataGridView control. 

Figure 4-25 shows the ComputeTimeOfArrival function algorithm which return a 

list with all predicted time of arrival values. 
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Figure 4-25: Compute Time of Arrival Algorithm 

Figure 4-26 shows a typical result of predicted time of arrival computed by the 

software after an optimal solution has been found. 

 

Figure 4-26: Predicted Time of Arrival 

4.10.3 Top of Climb and Begin of Decent 

Top of climb (TOC) point can be defined as the location where aircraft altitude is 

equal to cruise altitude. At this point, cruise phase begins, hence thrust levels and 

fuel flow decrease and aircraft is maintained at steady-state. This is considered 

an important point for flight planning and navigation; also for ATC, this means 
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that aircraft altitude and speed becomes constant, which could affect the way 

aircraft is processed in airspace management (air traffic controllers decrease their 

stress when aircraft altitude and speed are constants). Figure 4-27 shows top of 

climb point. 

 

Figure 4-27:  Top of Climb (TOC) and Begin of Descent (BOD) 

4DT RS calculates latitude, longitude and time when: 

|𝑧 − 𝑧𝑐𝑟𝑢𝑖𝑠𝑒| < 𝜀𝑧 

where 𝑧 and 𝜀𝑧 are aircraft altitude and altitude tolerance respectively. By default 

the value of tolerance 𝜀𝑧 has been set to 50 ft. 

This logic has been implemented in the function ComputeBODTOCPoints() that 

basically goes through position vectors and applies the expression described 

above. A section of this function is shown in the following figure. 
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Figure 4-28: ComputeBODTOCPoints function algorithm (Part 1) 

Begin of descent (BOD) point is defined as the location where cruise phase is 

completed. Therefore aircraft altitude decreases to approach phase altitude or 

final approach altitude (in case of a Continuous Descent Approach (CDA) 

procedure is performed). Thrust usually is set to idle and speed decreases. Figure 

4-27 shows begin of descent point. 

This point is calculated by using the following equation: 

|𝑧𝑖 − 𝑧𝑐𝑟𝑢𝑖𝑠𝑒| ≥ 𝜀𝑧 and 𝑡𝑖 > 𝑡𝑇𝑂𝐶 

where 𝑖 represents the index of the current waypoint and 𝑧𝑐𝑟𝑢𝑖𝑠𝑒 is the cruise 

altitude defined in the flight plan. 

By following the same procedure than TOC point, the second part of function 

ComputeBODTOCPoints() goes through position vectors to compute BOD point.  
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The index of variable BOD starts in the value of the TOC index variable. This is 

done in order to ensure that 𝑡𝑖 > 𝑡𝑇𝑂𝐶. 
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Figure 4-29: ComputeBODTOCPoints function algorithm (Part 2) 

4.11 Trajectory Representation 

Optimal values for states and control variables, noise and time data is obtained 

from data files exported by 4DT RS Core. These files are used to create several 

plots. 

First, it is used the function PlotTrajectory() described in section 4.8.1 to plot the 

horizontal trajectory (longitude vs latitude) in the GMapControl. 

Additionally, it is used the libraries ZedGraph [73] to produce a set of scientific 

plots that provides extra features to the user such as zoom, detailed values, set 

axis scales or export data to image files. 
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The base control of these libraries is ZedGraphControl, which is an element that 

is used to link a set of lists of type List<double> to a graphic plot included in the 

4DT RS GUI. 

Since a ZedGraphControl object can be associated to one or more plots, this 

information is given to control by another object named GraphPane. The 

GraphPane object contains properties relative to plot window such as title, axis 

labels or plot size. The data to be plotted (the trajectory curve) is represented by 

another object of type LineItem. This object contains properties of curve such as 

smoothness, colour, line width and tension. 

In summary, it has been used the following ZedGraph objects. 

Table 4-22: ZedGraph objects 

Element Object Description 

Control ZedGraphControl It is the control where data is plot.  

Plot GraphPane 
It is an object that contains plot 

information 

Curve LineItem Curve or line to be ploted 

Different plots are created for each trajectory. Horizontal and vertical trajectories 

show aircraft situation in different planes. States and control variables shows 

aircraft status with respect to time. For this reason, it has been implemented the 

function PlotGraph() that is generic for any type of plot on a ZedGraphControl 

element. This function receives all the parameters needed to create a plot such 

as title, axis labels and type of plot symbol. 

However, the lists of type List<double> are previously created by pre-processing 

functions that simply read the relevant files exported by 4DT RS Core (e.g. 

heading.dat, altitude.dat or time.dat) and convert data into a list. 

This pre-processing functions also convert angles from radians to degrees and 

validate the data contained in trajectory files. 
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Function: PlotGraph 

Inputs: x_list, y_list, title, x_label, y_label, symbol, zed_control 

Output: n/a 

 
1) Create Pane 

       Control.GraphPane; 

 

2) Settings titles and labels 

       Pane.Title.Text = title; 

       Pane.XAxis.Title.Text = xtitle; 

       Pane.YAxis.Title.Text = ytitle; 

 

3) Add the  curve 

       LineItem curve; 

       curve = Pane.AddCurve(title, x_arr, y_arr, color, symbol); 

       curve.Line.Width = 1.5F; 

 

4) Make the curve smooth with cardinal splines 

       curve.Line.IsSmooth = true; 

       curve.Line.SmoothTension = 0.6F; 

 

5) Fill the symbols with white to make them opaque 

       curve.Symbol.Fill = new Fill(Color.White); 

       curve.Symbol.Size = 10; 

 

6) End 

 

Figure 4-30: PlotGraph function example in pseudo code and C# 

4.11.1 Detailed View Tool 

4DT RS has been provided with a special tool that allows checking aircraft status 

parameters such as fuel consumed, time, heading and altitude with respect to its 

position. 

Behind Detailed View tool there is a set of functions that plot points for each 

optimization node and retrieves automatically data from different sources relative 

to this point. 

This data is shown when user moves mouse cursor from one node to another, 

however, since there is limited number of points, it is necessary to find the nearest 

point to cursor position. 
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Functions FindNearestPoint() and FindIndexPositionVector() are used to obtain 

this position and retrieve interesting data from trajectory result files. 
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Figure 4-31: FindNearestPoint function algorithm 

An object PointLatLng is obtained from the function GMapMouseMove() which 

return the mouse position on the map. Then, it is used the function IsNear() to 

obtain nearest trajectory point to mouse position. Finally, trajectory information 

such as altitude, fuel consumed or heading is obtained from returned point. 

Information is shown using a tooltip property contained in GMapMarker objects. 
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Figure 4-32 shows the “Detailed View” tool. Note that blue dots represent the 

optimal collocation points, and the box is showing relevant data relative to the 

green (selected) point. 

 

Figure 4-32: Detailed View Tool 

From the user point-of-view this is a really powerful tool to understand aspects of 

the optimal trajectory and the discretization process, for example, the tooltip 

shows where collocation nodes have been located during optimization process. 

But also shows the fuel burn by aircraft from take-off to selected point or aircraft 

heading at that moment. 

This information could be interpolated to guess aircraft status at each point of the 

optimal trajectory or alternatively, the number of nodes could be increased to 

obtain more accurate information.  

4.12 Preferences and Help 

Preferences provides control of configuration parameters to the user. 

Preferences form receives PSOPT configuration preferences on TextBox 

controls. The data is saved/loaded to/from a text file named preferences file. From 

this form it is possible to change almost all parameters mentioned in previous 

section 4.7. 
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Also it is possible to switch on/off the capability to show the optimization 

calculation process in a command symbol system window instead of running 4DT 

RS Core in background. 

In addition, a complete Help section with pre-defined samples cases has been 

developed and implemented in HTML code, so user can easily get access to 

required information. It has been created a set of HTML files for each section 

contained on the help. Then it has been compiled into a Microsoft Compiled 

HTML help file that is loaded when user click on help button or alternatively press 

F1 key shortcut.  

Preferences and Help forms is shown in the following figure. 

 

Figure 4-33: Preferences and Help 
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Chapter 5  

TRAJECTORY TRACKING & GUIDANCE 

5.1 Introduction 

This chapter describes the trajectory Tracking and Guidance system that has 

been developed as a complementary module for 4DT RS. It covers a system 

overview in section 5.2, tracking system design is described in section 5.3, 

guidance system in section 5.4, avionics systems indicators are covered in 

section 5.5, a simulation framework used to test initial versions of the tracking 

and guidance system is described in section 5.6. Finally the T&G module for 4DT 

RS is described in section 5.7 

5.2 System Overview 

Tracking & Guidance (T&G) system module aims at testing and validating the 

trajectories generated by 4D Trajectories Research Software v0.1a (4DT RS). 

Two main objectives are pursuit in this tracking and guidance system: 

1. Provide pilots with guidance by making use of visual indicators located in 

Primary Flight Display (PFD) and Navigation Display (ND). 

 

2. Provide aircraft with automatic guidance based on heading, altitude and 

vertical speed. These values are aimed to be used in the aircraft 

automatic flight control system. 

The system initially calculates the cross-track error and altitude error based on 

the aircraft position and the reference trajectory (generated by 4DT RS). If cross-
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track error is greater than a specified tolerance, it computes vertical and 

horizontal guidance commands to allow aircraft to follow the reference trajectory.  

Guidance commands are sent to autopilot system, therefore horizontal guidance 

command is aircraft’s heading which is also displayed in the Navigation Display 

(ND) and vertical guidance command is vertical speed and altitude which are 

displayed in the Primary Flight Display (PFD). 

Figure 2-6 shows the Tracking and Guidance module’s main control loop (Also a 

complete schema of this system can be found in Appendix B). 

In order to properly describe this system, it has been divided into two sections: 

Tracking system which describes how errors are computed and Guidance system 

which describes how vertical and horizontal control commands are calculated 

and sent to autopilot system. 

Early versions of tracking & guidance system, has been implemented using 

MATLAB®. For this, it has been developed a simulation framework that describes 

aircraft dynamics for lateral guidance. The framework used simple equations for 

point displacement in flat surface. 

Furthermore, in order to obtain more accurate results, the simple equations have 

been replaced by realistic aircraft dynamics by creating a C# guidance module 

and linking the guidance system to a commercial flight simulator via User 

Datagram Protocol (UDP). The result is a stand-alone guidance module that can 

be executed once a reference trajectory is generated by 4DT RS. Therefore, the 

reference trajectory can be simulated and evaluated in a more realistic 

environment. 
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Figure 5-1: Tracking & Guidance System Main Control Loop 
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5.3 Tracking System 

Tracking system has been designed to maintain a Required Navigation 

Performance (RNP) condition. According to main control loop shown in Figure 

5-1, first algorithm step is receiving aircraft position. It is expected that the 

tracking system make use of aircraft GNSS capabilities in order to obtain aircraft 

latitude, longitude and altitude. This step relies on an ideal GNSS system, this 

means that errors introduced by GNSS related to atmosphere conditions, 

distance or surface for computing aircraft position has been neglected during the 

designing process. 

Following same strategy used on 4DT RS trajectories, geographic coordinates 

system are converted to North-East coordinate system by using WGS-based 

function described in section 4.7. 

Therefore, it is possible to compute cross-track error in distance units by using 

orthodomic distance equations. Cross-track error is defined by the minimum 

value of 𝑒𝑖: 

𝑒𝑖 = √(𝑥𝑖 − 𝑥𝑎𝑖𝑟)2 + (𝑦𝑖 − 𝑦𝑎𝑖𝑟)2 (5-1) 

given that 𝑖 ∈ [0, 𝑁] and 𝑁 =  𝑁𝑛𝑜𝑑𝑒𝑠 × 𝑊𝑃 

where. 

𝑥𝑖 and 𝑦𝑖 are the east and north distances of a reference node 𝑖 

𝑥𝑎𝑖𝑟 and 𝑦𝑎𝑖𝑟 are aircraft east and north distances 

𝑁𝑛𝑜𝑑𝑒𝑠 is the number of collocation points used to solve the optimal control 

problem. 

𝑊𝑃 is the number of waypoints of flight plan 
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Note that 𝑁𝑛𝑜𝑑𝑒𝑠 value correspond to size of vectors exported by 4DT RS that 

defines aircraft lateral position. 

Computing cross-track error sub-loop tries to find the closest point to aircraft 

position by making use of equation (5-1). This algorithm is shown in Figure 5-2. 
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Figure 5-2: Compute track error loop 

Once the closest point is obtained (cross-track error node), it is computed the 

altitude error. To compute this error it is used the predicted trajectory exported by 

4DT RS. Altitude error is computed by comparing aircraft altitude with cross-track 

error node’s altitude. In this way, altitude error is calculated using the following 

expression: 
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𝑒𝑎𝑙𝑡 = 𝑧𝑖 − 𝑧𝑎𝑖𝑟 (5-2) 

where, 

𝑧𝑖 is the cross-track error node altitude 

𝑧𝑎𝑖𝑟 is the aircraft altitude 

Note that if aircraft altitude is greater than reference path altitude, altitude error is 

negative. This peculiarity is used when computing vertical speed guidance 

command. 

5.4 Guidance System 

The guidance system accepts the tracking errors and generates guidance 

commands according the types of tracking errors. It has been designed to only 

get triggered if minimum track-error or altitude error conditions are exceeded 

beyond a defined tolerance. 

If the tracking errors are greater than defined tolerance, the guidance commands 

for lateral and vertical trajectories are calculated based on two different loops. 

Figure 5-1 shows that lateral and vertical loops. 

5.4.1 Lateral Guidance 

Lateral guidance has been designed inspired on the Proportional Navigation 

concept discussed in section 3.5. A simple static target point approach has been 

used. Aircraft acceleration is not taken into account thus is considered aircraft 

speed is constant. 

The main idea relies on computing the aircraft heading to follow a target 

(reference point) that is selected based on the distance 𝑑𝑟𝑒𝑎𝑐𝑡𝑖𝑜𝑛 which is the 

distance between aircraft and the interception point. 
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Figure 5-3: Lateral guidance based on static reference point 

The distance 𝑑𝑟𝑒𝑎𝑐𝑡𝑖𝑜𝑛 is variable and depends on the interception angle (𝜎) which 

also varies proportionally to the cross-track error (𝑒𝑐𝑡). 

𝑑𝑟𝑒𝑎𝑐𝑡𝑖𝑜𝑛 =
𝑒𝑐𝑡

sin (𝜎)
 (5-3) 

Figure 5-3 shows a typical situation where aircraft is off of reference trajectory. 

This figure shows cross-track error computed by tracking system. Note that 

reference point position must change when reaction distance or interception 

angle change(s). 

Guidance has been designed in order to intercept reference as soon as possible. 

For this reason, interception angle changes proportionally to cross-track error. It 

is calculated using the following expression: 
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𝜎 = 𝑚𝑖𝑛((𝐾𝑝 ∙ 𝑒𝑐𝑡) , 𝜎𝑚𝑎𝑥) (5-4) 

where, 

𝐾𝑝 = Proportional Control Factor 

𝑒𝑐𝑡 = Cross-track error 

𝜎𝑚𝑖𝑛= Minimum interception angle 

This means that if aircraft position is considered far from reference trajectory, 

interception angle will be more perpendicular to reference trajectory and therefore 

reference node will be closer to cross-track error node. In the opposite situation, 

in case aircraft is at a position considered close from reference trajectory, this 

interception angle becomes narrower. 

For this particular case, the concept of “far” and “close” is directly defined by the 

constant 𝐾𝑝, which is empirically adjusted depending of the guidance system 

desired behaviour. 

A design value 𝜎𝑚𝑎𝑥 is defined to limit the maximum interception angle available 

(e.g. interception angle could be limited to 30 degrees). 

Once reaction distance is obtained, it is possible to obtain reference point based 

the algorithm shown in Figure 5-4. 
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Figure 5-4: Compute reference point algorithm 

Algorithm represented in previous figure aims at finding the node/point (𝑥𝑟𝑒𝑓, 𝑦𝑟𝑒𝑓) 

that closest matches the reaction distance (𝑑𝑟𝑒𝑎𝑐𝑡𝑖𝑜𝑛) inside the position vectors. 

Commands for lateral guidance are represented by aircraft heading. This heading 

is computed using the following expression: 

𝜑 = ( 
180

𝜋
∙ tan−1 (

𝑦𝑎𝑖𝑟 − 𝑦𝑟𝑒𝑓

𝑥𝑎𝑖𝑟 − 𝑥𝑟𝑒𝑓
)) − 90 (5-5) 

where, 

𝑎𝑖𝑟 = current aircraft position 

𝑟𝑒𝑓 = reference point position 
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Once heading command is calculated, a new interception angle is calculated for 

next loop iteration. 

5.4.2 Vertical Guidance 

Vertical guidance has been designed in order to generate vertical speed 

commands so aircraft maintain reference altitude. Unlike lateral guidance, 

altitude reference point is not located far in advance and does not depends of 

interception angle. 

Once tracking system computes cross-track error, an altitude reference value is 

obtained from the node next to cross-track error. This is the most immediate (and 

possibly parallel to aircraft position) node. 

The vertical guidance command is defined by aircraft vertical speed required to 

achieve the reference altitude proportionally to a design factor (𝐾𝑠). Therefore, 

vertical speed command is calculated based on equation: 

𝑉𝑠 = 𝐾𝑠 ∙ (𝑧𝑖+1 − 𝑧𝑎𝑖𝑟) (5-6) 

where, 

𝐾𝑠 = Proportional Vertical Control Factor 

𝑖 = index of current cross-track error reference error 

𝑎𝑖𝑟 = refers to current aircraft vertical position 

Following same design line used in previous section, vertical guidance command 

is limited by design factors depending of aircraft performance. The following 

interval has been taken into account for vertical guidance. 

𝑉𝑠 ∈ [𝑉𝑠𝑚𝑖𝑛, 𝑉𝑠𝑚𝑎𝑥] 
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5.5 Avionics Systems Indicators 

Guidance commands are usually linked to aircraft flight control system or 

autopilot system. However, visual indicators should be used in order to show the 

correct path to crew. This section aims at explain a proposed solution for this 

problem. 

Lateral guidance command is represented by aircraft heading. However, this 

command does not indicate how far the reference point is with respect to aircraft 

position. Similarly, vertical guidance command is represented by vertical speed, 

but an explicit difference between aircraft altitude and reference altitude should 

be indicated to crew. 

Following the same strategy used in Instrument Landing Systems (ILS) in modern 

aircraft [34], reference trajectory is indicated using lateral and vertical bars 

located on the Attitude Indicator (AI) on the Primary Flight Display (PFD) as 

shown in Figure 5-5. 

 

 

 

 

 

 

 

 

 

For lateral guidance, a vertical bar moves proportionally to cross-track error from 

left-to-right or in the other way. In order to obtain this effect, aircraft relative 

position with respect to current path is calculated in main guidance loop (Figure 

5-1). 

Figure 5-5: Cross-track and altitude error indicators in PFD 
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In order to calculate the relative position, it is used the sign of 𝑙𝑟, which is the 

determinant of vectors (𝐴𝐵̅̅ ̅̅ , 𝐴𝑀̅̅ ̅̅̅) where 𝑀(𝑥, 𝑦) is the aircraft position and 𝐴 and 

𝐵 are the points that compose the path. This determinant is calculated using 

following expression: 

𝑙𝑟 = (𝑥𝑟𝑒𝑓 − 𝑥𝑖−1) ∙ (𝑦𝑎𝑖𝑟 − 𝑦𝑖−1) − (𝑦𝑟𝑒𝑓 − 𝑦𝑖−1) ∙ (𝑥𝑎𝑖𝑟 − 𝑥𝑖−1) (5-7) 

where, 

𝑖 = index of current cross-track error reference error 

𝑥 = East position 

𝑦 = North position 

𝑎𝑖𝑟 = refers to current aircraft position 

𝑟𝑒𝑓 = reference point position 

5.6 MATLAB® Simulation Framework 

First part of guidance module has been implemented and tested using MATLAB®. 

For this, a rapid simulation environment for unit testing has been created. 

This simulation framework has been created using simple equations for point 

displacement in flat surface as follows: 

𝑥 = 𝑥𝑎𝑖𝑟 + 𝑉𝑠𝑖𝑛(𝜑) (5-8) 

𝑦 = 𝑦𝑎𝑖𝑟 + 𝑉𝑐𝑜𝑠(𝜑) (5-9) 

where, 

𝑥 = aircraft new north distance 

𝑦 = aircraft new east distance 

𝑎𝑖𝑟 = refers to current aircraft 

V = aircraft speed 

𝜑 = aircraft heading 
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This framework has been used to test preliminary aspects of tracking system 

such as cross-track error computation and features of guidance system such as 

heading, reaction distance and reference point calculation. 

Complete code of this framework as well as an initial version of Tracking & 

Guidance system can be found in Appendix D. 

5.7 4DT RS Guidance Module 

The 4DT RS Guidance module has been coded in C# and compiled to support 

Windows® operating system. 

This guidance module is composed by the following components: 

1) Guidance System Core 

2) 4DT RS Guidance Graphic User Interface (GUI) 

3) X-Plane® UDP Communication interface 

5.7.1 Guidance System Core 

Guidance system core is based on the implementation of the guidance algorithm 

explained in previous section. 

The core is composed by functions that synthetize aircraft position from GNSS 

system, a main control loop makes use of a timer element [68]. This means that 

each iteration is executed at each timer_tick event and finally a set of guidance 

commands which is composed by heading, vertical speed, reference altitude and 

vertical/horizontal displacement for attitude indicator bars. 

Figure 5-6 shows the main control loop and its interaction with aircraft dynamics 

model. 
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Figure 5-6: Top-level view of tracking & guidance system 

Note that basically, the guidance system core involves all the components of the 

guidance system excepting those that are related to aircraft dynamics.  

The guidance system has been designed to use any aircraft model. However, for 

practical and more realistic purposes this model has been replaced with data 

received from a commercial flight simulator.  

5.7.2 4DT RS Guidance Graphic User Interface (GUI) 

From the user point-of-view, the guidance module is shown as window which 

contains information relevant to Tracking & Guidance system. 

 

Figure 5-7: Tracking & Guidance System GUI 
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The graphic user interface is divided in three sections: aircraft status, guidance 

and Attitude Indicator (AI) simulation. 

First section shows relevant information regarding to aircraft position, this is 

latitude, longitude and altitude. 

Second section shows information related to tracking and guidance. Cross-track 

error is expressed in nautical miles. Next to cross-track error and reaction 

distance fields, the node number in equivalent to its vectors position is shown 

between brackets. 

For example, if cross-track error field shows “5 (12)” this means that aircraft 

position is 5 nautical miles off reference trajectory. This distance is being 

measured with respect to node in position 12 of reference trajectory vector. This 

information is quite useful specially for showing how reference point changes to 

a farer position when cross-track error is close to RNP condition. 

 

Figure 5-8: Example of reference point selection 
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An example of this effect is shown in following Figure 5-8, where it is visible that 

blue aircraft heads to a reference point located farer from cross-track node in 

comparison with red aircraft’s reference point. In practical environment this effect 

is responsible for creating an arc-shaped path by aircraft when flying back to 

reference trajectory. 

Third section is represented by indicators proposed to be shown in Attitude 

Indicator (AI) of Primary Flight Display (PFD). Indicators are represented by two 

bars that move horizontally and vertically in proportion to cross-track error and 

altitude error respectively. 

For this effect, it has been implemented a function that moves bar images a 

defined number of pixels in up/down or right/left directions, depending of the value 

of errors computed by tracking system. Obviously, this movement has been 

limited to the attitude indicator area. 

Finally, an on/off button represented by a checkbox object has been added in 

order to provide more control to the user about guidance system. Once Guidance 

Module GUI is launched, this button is switched off by default. 

5.7.3 X-Plane® UDP Communication 

Preliminary unit tests were performed while designing this tracking and guidance 

system using the MATLAB® simulation framework mentioned in previous section. 

However, in order to properly test and validate this guidance system it is 

necessary to make use of more realistic flight dynamics. For this reason is has 

been used a commercial flight simulator. 

X-Plane® is a commercial flight simulator developed by Laminar Research [72]. 

This simulation software provides advanced communication features that allows 

user to create external plugins or add-on by making use of a standard 

communication protocol. In addition, X-Plane® provides to the user an interface 

to export to data files almost any parameter resultant from aircraft dynamics. This 

is aircraft position, heading, speeds and pitch-roll-yaw angles. 
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X-Plane® uses a standard communication protocol named User Datagram 

Protocol [5]. This protocol allows sending and receiving data to external software 

and its interaction with aircraft flight dynamics in runtime. It is known that UDP 

communication does not support advanced communication error detection and 

correction methods such as Automatic Repeat Request (ARQ) or Forward Error 

Correction (FEC) [22], which makes vulnerable for critical applications that 

requires these features. In this case, making use of ARINC communication 

standards is necessary. However, for this particular case, where a computer 

simulation is carried out, making use of UDP protocol has been considered 

enough. 

4DT RS Guidance Module communication interface has been implemented as a 

stand-alone part by making use of UDP communication libraries developed by 

Amaro et al. [74]. 

Methods for sending and receiving datagrams and its future conversion to 

decimal base is provided by these libraries by making use of a structure named 

UDP_Pack. 

An UDP_Pack is composed by ten (10) fields of double type as shown in the 

following Table 5-1. 

Table 5-1: UPD_Pack specification [74] 

Field Description Units 

AUTO_ALT Autopilot panel Altitude Hold Feet 

AUTO_HDG Autopilot Panel Heading Hold Degrees 

AUTO_SPD Autopilot Panel IAS Hold Knots 

AUTO_VS Autopilot Panel Vertical Speed Hold Feet / Minute 

Curr_ALT Current Aircraft Altitude Feet 

Curr_LON Current Aircraft Longitude (from GNSS) Degrees 
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Curr_LAT Current Aircraft Latitude (from GNSS) Degrees 

Curr_HDG Current Aircraft Heading (from HDG) Degrees 

Curr_TSPD Current Aircraft True Airspeed Knots 

Curr_SPD Current Aircraft Indicated Airspeed Knots 

First four (4) fields are used to send data to aircraft autopilot control panel. Last 

six (6) fields are used to receive data from aircraft systems. Position related 

information (latitude and longitude) is received from GNSS aircraft systems. 
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Chapter 6  

TEST AND RESULTS 

6.1 Introduction 

Activities carried out to test the 4DT generator and guidance system were 

focused on fuel, time and noise reduction. For this section, it has been prepared 

three complete testing cases to demonstrate the functionalities and capabilities 

of developed system. 

In section 6.2, it is presented a test case based on fuel and time reduction for a 

full flight between Paris (LFPG) and Amsterdam (EHAM) airports. 

Section 6.3 it is proposed a solution to a real noise problem around Gatwick 

airport vicinities by optimizing a section of the instrumental departure procedure 

of this airport. 

Lastly, in section 6.4 it is evaluated a trajectory generated by the 4D trajectory 

generator by carrying out a flight simulation using the 4DT RS Tracking & 

Guidance module. 
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6.2 Test case (Fuel and Time Optimization) 

Flight Plan Selected: Paris Charles de Guille (LFPG) to Amsterdam Schiphol 

(EHAM) 

Paris - Amsterdam is an important route that covers a total distance of 313 miles. 

According to statistics released by Amsterdam Airport Report [50] in 2013, Paris-

Charles de Gaulle is the third busiest route from Schiphol airport handling more 

than 1.1 million passengers per year. The top airlines demanding this route are 

Air France and KLM [50]. 

A standard flight plan between LFPG and EHAM has been composed by a total 

of nine (9) waypoints defined as shown in the following Table 6-1. 

Table 6-1: LFPG – EHAM Flight Plan 

Waypoint Latitude (deg) Longitude (deg) 

LFPG 49.0097 2.5478 

NURMO  49.8261 2.7553 

PERON 49.9125 2.8400 

CMB 50.2281 3.1515 

VEKIN 50.4042 3.2750 

ADUTO 50.5150 3.3617 

FERDI 50.9126 3.6370 

HELEN 51.2353 3.8690 

EHAM 52.3081 4.7642 

LFPG to EHAM is a high-traffic route, however most crossroads and congested 

areas are present between fixes CMB and FERDI. Also, holding patterns in the 

vicinities of these airports during approach and descending phases are often 

needed due to limited airport landing capacities. Optimizing this trajectory could 

prevent performing these holding patterns and could improve traffic flow around 

conflicting points. 

The main idea of this testing case is to demonstrate and validate the capabilities 

of 4D Trajectories Research Software v0.1a developed in this project by 
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optimizing a full flight plan while reducing Fuel or Time. Also providing a predicted 

time of arrival for each route is the first step to perform four dimensional 

procedures by future Flight Management Systems (FMS) and ATM Ground 

Systems. 

6.2.1 Setting Up Testing Case in 4DT RS 

Paris Charles de Guille (LFPG) airport is composed by four runways heading to 

East-West direction (09-27 or 08-26). Runway 09R has been used for this testing 

case. Initial parameters were used for speed, mass and heading as shown in 

Table 6-2. 

Table 6-2: Initial Conditions 

Parameter Initial Value 

Heading (deg) 090 

Speed (knots) 180 

Mass (lb) 185,000 

Each waypoint has been input in the software using Database Viewer Tool and 

Fight Plan Editor method. It has been decided to run two different cases for same 

flight plan so it is possible to compare and analyse the difference between fuel 

and time optimized trajectories. A first case has been run using Flight Time as 

main performance index and another case has been setup to reduce Fuel 

Consumption. Total optimization CPU-time was around 4 minutes for each case 

using a 2.63 GHz dual-core processor and 8GB of RAM. 

Results of both trajectories are shown and can be easily contrasted using the 

embedded map feature. Also vertical and horizontal profiles could be compared 

using embedded plots. Figure 6-1 shows the map view obtained from 4DT RS. 

Figure 6-2 and Figure 6-3 show the trajectory horizontal and vertical profiles. 
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Figure 6-1: Fuel vs Time Optimization | Map View 

 

Figure 6-2: Fuel vs Time Optimization | Horizontal Profile 
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Figure 6-3: Fuel vs Time Optimization | Vertical Profile 

Predicted time of arrival, TOC and BOD points have been exported and are 

shown in the following Table 6-3 and Table 6-4. 

Table 6-3: TOC, BOD and PTA | Time Optimization 

Waypoint Latitude (deg) Longitude (deg) PTA (min) 

LFPG 49.0097 2.5478 - 

NURMO  49.8261 2.7553 8.15 

TOC 49.86 2.76 8.36 

PERON 49.9125 2.8400 8.94 

CMB 50.2281 3.1515 13.07 

VEKIN 50.4042 3.2750 15.09 

ADUTO 50.5150 3.3617 16.32 

FERDI 50.9126 3.6370 20.76 

HELEN 51.2353 3.8690 24.43 

BOD 51.25 3.88 25.68 

EHAM 52.3081 4.7642 37.05 

PTA = Predicted time of arrival 
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Table 6-4: TOC, BOD and PTA | Fuel Optimization 

Waypoint Latitude (deg) Longitude (deg) PTA  (min) 

LFPG 49.0097 2.5478 - 

NURMO  49.8261 2.7553 8.45 

TOC 49.82 2.75 9.14 

PERON 49.9125 2.8400 9.27 

CMB 50.2281 3.1515 14.33 

VEKIN 50.4042 3.2750 16.83 

ADUTO 50.5150 3.3617 18.34 

FERDI 50.9126 3.6370 23.99 

HELEN 51.2353 3.8690 27.92 

BOD 51.62 4.19 33.6 

EHAM 52.3081 4.7642 40.62 

PTA = Predicted time of arrival 

In one hand, aircraft speed has been maximal for almost whole trajectory while 

reducing flight time. In the other hand, fuel reduction case results shown an 

average of 337.2 knots which is equivalent to 1% slower than Time case (390.2 

knots).  

Predicted time of arrival (PTA) has been calculated based on fly-by waypoints. 

For these particular cases, predicted time of arrival shows a fast ascending 

phase. Top of Climb (TOC) point is obtained around 8-10 minutes after take-off. 

Descending phase evaluation for both cases is different than ascending phases 

comparison. Results of Figure 6-3 show remarkable continuous descent paths. 

However, descent trajectory has been extended for 13 minutes on Time 

optimization results while Fuel optimization results shows a faster descending 

phase. 
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Figure 6-4: Fuel vs Time Optimization | Speed Profile 

Fuel consumption has been reduced in 16% with respect to Time optimization 

case. In contrast, flight time has been reduced 8.5% with respect to Fuel 

optimization case. Figure 6-5 shows mass reduction comparison between both 

trajectories. 

 

Figure 6-5: Fuel vs Time Optimization | Fuel Consumption 
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Detailed View Tool has been used to obtain aircraft status at each optimization 

node along the flight plan. It can be considered as a useful tool to follow aircraft 

trajectory and detecting possible errors in optimization process. 

Different flight data values regarding to flight cost and flight cost per hour can be 

obtained by changing price per hour parameter in Aircraft Editor. Flight 

Information using a standard Jet-A1 fuel price at Paris Charles De Guille 

published in September 2015 Fuel Survey [63], is shown in the following Table 

6-5. 

Table 6-5: Flight Information | Time and Fuel Optimization 

Parameter Trajectory-F Trajectory-T 

Total Time (min) 41.64 38.06 

Total Distance (nautical miles) 273.48 273.48 

Fuel Consumption Rate (lb / hr) 9,761.51 12,811.83 

Fuel Consumption Rate (gal / m) 3.7 4.44 

Fuel Consumed (gal) 1,011.04 1213.13 

Fuel Consumed (lb) 6,774 8,128 

Fuel Cost per hour (usd) 4,370.83 1,986.64 

Fuel Cost (usd) 3,033.13 1,261.4 

 

Trajectory-T = trajectory resultant from time optimization 

Trajectory-F   = trajectory results from fuel optimization 
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6.3 Test case (Noise Optimization) 

Airport Selected: London Gatwick Airport (EGKK) 

London Gatwick airport is the UK second largest airport and the busiest single-

runway international airport of the world servicing over 31 million passengers in 

2010. In order to demonstrate the capabilities of 4DT Generator Research 

Software, a Noise Optimization test has been run in order to solve a potential 

problem related to Gatwick's Standard Departure Procedures. 

This testing case in based on information provided in Flight Evaluation Report 

released in 2010 [35] by Gatwick Airport (EGKK) Flight Evaluation Unit (FEU). 

Gatwick Airport is equipped with noise monitors situated exactly 6.5km from the 

roll point of the runways. Noise levels are registered at each monitor when aircraft 

take-off. If noise registered is greater than noise limits fixed by Department of 

Transport, a noise infringement is registered. 

Despite of no infringements were registered for any of total 120,249 departures 

registered in 2010, the number of enquiries registered in that year raised to its 

maximum value since 2006. A total of 6,936 enquiries from 409 callers have been 

registered [35]. Aircraft noise, low flying and night flights are some of common 

causes of these enquiries. Also, it could be inferred that low flying and night flights 

complaints could be also related to aircraft noise. An important fact is that biggest 

amount of these enquiries were registered in populated areas located more than 

10 miles away from Gatwick Airport where noise optimization procedures can be 

applied. 

Hever, Marsh Green and Edenbridge are villages located around 12-13 miles 

East of Gatwick Airport's runway. Around 56% of all enquiries were registered in 

these villages, which is equivalent to more than 1000 enquiries from each area. 

Other villages such as Lingfield, Dorking and Crawley registered less than 300 

enquiries. Table 6-6 shows most important enquiries registered in 2010. 
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Table 6-6: Enquiries registered in 2010 [35] 

Village Enquiries Callers 

East Gringstead 1,378 13 

Marsh Green 721 2 

Hever 568 4 

Edenbridge 459 29 

Lingfield 331 8 

Dorking 132 25 

Crawley 73 50 

Current Noise Abatement procedures forbid overflying Horley and Crawley 

villages located at North and South of airport respectively. However, the location 

of more affected areas mentioned above matches with trajectories defined by 

Gatwick Standard Instrumental Departure (SID) procedures for exits CLN 5P/5W, 

DVR 2P/2W and BIG 3P/3W. Marsh Green, Hever and Edenbridge registered a 

total of 1748 enquiries. Note that East Gringstead does not match with this SID 

therefore it has been neglected for this case. 

There are three different departure procedures that head to East or North-East 

exit waypoints: CLACTON (CLN), DOVER (DVR) and BIGGIN (BIG). The main 

problem occurs between airport and intermediary fix TUNBY (N51 10.1 E00 19.5) 

located at 14 miles off airport. Navigation charts inform to maintain a 4% minimum 

climb gradient until 3000ft, however no procedures exist in order to avoid flying 

over affected populated areas in these aircraft routes towards TUNBY fix. 

The mentioned three SID procedures have been mixed in just one figure. The 

problem exists in the red section which connects Gatwick Airport to TUNBY fix. 

The affected villages have been highlighted in order to show the problem. 
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6.3.1 Setting Up Testing Case in 4DT RS 

The main idea of this case is to show how it is possible to optimize aircraft 

trajectory in order to reduce noise levels on departure phase with respect to 

affected villages. 

Two noise observers were positioned in the testing scenario. One of them was 

located at Marsh Green village boarder and the other was located at Hever village 

border. The idea is to optimize the trajectory around these two observers. Initial 

waypoint is located at runway 08R/26L and final waypoint is located at TUNBY 

fix (N51 10.1, E00 19.5, 6000 ft). 

Initial heading has been set 80 (Runway 08R) and approximate value for aircraft 

V2 speed has been set as initial speed. Also, aircraft limits has been set to obtain 

speed values no greater than 250 knots due to airspace limitations for flight level 

below 10.000 ft. 

Testing case has been run using noise performance index and 50% of balance 

between observer 1 and observer 2 (This means there is not special preference 

to optimize with respect to one of the observers). The following figure shows the 

testing case screenshot run in 4DT Trajectory Research Software. Noise level 

tool has been used to draw a contour plot composed by four noise levels of 30 

(dark red), 45 (orange), 65 (yellow) and 90 dB. Engine noise model used for this 

case was PW2036 at maximum thrust. 

 

Figure 6-6: Optimal trajectory compared to SID baseline procedures 
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Figure 6-6 above shows optimal trajectory generated by 4DT Research Software 

(blue) contrasted to current SID baseline procedures for exits DVN, CLN and BIG 

(black). 

Optimization results show an important change in aircraft trajectory with respect 

to current SID. Noise levels perceived at Observers 1 and 2 are shown in Figure 

6-7. 

 

 

Figure 6-7: Noise Exposure Level at Observer 1 (top) and Observer 2 (bottom) 

Maximum noise levels perceived at observers are around 78 dB. It is important 

to highlight that these results show most pessimist scenario. In order to obtain a 

more likely scenario, it should be considered that these observers were located 

at the border of affected villages (Marsh Green and Hever). In addition, it has 
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been considered that engines produce always maximum possible noise (max. 

thrust) during optimization process, however, trajectory results shows that thrust 

average was 88,262 lb (54.75% of total thrust). This means that actually 

maximum sound levels perceived at populated areas of these villages would be 

considerable lower in most departure operations. 

Current SID procedures strategy is that aircraft follows runway 08R heading (080) 

for 3 nautical miles up to 338 GE point and then heading changes to 92 degrees 

until arriving to TUMBY fix. Optimal trajectory shows a significant difference with 

respect to these SID procedures. Aircraft heading changed from the very 

beginning to avoid flying close to affected villages. TUMBY is intersected with a 

final heading of 62 degrees which could be beneficial for North-East exits 

(CLACTON and BIGGIN). 

Altitude profile is defined by changes in vertical speed, especially between 3000ft 

to 4000ft where vertical speed changes from 400 ft/min to 1000 ft/min. 6000 ft. 

are reached at 6.42 min which result in an average of 940 ft/min which is 

equivalent to a climb gradient no greater than 3%. 

Altitude profile and speed profile are shown in Figure 6-8 and Figure 6-9. 

 

Figure 6-8: Altitude Profile – Noise Optimization 
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Figure 6-9: Speed Profile – Noise Optimization 
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6.4 Test case (Trajectory evaluation using 4DT RS T&G Module) 

A testing case has been created based on the reference trajectory obtained from 

Section 6.2 in order to test and evaluate generated trajectory. This is a full flight 

from Paris Charles de Guille airport (LFPG) to Amsterdam Schiphol airport 

(EHAM) exported using 4D Trajectories Research Software. 

This testing case has been designed in order to test the following aspects: 

1. Test and validate trajectories generated by 4DT Research Software by 

carrying out a full flight along the trajectory. 

2. Test the aircraft response capability to return to reference trajectory when 

for any reason it loses its normal course. 

3. Test tracking system capabilities when computing lateral and vertical 

errors. 

4. Test guidance system capabilities to calculate guidance commands that 

allows aircraft follow a reference trajectory. 

5. Test Tracking & Guidance module graphic user interface and 

communication interface. 

6. Test guidance indicators proposed for Primary Flight Display (PFD) and 

existent indicators for Navigation Display (ND) when setting up values in 

the autopilot control panel. 

Initial setup of Tracking & Guidance module was performed before carrying out 

this test. It has been exported the trajectory generated by 4DT RS and imported 

into the 4D RS Guidance Module. 

It has been configured X-Plane® in order to allow interaction with external 

software following procedures explained in its documentation [72]. Subsequently, 

it has been tested the sending/receiving functions of guidance module. 

It has been created a new flight simulation environment using a standard jet 

aircraft with similar characteristics that the one used to generate the trajectory.  
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Additionally, weather parameters have been setup as shown in the following 

Table 6-7. 

Table 6-7: Visibility and Cloud configuration 

Cloud Layer 1 Altitude (ft) 10,000 

Cloud Layer 2 Altitude (ft) 20,000 

Cloud Layer 3 Altitude (ft) 26,000 

Visibility (miles) 12.5 

For this test case, also three (3) wind layers2 has been setup as shown in 

following Table 6-8. 

Table 6-8: Wind speed configuration 

Wind Layer Altitude (ft) Wind Speed (kts) 

5,000 12 

7,500 21 

25,000 18 

Aircraft initial position has been set to 7 nautical miles off and 4,000 feet below a 

randomly-selected point located at middle of trajectory. In this way, it has been 

possible to measure the reaction capacity of tracking and guidance system to 

return aircraft to reference course and track. 

Figure 6-10 shows aircraft initial position in horizontal plane, reference trajectory 

and aircraft trajectory followed once tracking & guidance module has been 

activated. Additionally, it has been added a simulation result of MATLAB® 

simulation framework generated for lateral guidance unit testing. 

                                            

2 X-Plane® v9.7 weather setup limits the number of available wind layers to three (3) 



 

137 

 

Figure 6-10: Horizontal Profile | Tracking & Guidance Module 

Once reference trajectory was intercepted, guidance commands allowed aircraft 

to follow its course along this trajectory until reaching last waypoint (EHAM).  

 

Figure 6-11: Cross-track error for lateral guidance 
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Cross-track error is shown in Figure 6-11. It is visible that error maintains below 

1.5 nm until 400 seconds. It has been detected that algorithm for guidance is 

sensitive to arc shaped trajectories that require a constant computation of new 

heading. This is evidenced after 400 seconds when cross-track error oscillates 

around 4 nautical miles. 

Figure 6-12 shows that aircraft heading obtained from X-Plane® realistic 

simulation also matches similar values than obtained using MATLAB® Simulation 

Framework. 

 

Figure 6-12: Aircraft heading comparison 

Figure 6-13 shows aircraft vertical profile obtained from X-Plane® simulation 

contrasted with Reference Trajectory. It is shown the difference of 4,000 feet 

below reference path for initial aircraft position. 

First seconds of simulation, guidance system allows aircraft to increase vertical 

speed in order to reduce altitude error. Cruise altitude is maintained until descend 

phase. 

Descent is started some seconds before by aircraft. This effect is produced 

because of reference trajectory information is taken with respect to far in advance 
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by guidance system. Reference node for vertical guidance has been 

implemented to be always the following node of cross-track error point. 

Autopilot control is quite effective and interprets guidance commands with no-

delay. Despite of descending phase has been started aircraft trajectory tends to 

maintain similar descending rate than reference path.  

 

Figure 6-13: Vertical Profile | Tracking & Guidance Module 

Guidance visual indicators on Attitude Indicator in Primary Flight Display moved 

correctly according to direction of reference trajectory. For descending phase, 

horizontal bar maintained a position below center line which means that aircraft 

required to expedite its descending rate. This effect has been produced due to 

same reasons explained before, reference node detected was always taken far 

in advance with respect to aircraft current position. 

Non-smoothness has been detected at some points for Time optimization results 

in tests explained in Section 6.2. However, no special effort has been 

experienced by aircraft/autopilot system to follow the trajectory around these 

points. Nevertheless, since this is a particular case where non-smoothness 

detected has not affected aircraft course, an exhaustive analysis of the 
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optimization framework and NLP might be required in order to understand the 

cause of these non-smooth points in order to prevent undesired effects of this 

issues in future tests. 

As mentioned in previous chapter, SNOPT solver has been properly linked to 

4DT core, however no tests have been carried out yet using this NLP solver. 

6.5 Known Limits and Improvements 

Current 4DT generator and guidance system runs properly. Important efforts 

have been carried out in order to create a stable version. However, since this is 

a first version some non-smoothness effects has been detected while finding an 

optimal solution. Some errors and bugs have been identified in testing milestone; 

this section pretends the user to be aware of them. 

The system aims at predicting almost any trajectory defined by almost any flight 

plan. However, it is known that computer resources are limited. Some actions 

have been taken in order to adjust the number of nodes (and consequently 

memory) allocated by PSOPT. These adjustments are totally dependent of the 

number of waypoints. Even thought, according to tests performed, flight plans 

composed by more than 25-30 waypoints produce a general application crash 

due to a lack of memory. 

Since Top of Climb (TOC) point coincides with first waypoint, the position of first 

waypoint is important. The optimal control solver could diverge while finding an 

optimal solution if cruise altitude is set to be reached too early. It is important that 

input flight plan information be as much as consistent as possible with equations 

(4-11), (4-12), (4-20) and (4-21). 

Despite of database contains a considerable amount of entries (150,000+), it is 

known that this database should be improved with more significant data by 

containing more navaids or arrival/departure procedures. 

It is known that convex hull-based algorithms are an efficient way to produce 

polygons based on a set of points. Their application in noise grid computation is 

valid and works properly. However, using algorithms that produce concave 
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polygons would be more appropriate in order to obtain more accurate noise 

contour plots. Nevertheless, concave polygon algorithms are known for their 

extreme complexity and unlike convex solutions, they do not produce an 

exclusive solution. For this reason, making use of them has been neglected in 

this project. 

It is known that 4DT Core could take a considerable amount of time to generate 

a trajectory when a medium-large flight plan is input. This effect has been 

detected in Windows platform. It has not carried out a formal testing case aiming 

at comparing the performance for different platforms, however a priori it is 

possible to detect that execution time on Linux systems is considerable shorter 

than Windows systems. 

By decreasing the number of nodes to be used by PSOPT it has been possible 

to reduce the amount of execution time. However, it is known that reliability and 

time execution efficiency are important factors to take into account for on-board 

systems. For this reason, it is considered that execution time could be a potential 

improvement for future versions. 
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Chapter 7  

CONCLUSIONS AND FUTURE WORK 

7.1 Conclusion 

The main objective of this project was developing a 4D Trajectories Generator 

and Guidance System. 

This project resulted on developing 4D Trajectories Research Software v0.1. A 

Software Suite that involves a 4D Trajectories Generator, a set of tools to 

evaluate and compare optimal trajectories and a Tracking & Guidance system 

that can be used to validate and test these trajectories by using a commercial 

flight simulator. Based on the experiences obtained while developing and testing 

this system and contrasting with proposed objective, it is possible to drawn the 

following conclusions:  

An extensive review of current Flight Management Systems (FMS) and Flight 

Management Computer (FMC) functionalities including Required Time of Arrival 

(RTA) features has been carried out. This review phase compared different 

options existing in the current market. It has been determined that there exists 

current features that could be enhanced in order to fulfil the new requirements 

proposed by future Avionics and Air Traffic Management (ATM) systems. 

4D Trajectories Generator has been designed, developed and included into the 

core of 4D Trajectories Research Software. This trajectory synthetizer allows user 

to obtain optimal trajectories in order to reduce time, fuel or noise while providing 
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an easy method for configuring, testing and comparing generated trajectories. 

The trajectory generator assembles the data input by the user, which is mainly 

composed by aircraft performance data, flight plan and initial conditions to 

subsequent generate an optimal trajectory. This is achieved by setting up an 

Optimal Control Problem (OCP) and using PSOPT solver to find a solution, if 

exists. 

4D Trajectories Research Software also provides a set of tools embedded into a 

user-friendly graphic interface that allows user to analyse, compare and setup 

testing cases. Detailed view, navigation database, noise contours and multi-

trajectory plotting are some of features including in this software. Most optimal 

control solver preferences can be configured using the graphic user interface. 

Lastly, all these tools are properly explicated into the integrated Help form, which 

also includes several examples about how to use this software. 

4D Tracking & Guidance system has been developed in order to test and validate 

optimal trajectories developed by 4DT Generator. It has been integrated as a 4DT 

RS module. Aircraft dynamics data for Tracking & Guidance module is obtained 

from a commercial flight simulator that is connected to external applications by 

using a User Datagram Protocol (UDP). 

Numerous tests has been carried out in order to check and validate the 

capabilities of 4D Trajectories Research Software including all its modules. 

A particular case has been based on a high-traffic European route between Paris 

and Amsterdam in order to test and validate the trajectory generation capabilities 

of the software. This test has been focused based on reducing fuel consumption 

and flight time. 

Noise reduction tests have been carried out based on a real problem which is 

affecting vicinities of London Gatwick airport. This test resulted into a proposal to 

modify part of standard instrumental departure based on resultant noise optimal 

trajectory. 



 

144 

Predicted trajectory of first testing case has been validated by simulating this flight 

using the Tracking & Guidance module. Results shown that aircraft can follow the 

trajectory with an error below 4 nautical miles. 

Finally, it has been analysed the existence of possible improvements that could 

be taken into account for future works of this project. 

7.2 Future Work 

This project has been completed based on objectives proposed. However, it has 

been identified several features or improvement that could be achieved in the 

future. 

Performance computation and execution time seems to be one of the most critical 

applications for future development. It has been proved that 4DT Core executes 

faster in Linux-based systems. Developing a Graphic User Interface (GUI) for this 

operating system would extend the domain of usability of 4DT RS. However, on-

board applications or embedded systems requiring real time capabilities, it would 

be necessary to significantly improve computation time by optimizing the code 

execution. 

A wind model has been neglected for this trajectory generator. Despite 

performance computation and execution time could be affected by the use of a 

more complex model. The wind effect in fuel consumption and time of arrival is 

important to improve the accuracy of the solution. Therefore it is suggested to 

improve this synthetizer by including a wind model with components in 

translational axis. 

Synthetizing optimal trajectories based on noise reduction is limited to departure 

phases including two reference points. Noise data available reflects aircraft 

engine noise, and it is demonstrated that other aircraft components have to be 

taken into account (e.g. flaps, slats, landing gear) for arrival phases. It is 

considered that including noise reduction capabilities for arrival phases including 

more than two observers could be a challenging and interesting work for the 

future. 
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It is considered that success on finding an optimal trajectory depends of how 

smart-enough is the optimal control setup. However, the presence of non-smooth 

points have been detected in some solutions. It is suspected that this could be 

matter of the non-linear programming solver (IPOPT). As mentioned before, 

SNOPT is linked to PSOPT, however no tests has been carried out using this 

NLP solver. 

Database included in this software is limited to a set of most-used navaids (FIX, 

VOR, NDB) and airports. Future work could turn around improving the 

components included in database by adding capabilities to support STAR, SID, 

Jet/Victor airways and any of path terminators explained in ARINC-424 

specification. 

7.3 Challenges 

It has been spent one year in development of this project. The journey from 

concept to 4DT Generator & Guidance System has been challenging and 

exciting. Current version works properly and it is close to be a computational 

stable version. Some of challenges experienced while developed this project are 

explained in this section. 

It has been put a considerable amount of time and effort into studying control 

theory and finding the best way to use an optimal control solver into a stand-alone 

application. After performing numerous tests using DYNOPT, MATLAB® fmincon, 

IPOPT and other solvers, it has been decided the best option for this project was 

making use of PSOPT libraries. 

Installing and using PSOPT libraries was exceptionally challenging in the first 

phase of the project. Continuous communication with its developer (Dr. Victor 

Becerra) and collaborators (Dr. Markus Sauermann) has carried out in order to 

successfully compile these libraries. 

As typical in aerospace field, deficiency of information in public domain has been 

another challenge of this project. Obtaining access to BADA files or real flight 

data to compare costs, fuel consumption and validate tests has input few delays 

in the project. Most of these issues were solved with extra-time worked. 
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Finally, a considerable amount of time has been put in carrying out numerous 

tests by the author and other collaborators. Fortunately, several bugs and 

improvements have been obtained from these tests and contributed to obtain 

more stables versions. 
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Appendix A 4DT RS Overview 
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Appendix B Tracking & Guidance System Overview 
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Appendix C 4DT RS Functions 

Function: MappingWGS 

Inputs: latitude1, longitude1, latitude2, longitude2 

Output: flat_point 

   

1) Create a flat point 
 

2) Compute delta values 

       delta_lat = lat2 - lat1 

       delta_lon = lon2 - lon1 

    

3) Compute Latitude and Longitude in Feet 

       north_distance = delta_lat * KM2FT(110.54) 

       east_distance = delta_lon * KM2FT(111.32) * cos(DEG2RAD(lon_avg)) 

 

4) End 

    

 
 

Description: Computing Time Constraints 

   

// Computing End Time Lower 

double EndTime_lower = pow((pow((flat_waypoints[i].east_dist - flat_waypoints[i-
1].east_dist), 2.0) + pow((flat_waypoints[i].north_dist - flat_waypoints[i-
1].north_dist), 2.0)), 0.5) / (velocity_upper[i-1]); 

 

// Computing End Time Upper 

double EndTime_upper = pow((pow((flat_waypoints[i].east_dist - flat_waypoints[i-
1].east_dist), 2.0) + pow((flat_waypoints[i].north_dist - flat_waypoints[i-
1].north_dist), 2.0)), 0.5) / (velocity_lower[i-1]); 

    

 
 

Function: integand_cost 

Inputs: control, states, dot_states 

Output: Cost 

   

1) If (Type = “Time”) 

       Cost = (velocity - velocity_max)2/velocity_max +  

              … (altitude – ref_altitude)2 / altitude_max; 

 

2) If (Type = “Noise”) 

       Cost =  Total_SEL + (altitude – ref_altitude)2 / altitude_max; 

 

3) If (Type = “Fuel”) 

Cost = (mass – initial_mass) + (altitude – ref_altitude)2 / altitude_max;   
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Function: compute_noise 

Inputs: noise_vector, distance_vector, observer_distance 

Output: SEL 

   

1) if (observer_distance <= 4000) 
 
1.1) while (i < m) 
 

1.1.1) Compute vector index 

                   far = m – i - 1; 

             near = i; 

      
1.1.2) Compute partial A1 and B1 values 

                                  B1 = (Noise[near]*log10(Dist[far]) - 
Noise[far]*log10(Dist[near]))                     

                         … / (log10(Dist[far]) - log10(Dist[near])); 

                      A1 = (Noise[near] - B1) / log10(Dist[near]); 

 

       

1.1.3) Compute A1 and B1 counters 

                   A_count = A_count + A1; 

             B_count = B_count + B1; 

             

            end while 

         

       1.2) Compute A1 and B1 final values 

            A1 = A_count / m; 

      B1 = B_count / m; 

 

 1.3) Compute noise value 

             noise = A*log10(R) + B; 

 
2) else 

       2.1) Compute slope 

            slope = (noise_at_25000 – noise_at_4000) / (25000 - 4000); 

 

       2.2) Compute slope 

      noise = slope * (R - 4000) + noise_data.noise4000; 

 

1) End 
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Function: PlotWaypoints 

Inputs: n/a 

Output: n/a 

   

1) Read data from Flight Plan file 
List<waypoint> waypoints = ReadFlightPlanDataGrid(); 
 

2) For each waypoint 
 
2.1) Create point 
       new PointLatLng(point.lat, point.lon); 
 
2.2) Create marker 

                   new GMarkerGoogle(route_waypoint, … new Bitmap(path_icons); 

 

2.3) Add marker to layer list 

          markersOverlay.Markers.Add(marker); 

 

3) Add layer to map 

      gMapControl1.Overlays.Add(markersOverlay); 

 

2) End 

    

 

Function: PlotTrajectory 

Inputs: n/a 

Output: n/a 

   

1) Read data from trajectory files 
route = ReadTrajectoryFile(); 
 

2) Create route 
GMapRoute Grout = new GMapRoute(route, "Trajectory"); 
 

3) Adding route to layer list 

           routes.Routes.Add(Grout); 

 

4) Add layer to map 
gMapControl1.Overlays.Add(routes); 

 

3) End 
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Function: FillNoiseGrid 

Inputs: noise_grid, max_limit, min_limit 

Output: list_points_db 

   

1) For each point in noise grid 
 

1.1)  If ( min_limit < SEL < max_limit ) 
 
1.1.1) Create new point 

              PointLatLng noise_waypoint = new PointLatLng(point.lat, point.lon); 

 
1.1.2) Add point to a noise list 

list_points_db.Add(noise_waypoint); 

 
1.1.3) Create new marker 

              new GMarkerGoogle(noise_waypoint, grid_icon); 

 
1.1.4) Add marker to layer 

              NoiseGridOverlay.Markers.Add(marker); 

 

2) End 

    

 

Function: ComputeFlightData 

Inputs: latitude, longitude, mass 

Output: flight_data 

 

1) Create new FlightData object 

       new FlightData(); 

 

2) Computing orthodomic distance 

        delta_lon = Math.Abs(lon[0] - lon[lon.Count - 1]); 

        delta_lat = Math.Abs(lat[0] - lat[lat.Count - 1]); 

 

        north_dist = delta_lat * KM2FT(110.54); 

        east_dist = delta_lon * KM2FT(111.32) * Math.Cos(DEG2RAD(delta_lon)); 

 

3) Compute Total distance in miles 

       flight_data.distance = Math.Sqrt(Math.Pow(east_dist, 2) + 

                           … Math.Pow(north_dist, 2)) * 0.00018939;              

4) Computing Final Mass 

       flight_data.fuel_consumed_lb = mass.Max() - mass.Min(); 

       flight_data.fuel_consumed_gal = flight_data.fuel_consumed_lb / 6.7; 

       flight_data.fuel_cost = flight_data.fuel_consumed_gal * fuel_price_gal; 

 

5) Computing Fuel Consumed and Price 
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       flight_data.total_time = time.Max() / 60; 

       flight_data.fuel_consumed_hour = flight_data.fuel_consumed_lb * 60 /  

                                     … flight_data.total_time; 

       flight_data.fuel_consumed_mile = flight_data.fuel_consumed_gal /  

                                     … flight_data.distance; 

       flight_data.price_hour_flight = flight_data.fuel_cost * 60 /  

                                    … flight_data.total_time; 

 

6) End 

 

 

Function: ComputeFlightData 

Inputs: latitude, longitude, mass 

Output: flight_data 

 

1) Create new list 

     List<double> TimeOfArrival = new List<double>(); 

 

2) For each aircraft_position 
 

   2.1)  if distance_to_waypoint  <  0.1    
       

               2.1.1)  Add time of arrival to list 

                       TimeOfArrival.Add(time_of_arrival); 

       

3) End 
 

 

Function: ComputeBODTOCPoints (Part 1) 

Inputs: latitude, longitude, time, cruise_alt 

Output: TOC 

 

1) For each altitude 
 
1.1)  Obtain TOC point index 

           Math.Abs(altitude[i] - cruise_alt) < 50 

 

2) Obtain time at TOC point 

       TOC_lat = latitude[i]; 

       TOC_lon = longitude[i]; 

 

3) End Part 1 
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Function: ComputeBODTOCPoints (Part 2) 

Inputs: latitude, longitude, time, cruise_alt 

Output: BOD 

 

1) For each altitude (start at point where first part stopped) 
 

4.1)  Obtain BOD point index 

           altitude[j] < cruise_alt – 400 

 

2) Obtain time at TOC point 

       BOD_lat = latitude[i]; 

       BOD_lon = longitude[i]; 

 

3) End 
 

 

Function: FindNearestPoint 

Inputs: cursor_position 

Output: n/a 

 

1) Find nearest point 

       Find(IsNear(point.Lat, point.Lng)); 

 

2) Finding index of nearest point 

       index = FindIndexInPositionVector(found); 

 

3) Plotting the point 

new GMarkerGoogle(found, new Bitmap(path_icon); 

        

4) Retrieve point information (altitude, position, heading…) 

 

5) Add marker to layer 

       nearpoints_marker.Markers.Add(marker); 

 

6) End 

 

 

  



 

163 

Appendix D MATLAB® Simulation Framework 
% ------------------------------------------------------------------- 
% Lateral Guidance System Simulation Test (Simple version) 
% Created by Manuel Amaro 
% Cranfield University | 2014 - 2015 
% ------------------------------------------------------------------- 

  
clear all 

  
% Loading data from 4DT_RS 
time = load('Dataset/time.dat'); 
speed = load('Dataset/velocity.dat'); 
lat = load('Dataset/lat.dat'); 
lon = load('Dataset/lon.dat'); 
alt = load('Dataset/altitude.dat'); 
lon_avg = abs(lon(1) - lon(length(lon))); 

  
lat_simulator = load('Dataset/lat_sim.txt'); 
lon_simulator = load('Dataset/lon_sim.txt'); 
hdg_simulator = load('Dataset/hdg_sim.txt'); 
alt_simulator = load('Dataset/alt_sim.txt'); 
crosserror_simulator = load('Dataset/crosstrack_error.txt'); 

  
% Simulation parameters 
simtime_prev = 1;                           % Used to record previous 

simulation time 
total_simulation_time = 300000;             % Total simulation time 

(maximum) 
reaction_time = 130;                        % Reaction time in seconds 
sigma = 30;                                 % Angle at which aircraft 

intercepts reference path in degrees 
RNP = 1;                                    % Required Navigation 

Performance parameter in nautical miles 

  
% Initial conditions 
aircraft_hdg = 90;                          % Heading in Degrees 
aircraft_lat = 50.37876;                    % Latitude in Degrees 
aircraft_lon = 3.37269;                     % Longitude in Degrees 
aircraft_TAS = 49;                          % Aircraft speed 
aircraft_alt = 20000; 

  
% Mapping 4DT_RS data to WGS model 
for t = 1:length(lat) 
   [lon_nm(t), lat_nm(t)] = MappingWGS(lat(1), lon(1), lat(t), lon(t), 

lon_avg); 
end 

  
% Creating a standarized time vector 
     for i=1:length(alt_simulator) 
        time_general(i) = i; 
     end 

  
% Maping WGS model and converting aircraft position to nautical miles 
[aircraft_lon_nm, aircraft_lat_nm] = MappingWGS(lat(1), lon(1), 

aircraft_lat, aircraft_lon, lon_avg); 
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% Computing error and obtaining error index 
track_error_nm = inf; 
for i = 1:length(lat_nm) 
    if(sqrt((lat_nm(i) - aircraft_lat_nm)^2 + (lon_nm(i) - 

aircraft_lon_nm)^2) < track_error_nm) 
        track_error_nm = sqrt((lat_nm(i) - aircraft_lat_nm)^2 + 

(lon_nm(i) - aircraft_lon_nm)^2); 
        track_error_index = i; 
    end 
end 

     
    % Uncomment to test 
    % hold on; 
    % plot(lon(node_index), lat_nm(node_index), 'o') 
    % plot(lon_nm(track_error_index), lat_nm(track_error_index), 'o') 
    % plot(lon_nm, lat_nm); 

     
    for sim_time = 1 : total_simulation_time 

         
        if(track_error_nm > RNP) 

             
            % Computing reaction distance 

             
            % Based on a fixed reaction time 
            % reaction_dist = KTS2KTSS(aircraft_TAS) * reaction_time; 

             
            % Based on cross-track error 
            reaction_dist = track_error_nm / sind(sigma); 

             
            % Calculating node at which distance is closer to reaction 

distance 
            react_dist_tolerance = inf; 
            for i = 1:length(lat_nm) 
               if((abs(sqrt((lat_nm(i) - aircraft_lat_nm)^2 + 

(lon_nm(i) - aircraft_lon_nm)^2) - reaction_dist) < 

react_dist_tolerance) && i > track_error_index) 
                   react_dist_tolerance = abs(sqrt((lat_nm(i) - 

aircraft_lat_nm)^2 + (lon_nm(i) - aircraft_lon_nm)^2) - 

reaction_dist); 
                   node_index = i; 
               end 
            end 

             
  % Uncomment to test 
  % hold on; 
  % plot(lon_nm(track_error_index), lat_nm(track_error_index), 'x') 
  % plot(lon_nm(node_index), lat_nm(node_index), 'o') 
  % plot(lon_nm(track_error_index), lat_nm(track_error_index), 'o') 
  % plot(lon_nm, lat_nm); 

         
  % Computing new aircraft heading 
  m = (aircraft_lat_nm - lat_nm(node_index)) / (aircraft_lon_nm - 

lon_nm(node_index)); 
  aircraft_hdg = -(57.29 * atan(m) - 90); 
            aircraft_hdg_vec(sim_time) = aircraft_hdg; 
        end 
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        % Moving aircraft 
        aircraft_lat_nm = aircraft_lat_nm + (KTS2KTSS(aircraft_TAS) * 

cosd(aircraft_hdg)); 
        aircraft_lon_nm = aircraft_lon_nm + (KTS2KTSS(aircraft_TAS) * 

sind(aircraft_hdg)); 

         
        % Mapping aircraft position back 
        [aircraft_lon, aircraft_lat] = MappingWGS_back(lat(1), lon(1), 

aircraft_lat_nm, aircraft_lon_nm, lon_avg); 

         
        % Moving reference point (Proportional navigation typical 

characteristic) 
        if(abs(simtime_prev - sim_time) > 10) 
            node_index = node_index + 1; 
            if(node_index > length(lat)) 
                node_index = length(lat); 
            end 
            simtime_prev = sim_time; 
        end 

  
        % Computing error and obtaining error index 
        track_error_nm = inf; 
        for i = 1:length(lat_nm) 
            if(sqrt((lat_nm(i) - aircraft_lat_nm)^2 + (lon_nm(i) - 

aircraft_lon_nm)^2) < track_error_nm) 
                track_error_nm = sqrt((lat_nm(i) - aircraft_lat_nm)^2 

+ (lon_nm(i) - aircraft_lon_nm)^2); 
                track_error_index = i; 
            end 
        end 
        track_error_vec(sim_time) = track_error_nm; 

                
        % Stop if aircraft is at final point 
        if(track_error_index == length(lat)) 
            break; 
        end 

         
        % Plotting aircraft movement 
        aircraft_lon_vec(sim_time) = aircraft_lon; 
        aircraft_lat_vec(sim_time) = aircraft_lat; 

        
    end 

      
     % Plotting results 
     figure; 
     grid on; 
     hold on; 

      
     plot(lon, lat, 'b', 'LineWidth',2); 
     plot(aircraft_lon_vec, aircraft_lat_vec, 'r--', 'LineWidth',2); 
     plot(lon_simulator, lat_simulator, 'g--', 'LineWidth',2); 

      
     figure; 
     %plot(track_error_vec); 
     hold on; 
     plot(crosserror_simulator, 'g'); 
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     figure; 
     hold on; 
     time_mov = time_general/7.6998 + time(88); 
     plot(time_mov, alt_simulator, 'g'); 
     plot(time, alt,'b'); 

      
     figure; 
     hold on; 
     plot(aircraft_hdg_vec,'r--', 'LineWidth',2); 
     plot(hdg_simulator,'g--', 'LineWidth',2); 
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Appendix E Noise Approximation of PW2036 engine 

 

% ------------------------------------------------------------------- 
% MATLAB Script 
% Noise approximation of PW2036-like engine using piecewise function 
% Created by Manuel Amaro (m.a.amarocarmona@cranfield.ac.uk) 
% Cranfield University | 2015 
% ------------------------------------------------------------------- 

  
clear all; 
Dist = [200 400 630 1000 2000 4000]; 
Dist1 = [200 400 630 1000 2000 4000 6300 10000 16000 25000]; 
Noise = [90.2 86.3 83.3 79.9 74.2 67.2]; 
Noise1 = [90.2 86.3 83.3 79.9 74.2 67.2 61.9 55.2 47.2 34.0]; 
plot(Dist1, Noise1); 

  
x1 = [1:Dist(length(Dist))]; 
x2 = [Dist(length(Dist)):Dist1(length(Dist1))]; 
x = [1:25000]; 

  
% Computing first part 
A_count = 0; 
B_count = 0; 

  
m = 3; 

  
for i = 1:m 
    far = length(Dist)-i+1; 
    near = i; 
    B1 = (Noise(near)*log(Dist(far)) - 

Noise(far)*log(Dist(near)))/(log(Dist(far)) - log(Dist(near))); 
    A1 = (Noise(near) - B1)/log(Dist(near)); 
    A_count = A_count + A1; 
    B_count = B_count + B1; 
end 

  

  
A = A_count / m; 
B = B_count / m; 

  
slope = (Noise1(10) - Noise1(6)) / (Dist1(10) - Dist1(6)); 

  
hold on; 
plot(x1, A*log(x1)+B, 'r'); 

  
% Computing second part 
slope = (Noise1(10) - Noise1(6)) / (Dist1(10) - Dist1(6)); 
plot(x2, (slope*(x2 - 4000) + 67.2), 'g'); 
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Appendix F        Functional Requirements 
 

Sl. No. Requirement Description 

1 
The generator should predict a path to be flown in relation to the 

vertical and horizontal dimensions. 

2 The path should comply with the maximum limits of aircraft. 

3 
The path should be optimized according to different profiles in 

order to reduce fuel consumption, flight time and noise levels. 

4 
The predicted trajectory requires to comply with the altitude/FL 

constraints of the flight plan. 

5 
The predicted trajectory requires to comply with the speed 

constraints of the flight plan. 

6 
The guidance system requires to comply with the RNP parameters 

of the flight plan. 

7 

The trajectory synthetizer requires to include an estimation of the 

maximum and minimum time of arrival to each waypoint in order to 

meet RTA requirements of the Flight Plan. 

8 
The trajectory must be represented graphically by points separated 

by distance/time frames along the flight plan route. 

9 

Maximum response time for full flight plan prediction including flight 

legs and waypoints shall be reasonable. This requirement applies 

to flight plans of a reasonable size and complexity. 

10 
All the data should be referenced according to the Earth Model 

WGS-86. 

11 
All altitude data should be referenced to the MSL geoid and 

standard atmospheric pressure model. 

12 
The system should include a parameter that defines the Path 

Definition Error (PDE). 

 


