222 research outputs found

    Moderating Effect of Cortical Thickness on BOLD Signal Variability Age-Related Changes

    Get PDF
    The time course of neuroanatomical structural and functional measures across the lifespan is commonly reported in association with aging. Blood oxygen-level dependent signal variability, estimated using the standard deviation of the signal, or BOLDSD , is an emerging metric of variability in neural processing, and has been shown to be positively correlated with cognitive flexibility. Generally, BOLDSD is reported to decrease with aging, and is thought to reflect age-related cognitive decline. Additionally, it is well established that normative aging is associated with structural changes in brain regions, and that these predict functional decline in various cognitive domains. Nevertheless, the interaction between alterations in cortical morphology and BOLDSD changes has not been modeled quantitatively. The objective of the current study was to investigate the influence of cortical morphology metrics [i.e., cortical thickness (CT), gray matter (GM) volume, and cortical area (CA)] on age-related BOLDSD changes by treating these cortical morphology metrics as possible physiological confounds using linear mixed models. We studied these metrics in 28 healthy older subjects scanned twice at approximately 2.5 years interval. Results show that BOLDSD is confounded by cortical morphology metrics. Respectively, changes in CT but not GM volume nor CA, show a significant interaction with BOLDSD alterations. Our study highlights that CT changes should be considered when evaluating BOLDSD alternations in the lifespan

    Moderating Effect of Cortical Thickness on BOLD Signal Variability Age-Related Changes

    Get PDF
    The time course of neuroanatomical structural and functional measures across the lifespan is commonly reported in association with aging. Blood oxygen-level dependent signal variability, estimated using the standard deviation of the signal, or “BOLDSD,” is an emerging metric of variability in neural processing, and has been shown to be positively correlated with cognitive flexibility. Generally, BOLDSD is reported to decrease with aging, and is thought to reflect age-related cognitive decline. Additionally, it is well established that normative aging is associated with structural changes in brain regions, and that these predict functional decline in various cognitive domains. Nevertheless, the interaction between alterations in cortical morphology and BOLDSD changes has not been modeled quantitatively. The objective of the current study was to investigate the influence of cortical morphology metrics [i.e., cortical thickness (CT), gray matter (GM) volume, and cortical area (CA)] on age-related BOLDSD changes by treating these cortical morphology metrics as possible physiological confounds using linear mixed models. We studied these metrics in 28 healthy older subjects scanned twice at approximately 2.5 years interval. Results show that BOLDSD is confounded by cortical morphology metrics. Respectively, changes in CT but not GM volume nor CA, show a significant interaction with BOLDSD alterations. Our study highlights that CT changes should be considered when evaluating BOLDSD alternations in the lifespan

    Semiparametric Estimation of Task-Based Dynamic Functional Connectivity on the Population Level

    Get PDF
    Dynamic functional connectivity (dFC) estimates time-dependent associations between pairs of brain region time series as typically acquired during functional MRI. dFC changes are most commonly quantified by pairwise correlation coefficients between the time series within a sliding window. Here, we applied a recently developed bootstrap-based technique (Kudela et al., 2017) to robustly estimate subject-level dFC and its confidence intervals in a task-based fMRI study (24 subjects who tasted their most frequently consumed beer and Gatorade as an appetitive control). We then combined information across subjects and scans utilizing semiparametric mixed models to obtain a group-level dFC estimate for each pair of brain regions, flavor, and the difference between flavors. The proposed approach relies on the estimated group-level dFC accounting for complex correlation structures of the fMRI data, multiple repeated observations per subject, experimental design, and subject-specific variability. It also provides condition-specific dFC and confidence intervals for the whole brain at the group level. As a summary dFC metric, we used the proportion of time when the estimated associations were either significantly positive or negative. For both flavors, our fully-data driven approach yielded regional associations that reflected known, biologically meaningful brain organization as shown in prior work, as well as closely resembled resting state networks (RSNs). Specifically, beer flavor-potentiated associations were detected between several reward-related regions, including the right ventral striatum (VST), lateral orbitofrontal cortex, and ventral anterior insular cortex (vAIC). The enhancement of right VST-vAIC association by a taste of beer independently validated the main activation-based finding (Oberlin et al., 2016). Most notably, our novel dFC methodology uncovered numerous associations undetected by the traditional static FC analysis. The data-driven, novel dFC methodology presented here can be used for a wide range of task-based fMRI designs to estimate the dFC at multiple levels-group-, individual-, and task-specific, utilizing a combination of well-established statistical methods

    Functional networks and network perturbations in rodents

    Get PDF
    Synchronous low-frequency oscillation in the resting human brain has been found to form networks of functionally associated areas and hence has been widely used to map the functional connectivity of the brain using techniques such as resting-state functional MRI (rsfMRI). Interestingly, similar resting-state networks can also be detected in the anesthetized rodent brain, including the default mode-like network. This opens up opportunities for understanding the neurophysiological basis of the rsfMRI signal, the behavioral relevance of the network characteristics, connectomic deficits in diseases and treatment effects on brain connectivity using rodents, particularly transgenic mouse models. In this review, we will provide an overview on the resting-state networks in the rat and mouse brains, the effects of pharmacological agents, brain stimulation, structural connectivity, genetics on these networks, neuroplasticity after behavioral training and applications in models of neurological disease and psychiatric disorders. The influence of anesthesia, strain difference, and physiological variation on the rsfMRI-based connectivity measure will be discussed

    Whole-brain modelling identifies distinct but convergent paths to unconsciousness in anaesthesia and disorders of consciousness

    Get PDF
    The human brain entertains rich spatiotemporal dynamics, which are drastically reconfigured when consciousness is lost due to anaesthesia or disorders of consciousness (DOC). Here, we sought to identify the neurobiological mechanisms that explain how transient pharmacological intervention and chronic neuroanatomical injury can lead to common reconfigurations of neural activity. We developed and systematically perturbed a neurobiologically realistic model of whole-brain haemodynamic signals. By incorporating PET data about the cortical distribution of GABA receptors, our computational model reveals a key role of spatially-specific local inhibition for reproducing the functional MRI activity observed during anaesthesia with the GABA-ergic agent propofol. Additionally, incorporating diffusion MRI data obtained from DOC patients reveals that the dynamics that characterise loss of consciousness can also emerge from randomised neuroanatomical connectivity. Our results generalise between anaesthesia and DOC datasets, demonstrating how increased inhibition and connectome perturbation represent distinct neurobiological paths towards the characteristic activity of the unconscious brain

    Understanding Stroke in the Connected Human Brain

    Get PDF
    Although structural damage from stroke is focal, remote dysfunction can occur in regions of the brain distant from the area of damage. Lesions in both gray and white matter can disrupt the flow of information in areas connected to or by the area of infarct. This is because the brain is not an assortment of specialized parts but an assembly of distributed networks that interact to support cognitive function. Functional connectivity analyses using resting functional magnetic resonance imaging (fMRI) have shown us that the cortex is organized into distributed brain networks. The primary goal of this work is to characterize the effects of stroke on distributed brain systems and to use this information to better understand neural correlates of deficit and recovery following stroke. We measured resting functional connectivity, lesion topography, and behavior in multiple domains (attention, visual memory, verbal memory, language, motor, and visual) in a cohort of 132 stroke patients. Patients were followed longitudinally with full behavioral and imaging batteries acquired at 2 weeks, 3 months, and 1 year post-stroke. Thirty age- and demographic- matched controls were scanned twice at an interval of three months. In chapter 1, we explore a central question motivating this work: how is behavior represented in the brain? We review progressing prospective – from basic functional localization to newer theories connecting inter-related brain networks to cognitive operations. In so doing, we attempt to build a foundation that motivates the hypotheses and experimental approaches explored in this work. Chapters 2 and 3 serve primarily to validate approaches and considerations for using resting fMRI to measure functional connectivity in stroke patients. In chapter 2, we investigate hemodynamic lags after stroke. ‘Hemodynamic lag’ is a local delay in the blood oxygen level dependent (BOLD) response to neural activity, measured using cross-correlation of local fMRI signal with some reference brain signal. This work tests assumptions of the BOLD response to neural activity after stroke, but also provides novel and clinically relevant insight into perilesional disruption to hemodynamics. Significant lags are observed in 30% of stroke patients sub-acutely and 10% of patients at one-year. Hemodynamic lag corresponds to gross aberrancy in functional connectivity measures, performance deficits and local and global perfusion deficits. Yet, relationships between functional connectivity and behavior reviewed in chapter 1 persist after hemodynamic delays is corrected for. Chapter 3 provides a more extended discussion of approaches and considerations for using resting fMRI to measure functional connectivity in stroke patients. Like chapter 1, the goal is to motivate experimental approaches taken in later chapters. But here, more technical challenges relating to brain co-registration, neurovascular coupling, and clinical population selection are considered. In chapter 4, we uncover the relationships between local damage, network wide functional disconnection, and neurological deficit. We find that visual memory and verbal memory are better predicted by connectivity, whereas visual and motor deficits are better predicted by lesion topography. Attention and language deficits are well predicted by both. We identify a general pattern of physiological network dysfunction consisting of decrease of inter-hemispheric integration and decrease in intra-hemispheric segregation, which strongly related to behavioral impairment in multiple domains. In chapter 5, we explore a case study of abulia – severe apathy. This work ties together principles of local damage, network disruption, and network-related deficit and demonstrates how they can be useful in understanding and developing targeted treatments (such as transcranial magnetic stimulation) for individual stroke patients. In chapter 6, we explore longitudinal changes in functional connectivity that parallel recovery. We find that the topology and boundaries of cortical regions remains unchanged across recovery, empirically validating our parcel-wise connectivity approach. In contrast, we find that the modularity of brain systems i.e. the degree of integration within and segregation between networks, is significantly reduced after a stroke, but partially recovered over time. Importantly, the return of modular network structure parallels recovery of language and attention, but not motor function. This work establishes the importance of normalization of large-scale modular brain systems in stroke recovery. In chapter 7, we discuss some fundamental revisions of past lesion-deficit frameworks necessitated by recent findings. Firstly, anatomical priors of structural and functional connections are needed to explain why certain lesions across distant locations should share behavioral consequences. Secondly, functional priors of connectomics are needed to explain how local injury can produce widespread disruption to brain connectivity and behavior that have been observed
    • 

    corecore