142 research outputs found

    Progress in proton-conducting oxides as electrolytes for low-temperature solid oxide fuel cells: From materials to devices

    Get PDF
    Among various types of alternative energy devices, solid oxide fuel cells (SOFCs) operating at low temperatures (300-600°C) show the advantages for both stationary and mobile electricity production. Proton-conducting oxides as electrolyte materials play a critical role in the low-temperature SOFCs (LT-SOFCs). This review summarizes progress in proton-conducting solid oxide electrolytes for LT-SOFCs from materials to devices, with emphases on (1) strategies that have been proposed to tune the structures and properties of proton-conducting oxides and ceramics, (2) techniques that have been employed for improving the performance of the protonic ceramic-based SOFCs (known as PCFCs), and (3) challenges and opportunities in the development of proton-conducting electrolyte-based PCFCs

    First-Principles Theoretical Studies of Bulk, Defect and Interface properties of Oxide Semiconductors

    Get PDF
    Oxide semiconductors have been shown to exhibit rich physics related to their bulk, defect and interface properties. First-principles calculations have and will continue to play a major role in developing an understanding of the microscopic origins of these phenomena. In this thesis, first-principles studies are presented for several oxide semiconductors, with a view to understand how their microscopic properties ultimately determine device functionality. In Chapter 3, a detailed study of bulk SrZrO3 and Sr(Ti,Zr)O3 alloys is performed. For Sr(Ti,Zr)O3 alloys with 50% Ti concentration, we find that arranging the Ti and Zr atoms into a 1×1 SrZrO3/SrTiO3 superlattice along the [001] direction leads to breaking of the conduction band t2g orbital degeneracy, which could suppress scattering due to electron-phonon interactions. In Chapter 4, we present an investigation into the properties of native defects and hydrogen in SrZrO3. It is found that oxygen and strontium vacancies are the dominant defects in the absence of impurity doping, and will form deep donor and deep acceptor states, respectively. Hydrogen is found to be amphoteric in this material at different lattice sites; additionally, this impurity forms a stable complex with oxygen vacancies. In Chapter 5, the tendency for ABO3 perovskite oxides with 3dn B-cations to exhibit ferroelectricity and multiferroicity is investigated. Using the LaBO3 series as a model, we find that initially, as electrons are added to the B-cation d orbital, the tendency for the system to exhibit a ferroelectric distortion disappears - however, for high spin d5 - d7 and d8 cations a strong ferroelectric instability is recovered, and this effect is explained within the pseudo Jahn-Teller theory for ferroelectricity. This finding provides a new route for the design of strongly coupled magnetoelectric materials. In Chapters 6 and 7 the fundamental properties of the technologically important oxide heterostructure systems ZnO/MgZnO and SrTiO3/LaAlO3 are characterized. For the latter, we identify a previously unreported mechanism for interface induced magnetism based on surface aluminium vacancies, which will aid in interpreting experimental results for this system and other polar/non-polar oxide heterostructures

    First-Principles Theoretical Studies of Bulk, Defect and Interface properties of Oxide Semiconductors

    Get PDF
    Oxide semiconductors have been shown to exhibit rich physics related to their bulk, defect and interface properties. First-principles calculations have and will continue to play a major role in developing an understanding of the microscopic origins of these phenomena. In this thesis, first-principles studies are presented for several oxide semiconductors, with a view to understand how their microscopic properties ultimately determine device functionality. In Chapter 3, a detailed study of bulk SrZrO3 and Sr(Ti,Zr)O3 alloys is performed. For Sr(Ti,Zr)O3 alloys with 50% Ti concentration, we find that arranging the Ti and Zr atoms into a 1×1 SrZrO3/SrTiO3 superlattice along the [001] direction leads to breaking of the conduction band t2g orbital degeneracy, which could suppress scattering due to electron-phonon interactions. In Chapter 4, we present an investigation into the properties of native defects and hydrogen in SrZrO3. It is found that oxygen and strontium vacancies are the dominant defects in the absence of impurity doping, and will form deep donor and deep acceptor states, respectively. Hydrogen is found to be amphoteric in this material at different lattice sites; additionally, this impurity forms a stable complex with oxygen vacancies. In Chapter 5, the tendency for ABO3 perovskite oxides with 3dn B-cations to exhibit ferroelectricity and multiferroicity is investigated. Using the LaBO3 series as a model, we find that initially, as electrons are added to the B-cation d orbital, the tendency for the system to exhibit a ferroelectric distortion disappears - however, for high spin d5 - d7 and d8 cations a strong ferroelectric instability is recovered, and this effect is explained within the pseudo Jahn-Teller theory for ferroelectricity. This finding provides a new route for the design of strongly coupled magnetoelectric materials. In Chapters 6 and 7 the fundamental properties of the technologically important oxide heterostructure systems ZnO/MgZnO and SrTiO3/LaAlO3 are characterized. For the latter, we identify a previously unreported mechanism for interface induced magnetism based on surface aluminium vacancies, which will aid in interpreting experimental results for this system and other polar/non-polar oxide heterostructures

    Evolution of oxygen-ion and proton conductivity in Ca-Doped Ln2Zr2O7 (Ln = Sm, Gd), located near pyrochlore fluorite phase boundary

    Get PDF
    Sm2-xCaxZr2O7-x/2 (x = 0, 0.05, 0.1) and Gd2-xCaxZr2O7-x/2 (x = 0.05, 0.1) mixed oxides in a pyrochlore-fluorite morphotropic phase region were prepared via the mechanical activation of oxide mixtures, followed by annealing at 1600 ?C. The structure of the solid solutions was studied by X-ray diffraction and refined by the Rietveld method, water content was determined by thermogravimetry (TG), their bulk and grain-boundary conductivity was determined by impedance spectroscopy in dry and wet air (100-900 ?C), and their total conductivity was measured as a function of oxygen partial pressure in the temperature range: 700-950 ?C. The Sm2-xCaxZr2O7-x/2 (x = 0.05, 0.1) pyrochlore solid solutions, lying near the morphotropic phase boundary, have proton conductivity contribution both in the grain bulk and on grain boundaries below 600 ?C, and pure oxygen-ion conductivity above 700 ?C. The 500 ?C proton conductivity contribution of Sm2-xCaxZr2O7-x/2 (x = 0.05, 0.1) is ~ 1 ? 10-4 S/cm. The fluorite-like Gd2-xCaxZr2O7-x/2 (x = 0.1) solid solution has oxygen-ion bulk conductivity in entire temperature range studied, whereas proton transport contributes to its grain-boundary conductivity below 700 ?C. As a result, of the morphotropic phase transition from pyrochlore Sm2-xCaxZr2O7-x/2 (x = 0.05, 0.1) to fluorite-like Gd2-xCaxZr2O7-x/2 (x = 0.05, 0.1), the bulk proton conductivity disappears and oxygen-ion conductivity decreases. The loss of bulk proton conductivity of Gd2-xCaxZr2O7-x/2 (x = 0.05, 0.1) can be associated with the fluorite structure formation. It is important to note that the degree of Ca substitution in such solid solutions (Ln2-xCax)Zr2O7-? (Ln = Sm, Gd) is low, x < 0.1. In both series, grain-boundary conductivity usually exceeds bulk conductivity. The high grain-boundary proton conductivity of Ln2-xCaxZr2O7-x/2 (Ln = Sm, Gd; x = 0.1) is attributable to the formation of an intergranular CaZrO3-based cubic perovskite phase doped with Sm or Gd in Zr sublattice. ? 2019 by the authors.371C-9F16-EBDE | Eduarda GomesN/

    Use of interplay between A-site non-stoichiometry and hydroxide doping to deliver novel proton-conducting perovskite oxides

    Get PDF
    Funding: UK Engineering and Physical Sciences Research Council (Grant Number(s): EP/R023522, EP/R023751, EP/L017008, EP/P007821, EP/L000202, EP/R029431); Diamond Light Source (Grant Number(s): SP17198-8); Rutherford Appleton Laboratory (Grant Number(s): RB1920629).The magnitude of ionic conductivity is known to depend upon both mobility and number of available carriers. For proton conductors, hydration is a key factor in determining the charge–carrier concentration in ABO3 perovskite oxides. Despite the high reported proton mobility of calcium titanate (CaTiO3), this titanate perovskite has thus far been regarded as a poor proton conductor due to the low hydration capability. Here, the enhanced proton conductivity of the defective calcium titanate Ca0.92TiO2.84(OH)0.16 prepared by replacing lattice oxygens with hydroxyl groups via a solvothermal route is shown. Conductivity measurements in a humidified Ar atmosphere reveal that, remarkably, this material exhibits one order of magnitude higher bulk conductivity (10−4 Scm−1 at 200 °C) than hydrated stoichiometric CaTiO3 prepared by traditional solid-state synthesis due to the higher concentration of protonic defects and variation in the crystal structure. The replacement of Ca2+ by Ni2+ in the Ca1−xTi1O3−2x(OH)2x, which mostly exsolve metallic Ni nanoparticles along orthorhombic (100) planes upon reduction, is also demonstrated. These results suggest a new strategy by tailoring the defect chemistry via hydration or cation doping followed by exsolution for targeted energy applications.Publisher PDFPeer reviewe

    Defect chemistry and transport properties of BaxCe0.85M0.15O3-d

    Get PDF
    The site-incorporation mechanism of M3+ dopants into A2+B4+O3 perovskites controls the overall defect chemistry and thus their transport properties. For charge-balance reasons, incorporation onto the A2+-site would require the creation of negatively charged point defects (such as cation vacancies), whereas incorporation onto the B4+-site is accompanied by the generation of positively charged defects, typically oxygen vacancies. Oxygen-vacancy content, in turn, is relevant to proton-conducting oxides in which protons are introduced via the dissolution of hydroxyl ions at vacant oxygen sites. We propose here, on the basis of x-ray powder diffraction studies, electron microscopy, chemical analysis, thermal gravimetric analysis, and alternating current impedance spectroscopy, that nominally B-site doped barium cerate can exhibit dopant partitioning as a consequence of barium evaporation at elevated temperatures. Such partitioning and the presence of significant dopant concentrations on the A-site negatively impact proton conductivity. Specific materials examined are BaxCe0.85M0.15O3-d (x = 0.85 - 1.20; M = Nd, Gd, Yb). The compositional limits for the maximum A-site incorporation are experimentally determined to be: (Ba0.919Nd0.081)(Ce0.919Nd0.081)O3, (Ba0.974Gd0.026)(Ce0.872Gd0.128)O2.875, and Ba(Ce0.85Yb0.15)O2.925. As a consequence of the greater ability of larger cations to exist on the Ba site, the H2O adsorption and proton conductivities of large-cation doped barium cerates are lower than those of small-cation doped analogs

    Mechanism of stabilization of dicalcium silicate solid solution with aluminium

    Get PDF
    Stoichiometric dicalcium silicate, Ca2SiO4, displays a well-known polymorphism with temperature. When this phase is doped by a range of elements, belite, one of the main phases of cements, is generated. Here, we thoroughly study the aluminum doping of dicalcium silicate. This type of study is important for cement characterization and also from a basic point of view. Ca2Si1−2xAl2xO4−x□x (x = 0, 0.010, 0.014, 0.03) has been prepared and studied by X-ray powder diffraction and the Rietveld method. The limiting composition has been established as Ca2Si0.972Al0.028O3.986□0.014. The 27Al MAS NMR band located close to ∼−70 ppm is ascribed to tetrahedral environments, in agreement with the proposed aliovalent Si/Al atomic substitution mechanism. Thermal analysis measurements under a wet atmosphere indirectly confirm the increase of oxygen vacancies as the amount of incorporated protons increases with the aluminium content. A thorough electrical characterization has been carried out including overall conductivity measurements under wet and dry atmospheres and conductivity as a function of the oxygen partial pressure. The samples show oxide anion conductivity with a small p-type electronic contribution under oxidizing conditions. These compounds display a very important proton contribution to the overall conductivities under humidified atmospheres.This work has been supported by the Spanish Ministry of Science and Innovation through the research grant MAT2010- 15175 which is co-founded by FEDER and Junta de Andalucía (Spain) through the research grant P10-FQM-6680
    corecore