54,894 research outputs found

    Prediction Markets: Alternative Mechanisms for Complex Environments with Few Traders

    Get PDF
    Double auction prediction markets have proven successful in large-scale applications such as elections and sporting events. Consequently, several large corporations have adopted these markets for smaller-scale internal applications where information may be complex and the number of traders is small. Using laboratory experiments, we test the performance of the double auction in complex environments with few traders and compare it to three alternative mechanisms. When information is complex we find that an iterated poll (or Delphi method) outperforms the double auction mechanism. We present five behavioral observations that may explain why the poll performs better in these settings

    A Grey-Box Approach to Automated Mechanism Design

    Get PDF
    Auctions play an important role in electronic commerce, and have been used to solve problems in distributed computing. Automated approaches to designing effective auction mechanisms are helpful in reducing the burden of traditional game theoretic, analytic approaches and in searching through the large space of possible auction mechanisms. This paper presents an approach to automated mechanism design (AMD) in the domain of double auctions. We describe a novel parametrized space of double auctions, and then introduce an evolutionary search method that searches this space of parameters. The approach evaluates auction mechanisms using the framework of the TAC Market Design Game and relates the performance of the markets in that game to their constituent parts using reinforcement learning. Experiments show that the strongest mechanisms we found using this approach not only win the Market Design Game against known, strong opponents, but also exhibit desirable economic properties when they run in isolation.Comment: 18 pages, 2 figures, 2 tables, and 1 algorithm. Extended abstract to appear in the proceedings of AAMAS'201

    Waiting times between orders and trades in double-auction markets

    Get PDF
    In this paper, the survival function of waiting times between orders and the corresponding trades in a double-auction market is studied both by means of experiments and of empirical data. It turns out that, already at the level of order durations, the survival function cannot be represented by a single exponential, thus ruling out the hypothesis of constant activity during trading. This fact has direct consequences for market microstructural models. They must include such a non-exponential behaviour to be realistic.Comment: 19 pages, 3 figures, paper presented at the WEHIA 2005, Colchester, U

    Price dynamics, informational efficiency and wealth distribution in continuous double auction markets

    Get PDF
    This paper studies the properties of the continuous double auction trading mechanishm using an artificial market populated by heterogeneous computational agents. In particular, we investigate how changes in the population of traders and in market microstructure characteristics affect price dynamics, information dissemination and distribution of wealth across agents. In our computer simulated market only a small fraction of the population observe the risky asset's fundamental value with noise, while the rest of agents try to forecast the asset's price from past transaction data. In contrast to other artificial markets, we assume that the risky asset pays no dividend, so agents cannot learn from past transaction prices and subsequent dividend payments. We find that private information can effectively disseminate in the market unless market regulation prevents informed investors from short selling or borrowing the asset, and these investors do not constitute a critical mass. In such case, not only are markets less efficient informationally, but may even experience crashes and bubbles. Finally, increased informational efficiency has a negative impact on informed agents' trading profits and a positive impact on artificial intelligent agents' profits

    Evolutionary Optimization of ZIP60: A Controlled Explosion in Hyperspace

    No full text
    The “ZIP” adaptive trading algorithm has been demonstrated to out-perform human traders in experimental studies of continuous double auction (CDA) markets. The original ZIP algorithm requires the values of eight control parameters to be set correctly. A new extension of the ZIP algorithm, called ZIP60, requires the values of 60 parameters to be set correctly. ZIP60 is shown here to produce significantly better results than the original ZIP (called “ZIP8” hereafter), for negligable additional computational costs. A genetic algorithm (GA) is used to search the 60-dimensional ZIP60 parameter space, and it finds parameter vectors that yield ZIP60 traders with mean scores significantly better than those of ZIP8s. This paper shows that the optimizing evolutionary search works best when the GA itself controls the dimensionality of the search-space, so that the search commences in an 8-d space and thereafter the dimensionality of the search-space is gradually increased by the GA until it is exploring a 60-d space. Furthermore, the results from ZIP60 cast some doubt on prior ZIP8 results concerning the evolution of new ‘hybrid’ auction mechanisms that appeared to be better than the CDA

    A dominant strategy, double clock auction with estimation-based tatonnement

    Get PDF
    The price mechanism is fundamental to economics but difficult to reconcile with incentive compatibility and individual rationality. We introduce a double clock auction for a homogeneous good market with multidimensional private information and multiunit traders that is deficit‐free, ex post individually rational, constrained efficient, and makes sincere bidding a dominant strategy equilibrium. Under a weak dependence and an identifiability condition, our double clock auction is also asymptotically efficient. Asymptotic efficiency is achieved by estimating demand and supply using information from the bids of traders that have dropped out and following a tñtonnement process that adjusts the clock prices based on the estimates

    An Investigation Report on Auction Mechanism Design

    Full text link
    Auctions are markets with strict regulations governing the information available to traders in the market and the possible actions they can take. Since well designed auctions achieve desirable economic outcomes, they have been widely used in solving real-world optimization problems, and in structuring stock or futures exchanges. Auctions also provide a very valuable testing-ground for economic theory, and they play an important role in computer-based control systems. Auction mechanism design aims to manipulate the rules of an auction in order to achieve specific goals. Economists traditionally use mathematical methods, mainly game theory, to analyze auctions and design new auction forms. However, due to the high complexity of auctions, the mathematical models are typically simplified to obtain results, and this makes it difficult to apply results derived from such models to market environments in the real world. As a result, researchers are turning to empirical approaches. This report aims to survey the theoretical and empirical approaches to designing auction mechanisms and trading strategies with more weights on empirical ones, and build the foundation for further research in the field

    Explorations in Evolutionary Design of Online Auction Market Mechanisms

    No full text
    This paper describes the use of a genetic algorithm (GA) to find optimal parameter-values for trading agents that operate in virtual online auction “e-marketplaces”, where the rules of those marketplaces are also under simultaneous control of the GA. The aim is to use the GA to automatically design new mechanisms for agent-based e-marketplaces that are more efficient than online markets designed by (or populated by) humans. The space of possible auction-types explored by the GA includes the Continuous Double Auction (CDA) mechanism (as used in most of the world’s financial exchanges), and also two purely one-sided mechanisms. Surprisingly, the GA did not always settle on the CDA as an optimum. Instead, novel hybrid auction mechanisms were evolved, which are unlike any existing market mechanisms. In this paper we show that, when the market supply and demand schedules undergo sudden “shock” changes partway through the evaluation process, two-sided hybrid market mechanisms can evolve which may be unlike any human-designed auction and yet may also be significantly more efficient than any human designed market mechanism

    Three Minimal Market Institutions with Human and Algorithmic Agents: Theory and Experimental Evidence

    Get PDF
    We define and examine three minimal market games (sell-all, buy-sell, and double auction) in the laboratory relative to the predictions of theory. These closed exchange economies have some cash to facilitate transactions, and include feedback. The experiment reveals that (1) the competitive general equilibrium (CGE) and non-cooperative (NCE) models are reasonable anchors to locate most but not all the observed outcomes of the three market mechanisms; (2) outcomes tend to get closer to CGE predictions as the number of players increases; (3) prices and allocations in double auctions deviate persistently from CGE predictions; (4) the outcome paths across the three market mechanisms differ significantly and persistently; (5) importance of market structures for outcomes is reinforced by algorithmic trader simulations; and (6) none of the three markets dominates the others across six measures of performance. Inclusion of some mechanism differences into theory may enhance our understanding of important aspects of markets.Strategic market games, Laboratory experiments, Minimally intelligent agents, Adaptive learning agents, General equilibrium
    • 

    corecore