331 research outputs found

    Biometric Systems

    Get PDF
    Because of the accelerating progress in biometrics research and the latest nation-state threats to security, this book's publication is not only timely but also much needed. This volume contains seventeen peer-reviewed chapters reporting the state of the art in biometrics research: security issues, signature verification, fingerprint identification, wrist vascular biometrics, ear detection, face detection and identification (including a new survey of face recognition), person re-identification, electrocardiogram (ECT) recognition, and several multi-modal systems. This book will be a valuable resource for graduate students, engineers, and researchers interested in understanding and investigating this important field of study

    Pattern Recognition

    Get PDF
    A wealth of advanced pattern recognition algorithms are emerging from the interdiscipline between technologies of effective visual features and the human-brain cognition process. Effective visual features are made possible through the rapid developments in appropriate sensor equipments, novel filter designs, and viable information processing architectures. While the understanding of human-brain cognition process broadens the way in which the computer can perform pattern recognition tasks. The present book is intended to collect representative researches around the globe focusing on low-level vision, filter design, features and image descriptors, data mining and analysis, and biologically inspired algorithms. The 27 chapters coved in this book disclose recent advances and new ideas in promoting the techniques, technology and applications of pattern recognition

    Multimodal MRI characterization of visual word recognition: an integrative view

    Get PDF
    228 p.The ventral occipito-temporal (vOT) association cortex contributes significantly to recognize different types of visual patterns. It is widely accepted that a subset of this circuitry, including the visual word form area (VWFA), becomes trained to perform the task of rapidly identifying word forms. An important open question is the computational role of this circuitry: To what extent is part of a bottom-up hierarchical processing of information on visual word recognition and/or is involved in processing top-down signals from higher-level language regions. This doctoral dissertation thesis proposal is aimed at characterizing the vOT reading circuitry using behavioral, functional, structural and quantitative MRI indexes, and linking its computations to the other two important regions within the language network: the posterior parietal cortex (pPC) and the inferior frontal gyrus (IFG). Results revealed that two distinct word-responsive areas can be segregated in the vOT: one responsible for visual feature extraction that is connected to the intraparietal sulcus via the vertical occipital fasciculus and a second one responsible for semantic processing that is connected to the angular gyrus via the posterior arcuate fasciculus and to the IFG via the anterior arcuate fasciculus. Importantly, reading behavior was predicted by functional activation in regions identified along the vOT, pPC and IFG, as well as by structural properties of the white matter fiber tracts linking them. The present work constitutes a critical step in the creation of a highly detailed characterization of the early stages of reading at the individual-subject level and to establish a baseline model and parameter range that might serve to clarify functional and structural differences between typical, poor and atypical readers.BCBL: basque center on cognition, brain and languag

    Generalizable automated pixel-level structural segmentation of medical and biological data

    Get PDF
    Over the years, the rapid expansion in imaging techniques and equipments has driven the demand for more automation in handling large medical and biological data sets. A wealth of approaches have been suggested as optimal solutions for their respective imaging types. These solutions span various image resolutions, modalities and contrast (staining) mechanisms. Few approaches generalise well across multiple image types, contrasts or resolution. This thesis proposes an automated pixel-level framework that addresses 2D, 2D+t and 3D structural segmentation in a more generalizable manner, yet has enough adaptability to address a number of specific image modalities, spanning retinal funduscopy, sequential fluorescein angiography and two-photon microscopy. The pixel-level segmentation scheme involves: i ) constructing a phase-invariant orientation field of the local spatial neighbourhood; ii ) combining local feature maps with intensity-based measures in a structural patch context; iii ) using a complex supervised learning process to interpret the combination of all the elements in the patch in order to reach a classification decision. This has the advantage of transferability from retinal blood vessels in 2D to neural structures in 3D. To process the temporal components in non-standard 2D+t retinal angiography sequences, we first introduce a co-registration procedure: at the pairwise level, we combine projective RANSAC with a quadratic homography transformation to map the coordinate systems between any two frames. At the joint level, we construct a hierarchical approach in order for each individual frame to be registered to the global reference intra- and inter- sequence(s). We then take a non-training approach that searches in both the spatial neighbourhood of each pixel and the filter output across varying scales to locate and link microvascular centrelines to (sub-) pixel accuracy. In essence, this \link while extract" piece-wise segmentation approach combines the local phase-invariant orientation field information with additional local phase estimates to obtain a soft classification of the centreline (sub-) pixel locations. Unlike retinal segmentation problems where vasculature is the main focus, 3D neural segmentation requires additional exibility, allowing a variety of structures of anatomical importance yet with different geometric properties to be differentiated both from the background and against other structures. Notably, cellular structures, such as Purkinje cells, neural dendrites and interneurons, all display certain elongation along their medial axes, yet each class has a characteristic shape captured by an orientation field that distinguishes it from other structures. To take this into consideration, we introduce a 5D orientation mapping to capture these orientation properties. This mapping is incorporated into the local feature map description prior to a learning machine. Extensive performance evaluations and validation of each of the techniques presented in this thesis is carried out. For retinal fundus images, we compute Receiver Operating Characteristic (ROC) curves on existing public databases (DRIVE & STARE) to assess and compare our algorithms with other benchmark methods. For 2D+t retinal angiography sequences, we compute the error metrics ("Centreline Error") of our scheme with other benchmark methods. For microscopic cortical data stacks, we present segmentation results on both surrogate data with known ground-truth and experimental rat cerebellar cortex two-photon microscopic tissue stacks.Open Acces

    Advanced Applications of Rapid Prototyping Technology in Modern Engineering

    Get PDF
    Rapid prototyping (RP) technology has been widely known and appreciated due to its flexible and customized manufacturing capabilities. The widely studied RP techniques include stereolithography apparatus (SLA), selective laser sintering (SLS), three-dimensional printing (3DP), fused deposition modeling (FDM), 3D plotting, solid ground curing (SGC), multiphase jet solidification (MJS), laminated object manufacturing (LOM). Different techniques are associated with different materials and/or processing principles and thus are devoted to specific applications. RP technology has no longer been only for prototype building rather has been extended for real industrial manufacturing solutions. Today, the RP technology has contributed to almost all engineering areas that include mechanical, materials, industrial, aerospace, electrical and most recently biomedical engineering. This book aims to present the advanced development of RP technologies in various engineering areas as the solutions to the real world engineering problems

    Assessment of monthly rain fade in the equatorial region at C & KU-band using measat-3 satellite links

    Get PDF
    C & Ku-band satellite communication links are the most commonly used for equatorial satellite communication links. Severe rainfall rate in equatorial regions can cause a large rain attenuation in real compared to the prediction. ITU-R P. 618 standards are commonly used to predict satellite rain fade in designing satellite communication network. However, the prediction of ITU-R is still found to be inaccurate hence hinder a reliable operational satellite communication link in equatorial region. This paper aims to provide an accurate insight by assessment of the monthly C & Ku-band rain fade performance by collecting data from commercial earth stations using C band and Ku-band antenna with 11 m and 13 m diameter respectively. The antennas measure the C & Ku-band beacon signal from MEASAT-3 under equatorial rain conditions. The data is collected for one year in 2015. The monthly cumulative distribution function is developed based on the 1-year data. RMSE analysis is made by comparing the monthly measured data of C-band and Ku-band to the ITU-R predictions developed based on ITU-R’s P.618, P.837, P.838 and P.839 standards. The findings show that Ku-band produces an average of 25 RMSE value while the C-band rain attenuation produces an average of 2 RMSE value. Therefore, the ITU-R model still under predicts the rain attenuation in the equatorial region and this call for revisit of the fundamental quantity in determining the rain fade for rain attenuation to be re-evaluated

    Patient-Specific Implants in Musculoskeletal (Orthopedic) Surgery

    Get PDF
    Most of the treatments in medicine are patient specific, aren’t they? So why should we bother with individualizing implants if we adapt our therapy to patients anyway? Looking at the neighboring field of oncologic treatment, you would not question the fact that individualization of tumor therapy with personalized antibodies has led to the thriving of this field in terms of success in patient survival and positive responses to alternatives for conventional treatments. Regarding the latest cutting-edge developments in orthopedic surgery and biotechnology, including new imaging techniques and 3D-printing of bone substitutes as well as implants, we do have an armamentarium available to stimulate the race for innovation in medicine. This Special Issue of Journal of Personalized Medicine will gather all relevant new and developed techniques already in clinical practice. Examples include the developments in revision arthroplasty and tumor (pelvic replacement) surgery to recreate individual defects, individualized implants for primary arthroplasty to establish physiological joint kinematics, and personalized implants in fracture treatment, to name but a few

    Imaging fascicular organisation in mammalian vagus nerve for selective VNS

    Get PDF
    Nerves contain a large number of nerve fibres, or axons, organised into bundles known as fascicles. Despite the somatic nervous system being well understood, the organisation of the fascicles within the nerves of the autonomic nervous system remains almost completely unknown. The new field of bioelectronics medicine, Electroceuticals, involves the electrical stimulation of nerves to treat diseases instead of administering drugs or performing complex surgical procedures. Of particular interest is the vagus nerve, a prime target for intervention due to its afferent and efferent innervation to the heart, lungs and majority of the visceral organs. Vagus nerve stimulation (VNS) is a promising therapy for treatment of various conditions resistant to standard therapeutics. However, due to the unknown anatomy, the whole nerve is stimulated which leads to unwanted off-target effects. Electrical Impedance Tomography (EIT) is a non-invasive medical imaging technique in which the impedance of a part of the body is inferred from electrode measurements and used to form a tomographic image of that part. Micro-computed tomography (microCT) is an ex vivo method that has the potential to allow for imaging and tracing of fascicles within experimental models and facilitate the development of a fascicular map. Additionally, it could validate the in vivo technique of EIT. The aim of this thesis was to develop and optimise the microCT imaging method for imaging the fascicles within the nerve and to determine the fascicular organisation of the vagus nerve, ultimately allowing for selective VNS. Understanding and imaging the fascicular anatomy of nerves will not only allow for selective VNS and the improvement of its therapeutic efficacy but could also be integrated into the study on all peripheral nerves for peripheral nerve repair, microsurgery and improving the implementation of nerve guidance conduits. Chapter 1 provides an introduction to vagus nerve anatomy and the principles of microCT, neuronal tracing and EIT. Chapter 2 describes the optimisation of microCT for imaging the fascicular anatomy of peripheral nerves in the experimental rat sciatic and pig vagus nerve models, including the development of pre-processing methods and scanning parameters. Cross-validation of this optimised microCT method, neuronal tracing and EIT in the rat sciatic nerve was detailed in Chapter 3. Chapter 4 describes the study with microCT with tracing, EIT and selective stimulation in pigs, a model for human nerves. The microCT tracing approach was then extended into the subdiaphragmatic branches of the vagus nerves, detailed in Chapter 5. The ultimate goal of human vagus nerve tracing was preliminarily performed and described in Chapter 6. Chapter 7 concludes the work and describes future work. Lastly, Appendix 1 (Chapter 8) is a mini review on the application of selective vagus nerve stimulation to treat acute respiratory distress syndrome and Appendix 2 is morphological data corresponding to Chapter 4
    corecore