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Abstract 
Structural and functional disconnection following stroke 

by 
Joshua Siegel 

Doctor of Philosophy in Biology and Biomedical Sciences 
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Washington University in St. Louis, 2016 
Professor Maurizio Corbetta, Principal Investigator 

Professor David Van Essen, Chair 
 

Although structural damage from stroke is focal, remote dysfunction can occur in regions of the 

brain distant from the area of damage. Lesions in both gray and white matter can disrupt the flow 

of information in areas connected to or by the area of infarct. This is because the brain is not an 

assortment of specialized parts but an assembly of distributed networks that interact to support 

cognitive function. Functional connectivity analyses using resting functional magnetic resonance 

imaging (fMRI) have shown us that the cortex is organized into distributed brain networks. The 

primary goal of this work is to characterize the effects of stroke on distributed brain systems and 

to use this information to better understand neural correlates of deficit and recovery following 

stroke. We measured resting functional connectivity, lesion topography, and behavior in multiple 

domains (attention, visual memory, verbal memory, language, motor, and visual) in a cohort of 

132 stroke patients. Patients were followed longitudinally with full behavioral and imaging 

batteries acquired at 2 weeks, 3 months, and 1 year post-stroke. Thirty age- and demographic-

matched controls were scanned twice at an interval of three months.  

In chapter 1, we explore a central question motivating this work: how is behavior represented in 

the brain?  We review progressing prospective – from basic functional localization to newer 

theories connecting inter-related brain networks to cognitive operations. In so doing, we attempt 
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to build a foundation that motivates the hypotheses and experimental approaches explored in this 

work.   

Chapters 2 and 3 serve primarily to validate approaches and considerations for using resting 

fMRI to measure functional connectivity in stroke patients. In chapter 2, we investigate 

hemodynamic lags after stroke. ‘Hemodynamic lag’ is a local delay in the blood oxygen level 

dependent (BOLD) response to neural activity, measured using cross-correlation of local fMRI 

signal with some reference brain signal. This work tests assumptions of the BOLD response to 

neural activity after stroke, but also provides novel and clinically relevant insight into 

perilesional disruption to hemodynamics. Significant lags are observed in 30% of stroke patients 

sub-acutely and 10% of patients at one-year. Hemodynamic lag corresponds to gross aberrancy 

in functional connectivity measures, performance deficits and local and global perfusion deficits. 

Yet, relationships between functional connectivity and behavior reviewed in chapter 1 persist 

after hemodynamic delays is corrected for. Chapter 3 provides a more extended discussion of 

approaches and considerations for using resting fMRI to measure functional connectivity in 

stroke patients. Like chapter 1, the goal is to motivate experimental approaches taken in later 

chapters. But here, more technical challenges relating to brain co-registration, neurovascular 

coupling, and clinical population selection are considered.  

In chapter 4, we uncover the relationships between local damage, network wide functional 

disconnection, and neurological deficit. We find that visual memory and verbal memory are 

better predicted by connectivity, whereas visual and motor deficits are better predicted by lesion 

topography. Attention and language deficits are well predicted by both. We identify a general 

pattern of physiological network dysfunction consisting of decrease of inter-hemispheric 
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integration and decrease in intra-hemispheric segregation, which strongly related to behavioral 

impairment in multiple domains.  

In chapter 5, we explore a case study of abulia – severe apathy. This work ties together principles 

of local damage, network disruption, and network-related deficit and demonstrates how they can 

be useful in understanding and developing targeted treatments (such as transcranial magnetic 

stimulation) for individual stroke patients.  

In chapter 6, we explore longitudinal changes in functional connectivity that parallel recovery.  

We find that the topology and boundaries of cortical regions remains unchanged across recovery, 

empirically validating our parcel-wise connectivity approach. In contrast, we find that the 

modularity of brain systems i.e. the degree of integration within and segregation between 

networks, is significantly reduced after a stroke, but partially recovered over time. Importantly, 

the return of modular network structure parallels recovery of language and attention, but not 

motor function. This work establishes the importance of normalization of large-scale modular 

brain systems in stroke recovery. 

In chapter 7, we discuss some fundamental revisions of past lesion-deficit frameworks 

necessitated by recent findings.  Firstly, anatomical priors of structural and functional 

connections are needed to explain why certain lesions across distant locations should share 

behavioral consequences. Secondly, functional priors of connectomics are needed to explain how 

local injury can produce widespread disruption to brain connectivity and behavior that have been 

observed. 
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1 Introduction 
A central question in neuroscience for nearly two centuries has been ‘how behavior is 

represented in the brain?’ Since the times of Wernicke and Broca in the late 19th century, the 

principle of localization of function – according to which different parts of the brain are 

specialized for different functions – has been center stage in our thinking about how the brain 

enables behavior. By the late 1980’s, principles of cognitive neuroscience were emerging, 

bolstered by the advent of functional neuroimaging. Instead of the posited correspondance 

between one brain region and one function, the paradigm for studying brain function shifted to 

the idea that brain regions housed ‘mental operations’, and that behavior was mediated by 

ensembles of mental operations organized in ‘networks’ of brain regions. Research in the last 20 

years has pushed us even further from a strict localizationist view.  It has been shown that even 

single operations recruit distributed neural systems, and that even small lesions can cause 

functional alterations  among distant regions of cortex with no structural connections to the 

lesion. The next paragraphs reviews in more detail these different theories about brain-behavior 

relationships, specifically in relation to lesion studies, with the goal of setting up a set of issues 

that I will address experimentally in my thesis. 

1.1 The localization of human behavior 

1.1.1 One area one function 

Much of our understanding of brain function comes from over 140 years of studies that describe 

specific deficits following lesions to specific parts of the brain (Broca, 1861; Wernicke, 1874). 
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Maps of different behaviors (executive function, vision, movement, language, etc) onto different 

brain regions, as extrapolated from lesion-behavior studies, represent the most common 

framework for understanding the behavioral effect of focal or diffuse injuries to the brain (Fig. 

1A). 

From an historical perspective it is interesting to realize that the principle of localization of 

function, as any other theory in science, won the battle of cultural evolution through the natural 

selection offered by conference communications, papers, and political/sociological influence. 

When Broca first presented his theory and evidence in Paris in 1861, the reception was skeptical 

to say the least1. But by the early decades of the 1900’s his views were dominant. This framed the 

work of the 20th century, with many researchers identifying abnormal behaviors that could be 

engendered by lesions in different locations, and few reporting observations that questioned the 

localizationist dogma. 

But the conclusions drawn from studies were often circular consequences of the approaches and 

assumptions of the study. For example, most localization findings were based either on case 

series with a shared deficit of interest (e.g. a deficit of speech production or speech 

                                                

1 Pierre Flourens claims that, by ablation of various brain regions, he has disproven localization of function. In this 
very same year of 1861, a young surgeon named Paul Broca receives word of a patient named Leborgne in the 
Bicetre hospital with a processive loss of speech, but not a loss of language comprehensions. He is nicknames Tan 
due to his inability to say any words other than Tab. Misseure Leborgne dies a few years later and Broca performs 
an autopsy. He determines that, as predicted, Leborgne did in fact have a lesion in the frontal lobe in the left cerebral 
hemisphere. From a comparative progression of Leborgne's loss of speech and motor movement, the area of the 
brain important for speech production was determined to lie within the third convolution of the left frontal lobe, next 
to the lateral sulcus. This case finally gives him the edge over Pierre Flourens. In the following two years, Broca is 
able to find autopsy evidence for 8 more cases in support of the localization of articulated language to the left frontal 
lobe. Broca’s findings were formally published in 1865 (Finger, 2004).  

 



 

3 

 

 

understanding), or else a comparison between a group of patients with and a group without a 

deficit of interest. Such approaches were designed to localize a ‘function’ by finding patients 

with a unique behavioral profile after a lesion to a specific location in the brain.  The 

interpretation was that the deficient function was housed in the damaged part of the brain, thus 

leading to the creation of maps of normal functions in the brain based on their disruption after 

damage.  The most successful examples of this approach were the demonstration that language 

was localized to specific regions of temporal and frontal cortex (Broca, 1861; Wernicke, 1874), 

and that memory encoding could be devastated by focal damage of the hippocampus (Scoville 

and Milner, 1957). 

The advent of CT and MRI scans in the 1960’s and 1970’s allowed imaging of lesions in vivo. 

Along with the development of improved statistical techniques (Bates et al., 2003), this led to 

even finer mapping of deficits onto specific parts of the brain. These methods called ‘voxel-

based lesion-symptom mapping’ are based on the same assumptions as the classical clinical 

studies.  However, they take advantage of the increased spatial resolution of CT/MRI scans 

comparing often large groups of patients with or without a specific deficit down to the level of a 

small part of the brain, i.e. a voxel (a volume tipically 1-2 mm3). Voxel-based lesion-symptom 

mapping has been applied not only to basic sensory, motor, and cognitive functions or 

operations, but also to very complex cognitive constructs like theory of mind (Blanke et al., 

2004; Saxe and Powell, 2006), body schema  (Buxbaum et al., 2000; Buxbaum and Coslett, 

2001), risk taking (Clark et al., 2008), the gist of language comprehension, and recognition of 

emotions in facial expression (Adolphs et al., 1994). 
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These approaches still included many of the same biases as the traditional anatomo-clinical 

method of single case studies, notably that disruption of behavior after a specific lesion implied a 

key contribution of that region of the brain to normal function. Additionaly, standard voxel-wise 

lesion-deficit methods use univariate statistics that assume statistical independence of 

neighboring voxels in their contribution to behavior.  Especially with regard to stroke, this 

assumption is invalid. Damage frequently co-occurs in neighboring voxels or even more distant 

voxels within a common vascular distribution will frequently. This systematically distort 

precision and displace results of lesion-deficit maps (Mah et al., 2014; Phan et al., 2010). These 

biases can be attenuated by using multivariate approaches. A more significant problem is that 

statistical association methods like logistic regression begin with a deficit measured on some 

scale (independent variable), and then predict if a voxel is damaged or not (dependent variable). 

This precludes asking how much variance in a given behavior is explained by lesion location. A 

strict localizationist theory would predict that most of the variability of behavioral performance 

across of a group of patients would be explained by lesion location. This claim is not only 

important, but empirically falsifiable using machine learning models that predict deficit based on 

lesion. If the amount of variance accounted for in such a model is relatively small, then other 

explanations for the severity of behavioral disruption must be considered. 

Another problem for lesion-symptom mapping studies is the interpretative bias toward cortex. 

Researchers have focused on the cortical damage, and have largely ignored the white matter.  

This bias is not surprising in the historical context of neuroanatomy. Initially, physiological 

studies electrical stimulation of cortex had a large influence on early neuroanatomical thinking 

(Gustav Fritsch and Edvard Hitzig, 1870, dog’s motor cortex; Penfield, 1949 human cortex).  
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Moreover, the availability of a systematic way to identify cortical areas (Brodmann, 1909), and 

the corresponding lack of an atlas of the white matter, made it convenient to correlate behavioral 

deficits with damage of specific cortical areas. When CT scans became available for mapping 

lesions, lack of stereotactical methods of lesion analysis favored the projection of lesions onto a 

Brodmann’s atlas.  Despite availability of stereotactical lesion normalization, more recent voxel-

based lesion-symptom mapping studies often remain biased toward cortex by focusing 

interpretation on troves of cognitive neuroimaging data showing cortical activation for different 

tasks. 

But this ‘cortico-centric’ view of brain-behavior relationships was not so pronounced early on in 

the history of neuroanatomy. In 1874 Karl Wernicke described the ‘conduction aphasia’, 

resulting from damage to the arcuate fasciculus connecting temporal auditory centers to the 

frontal speech area (Wernicke, 1874). This became the prototype for the disconnection 

syndrome. Wernicke later hypothesized that connections from and to locations of the brain are as 

critical, and in some cases, even more critical than cortical localization to understanding deficit 

(Wernicke, 1885). Similarly, alexia and other syndromes were hypothesized to arise from 

disconnection (e.g. Dejerine, 1891). In the 1960’s Norman Geshwind elaborated on these early 

views to propose disconnection as a major mechanism accounting for neurological deficits. 

However, the emphasis on the role of the white matter was largely lost in the decades that 

followed.  

More recently, there has been a resurgence of the potential importance of white matter damage 

on behavior. For instance, the two brains that Broca initially described to support the importance 

of the left inferior frontal cortex for speech production later on were found to have extensive 
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damage of the frontal-temporo-parietal white matter, as well as damage of neighboring insular 

cortex and subcortical nuclei (Dronkers et al., 2007). Similar arguments apply for other famous 

cases that have been used as examples of localization of function (see Thiebaut de Schotten et 

al., 2015 for a re-consideration of important cases in the language of white matter damage). And 

both lesion and awake intraoperative stimulation approaches have enabled extensive description 

of the functional role of numerous large white matter bundles (Duffau, 2015). 

More generally, even taking a cortico-centric view of lesion-behavior relationships, it became 

apparent in the 1970’s that the traditional ‘one area one function’ approach was fallible.  Studies 

of aphasia by the Boston VA group showed that the localization of lesion to specific ‘language’ 

regions did not produce the expected deficits. For instance damage to Broca’s area did not 

produce a chronic linguistic problem (Mohr et al., 1978). Lesions anywhere in the large 

perisylvian cortex could produce linguistic deficits, and not even the distinction between 

anterior/speech output and posterior/speech understanding could be confirmed all the time 

(Mazzocchi and Vignolo, 1979; Vignolo et al., 1986).  

Efforts to localize hemispatial neglect – a syndrome present in on third of acute stroke patients in 

which a deficit in awareness of one side of space (contralateral to the lesion) is observed  – 

provided a further example of limitations to the localizationist model. Neglect was initially 

classified as a ‘parietal sign’ (Brain, 1941; Critchley, 1953; McFie et al., 1950; Paterson and 

Zangwill, 1944). Ensuing investigations pointed out that spatial neglect can also arise from 

damage to frontal cortex (Heilman and Valenstein 1972; Damasio et al. 1980), temporal cortex 

(Beume et al., 2016; Karnath et al., 2001) thalamus (Cambier et al., 1980; Watson et al., 1981; 

Watson and Heilman, 1979), and to the basal ganglia (Damasio et al., 1980; Hier et al., 1977; 
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Kumral et al., 1999; Leibovitch et al., 1998; Sapir et al., 2007). And studies by De Renzi and 

collaborators showed that the laterality of spatial functions to the right hemisphere was relative 

and not absolute (De Renzi, 1982).    

1.1.2 Mental Operations and the Modular Organization of the Brain 

By the late 1980’s, emerging principles of cognitive neuroscience, originating from the fusion of 

cognitive science and neuroscience, led to the idea that behavior results from a series of mental 

operations carried out by an ensemble of distributed brain regions (Fig. 1B). This was thanks in 

large part to the advent of functional neuroimaging in 1980-1990’s (Belliveau et al., 1991; Fox 

and Raichle, 1986; Posner et al., 1988). Functional brain images showed that even simple tasks 

engaged numerous widely distributed brain areas, and that behavior requires the orchestration of 

multiple cortical and sub-cortical regions organized in networks (Mesulam, 1990; Posner et al., 

1988).  For example in a landmark study Petersen and colleagues used PET activation 

methodology with O15-water to show that simple language tasks engaged not only left but also 

right hemisphere regions, and that even cerebellar regions were involved in the cognitive aspect 

of word selection (Petersen et al., 1988). 

In the cognitive neuroscience way of thinking, a brain region is conceptualized as a processor 

that performs a specific operation on an input, and generates a specific output to another region. 

A complex behavior is putatively represented by the sequential and precise temporal recruitment 

of different processing operations, hence brain regions. Brain regions specialized for different 

functions are organized in dedicated networks (attention, memory, language) (Mesulam, 1990; 
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Posner et al., 1988). Fairly abstract cognitive functions could now be understood as a 

combination of simpler operations. 

This led researchers to try to identify the key sites of dysfunction of specific complex cognitive 

systems by combining psychometric tasks able to isolate specific cognitive components with 

accurate structural imaging of lesions using MRI.  A parallel agenda in healthy subjects involved 

mapping specific operations onto brain areas using functional neuroimaging in combination 

with carefully designed psychological paradigms in which a single element of the task was 

manipulated either dichotomously or parametrically.  

Early notable attempts involved, for instance, the localization of three putative components of 

the orienting attention system: disengage, move, engage to posterior parietal cortex, superior 

colliculus/frontal eye field, and pulvinar of the thalamus (Posner and Cohen, 1984). Another 

attempt was the separation of the three sub-sytems of attention: an orienting network involving 

posterior parietal cortex; an arousal network involving right inferior frontal cortex and inferior 

parietal cortex; and, a response selection involving anterior cingulate and dorsolateral prefrontal 

cortex (Posner and Petersen, 1990). Yet efforts to find corresponding anatomical and behavioral 

dissociations in stroke patients have not yielded robust dissociations (Rengachary et al., 2011; 

Verdon et al., 2009) [reviewed in Corbetta and Shulman, 2011]. On the contrary, most patients 

with hemispatial neglect suffer from a combination of deficits of visuospatial attention, motor 

exploration, arousal, and sustained attention.   

There are several reasons why a simple mapping of one brain region to one mental operation 

(one-to-one) does not represent a satisfactory model of brain-behavior relationships. A first 

fundamental problem is that patterns of activation that include multiple distant brain areas appear 
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to correspond to even a single cognitive operation like a shift of attention, or the detection of a 

mismatch in response (many-to-one) (Dosenbach et al., 2006). A second possible problem is that 

certain regions are driven by many cognitive tasks, and thus damage to a region can cause 

deficits in multiple domains (one-to-many).  

A third problem is that a lesion in the brain causes distributed functional abnormalities to 

structurally normal regions of the brain.  Appreciation for this phenomenon gained considerable 

momentum in the late 1990- early 2000s. fMRI studies showed that functional abnormalities 

correlate with acute deficits, and tend to normalize in parallel with recovery of function (Buckner 

et al., 1996; Corbetta et al., 2005; Saur et al., 2006; Ward et al., 2003). These imaging 

observations provide the provocative suggestion that a lesion can broadly alter neural function 

across many brain regions, and that this widespread functional alteration may be the best 

correlate of abnormal behavior in the presence of a brain lesion. 

This idea is also not novel as it corresponds to the principle of ‘diaschisis’, first enunciated by 

Konstantin Von Monakoff in 1914 (von Monakow, 1914). Diaschisis is the principle that 

neurophysiological changes can occur distant from a focal brain lesion. De-afferentations, or loss 

of input to a cortical area, can produce immediate changes in metabolism, blood flow, resting 

neural activity, and evoked neural activity. Consider a straightforward anatomical illustration of 

this principle; destruction of ascending dopaminergic nigrostraital pathways results in a 

reduction of glucose metabolism in the basal ganglia (Schwartz, 1978). For more extensive 

reviews of focal diaschisis, we direct the reader to (Feeney and Baron, 1986) and (Carrera and 

Tononi, 2014). More complex relationships have been proposed between subcortical damage and 

cortical blood flow and glucose metabolism (Hillis et al., 2002). However, the relationship of 
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hypoperfusion or hypometabolism to behavior remains uncertain. More generally, analogously to 

lesion information, it is entirely unclear how much of behavioral variability functional alterations 

of any type explain.  This major gap is largely due to lack of any large-scale studies of stroke 

patients in which behavior, structure, and function have been systematically examined. 

1.1.3 Hierarchical network models of brain function 

Finally, we have begun to move towards a framework in which the brain is not an assortment of 

specialized parts but an assembly of distributed networks that flexibly interact to support 

cognitive function. Brain activation and the flow of information in response to a stimulus is 

highly dependent on a functional backbone of brain synchrony occurring in the absence of 

stimulus. Concepts such as brain synchronization have taken center stage in our thinking, and we 

have come to appreciate that in order to understand human behavior, we must understand 

functional brain systems that remain active, interdependent and balanced even in the absence of 

behavior. 

It is fair to say that a new theory of brain function and behavior has not yet emerged, but a 

growing body of evidence points to the importance of ongoing activity and network organization 

for behavior. This new framework has gained traction largely as a result of studies analyzing the 

temporally correlated spontaneous activity in the blood-oxygenation level dependent (BOLD) 

signal, which has emerged as a powerful tool for mapping the brain’s functional organization. 

Resting functional magnetic resonance imaging (R-fMRI) measures BOLD fluctuations and has 

been used to define distributed and modular brain systems (Doucet et al., 2011; Carl D Hacker et 

al., 2013; Power et al., 2011; Yeo et al., 2011) that correspond to the functional domains in the 
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brain (Bertolero et al., 2015; Smith et al., 2009). Using this approach, several important advances 

have been made toward understanding the functional architecture of the human brain.  Individual 

differences in brain connectivity at rest correlate with differences in behavior (Baldassarre et al., 

2012; Smith et al., 2015; Vaidya and Gordon, 2013). Moreover, learning and therapeutic 

intervention produce measurable changes in FC in relevant cortical circuits (Albert et al., 2009; 

Lewis et al., 2009; Tambini et al., 2010).  

Learning not only modulates activation within a brain area, but also alters the strength of 

functional connections between brain areas. And conversely, a stroke not only damages brain 

tissue and de-afferents anatomically connected regions, but also alters communication in the 

functional network in which the lesion is embedded, and can even disrupt the dynamic balance 

between other networks in the brain (Fig. 1,C/D). Thus, the resulting behavioral deficit reflects 

not only the local effects of the lesion, but also disruptions of other networks that communicate 

with the one that is predominantly affected. 

 

Figure 1-1. Progression views of brain-behavior relationships 
At left, the localizationist model is depicted. Specific behaviors such as speech, arithmetic, and motor function are 
carried out by specific foci. Next, an association or network model is depicted. Networks of areas are responsible for 
broader domains of behavior such as ‘attention’. Next, an integrated system is depicted. While a brain area may 
carry out a specific ‘cognitive operation’, that operation may be simultaneously important to motor, attention, and 
language functions. Finally, the effect of a lesion to the integrated system is depicted. The loss of a single node 
disruptes the functional of multiple connected nodes and produces deficit in multiple behavioral domains.  
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Given the presence of multiple networks, an important issue is the relative specificity of the 

behavioral dysfunction in relation to the alteration of network function. Before my work began 

our laboratory had provided evidence in small case series’ that alterations of communication 

(FC) in specific networks (e.g. dorsal attention) was associated with network specific impairment 

(e.g. spatial attention deficits) (He et al., 2007; Carter et al., 2010).  However, the specificity of 

such relationships across brain networks and across multiple behavioral domains was unknown. 

Moreover, it was unknown if these network abnormalities remain encapsulated in the network of 

interest or ‘spread’ and with what rules to other networks? More importantly, it was entirely 

unknown how relevant were these abnormalities for behavior, i.e. how much behavioral variance 

did they account for by structural damage versus network disruption? Finally, the relationship of 

network disruption to recovery was entirely unknown. 

The primary goals of the research described in this thesis is to generate a holistic understanding 

of the relationship between local damage, global connectivity changes, and the behavioral 

deficits [and recovery] that follows.  I aim to use this information to update the principles 

described above – namely, neural correlates of deficit and recovery following stroke and models 

of how networks in the human brain interact to support cognitive functions. 

1.2 Approach  

Our goals is to elucidate the relationship between stroke and deficit without a priori assumption 

of functional localization or isolation of deficit. This means designing experiments to answer 

questions such as: Do behavioral deficits tend to occur in isolation, in clusters with other deficits, 
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or along a single axis of domain-general deficit? To what extent is a behavioral deficit predicted 

by the location of the lesion – and does this differ between behaviors? Are deficits (and 

recovery) better predicted in the individual by the location of their lesion or by disruptions to 

their brain connectivity? Do common network principles emerge in FC-deficit models across 

behavioral measures? To answer these questions, we recruited a heterogeneous sample of stroke 

patients and examined a wide range of neuropsychological measures (Fig. 2). This is in contrast 

to prior lesion-deficit and FC-deficit mapping studies that have typically recruited groups with 

presence or absence of a common deficit or lesion. In addition, we implement multivariate 

approaches (such as a multi-task learning model described in chapter 4) to remove hidden biases, 

quantitatively assess not just localization, but localizability, and disentangle domain-specific 

versus domain-general deficit-related changes in brain connectivity.  

This project involves a large cohort (n=132 completing timepoint 1) of patients tested 

longitudinally at 3 time points that span one year, and includes 1) a behavioral battery that 

provides a broad and deep assessment of neurological function 2) structural scans to measure 

anatomy and 3) resting-state fMRI and ASL scans to measure physiology. Importantly, control 

subjects were matched to patients both in age, demographics, and stroke predisposition (to our 

best approximation). In the below work, we first determine the degree to which post-stroke 

hemodynamics are altered and the impact this has on measuring FC using R-fMRI. We then use 

lesion location and functional connectivity to test predictions about the three-way relationship 

between disconnection, networks disruption and clinical deficit. Finally, we attempt to 

understand how damage and FC changes are associated with recovery from stroke.  
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Figure 1-2. Longitudinal stroke study recruitment, behavioral and imaging batteries. 
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2 The effects of hemodynamic lag on functional 
connectivity and behavior after stroke. 

 
This chapter has been published as a journal article. The citation is: 

 
Siegel, J.S., Snyder, A.Z., Ramsey, L., Shulman, G.L., and Corbetta, M. (2015). The effects of 

hemodynamic lag on functional connectivity and behavior after stroke. Journal of Cerebral 
Blood Flow and Metabolism 0271678X15614846. 
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2.1 Abstract 

Stroke disrupts the brain’s vascular supply, not only within but also outside of areas of 

infarction. We investigated temporal delays (lag) in resting state functional magnetic resonance 

imaging signals in 130 stroke patients who were scanned 2 weeks, 3 months and 12 months post 

stroke onset.  30 controls were scanned twice at an interval of 3 months. Hemodynamic lag was 

determined using cross-correlation with the global gray matter signal. Behavioral performance in 

multiple domains was assessed in all patients. Regional cerebral blood flow and carotid patency 

were assessed in subsets of the cohort using arterial spin labeling and carotid Doppler 

ultrasonography. Significant hemodynamic lag was observed in 30% of stroke patients sub-

acutely. Approximately 10% of patients showed lag at 1-year post-stroke. Hemodynamic lag 

corresponded to gross aberrancy in functional connectivity measures, performance deficits in 

multiple domains and local and global perfusion deficit. Correcting for lag partially normalized 

abnormalities in measured functional connectivity. Yet post-stroke FC-behavior relationships in 

the motor and attention systems persisted even after hemodynamic delays were corrected. 

Resting state fMRI can reliably identify areas of hemodynamic delay following stroke. Our data 

reveal that hemodynamic delay is common sub-acutely, alters functional connectivity, and may 

be of clinical importance.  
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2.2 Introduction 

The front matter includes all material that appears before the beginning of the body of the text.  

Number all front matter pages (except the title page and the optional copyright page) with 

lowercase roman numerals, starting with ii, centered just above the bottom margin. Each of the 

following sections should begin on a new page. Stroke causes a disruption to the brain’s vascular 

supply that leads to infarction and structural damage of gray/white matter, but also remote 

physiological and metabolic effects in structurally normal regions of the brain.  It is becoming 

increasingly apparent that an understanding of behavioral deficits post-stroke and their recovery 

will require a complete description not only of lesion topography, but also of the complement of 

metabolic, structural and functional connectivity abnormalities, which in turn may relate to 

abnormal neuronal dynamics at the level of whole brain networks (Corbetta, 2012; Grefkes and 

Fink, 2014).  Functional MRI is the primary tool to examine network level abnormalities caused 

by focal or diffuse brain diseases based on the premise of a normal coupling between neuronal 

activity and related blood flow/volume changes (hemodynamic response, HDR).  

However, when studying disease states, a normal hemodynamic response cannot be assumed 

(D’Esposito et al., 2003).  For instance, prior work has established that the hemodynamic 

response can be altered following stroke (Pineiro et al., 2002; Salinet et al., 2013). In patients 

with cerebrovascular disease, peak BOLD response delays of up to 20 seconds have been 

reported in the affected hemisphere (Carusone et al., 2002; Bonakdarpour et al., 2007; Amemiya 

et al., 2012). Such responses are said to exhibit hemodynamic lags.  
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In resting state MRI (R-fMRI), functional connectivity between regions of the brain is estimated 

by the temporal correlation of the spontaneous BOLD signal. Two recent studies observed 

BOLD signal delays in R-fMRI in small cohorts (Amemiya et al., 2013; Lv et al., 2013). These 

studies raise concerns about how hemodynamic lags might be affecting measurement of 

functional connectivity after stroke. 

In this study we address fundamental questions concerning cerebrovascular physiology in stroke, 

specifically concerning the importance of hemodynamic lags in relation to changes of functional 

connectivity (FC), regional cerebral blood flow (rCBF) or diaschisis, as well as behavior and 

recovery.  We report on a longitudinal study of hemodynamic lag in a cohort of 130 first time 

ischemic and hemorrhagic stroke patients. We consider the longitudinal trends, physiological 

correlates, and clinical implications of hemodynamic lag. We demonstrate a relationship between 

lag, and decrements of blood flow, and severity of clinical deficits after stroke. We also 

demonstrate that lag profoundly affects measures of FC and we investigate the effects of 

hemodynamic lag on previously reported FC-behavior relationships.  Finally, we test a method 

for correcting for hemodynamic lag in measures of functional connectivity. 
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2.3 Methods 

2.3.1 Patient Enrollment 

All aspects of this study were approved by the Washington University School of Medicine 

(WUSM) Internal Review Board. Written informed consent was obtained from all participants in 

accordance with the Helsinki Declaration and procedures established by the Washington 

University in Saint Louis Institutional Review Board and all participants were compensated for 

their time. First time stroke patients were recruited by a research coordinator through the in-

patient service at Barnes-Jewish Hospital (BJH) and the Rehabilitation Institute of St. Louis 

(TRISL). Inclusion criteria for stroke patients were: 1) Age 18 or greater, 2) first symptomatic 

stroke, ischemic or intraparenchymal hemorrhagic etiology, 3) clinical evidence of motor, 

language, attention, visual, or memory deficits based on neurological examination, and 4) time of 

enrollment < 2 weeks post-stroke onset. Exclusion criteria were: 1) the inability to maintain 

wakefulness during testing, 2) the presence of other neurological, psychiatric or medical 

conditions that preclude active participation in research and/or may alter the interpretation of the 

behavioral/imaging studies (e.g., dementia, schizophrenia), or limit life expectancy to less than 1 

year (e.g., cancer or congestive heart failure class IV), 3) evidence of clinically significant 

periventricular white matter disease (equal or above grade 5 of Longstreth and 

colleagues(Longstreth et al., 1996)), and 4) contraindications for MRI including claustrophobia 

or scanner incompatible implants. In total, 6260 charts were screened; 130 patients met all 

inclusion criteria and completed the entire sub-acute protocol (mean age 52.8 with range 22-77, 
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119 right handed, 61 female, 64 right hemisphere). Of those, 101 had ischemic strokes, 21 

hemorrhagic, 5 ischemic with later hemorrhagic conversion, and 3 carotid or vertebral dissection. 

Other features of the patient cohort and lesion distribution were described previously(Corbetta et 

al., 2015). 

2.3.2 Stroke Source Population  

We conducted a control analysis to determine whether our stroke sample was representative of 

the general stroke population. The demographic and medical characteristics of the patients in our 

sample were compared to those of a large control group (n = 1,209) that was selected from the 

Cognitive Rehabilitation Research Group database(Wolf et al., 2009) of all patients seen at 

Barnes Jewish Hospital between 2008 and 2013 (n = 6,260) using the same inclusion/exclusion 

criteria. All included stroke and control subjects provided informed consent according to 

procedures approved by the Institutional Review Board at Washington University.  

2.3.3 Healthy Control Enrollment 

Thirty healthy, demographically matched control subjects were recruited and underwent the 

same behavioral and imaging exams. Inclusion criteria for control subjects were: healthy adult 

matched to stroke study population by age, gender, handedness, and level of education. 

Exclusion criteria were: 1) a positive history of neurological, psychiatric, or medical 

abnormalities preventing participation in research activities, 2) a history of atherosclerotic 

(coronary, cerebral, peripheral) artery disease, 3) an abnormal neurological examination with 
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signs of CNS dysfunction. The average age at the time of enrollment was 55.7 years (SD=11.5) 

with a range from 21 to 83 years.  

2.3.4 R-fMRI acquisition and analysis 

Patients were studied 2 weeks (mean=13.4 days, SD=4.8 days), 3 months (mean=112.5 days, 

SD=18.4 days), and 1 year (mean=393.5 days, SD=55.1 days) post-stroke onset. Controls were 

studied twice at an interval of 3-months. All imaging was performed using a Siemens 3T Tim-

Trio scanner at the Washington University School of Medicine (WUSM) and the standard 12-

channel head coil. The MRI protocol included structural, functional, pulsed arterial spin labeling 

(PASL) and diffusion tensor scans. Structural scans included: (1) a sagittal T1-weighted MP-

RAGE (TR=1950 msec, TE=2.26 msec, flip angle=90°, voxel size=1.0´1.0´1.0 mm); (2) a 

transverse T2-weighted turbo spin-echo (TR=2500 msec, TE=435 msec, voxel-

size=1.0´1.0´1.0mm); and (3) sagittal FLAIR (fluid attenuated inversion recovery) (TR=7500 

msec, TE=326 msec, voxel-size=1.5´1.5´1.5mm). PASL acquisition parameters were: TR=2600 

msec, TE=13 msec, flip angle=90°, bandwidth 2.232 kHz/Px, and FoV 220mm. 120 volumes 

were acquired (322 seconds total), each containing 15 slices with slice thickness 6 mm and 

23.7mm gap. Resting state functional scans were acquired with a gradient echo EPI sequence 

(TR=2000 msec, TE=27 msec, 32 contiguous 4 mm slices, 4´4mm in-plane resolution) during 

which participants were instructed to fixate on a small cross in a low luminance environment. 

Central fixation and wakefulness were monitored with an eye tracker and recorded. Six to eight 

R-fMRI runs, each including 128 volumes (30 min total), were acquired.  
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Participants with less than five minutes of retained R-fMRI data after strict motion scrubbing 

were excluded from further analysis. The fraction of participants providing useful fMRI data was 

107/130 patients at 2 weeks, 86/94 patients at 3 months, 74/82 patients at 1 year, 24/30 controls 

at scan 1, and 24/29 controls at scan 2 (Table S1). 

2.3.5 R-fMRI Data Preprocessing 

R-fMRI data underwent preprocessing as previously described by Baldassarre and 

colleagues(Baldassarre et al., 2014a). Briefly, this included: 1) compensation for asynchronous 

slice acquisition using sinc interpolation; 2) elimination of odd/even slice intensity differences 

resulting from interleaved acquisition; 3) whole brain intensity normalization to achieve a mode 

value of 1000; 4) spatial realignment within and across R-fMRI runs; and 5) resampling to 3mm 

cubic voxels in atlas space including realignment and atlas transformation in one resampling 

step. Cross-modal (e.g., T2-weighted to T1-weighted) image registration was accomplished by 

aligning image gradients(Rowland et al., 2005). Cross-model image registration in patients was 

checked by comparing the optimized voxel similarity measure to the 97.5 percentile obtained in 

the control group. In some cases, structural images were substituted across sessions to improve 

the quality of registration. 

2.3.6 Lesion Segmentation 

Lesions were manually segmented using Analyze (www.mayo.edu) by inspection of the 

structural images (T1-weighted, T2- weighted, FLAIR), simultaneously displayed in atlas space. 

All segmentations were reviewed by two neurologists (Maurizio Corbetta and Alexandre Carter) 
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with special attention to distinguishing lesion from CSF and hemorrhage from surrounding 

vasogenic edema. The lesions ranged from 0.02cm3 to 82.97cm3 with a mean of 10.15cm3 

(SD=13.94cm3). 

2.3.7 Pulsed ASL and Carotid Doppler 

Pulsed arterial spin labeling (PASL) measures of regional cerebral blood flow (rCBF) were 

acquired in a subset of patients (27 sub-acute patients and 20 controls). Two proximal inversion 

with control for off-resonance effects (PICORE Q2) PASL-MRI perfusion scans were collected. 

PASL data were processed as described previously(Arbeláez et al., 2013). Normalized perfusion 

(percent of control average) was determined for a set of 169 regions of interest (ROIs) described 

below. Bilateral carotid Doppler was also acquired at initial post-stroke hospital admission for 66 

of the included patients. Carotid Doppler velocity values were converted to categories of 1) 

≤50% occlusion, 2) 51-79% occlusion, or 3) ≥80% occlusion, based on guidelines from the 

Society of Radiologists in Ultrasound Consensus Conference(Grant et al., 2003). PASL and 

carotid Doppler were compared with R-fMRI measures of local (region of interest) and global 

(affected hemispheric) lag to determine how perfusion measures associate with lag. 

2.3.8 Behavioral Testing  

All subjects and controls underwent a behavioral battery that included assessment of motor, 

language, attention, memory, and visual function following each scanning session. Overall 

clinical deficit was also assessed in each patient using the NIH stroke scale (NIHSS)(Brott et al., 

1989). Imaging and behavioral testing session usually were performed on the same day. 
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Dimensionality reduction was performed on the behavioral performance data as described 

previously(Corbetta et al., 2015). Principal components analysis was performed on all tests 

within a behavioral domain to produce a single score that predicted the majority of variance 

across tasks. The ‘Motor’ score describes contralesional deficits that correlated across shoulder 

flexion, wrist extension/flexion, ankle flexion, hand dynamometer, nine hole peg, action research 

arm test, timed walk, functional independence measure, and the lower extremity motricity index. 

The ‘Attention (visual field)’ score describes contra-lesional visual field effects in Posner, 

Mesulam, and BIT center of cancellation tasks. A separate ‘Attention (sustained)’ score loaded 

on non-spatial measures of overall performance, reaction time, and accuracy on the same tests. 

The ‘Spatial Memory’ score loaded on the Brief Visuospatial Memory Test and spatial span. The 

‘Verbal Memory’ score loaded on the Hopkins Verbal Learning Test. The ‘Language’ score 

loaded on both comprehension (complex ideational material, commands, reading 

comprehension) and production (Boston naming, oral reading). 

2.3.9 ROIs 

A set of 169 regions of interest (ROIs), which was defined based on Hacker and colleagues(Carl 

D Hacker et al., 2013), were used in post hoc analyses. Briefly, the ROIs were selected based on 

a meta-analysis of task fMRI studies and refined to optimally represent 7 resting state networks.  

ROI-based analysis was used for 1) lag laterality measurement, 2) resting BOLD power analysis, 

and 3) FC analyses. ROIs partially or entirely overlapping with the infarct were excluded from 

all analyses (excepting the within-lesion BOLD power analysis). 
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Gray matter, white matter, and CSF ROIs were defined in individual subjects using automated 

segmentation by FreeSurfer(Fischl, 2012) and excluding any voxels that overlapped with the 

manual segmented lesion masks. 

2.3.10  Lag measure 

The R-fMRI data were first temporal bandpass filtered, retaining frequencies between 0.009-

0.09Hz. Next, frame censoring identified volumes with a DVARS measure > 0.6% or a 

framewise displacement > 0.5mm to be excluded from the R-fMRI computations(Power et al., 

2012). A shift mask was then generated by removing every frame within 4TR of masked frames.  

A minimum of 150 usable frames was required for subject inclusion in the present results. Thus, 

23/130 sub-acute patients and 6/30 controls were excluded. In the retained data, on average, 570 

out of 870 frames remained in sub-acute patients, and 495 of 851 frames remained in controls 

(Table S1). Next, a reference signal was generated from the average timecourse in each subject’s 

[non-lesion] gray matter ROI. 
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Figure 2-1 Using temporal cross-correlation to measure lag in resting state fMRI.   
A) The global reference signal (black line, top panel) is measured by averaging all non-lesioned gray matter voxels. 
Each voxel timecourse (red line, top panel) is then compared to the reference signal. The exemplar voxel is circled 
in C. B) The voxel timecourse is shifted forward and backward 8s (±4 TR) and shift correlation is computed (Eq. 1).  
5.08s is the optimal shift determined by parabolic interpolation. C) Voxelwise hemodynamic lag image. 
Orange/yellow indicates a lag behind the reference signal, cyan indicates a lead. Lesioned areas are shown in black. 
A small caudal infarct in left posterior cerebral artery (PCA) territory shows associated lag in the entire left PCA 
distribution. A full lag map for this individual is shown in row 5 of Figure 2. 

 

Lagged cross-correlation analysis with reference to the global gray matter reference signal was 

performed for each voxel over the range ±4 TRs (±8 seconds) (Figure 1):  

𝐶"(𝜏) = (1 𝑛))
*(+)⋅-.(+/))

01.02
+ ,       (1) 

where g is the gray matter signal, 𝑠"	is the signal in voxel 𝑖, and 𝜎-.  and 𝜎*are the standard 

deviations of the two signals. The summation runs over frames indexed by 𝑡, and 𝑛) is the 

number of frames included after a shift of 𝜏 (-8s to +8s). To determine the shift that maximizes 
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the cross-correlation function at a temporal resolution finer than 1TR, the lag (𝜏) corresponding 

to the maximum of 𝐶" 𝜏  was identified. 𝐶" 𝜏  at this lag, as well as one step forward and 

backward, were fit with a parabolic function and the peak value, 𝐶" 𝜏9 , and corresponding 

temporal shift (τm) were computed(Mitra et al., 2014). Positive and negative values of τm 

correspond, respectively, to a lag or lead relative to the mean gray matter signal. The lag 

measure, 𝜏9, was computed for every voxel within the brain. Voxels within the lesion as well as 

voxels not positively correlated with the global signal on the interval, −8	 < 	𝜏 < 	+8 (in units of 

seconds), were excluded from region of interest and FC analyses. For visualization, lag maps 

were smoothed with a 3mm full width at half maximum kernel.  

2.3.11  Lag Laterality 

Inspection of lag maps demonstrated that lags > 2 sec almost always were confined to the 

lesioned hemisphere. Thus, it was possible to compute lag laterality scores as a measure of 

average lag difference in the affected versus unaffected hemisphere. Lag laterality was computed 

for each patient by finding the average lag for each of the 169 ROIs (excluding those intersecting 

the lesion) and then computing the difference between all right hemisphere ROIs (78/169) and all 

left hemisphere ROIs (78/169). The reliability of measured lag maps as well as laterality scores 

theoretically depends on the quantity of available data(Lv et al., 2013). These relationships were 

estimated using data subsamples of duration 40s to 800s.  



 

28 

 

 

The lag laterality score was used to compare lag severity to clinical variables. Because lag 

laterality values were not normally distributed, lag laterality was compared with categorical 

variables using a Mann-Whitney U test, and to continuous variables using Spearman’s rank test.  

2.3.12  Resting state BOLD power analysis 

The BOLD signal power across the low frequency range typically used for resting state FC 

(0.009-0.09Hz) was computed on all ROI timecourses in all sub-acute subjects. ROIs were then 

subdivided into three categories: 1) ROIs partially or wholly within a lesion, 2) ROIs that show 

greater than 2 seconds of lag, 3) all other ROIs. The average power spectrum was then computed 

for each category.  

2.3.13  Correcting functional connectivity measures for hemodynamic lag 

Hemodynamic lags theoretically distort FC measures in a manner that is potentially correctible. 

To address this question, corrected FC measures were computed by shifting regional timeseries 

according to the previously determined hemodynamic lags. In greater detail, for any pair of 

signals, one of the timeseries was shifted by the lag difference and this difference was rounded to 

the nearest TR to avoid timeseries interpolation. FC was then computed using the standard 

formula (Fisher z-transformed Pearson correlation ≡ 𝑧(𝑟)). The correction procedure was used 

to create corrected FC maps for selected ROIs. In addition, indices of interhemispheric FC in the 

motor system were computed with and without correcting for hemodynamic lag. This index was 

computed as the average z(r) over multiple motor ROI pairs (10 in the left hemisphere, 12 in the 

right hemisphere), excluding any ROI compromised by lesion.  
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To determine if correcting lag improves FC, aberrancy of FC relative to controls was determined 

for all ROIs in all patients(Siegel et al., 2014). Functional connectivity aberrancy was first 

quantified for each connection (169-choose-2) by comparing to the mean and standard deviation 

for that connection in controls. Z-normed FC aberrancy was computed as 

𝐹𝐶-BC − 𝐹𝐶DEF+GEH 𝑆𝐷, where the over-bar indicates mean over controls and SD is standard 

deviation over controls. Finally, to determine aberrancy of a given ROI, the Z-score for all of its 

connections was averaged.  

2.4 Results 

Subjects (n=130) with first symptomatic stroke anywhere in the brain and evidence of 

neurological impairment were recruited. To assess whether the study sample was representative 

of a the larger stroke population, it was compared to a larger source population of 1,209 patients. 

The study sample was well matched to the source population on stroke variables (etiology, tPA, 

mechanical thrombectomy, NIHSS in hospital), but showed some differences in demographics 

and clinical predisposing factors (age, race, coronary artery disease and atrial fibrillation) (Table 

S2). Further details of this comparison are reported in the supplement. Of the 130 patients 

studied, 107 had adequate R-fMRI and behavioral data. Of those, 87 had ischemic strokes and 15 

had hemorrhagic strokes. Patients with ischemic stroke were further classified based on TOAST 

criteria(Adams et al., 1993). Regarding ischemic subtypes, large-artery atherosclerosis was 

observed 16 patients, cardioembolism in 12; small-vessel occlusion in 8, and undetermined 

etiology (two or more causes identified, stroke is cryptogenic, or evaluation is incomplete) in 45.  
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Table 2-1. Clinical and behavioral correlates of lag. 

		 P-value 
(uncorrected) Relationships 

Neurological History 

Migraine (5) 0.48   

Other neurological history (5) 0.11   

Psychological History 

Depression (5) 0.15   

Substance abuse (13) 0.29   

Cardiac History 

Hypertension (74) 0.70   

Coronary artery disease (9) 0.98   

Diabetes Mellitus (33) 0.18   

Atrial Fibrillation (5) 0.46   

Other 

Smoker within past year (53) 0.79   

tPA (13) 0.028 tPA > none 

Age 0.75   

Type (ischemic=87, 
hemorrhagic=14) 0.28   

Lesion size 7E-04 0.34 

Post-stroke Deficit 

NIHSS 0.035 0.26 

Motor 0.09   

Attention (visual field) 0.0018 -0.31 

Attention (sustained) 0.0048 -0.28 

Spatial Memory 0.015 -0.24 

Verbal Memory 0.17   

Language 0.016 -0.21 

Lag Recovery (1yr-acute) vs Deficit Recovery (1yr-acute) 

NIHSS (1yr-acute) 0.053   

Motor 0.92   

Attention (visual field) 0.020 -0.30 
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Attention (Nonspatial) 0.44   

Spatial Memory 0.46   

Verbal Memory 0.75   

Language 0.30   
Note: For categorical variables, relationships to lag laterality were assessed using a Mann-Whitney U test. The 
number of included patients in that category is given in parenthesis. For continuous variables, relationship to lag 
laterality was assessed using Spearman’s rank test. For tests with p<0.05 (not corrected for multiple comparison), 
the relationships with lag laterality is given in the right column (direction of difference for categorical, Spearman’s 
Rho for continuous). 

2.4.1 Lag analysis reveals sizeable delays in the hemodynamic response 

To determine the topographic extent and biological correlates of hemodynamic lag following 

stroke, we performed a longitudinal study of a cohort of stroke patients and age-matched 

controls. The cohort of 130 patients was selected as a representative sample from a larger sample 

of 1,209 stroke patients admitted to Barnes-Jewish Hospital in a five-year span that met all study 

inclusion criteria (see supplemental results and Table S2).   Lag in the resting BOLD signal was 

measured across the brain relative to the global gray matter signal as described in Figure 1. 

Figure 1A-B illustrates our approach for measuring lag cross-correlation in every voxel. Figure 

1C shows the lag map for one subject. The subject’s lesion is shown in black and the voxel used 

in Figure 1B is circles. Lag severity was quantified by comparing the lag laterality – a global 

measure of lag severity – to the distribution of 24 healthy controls. At 1-2 weeks post-stroke, 32 

out of 107 sub-acute stroke patients (30%) exhibited lag measures >2 SD of the control mean 

(~95% confidence interval) and 19 out of 107 (17.8%) were >3 SD (99.7% confidence interval).  

Lag laterality also was measured in voxels restricted to white matter; this quantity was highly 

correlated (r=0.7221, p=1x10-4) with lag laterality measured in gray matter voxels, although the 

magnitude of gray matter lag measures was larger (Fig S1). We also computed the average lag 
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difference over all homotopic ROI pairs. This quantity was significantly correlated with lag 

laterality as defined above (R = 0.55, P < 10-9). 

Figure 2 illustrates hemodynamic lag in our cohort. Figure 2A illustrates lag maps obtained in 

five representative patients at the sub-acute period. Figure 2B shows a histogram of lag value 

frequencies measured in the set of 169 ROIs in all patients and all controls. By convention, 

negative shift values indicate a lead ahead of the reference signal and positive values indicate a 

lag behind it. Both groups exhibited ROIs that lead the gray matter signal (𝜏9	<0), but the 

patients exhibited more ROIs with significant positive lag (patients: 4.0%>2s, 1.7%>4s; controls: 

1.9%>2s, 0.2%>4s).  

Figure 2C shows subgroup average lag maps generated by subtracting contralesional from 

ipsilesional hemisphere and then grouping subjects by stroke arterial territory (middle vs. 

posterior cerebral artery). Figure 2C suggests that distribution of hemodynamic lag tends follow 

the arterial territory of the stroke. Whereas severity of hemodynamic lag showed no significant 

relationships to either lesion size (Table 1) or location, the topographic distribution of lesions 

that produced severe lag did not visually differ from the distribution of lesions in the entire 

cohort. 
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Figure 2-2 Delay in the resting hemodynamic response (lag) is observed after stroke.   
A) Lag maps for 5 sub-acute stroke patients overlaid on MP-RAGE. Lesion locations are shown in black.  B) 
Histogram of lag value frequencies measured in a set of 169 ROIs in both patients and controls. Both contain some 
regions that appear to lead the gray matter signal, but the patients show more regions that lag behind it than controls 
(shaded gray – 1.7% vs 0.2% of ROIs > +4s). C) To generate a group average, subjects were grouped be stroke 
arterial territory and the contralesional hemisphere was subtracted from the ipsilesional hemisphere. Average lag 
maps for two largest groups; middle cerebral artery (MCA), and posterior cerebral artery (PCA) are shown. D) Lag 
maps at the 1 year follow-up from the same patients shown in A). Lag appears to largely resolve by 1year post-
stroke onset in many but not all cases. E) Lag laterality scores for all patients included in the study at all timepoints. 
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Patients with only one timepoint are shown as a single circle. Patients are divided by lesion side to show the frequent 
correspondence with lag side. 

To exclude the possibility that eyes open/closed during the R-fMRI scan biased our results, we 

measured the percent of time with eyes open for each R-fMRI session. In the first R-fMRI 

session, patients maintained eyes open 66% of the time on average, and controls maintained eyes 

open 77% of the time. However, a two way ANOVA found no significant effect of group (P = 

0.846) or of timepoint (P = 0.677) on eyes open. Moreover, a Spearman’s correlation of eyes 

open with lag laterality measured at the sub-acute timepoint did not identify a significant 

relationship (R = 0.02, P = 0.8).    

2.4.2 Lag recovery  

Figure 2D illustrates lag maps for the same five patients at 1year follow-up. A variety of 

outcomes is evident, ranging from no change (top) to complete resolution (bottom row). Figure 

2E shows lag laterality scores over all available data, illustrating the trend of lag over time for all 

patients. A vertical histogram of lag laterality scores in 24 age-matched controls is shown in blue 

on the left (mean=-0.046, SD=0.268). The patient lag laterality scores are shown to the right, 

shaded by lesion side (left-black, right-gray). Figure 2E demonstrates that lag tends to occur on 

the side of the lesion and most often recovers over time. Only 7 out of 86 (8.0%) patients at 3 

months post-stroke and 5 out of 74 (6.1%) patients at 1 year showed lag laterality >3 SD of 

controls (Table S1).  
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2.4.3 Lag predicts performance deficits 

Lag laterality – difference in lag values between the left and right hemisphere – provided an 

objective measure of lag severity that was compared to several clinical and demographic 

measures. (Table 1). We did not find a significant correlation between lag and neurologic history 

(TIA, Migraine, other), psychiatric history (depression, substance abuse, other), cardiac history 

(hypertension, CAD, DM, other), smoking history. None of the patients assessed received 

thrombectomy. And 12% (13) of patients received tissue plasminogen activator (tPA). Patients 

receiving tPA showed greater lag than those who had not (P = 0.028).  

Next, associations between lesion type and characteristics and lag laterality were investigated. 

No significant different in lag was identified in hemorrhagic versus ischemic strokes (P = 0.28). 

Additionally, no difference was found between stroke subtypes defined based on TOAST criteria 

(ANOVA P = 0.13). However, lag laterality was correlated with lesion size (R = 0.34, P = 

5.5x10-5).  

Finally lag laterality was compared to behavioral deficit. Lag laterality was correlated with 

overall deficit measured by NIHSS (R = 0.26, P = 0.035) and deficit in numerous behavioral 

domains; spatial attention (R = -0.31, P = 0.0018), sustained attention deficit (R = -0.28, P = 

0.0048), spatial memory deficit (R = -0.24, P = 0.015), and language (R = -0.21, P = 0.016).  

Recovery of lag by 1-year post-stroke was correlated with recovery of spatial attention (R = -

0.30, P = 0.02).  All P-values are not corrected for multiple comparisons. 
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2.4.4 Areas of lag show reduced blood flow 

Figure 3 shows regional lag in stroke patients relative to regional cerebral blood flow (rCBF) and 

lag laterality relative to internal carotid artery occlusion. rCBF in areas of hemodynamic lag less 

than 1 second was, on average, 92.46% that of controls. Areas with lag greater than ~2 seconds 

showed significantly lower rCBF and a monotonic decrease in perfusion with increasing lag 

(Figure 3).  An analysis of variance (ANOVA) showed an effect of carotid occlusion on lag (P = 

8.32x10-4), with the ≥80% occlusion group showing greater lag than the ≤50% occlusion (t[58] = 

-3.76, P =  1.97x10-4) and 51-79% occlusion groups (t[11]=-2.25, P = 0.023). 

 
Figure 2-3 Areas of lag show reduced blood flow.  
(a) A sample patient showing left hemisphere lag and corresponding areas of hypoperfusion on ASL. (b) The 
average blood flow as a percent of healthy controls is measured for ROIs and plotted as a function of lag in all 107 
sub-acute scans. Areas with greater than 2 s of lag show a significant decrement in rCBF (relative to zero lag) and 
hypoperfusion increases as lag magnitude increased. (c) Doppler imaging of the internal carotid artery (ICA) on the 
affected side is categorized as ︎50%, 51–79%, or ︎80% occlusion and compared lag in the affected hemisphere.  

 

These results raise the question of whether hypo-perfusion in the acute post-stroke period 

recovers in parallel with lag. To address this question, we measured change in lag (1 year minus 
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2 weeks) versus change in rCBF for all ROIs showing lag >0 sub-acutely.  Although a significant 

relationship was present between recovery of lag, and recovery of rCBF (Pearson’s R = -0.12; P 

= 0.039), the variance explained by this relationship was small (r2=0.015). This may be because 

overall, measures of perfusion did not change significantly between two weeks and one year 

post-stroke (2-week average = 85.7% of controls, 1-year average = 86.4% of controls; paired t-

test p = 0.3719). Thus, while a strong relationship between lag and rCBF is present sub-acutely, 

areas in which lag recovers do not necessarily return to normal perfusion.  

2.4.5 Lag and resting state functional connectivity 

A second goal of this study was to determine how lag affects measurement of resting state 

functional connectivity (FC). To this end, we explored how lag affects 1) properties of the 

BOLD signal, 2) measurement of functional connectivity using R-fMRI, and 3) FC-behavior 

relationships. 

2.4.6 Altered BOLD signal power 

R-fMRI BOLD signal characteristics were fundamentally altered in areas of lag (Figure 4). The 

169 ROIs were divided in to three categories: no lag, lag, and lesion. Signal power was evaluated 

in the range 0.009-0.09Hz. The blue, red, and black lines show BOLD signal power in normal 

tissue, regions with >2s lag, and lesion, respectively. Areas of lag showed significantly decreased 

power relative to no-lag tissue in the range 0.046-0.09Hz. In the lower resting state frequency 

range, power in areas of lag was similar to that of areas of lesion. 
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Figure 2-4 BOLD power spectra.  
ROIs with lag show significantly decreased power relative to ‘no lag’ ROIs in the upper part of the resting state 
range (0.046–0.09 Hz). Power in this range is closer to that of infarcted regions. Transparent boundaries depict SEM 
in average power.  

 

2.4.7 Lag disrupts functional connectivity but can be partially corrected 

Analysis of functional connectivity (FC) revealed that hemodynamic lag considerably alters FC 

measures after stroke. Figure 5A shows seed-based correlation maps for four ROIs in different 

locations that showed >2s of lag. The leftmost column shows the four ROIs overlaid on the lag 

maps. The second column shows the correlation map for each ROI. The third column shows 

correlation maps after correction by shifting the timecourse by the measured lag. The rightmost 

column shows the group average correlation map for the same four ROIs in the controls. 

Correcting timecourses for lag normalized the correlation maps to a considerable extent.  



 

39 

 

 

 
Figure 2-5. Lag disrupts functional connectivity but can be partially corrected.  
(a) Seed-based correlation maps for four ROIs in different locations that showed >2 s of lag. The leftmost column 
show the four ROIs overlaid on the lag maps. The second column shows the correlation map for each ROI. The third 
column shows the correlation map for each ROI after the courses have been shifted to align optimally with the 
global signal. The rightmost column shows the average correlation map for the same four ROIs in the controls. Note 
improved similarity between patient correlation maps and controls following correction. (b) Relationship between 
lag and FC aberrancy (before and after correcting for lag) across all 169 ROIs and 107 subjects. The red line 
demonstrates the average aberrancy and SEM for ROIs at different shifts. Correcting timecourses for lag makes the 
functional connectivity in those regions less aberrant (black line).  
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Figure 5B shows the relationship between lag and FC aberrancy, before and after correcting for 

lag, across all 169 ROIs in 107 sub-acute patients. The red line demonstrates that the degree of 

FC aberrancy monotonically increases with lag above 2s. Shifting ROI timecourses to correct for 

lag makes the FC in those regions considerably less aberrant (black line). However, increased 

abnormality is still evident for lags > 2s even after correction. This result may reflect inherent 

changes in the frequency content of the BOLD signal in areas of lag (Figure 4). 

2.4.8 Stroke FC-behavior relationships persist with lag correction 

The observed relationship between lag and behavioral deficits raises important questions 

regarding previously observed FC-behavior relationships. To determine the effect of lag on 

previously established FC-behavior relationships, we measured FC-behavior correspondence in 

interhemispheric motor FC and motor function, and between interhemispheric dorsal attention 

network (DAN) FC and spatial neglect. 

Figure 6A demonstrates that lag laterality measured in motor ROIs correlates with motor deficits. 

Thus, there exists a relationship between hemodynamic lag and behavior. Patients with motor lag 

laterality > 1s are shaded gray. Figure 6B shows that, as previously reported, motor network 

interhemispheric FC and motor function are highly correlated(Carter et al., 2010). We repeated 

the FC analysis using the lag-corrected timeseries and found that the FC-behavior relationship 

persists after correction (Figure 6C). Finally, we excluded all subjects with motor lag laterality 

greater than ±1 second (21/117 subjects) and recomputed the FC-behavior correlation. Figure 

6E-H demonstrates the same results comparing lag and FC in the dorsal attention network with 
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spatial neglect.  In both motor and attention networks, removal of subjects with severe lag 

eliminated the observation of interhemispheric anticorrelations. And in both cases, a robust FC-

behavior relationship persisted (Figure 6D/H).  

 
Figure 2-6. Stroke FC–behavior relationships persist after lag correction.  
(a/e) Comparison of lag laterality measured within motor ROIs versus motor deficit or within dorsal attention 
network ROIs versus neglect reveal a significant relationship between lag and behavior. Patients with motor lag 
laterality > 1 s are shaded gray. (b/f) Interhemispheric connectivity and function are highly correlated (Pearson’s 
correlation). (c/g) This relationship persists after lag has been corrected and (d/h) this relationship also persists when 
all subjects with within-network between-hemisphere lag > 1 s (21/107 for motor, 21/101 for dorsal attention) are 
excluded. Relationships in (a) and (e) were computed Spearman’s nonparametric rank test; all other relationships 
were measured with Pearson’s correlation.  
 

2.5 Discussion 

Our work builds on previous observations of hemodynamic lag in task-based and resting state 

fMRI (R-fMRI) in stroke as well as other conditions associated with vascular abnormalities. We 

extend previous observations by exploring the prevalence of lag in a representative stroke cohort, 
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examining the relationship of lag to rCBF, post-stroke motor deficits, lag changes over the 

course of recovery, and effects of hemodynamic lag on FC.  Areas of hemodynamic lag can be 

identified in 20-30% of patients 2 weeks after stroke but this fraction drops to closer to one in ten 

by 1 year post-stroke. Hemodynamic lag preferentially occurs in the vascular distribution of the 

infarct, and positively correlates with the size of the lesion. We did not observe a relationship 

between severity of lag and etiology of the infarct (hemorrhagic, ischemic, or ischemic subtype). 

However, we did observe that lag severity predicts deficit in numerous behavioral domains and 

that lag recovery predicts improvement in visual field attention deficit (hemispatial neglect). 

Finally, hemodynamic lag alters measures of FC. Lag-related distortions in FC correlation values 

can be partially, but not entirely, corrected by temporally shifting timecourses. 

Our primary measure of lag was regional delays relative to a gray matter reference signal. Prior 

studies of hemodynamic lag have used various reference signals including the whole brain 

signal(Amemiya et al., 2013; Lv et al., 2013), homotopic regions(Bauer et al., 2014), and 

superior sagittal sinus(Christen et al., 2015). We additionally measured lags between homotopic 

regions and found that lag laterality measured with a global gray matter references was 

correlated to lag laterality measured with homotopic reference (R = 0.55, P < 10-9). The gray 

matter tissue compartment defines a time series representing the hemodynamic response to 

neural activity averaged over the whole brain. Previous work has shown that subregions within 

the gray matter compartment normally exhibit lags in the range of 1 sec relative to other gray 

matter regions, which most likely reflect neural rather than hemodynamic phenomenology(Mitra 

et al., 2014).  Large lags not seen in healthy controls are reasonably attributed to hemodynamics.  
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2.5.1 Physiological Implications  

Observed lag following stroke could be caused by 1) cell-level microvascular damage that 

disrupts neurovascular coupling, 2) rerouting of collateral blood flow, 3) altered neural activity, 

or some combination of these. Prior evidence together with our findings suggests that cell-level 

microvascular damage is the most likely cause for hemodynamic lag. Impaired astrocyte and 

pericyte reactivity (neurovascular coupling) occurs in tissue that is reperfused following 

ischemic stroke (Attwell et al., 2010; Petzold and Murthy, 2011). In fact, pericytes are more 

sensitive to ischemia than are neurons or astrocytes (Hall et al., 2014; Hauck et al., 2004; 

Yemisci et al., 2009). Damage to pericytes (Yemisci et al., 2009) or astrocytes (Schummers et 

al., 2008) can alter the HDR, suggesting that these cells likely play a role in perilesional 

hemodynamic changes. The higher rate of lag observed in patients that received tPA may occur 

because areas of transient ischemia that are reperfused as a results of the clinical intervention 

experience microvascular damage. Moreover, the observed decrease in BOLD signal power 

above 0.046 Hz (Figure 2C) may represent altered HDR kinetics. 0.046-0.09Hz is the range of 

frequencies in the normal hemodynamic response to task-induced neural activity (Hathout et al., 

1999). Damage to pericytes or astrocytes could therefore reduce signal power in this range and 

could additionally lead to temporal delay by acting as a low-pass filter.  

Blood flow after stroke may be rerouted through newly recruited collaterals(Shih et al., 2009) 

with consequent changes in arterial transit time. Mean arterial transit time can be thought of as 

the static component of cerebral perfusion while the HDR represents responses to neural activity. 

Therefore, a previously reported association between hemodynamic lag and mean arterial transit 
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time (Christen et al., 2015; Lv et al., 2013) could suggest that lag is attributable to static blood 

flow changes. However, static changes alone do not account for hemodynamic lag of the 

presently observes large magnitudes (> 2 sec) because changes in transit time typically are on the 

order of less than 1 second(MacIntosh et al., 2010).  

Altered neural activity theoretically could contribute to observed hemodynamic lags. However, 

in our data, lags were observed in the white matter (Figs 1, 2, 3, 5), which reflect predominantly 

the static component of perfusion. Further evidence against a neuronal etiology has been 

obtained by prior studies of cerebrovascular disease patients with severely impaired BOLD fMRI 

responses to stimuli despite normal behavior (de Haan et al., 2013; Powers et al., 1988) and 

normal neuronal responses (measured with MEG)(Rossini et al., 2004).  

Although hemodynamic lag is unlikely to reflect delayed neural responses, it is evident that 

neural function is affected in areas of hemodynamic compromise(Rosner et al., 1986). We 

observed a strong association between lag laterality (lag difference between hemispheres) and 

visual field bias (Table 1). This result is consistent with previous observations in cerebral 

microangiopathy patients linking delays in task evoked hemodynamic responses to performance 

deficits on a Stroop task(Schroeter et al., 2007). Similarly, focal right hemisphere perfusion 

deficits have been documented in stroke patients with hemispatial neglect(Hillis et al., 2005). 

Thus, the available evidence suggests that perfusion deficits can lead to abnormal brain function. 

However many questions remain regarding how hemodynamic  disruption affects neural and 

cognitive function, both acutely and chronically.   
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2.5.2 Prognostic Implications 

Although the pathophysiology of resting state hemodynamic lags is uncertain, our results suggest 

that lag indexes hemodynamic disruption and potentially reversible tissue compromise. 

Following stroke, lag occurs in the vascular distribution of the infarct, and correlates with 

measures of clinical deficits, mean transit time(Amemiya et al., 2013; Christen et al., 2015; Lv et 

al., 2013) and with hypoperfusion. Prior studies have linked hemodynamic failure to infarct 

extent(Lee et al., 2003; Olivot et al., 2009) and to risk of future ischemic stroke(Derdeyn, 2007). 

Measuring lag by R-fMRI is non-invasive and may have important prognostic utility.  But, fully 

understanding the prognostic implications of resting state hemodynamic lag will require follow-

up beyond our 1-year endpoint.   

We acquired 30 minutes of resting state data.  In future studies, it should be noted that analyzing 

400 seconds of high quality resting state data is sufficient to identify the existence of lag (Fig 

S2). However, the reliability of lag maps continues to increase even after 20 minutes of resting 

state data acquisition.  

2.5.3 Lag disrupts measurement of functional connectivity 

Our results demonstrate that hemodynamic disruption following stroke produces artifactual R-

fMRI effects.  In addition to delay relative to the global signal, areas of lag showed significantly 

decreased BOLD signal power relative to no-lag tissue at frequencies above 0.046Hz. This 

observation implies that simply shifting timecourses to re-align with the global signal will not 

adequately correct quantitative measures of FC.  
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Recent studies have used FC analysis of R-fMRI data to study brain network reorganization 

following stroke (Baldassarre et al., 2014a; Carter et al., 2012a, 2012b, 2010; Ding et al., 2014; 

Grefkes and Fink, 2011; He et al., 2007; Jiang et al., 2013; Ovadia-Caro et al., 2013; Park et al., 

2011; Siegel et al., 2014; van Meer et al., 2010a, 2010b; Várkuti et al., 2013; Wang et al., 2010; 

Zhang et al., 2014). Importantly, our data show that previously published post-stroke FC-

behavior relationships persist even when subjects showing pathologic lag (delay of at least 1 

second between affected and unaffected hemispheres) are removed from analyses.  This 

observation confirms that post-stroke FC changes are not trivially caused by altered 

hemodynamics, but rather represent pathological alterations in neuronal communication and 

network structure. Excluding subjects with pathologic lag eliminated the observation of 

interhemispheric anticorrelations (while correcting lag often only decreases the magnitude of 

anticorrelations), suggesting that homotopic anticorrelation may be a useful indicator pathologic 

lag in other stroke FC data sets.  

We observed that shifting timecourses to re-align with the global signal reduced FC changes 

caused by lag. However, we do not recommend this maneuver as a means of accounting for lag-

related disruptions in future stroke FC-behavior studies.  The observed decrease in resting BOLD 

signal power suggests that the signal in areas of lag is fundamentally altered, thus simply shifting 

timecourses will not adequately correct quantitative measures of functional connectivity. 
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2.5.4 Limitations  

From the present study it is impossible to determine the relationship of stroke to lag, only that 

they co-occur in individual brains and in spatial distribution. Moreover, while we speculate on 

the pathophysiology underlying observed lags, the limitations of the present work obviate any 

conclusions.  

Computation of hemodynamic lag undoubtedly includes measurement error.  In particular, 

Figure 2B shows regions that lead the global gray matter signal by >2 seconds. This observation 

has been previously reported (Amemiya et al., 2013). However, we assign no particular 

pathological significance to this phenomenon. Conversely, lag is considerably more prevalent in 

the stroke group than controls, lawfully follows vascular distributions, and correlates with 

clinical deficits. All of these lines of evidence suggest that regional lags indicate hemodynamic 

compromise.   

Lastly, it is possible that the correlation between hemodynamic lag and hypoperfusion is inflated 

by the pulsed arterial spin labeling method. In PASL, an excitation pulse labels arterial blood in 

the carotid artery and then tissue saturation is measured after a delay (bolus arrival time). We 

used a bolus arrival time of 1100ms. If areas of lag show elongated arterial arrival time, then the 

perfusion measurement may be occurring prior to the signal peak in those areas and thus appear 

artificially lowered (Donahue et al., 2012; MacIntosh et al., 2010). This phenomenon has been 

reported in stroke patients (Kimura et al., 2005) and multi-delay ASL sequences have been 

developed to measure and correct it (Wang et al., 2013). 
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2.5.5 Conclusion 

Our results suggest that hemodynamic lag can be measured non-invasively using R-fMRI, occurs 

frequently following stroke, and considerably disrupts measurement of functional connectivity. 

FC-behavior relationships remain even when subjects showing lag have been removed from 

analyses. Resting state lag only provides a glimpse into the disruption that has occurred at a 

cellular and microvascular level. This work raises important questions regarding the mechanisms 

and physiological implications of hemodynamic lag that will require further work and better 

experimental models.   

Supplementary information is available at the Journal of Cerebral Blood Flow & Metabolism 

website – www.nature.com/jcbfm.  
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2.7 Supplementary Figures & Tables 

 
Supplementary Figure 2-1. Gray matter lag versus white matter lag.  
The laterality measure is used to compare gray and white matter. Each circle represent a patient. A strong correlation 
is seen between the two measures although the slope of 0.607 suggests that gray matter lag is larger in magnitude. 
 

 
Supplementary Figure 2-2 Lag reliability as a function of acquisition length.  
Summary statistics were computer on 93 acute subjects who had the full 896 frame (30 min) acquired. Lag laterality 
(black line) rises steeply until ~200 frames (6 minutes, 40seconds) and then gradually increases in reliability. Spatial 
correlation of the lag map increases steadily up to 800 frames. 
 
 

 
 Source population Study sample Healthy controls 

Age   

18-30 3% 4% 3% 
31-50 23% * 28% 23% 
51 and over 78% ** 68% 68% 
Gender   
Female 48% 47% 52% 
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Male 52% 53% 48% 
Race   
Caucasian 62%** 34% 32% 
African- American 35%** 64% 61% 
Other 2% 2% 6% 
Education   
Incomplete high school 22% 17% 16% 
High school 40% 38% 29% 
Incomplete college 23% 25% 35% 
College 8% 8% 10% 
Post-graduate 7% 12% 10% 
Predisposing Factors  
Hypertension 73% 70% 26%** 
Diabetes Mellitus 29% 31% 16%** 
Coronary Artery Disease 22%** 8% 6% 
Atrial fibrillation 11%* 5% 3% 
Depression 11%* 5% 3% 
Stroke Variables  
Ischemic Stroke 76% 82% 

 Hemorrhagic Stroke 24% 18% 
 tPA 10% 12% 
 Thrombectomy 0% 0% 
 NIHSS in hospital 8.3% 7.5%  

Supplementary Table 2-1 Statistical comparisons of demographic and risk factors for stroke. Asterisks 
represent significant differences from the study population and study sample based on chi-square test. 
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3 Resting fMRI in Stroke – approaches and considerations  
 

The contents of this chapter are not published elsewhere 
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3.1 Abstract 

Recent research has demonstrated the importance of global changes to the functional 

organization of brain network following stroke. Resting functional MRI (R-fMRI) is a non-

invasive tool that enables the measurement of functional connectivity (FC) across the entire brain 

while placing minimal demands on the subject. For these reasons, it is a uniquely appealing tool 

for studying the distant effects of stroke.  However, R-fMRI studies rely on a number of 

premises that cannot be assumed without careful validation in the context of stroke. Here, we 

describe strategies to identify and mitigate confounds specific to R-fMRI research in 

cerebrovascular disease. Four main topics are discussed: 1) achieving adequate co-registration of 

lesioned brains, 2) identifying and removing hemodynamic lags in resting BOLD, 3) identifying 

other vascular disruptions that effect the resting BOLD signal, 4) selecting an appropriate control 

cohort. For each topic, we provide evidence-based guidelines for steps to improve the 

interpretability and reproducibility of FC-stroke research. Our recommendations extend to any 

research using R-fMRI to study diseases that might alter cerebrovascular flow and dynamics or 

brain anatomy.   
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3.2 Intro  

In stroke, a disruption to the brains vascular supply leads to infarction and structural damage (i.e. 

cell death) of gray/white matter. But stroke also produces remote changes in structurally normal 

brain areas – remote effects include metabolic, physiological, and connectional abnormalities 

(Carrera and Tononi, 2014), as well as shifting of brain tissue.  It is becoming increasing 

apparent that understanding behavioral deficits post-stroke will require a complete description 

not only of lesion topography, but also of remote connectivity abnormalities (Baldassarre et al., 

2014b; Carter et al., 2012a; He et al., 2007; Rehme et al., 2014; Siegel et al., 2016; van Meer et 

al., 2010b). Resting functional MRI (R-fMRI) presents a promising tool to examine network 

level changes in stroke and recovery (Carter et al., 2012b; Corbetta, 2012; Grefkes and Fink, 

2014).  

Interpretation of the correlation of BOLD fluctuations in healthy subjects frequently rests on 

numerous assumptions. For example, a critical assumption of most R-fMRI research is that 

neurovascular coupling is relatively consistent across brain areas, across time, and across 

individuals. Though imperfect even in a healthy population, such assumptions have enabled 

reliable mapping of spatial and temporal relationships between brain areas (Buckner et al., 2013). 

When studying cerebrovascular disease, a normal hemodynamic response cannot be assumed 

(D’Esposito	et	al.,	2003). However, if certain additional steps are taken to empirically identify 

and control for relevant confounds, than measured FC-stroke relationships can be meaningfully 

interpreted. 
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The goal of this review is to provide evidence for the importance of these confounds, and explore 

best practices to manage them.  We will first consider issues relating to inter-subject registration 

– focusing on volume-based registration errors caused by stroke and recommending surface-

based methods to improve registration. We will then consider hemodynamic coupling – 

discussing evidence that vascular disease can produce changes in the magnitude and latency of 

the hemodynamic response, and recommending an approach to measure and remove this 

confound.  Finally, we will consider selection of appropriate experimental controls and control 

subject selection. 

Many of our recommendations are quite feasible in current FC-stroke datasets. However, these 

approaches are not implemented in the majority of FC-stroke studies. Moreover, many of our 

recommendations are not specific to stroke only, but extend to any research using R-fMRI to 

study diseases that might alter cerebrovascular dynamics or brain anatomy.   

3.3 Registration of the cortical surface and subcortex 

The majority of published FC-stroke research has relied on registration to a common atlas space 

using 6-parameter affine linear transformation (Ding et al., 2014; Ovadia-Caro et al., 2013; Park 

et al., 2011; Wang et al., 2013). The limitation with this approach is that a stroke, and 

pathophysiological processes associated with stroke can lead to substantial relative displacement 

of tissue (i.e. the central sulcus might move anterior or posterior relative to other brain 

landmarks). This phenomonen is illustrated in real stroke data after volume alignment in Fig. 1. 

An 8mm radius sphere is placed in the angular gyrus - defined based on anatomical landmarks - 
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in each individual linearly-aligned brain. A conjunction image shows good overlap in healthy 

individuals (with some voxels showing 100% overlap), but poor overlap in patients (with a 

maximum of 63% overlap). This was the case across the cortex. For 156 ROIs that span the 

cortex (Carl D. Hacker et al., 2013), ROI overlap was significantly lower in patients than 

controls (t = 9.6, p< 0.001).  Non-linear alignment did not substantially improve seed co-

localization in the angular gyrus. This is probably because it uses only tissue contrast and not 

cortical folding patterns. However, as discussed below, non-linear registration does substantially 

improve alignment of shifted subcortical structures.   

 
Figure 3-1 Nonlinear registration and surface-based tools improve stroke patient alignment. 
Quality of linear alignment is compared between 33 patients with large lesions (greater than 40 cm3) on either 
hemisphere and 24 matched controls. A region in the right central sulcus was defined in each subject following 
surface folding-based registration. Separately, each brain was linearly aligned to a references atlas in talairach space. 
The landmark-defined angular gyrus region was then projected to the volume coordinates in the linearly aligned 
brains. Top right: An example of registration of subcortical nuclei with using linear versus nonlinear registration. 
Atlas-defined ROIs are shown for caudate, putamen, globus pallidus, and thalamus. Example patient (used in Figure 
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4) has a cortical lesions in the contralateral hemisphere. Bottom Right: A demonstration of surface smoothing 
enabled by Freesurfer (Image courtesy of Dr. Douglas N. Greve). The green line indicates the full-width half-max 
boundaries of a 14mm volume-smoothing kernel. Notice that the smoothing kernel would cause functional data to be 
smoothed across multiple gyral walls. This problem is mitigated with surface smoothing (blue line). 

Surface-based registration offers a solution to variability in cortical shape and variability in 

shifting of tissue after stroke (Dale et al., 1999; Fischl, 2012; Fischl et al., 2002; Bruce Fischl et 

al., 1999; Glasser et al., 2013). Surface- and contour-based alignment approaches provide 

superior registration. The benefits of surface-based registration have been demonstrated in the 

healthy brain (B. Fischl et al., 1999; Ghosh et al., 2010) 

http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4008670/) , and those benefits are magnified by 

the substantially increased heterogeneity resulting from stroke. However, to our knowledge, this 

is the first demonstration of the benefits of a surface-based approach in stroke FC analysis.  

For analysis of subcortical nuclei and the cerebellum, nonlinear volume alignment (such as FSL 

FNIRT) may also provide registration that is superior to linear registration (Fig. 1, top right). 

This is because patient T1’s often show anatomical shifts as well as enlarged ventricles. Even 

patients with more moderate lesions frequently show substantial enlargement of lateral 

ventricles, causing reduced quality of alignment of basal ganglia and thalamus. 

Additional advantages exist to segmentation of tissue compartments beyond the important issue 

of registration. One is that surface segmentation enables surface-constrained smoothing, so that 

gray matter signal can be smoothed with minimal contamination by signal from CSF, white 

matter, or opposing gyral walls (Fig. 1, bottom right). Another advantage of segmentation is that 

it allows for high quality definition of tissue compartments in the individual that can then be used 
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as nuisance regressors (white matter, CSF) in data cleaning approaches such as aCompCor 

(Behzadi et al., 2007). 

An important caveat of either nonlinear volume alignment or surface-based registration is that 

large lesions should be explicitly excluded or masked prior to alignment and the results should 

be carefully assessed for quality and feasibility. This is necessary in order to prevent the 

mislabeling of cortical structures.  

Large lesions can cause distortion or failure of surface segmentation and registration. In such 

instances, we have found that painting over the lesion with voxel values from a T1 brain atlas 

can improve landmark and folding based surface alignment approaches. This is demonstrated in 

Figure 2. In the top middle panel, the high contrast lesion (blue arrow) has caused massive 

disruption of the surface segmentation (yellow arrows) .This causes errors in surface tessalation 

as well as parcellation (yellow dotted lines). But masking of the lesion enables Freesurfer to 

properly trace the remaining cortical surface.  Surface within the masked area can then be 

removed from analysis.  An important consideration is that, while this fix has enabled 

segmentation to complete in all cases, the resulting segmentation will require visual inspection 

and possible additional manual editing.  
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Figure 3-2. Free surfer segmentation error caused by a large lesion, and subsequent resolution after lesion-
masking and manual editing. 
Top: MPRage illustrating a hyper-intense hemorrhagic stroke. Unattended Freesurfer segmentation (middle) is 
unable to correctly identify the cortex lateral to the lesion. To resolve this, lesion masking with T1 atlas values and 
manual editing using control points is done. In the resulting segmentation (right), Freesurfer correctly identifies and 
segments the cortical surface. Middle and bottom: The surface and AAL parcellation generated by the post-
freesurfer HCP pipeline show errors in tracing of the cortical surface as well as labeling errors (indicated by yellow 
dotted line). After lesion masking and manual editing, these errors are no longer present. 
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An approach we have found for easily identifying errors in pial surface segmentation is viewing 

the pial surface segmentation on top of the MPRage. In Connectome Workbench, the pial surface 

can be color-coded based on FC values to further assess accuracy. Displaying homotopic FC 

values (which should always be positive) can aid in identifying segmentation errors (Fig. 3). 

 
Figure 3-3. Identifying and correcting gray matter segmentation errors.  
Top: The Freesurfer-defined pial surface is displayed as a ribbon over the subjects MPRage. The ribbon is color-
coded based on Homotopic FC strength at each surface vertex. In locations in which errors of inclusion of dura 
mater have occurred, low or negative homotopic FC is found. Bottom: After manual editing of freesurfer 
segmentation pail ribbon accuracy is improved and homotopic FC values are higher. 

Following proper segmentation and surface registration, we use post-freesurfer preprocessing 

pipelines from the Human Connectome Project (Glasser et al., 2013).  Future improvements on 

the HCP pipeline should enable manual editing of FreeSurfer segmentation so that the entire 
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HCP preprocessing pipeline is compatible with the approach described above (correspondence 

with David Van Essen). 

Misalignment has been a source of noise or confound in prior FC-stroke studies. However, this 

problem is avoidable. As we have quantitatively and qualitatively demonstrated, after curated 

surface segmentation, and nonlinear alignment of subcortical nuclei, improved functional 

alignment is possible. 

3.4 Blood flow and hemodynamics 

Stroke fMRI have shown reduced amplitude (D’Esposito	et	al.,	2003;	Krainik	et	al.,	2005;	

Pineiro	et	al.,	2002;	Rossini	et	al.,	2004) and increased latency (Altamura et al., 2009; 

Amemiya et al., 2012; Bonakdarpour et al., 2007; Carusone et al., 2002; Roc et al., 2006) - with 

BOLD responses sometimes peaking 15 seconds or more after transient neural activation. In task 

fMRI studies, changes in amplitude and latency have even been demonstrated in both affected 

and unaffected hemispheres and are most prominent during, though not limited to, the first three 

weeks after stroke (Krainik et al., 2005; Rossini et al., 2004). For a more extensive review of 

functional MRI studies in stroke, see (Lake et al., 2016). Importantly, changes in amplitude and 

latency often seem to co-occur, i.e. hemodynamically compromised vasculature shows a BOLD 

hemodynamic response function that is both reduced in amplitude and increased in latency 

(Amemiya et al., 2012; Bonakdarpour et al., 2007; Carusone et al., 2002).  
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Fortunately, it is possible to identify latency changes. The remainder of the articles discusses 

ways in which hemodynamic coupling is altered after stroke, means by which such alterations 

may be easily identified, and strategies to control for these confounds in FC-stroke analyses. 

3.5 Hemodynamic lags 

In the last 3 years, a handful of reports have been published identifying regional delays on the 

order of seconds in resting fMRI fluctuations in stroke and cerebrovascular disease patients 

(Amemiya et al., 2013; Bauer et al., 2014; Christen et al., 2015; Lv et al., 2013; Ovadia-Caro et 

al., 2014; Siegel et al., 2015). These delays are identified by cross-correlation (i.e. time shift 

analysis) of regional BOLD timecourses with some reference signal. This technique has been 

applied with different choices of reference signals including gray signal (Lv, 2015), homotopic 

signal from the non-lesioned hemisphere (Bauer, 2014), and a superior sagittal sinus seed 

(Christen 2015). Some benefits of this approach is that it is fairly robust to the choice of 

reference signal (Christen et al., 2015) and that a global measure of lag severity can be attained 

reliably from only six minutes of R-fMRI data (Siegel et al., 2015) – though spatial specificity 

requires longer scans.  

Importantly, lag co-localized to areas of perfusion deficit as measured by contrast enhanced 

perfusion-weighted imaging (Amemiya et al., 2013; Lv et al., 2013) and arterial spin labeling 

(Siegel et al., 2015) and also seems to occur in areas with reduced amplitude of evoked BOLD 

response (Bauer et al., 2014). However, studies directly relating latency and amplitude of evoked 

response to lags in resting BOLD are still needed.  
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At two weeks post-stroke, the prevalence of patients showing substantial hemodynamic lags is 

above 30%. This number drops close to 15% by 3 year post-stroke and 10% by 1 year (Siegel et 

al., 2015). Interestingly, lag severity correlates with lesion size as well as severity of deficits 

(Siegel et al., 2015).  

As would be expected, lags systematically alter measurements of FC from the affected node. 

This is easily illustrated by comparing homotopic lags to homotopic FC. In Fig. 4 each circle 

represents a pair of the ROIs on opposite hemispheres (homotopic) in one patient (red) or control 

(blue). The lag between homotopic ROIs is plotted on the x-axis while the functional 

connectivity (zero-lagged Pearson correlation) is plotted on the y-axis. This figure is generated 

using 107 sub-acutes stroke cohort and 24 age-matched controls described in (Siegel et al., 

2015). This figure is particularly useful because one plot makes multiple important points – 1) 

hemodynamic lags produce a monotonic decrease in measured FC values, 2) even in areas with 

zero lag, homotopic FC is lower on average in patients than controls, 3) negative homotopic FC 

values observed in patients are likely (though not definitively) a symptom of lags, and 4) lags are 

common in patients and rare but reliably identified in a small minority of risk-matched controls 

(2/24 with consistent measures across scans 3 months apart). 
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Figure 3-4. Hemodynamic lags systematically alter functional connectivity 
Each circle represents a pair of the ROIs on opposite hemispheres (homotopic) in one patient (pale red) or control 
(pale blue). The lag between homotopic ROIs is plotted on the x-axis while the functional connectivity (zero-lagged 
Pearson correlation) is plotted on the y-axis. The LOWESS moving average is plotted in bright red and blue lines for 
patients and controls, respectively. This figure is generated using the 107 sub-acutes stroke cohort and 24 age-
matched controls. A set of 78 left hemisphere ROIs (and their right hemisphere mirror image regions) were used for 
each subject. ROIs intersecting a lesion were excluded. Under, a histogram shows the proportion of homotopic ROI 
pairs showing lags. Even in sub-acute patients, the majority of regions show a lag of less than 0.5 seconds. 

Interestingly, homotopic anti-correlations appear in many seminal FC-stroke studies (He et al., 

2007; van Meer et al., 2010a), suggesting that the studies were likely affected by lag.  

A few approaches have been proposed to correct for lags in FC analysis. Bauer et al., provided 

evidence that using the lesion timecourse as a nuisance regressor reduced aberrant observations 

attributable to lag in mice with transient MCA occlusions. Another approach that has been tested 

out is to shift timecourses in lagged tissue prior to FC analysis (Christen et al., 2015; Siegel et 

al., 2015). This approach is not recommended, and other sources of unwanted variance (head 



 

64 

 

 

motion, white matter, CSF signals) may or may not be shifted in these areas. Moreover, BOLD 

signal power is significantly reduced in areas showing lag, and neither approach describe above 

can correct fundamental changes to the BOLD signal. 

In subjects with severe lags of greater than 1 second laterality (i.e. the entire lesioned hemisphere 

is delayed by greater than 1 second relative to contralesional) we recommend exclusion from FC 

analysis. The 1 second threshold is approximately four standard deviations outside of measures 

seen in unaffected subjects (which may reasonably be attributed to noise or neural latency).   In 

patients with a constrained area of large magnitude lag (as is seen in the example patient in Fig. 3 

– area of lag is highlighted with a green outline) it may be necessary to exclude the affected 

region from FC analysis. Since the effects of lags of 1-6 seconds are approximately linear (see 

Fig 5 of Siegel et al., 2015), more subtle lags can be co-varied out of any FC analysis 

(Baldassarre et al., 2016; Ramsey et al., 2016). Fortunately, this precaution is feasible because 

lags can be calculated using the same data used for canonical FC analysis. We would encourage 

any researcher investigating FC-stroke data to test for lags using publicly available software 

(nil.wustl.edu/Corbetta/resources/lagsuite.tar.gz). 

3.6 Neurovascular Coupling 

While identifying lags is important, it may not be a complete fix for the challenge of altered 

neurovascular coupling. In some patients, a decrease in amplitude (Krainik et al., 2005; Salinet et 

al., 2014), or a complete loss of the BOLD response (Blicher et al., 2012; Rossini et al., 2004) 

has been observed in the absence of lags. On it’s own, it is difficult to interpret reduction/absence 
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of a evoked BOLD response – it might reflect a decrement in neural activity, loss of 

neurovascular coupling, or an inability of the vasculature itself to adequately increase local 

perfusion (Marshall, 2004; Pineiro et al., 2002; Rossini et al., 2004). Thus, approaches to better 

validate hemodynamic responsiveness to neural activity would be of value. 

Carotid stenosis is perhaps a useful example of a vascular disease because it is relatively well 

characterized in its effects of neurovascular coupling, it is common in stroke patients, and it’s 

effects on FC have been reported. Severe carotid stenosis (>70% occlusion) reduces both the 

static and dynamic components of cerebral blood flow (Powers et al., 1987). This results in 

uncoupling of the hemodynamic response from neural activity (Powers et al., 1988). Moderate 

stenosis (50-70% occlusion) may not alter coupling (Derdeyn et al., 1998), though this has not 

been carefully addressed. In a healthy asymptomatic population of adults over the age of 70, 

4.8% exhibit moderate (>50% occlusion) and 1.6% exhibit severe (>70% occlusion) carotid 

stenosis (Weerd et al., 2010). In a stroke population, prevalence is substantially higher. Based on 

clinically acquired carotid doppler data from our stroke cohort, 20% of patients (13/66) show 

>50% occlusion with 11% (7/66) showing >80% occlusion on the affected side. Other studies 

have reported that as much as 33% of ischemic stroke patients exhibit moderate or severe 

intracranial stenosis, and 12% have stenosis on the hemisphere opposite the lesion (Wong et al., 

1998). In most such cases, an embolic stroke produces an infarct in only a portion of the territory 

affected by the stenosis. Studies directly measuring FC changes in carotid stenosis patients 

relative to non-stenotic controls have explicitly shown large reduction in FC in the affected 

hemisphere (Chang et al., 2016; Cheng et al., 2012).  
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Though it is intuitive that changes in neurovascular coupling should alter FC measurement, the 

effects are not straightforward.  Relatively small decreases in the magnitude of the HDR might 

have little effects because functional connectivity analysis typically relies on correlation (not 

covariance) of the r-fMRI signal.  However, it is also possible that changes to neurovascular 

coupling can alter FC in profound ways. Further studies are required to understand the 

relationships between abnormalities of neurovascular coupling and FC. One goal of such studies 

would be to develop better techniques to identify and control for vascular changes in FC 

analysis. This is possible by employing a combination of R-fMRI with modalities for vascular 

imaging and electrophysiology. A challenge in such studies will be the fact that relationships 

between cerebral perfusion, cerebral autoregulation, and cerebrovascular coupling in the context 

of ischemia are exceptionally complex (for a review, see (Attwell et al., 2010)).  

Some measures can be taken to identify pertinent vascular disruptions in FC-stroke analysis.  

These include assessment of internal carotid stenosis using carotid doppler, or assessment of 

local neurovascular coupling using CO2 or hyperventilation fMRI paradigms (Krainik et al., 

2005; Raichle and Plum, 1972).  Other imaging techniques capable of identify clinically silent 

carotid stenosis include angiography (by MR and CT), transcranial doppler (which can be used 

in combination with arterial blood pressure to assess auto-regulatory impairment (Reinhard et al., 

2005)), and possibly measures of static regional cerebral blood flow (though tissue at the edge of 

the autoregulatory range may show normal rCBF but no hemodynamic response). 

Pulsed arterial spin labeling (ASL) techniques are frequently used as a non-invasive measure of 

perfusion, though decreased signal cannot be interpreted as rCBF change as it may also reflect 
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changes in mean transit time (Donahue et al., 2012; Kimura et al., 2005) and may not be 

effective at identifying perfusion deficit in stroke, (Bokkers, 2012 - Whole-brain arterial spin 

labeling perfusion MRI in patients with acute stroke). However, advanced in ASL are making it 

possible to classify multiple features of vascular flow using multi-delay sequences to more 

accurately model cerebra blood flow even in circumstances of altered transit time (Wang et al., 

2013) (Koretsky 2012). 

3.7 General Recommendations 

Stroke patients as a population have significantly elevated prevalence of numerous medical 

problems. These include diabetes, hypertension, cardiovascular disease, cerebrovascular disease 

(such as carotid stenosis), white matter disease, and others (Sacco et al., 1997). For this reason, 

we emphasize two overarching recommendations for studies applying R-fMRI in stroke patients 

(or in using R-fMRI in stroke as a model to study brain networks).  

The first recommendation is that an appropriate control population be used. While it may be 

difficult to perfectly match controls on all relevant health factors, an approach that can 

substantially reduce the influence of such factors is to use siblings of patients as controls 

(Corbetta et al., 2015).  An alternative and equally valid approach is to compare performance 

measures between stroke patients (i.e. compare patient with and without deficit). This allays the 

challenge of substantial heterogeneity in any human stroke population. 

The second recommendation is to carefully check MRI data in order to identify confounds and 

abnormalities. This should include separate assessment of segmentation, preprocessing, and 
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processing. As an example of how this can be done, we provide a set of images that we check in 

our patients to assess data quality (Fig. 5). Images on the left are primarily useful for checking 

surface segmentation. As shown in the right middle panel, we inspect a lag map for every 

subject. In some cases, a spatially constrained area in the vicinity of the lesion shows severe lags 

(green outline). This can by masked from FC analysis.  As described previously, visualizing 

surface homotopic FC on top of an average volumes image can serve as an additional way to 

assess registration of functional and structural data. 

We have mainly limited Figure 5 to images especially useful for identifying stroke- and 

comorbity-related problems. We also use approaches to asses head motion, artifact, and BOLD 

signal quality, that are commonly used in FC studies of normal populations, but discussion of 

those issues are beyond the focus of this paper (for a good discussion of those measures, we 

point the reader to Power et al., 2014). 
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Figure 3-5. Quality assessment images for a sample subject 
Top Left: MPRage. For this subject, FreeSurfer segmentation failed due to the large hyperintense hemorrhagic 
stroke. The manually identified lesion was temporarily painted over with atlas brain (Middle Left), allowing brain 
segmentation to run to completion. Bottom Left: cortical surface ribbon displayed on top of the MPRage. Yellow 
denotes vertices included in a surface lesion mask. This is particularly useful to determine proper labeling of lesion 
and exclusion of dura in brain segmentaiton. Top Right: results of FreeSurfer segmentation - this can be compared 
to reference AAL parcellation to ensure proper labeling of landmass such as superior temporal sulcus, superior 
frontal sulcus. Middle Right: Lag map using homotopic reference (code available at 
nil.wustl.edu/labs/corbetta/resources). Areas of substantial lags are identified dorsal to the lesion boundaries and will 
be corrected or excluded in FC analysis. Bottom Right: homotopic FC overlaid on an average of aligned functional 
MRI volumes. Useful for checking alignment of functional volumes with MPR and surface segmentation. 

3.8 Asserting validity of FC based on prior findings 

Having raised these important challenges and considerations, it is necessary to briefly comment 

on validity of prior FC-stroke research. There are numerous reasons why prior FC-stroke 



 

70 

 

 

findings represent promising translational advances, and why further FC-stroke research is 

merited. The reliability of correlations between FC and behavioral deficit in previous carefully 

executed studies give validity to FC-stroke research. For instance, multiple studies have 

identified common FC disruptions across a subset of patients that share a common deficit, even 

when lesion location is highly variable across that subset (Baldassarre et al., 2014b; Rehme et al., 

2014; Siegel et al., 2016).  Furthermore, there is a high degree of specificity in network-behavior 

relationships – for example, FC changes in attention areas predict hemispatial neglect while FC 

changes in motor areas predict hemiparesis (Baldassarre et al., 2016; Carter et al., 2010). Thirdly, 

investigations of parcel homogeneity suggests that, even 2 weeks after stroke, FC data is of 

sufficient quality to be homogenous within functional brain areas and heterogeneous across 

functional brain areas (Siegel, in submission; Gordon et al., 2016). We will avoid going further 

in to the interpretation of FC-stroke findings, as that is beyond the focus of this review. 

We conclude that studies of functional connectivity in stroke have been and may continue to be a 

useful tool for understanding brain systems and for better characterizing the effects of stroke. But 

the most biologically valid and reproducible results will come when data are carefully assessed at 

each stage of acquisition and processing, with special attention to challenging issues such as 

registration and neurovascular coupling.  
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4 Disruptions of network connectivity predict impairment 
in multiple behavioral domains after stroke  
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4.1 Abstract 

Deficits following stroke are classically attributed to focal damage, but recent evidence suggests 

a key role of distributed brain network disruption. We measured resting functional connectivity 

(FC), lesion topography, and behavior in multiple domains (attention, visual memory, verbal 

memory, language, motor, and visual) in a cohort of 132 stroke patients, and used machine-

learning models to predict neurological impairment in individual subjects. We found that visual 

memory and verbal memory were better predicted by FC, whereas visual and motor impairments 

were better predicted by lesion topography. Attention and language deficits were well predicted 

by both. Next, we identified a general pattern of physiological network dysfunction consisting of 

decrease of interhemispheric integration and intrahemispheric segregation, which strongly 

related to behavioral impairment in multiple domains. Network-specific patterns of dysfunction 

predicted specific behavioral deficits, and loss of interhemispheric communication across a set of 

regions was associated with impairment across multiple behavioral domains. These results link 

key organizational features of brain networks to brain– behavior relationships in stroke.  
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4.2 Introduction 

Although structural damage from stroke is focal, remote dysfunction can occur in regions of the 

brain distant from the area of damage (Carrera and Tononi, 2014; von Monakow, 1914). The set 

of regions that are directly damaged or indirectly affected is embedded within a larger functional 

network that is in dynamic balance with other networks in the brain. This framework posits that a 

lesion in a single location in the brain has the ability to disrupt brain functions far beyond the 

lesion boundaries (Alstott et al., 2009; Corbetta, 2012; Fornito et al., 2015). 

Numerous correlates of remote physiological dysfunction have been proposed, including 

abnormal task recruitment of contralesional brain areas (Buckner et al., 1996; Chollet et al., 

1991; Corbetta et al., 2005), disruption of metabolism (Feeney and Baron, 1986) or regional 

cerebral blood flow (Hillis et al., 2002; Perani et al., 1987), and more recently disruption of 

signal coherence (Carter et al., 2010; He et al., 2007; Nomura et al., 2010; Wang et al., 2010).  

However, there is only a limited understanding of how remote physiological dysfunction is 

related to lesion topography (Boes et al., 2015; Nomura et al., 2010).  Moreover, the behavioral 

relevance of reported physiological changes is unclear.  While some studies have reported 

significant correlation with behavioral impairment, the total amount of behavioral variance 

explained is unknown. Finally, because mechanisms of remote dysfunction have typically been 

examined in relatively small groups of individuals, their generalization at the population level is 

unknown. As a result, physiological measures of brain function are not used in the evaluation 

and treatment of stroke victims. 
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More traditional lesion-symptom mapping studies have also used statistical methods to relate 

lesion topography to the severity of different behavioral deficits (Damasio et al., 1996; Karnath 

et al., 2001) . An implicit assumption of these studies is that the strength of association between 

structural damage and behavior is the same irrespective of the behavior that is measured. 

However, it is also possible that more integrative functions (attention, memory, executive) rely to 

a greater extent on distributed processing than sensory and motor functions. Surprisingly, the 

degree to which lesion topography accounts for the variability across different deficits is mostly 

unknown (for exceptions see (Corbetta et al., 2015; Phan et al., 2010; Smith et al., 2013))  As a 

result, lesion-behavior predictions also have not entered the main stream of clinical neuroscience. 

In this study, we hypothesize that structural damage caused by stroke produces robust, 

physiological changes in network coherence that explain behavioral variance at the population 

level.  We interpret the effects of these physiological changes in terms of the known functional 

organization of the brain. Regions subserving similar functions are grouped into networks, i.e. 

sets of regions that are highly connected (e.g. motor cortex and supplementary motor area for 

motor behavior). Dysfunction of these networks should underlie deficits in corresponding 

behavioral domains.  

We use a similar framework to understand the weights of functional connections in accounting 

for behavior.  Based on the normal organization of brain networks, we hypothesize that 

sensorimotor functions, which are more dependent on input/output pathways and tend to be 

associated with networks that sit peripherally in the brain’s overall graph, will be more strongly 

dependent on structural variables (e.g. lesion topography), while integrative functions (e.g. 
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attention, memory) associated with more central networks will be more dependent on disrupted 

patterns of cortical coherence. 

We evaluated these predictions within a clinically relevant sample, i.e. a large population of sub-

acute stroke patients (n = 132) shown to be representative of a larger clinical population. 

Neurological impairments were described using behavioral measures that capture a large amount 

of inter-subject variance (Corbetta et al., 2015). Structural magnetic resonance imaging (MRI) 

and resting functional magnetic resonance imaging (R-fMRI) were used to measure lesion 

topography, and functional connectivity (FC) of brain networks, respectively.  Structural, and 

functional data were then entered into a ridge regression machine-learning algorithm to predict 

deficits at the single subject level in six behavioral domains: attention, visual memory, verbal 

memory, language, motor and visual.  Deficits were predicted using either a lesion-deficit model 

or a FC-deficit model, allowing us to compare the relative importance of lesion topography and 

network dysfunction in accounting for different behavioral deficits. Finally, FC-deficit models 

were used not only to identify the specific brain connections that were most predictive of deficits 

in each behavioral domain, but also to identify connections that predicted deficits across 

behavioral domains. 

4.3 Methods 

4.3.1 Subject Enrollment 

Written informed consent was obtained from all participants in accordance with the Declaration 

of Helsinki ND procedures established by the Washington University in Saint Louis Institutional 
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Review Board. All participants were compensated for their time. All aspects of this study were 

approved by the Washington University School of Medicine (WUSM) Internal Review Board. 

Subject enrollment and demographics are described in detail in Corbetta et al., 2015.  First time 

stroke patients were recruited by a research coordinator through the in-patient service at Barnes-

Jewish Hospital and the Rehabilitation Institute of St. Louis. Inclusion criteria were: 1) Age 18 

or greater, 2) first symptomatic stroke, ischemic or intraparenchymal hemorrhagic etiology, 3) 

clinical evidence of motor, language, attention, visual, or memory deficits based on neurological 

examination, and 4) time of enrollment < 2 weeks post-stroke onset. Exclusion criteria were: 1) 

the inability to maintain wakefulness during testing, 2) the presence of other neurological, 

psychiatric or medical conditions that preclude active participation in research and/or may alter 

the interpretation of the behavioral/imaging studies (e.g., dementia, schizophrenia), or limit life 

expectancy to less than 1 year (e.g., cancer or congestive heart failure class IV), 3) evidence of 

clinically significant periventricular white matter disease (equal or > grade 5 of (Longstreth et 

al., 1996), and 4) contraindications for MRI including claustrophobia or scanner incompatible 

implants. In total, 6260 charts were screened; 132 patients met all inclusion criteria and 

completed the entire sub-acute protocol (mean age 52.8 years with range 22-77, 119 right 

handed, 63 female, 64 right hemisphere).  

Demographically matched controls (n = 31) were recruited and underwent the same behavioral 

and imaging exams. Inclusion criteria for controls were: 1) healthy adult matched to stroke study 

population by age, gender, handedness, and level of education. Exclusion criteria were: 1) a 

positive history of neurological, psychiatric, or medical abnormalities preventing participation in 
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research activities, 2) a history of atherosclerotic (coronary, cerebral, peripheral) artery disease, 

3) an abnormal neurological examination with signs of CNS dysfunction. In total, 31 controls 

completed the entire sub-acute protocol (mean age 55.7 years (SD =11.5) with a range 21-83).  

4.3.2 Neuropsychological Assessment 

All participants underwent a behavioral battery that included several assessments of motor, 

language, attention, memory, and visual function following each scanning session (Table S1). 

Imaging and behavioral testing session usually were performed on the same day. Scores were 

only recorded for tasks that subjects were able to complete. Therefore different domains have 

different numbers of subjects. Dimensionality reduction was performed on the performance data 

as described in detail in (Corbetta et al., 2015). First, tasks were categorized as attention, 

memory, language, motor, and vision. A principal components analysis (PCA) was run on each 

category. In attention, the first component described 26.1% of variance and was strongly related 

to measures of visual field bias (Posner task: left/right accuracy differences: r = 0.83; Mesulam: 

center of cancellation: r = 0.75) and general performance (accuracy, r = -0.41).  In memory, the 

first two components accounted for 66.2% of variance in all measures of related to memory. The 

first component was highly related to measures of delayed recall of visual information (BVMT 

delayed recall: r = 0.81) and the second component was related to recall of verbal information 

(HVLT delayed recall r = 0.93). In language, the first component accounted for 77.3% of 

variance and was highly related to comprehension and production. In motor the first two 

components described left and right body deficit and explained 43.0% and 34.6% of variance, 

respectively.  
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Visual field deficits were measured in a computerized perimetry examination (Humphrey Field 

Analysis Model 750i). Each eye was tested using the central 24-2 threshold SITA-FAST 

protocol. PCA was not done because vision was assessed with a single functional test. Instead, 

the two vision domain scores used were the mean pattern deviation scores in the left and right 

hemifields.   All tests included and correlation with the domain scores are shown in Table S1. 

In total, eight domains were used for FC-deficit and lesion-deficit modeling. Scores in each 

domain were continuous and were normalized to have a mean of 0 and standard deviation of 1 in 

patients, and lower score indicating greater deficit. With deficit defined as at least 2 standard 

deviations below controls, we found the following: 1) Attention (31 with deficit / 88 total 

patients), 2) Visual Memory (27/88), 3) Verbal Memory (30/88), 4) Language (33/112), 5) Left 

Motor (37/106), 6) Right Motor (39/106), 7) Left Visual (13/58), and 8) Right Visual (10/58). 

4.3.3 MRI and Lesion Analysis 

Individual T1 MRI images were registered to the Montreal Neurological Institute brain using 

FSL FNIRT (FMRIB's Non-linear Image Registration Tool) (Andersson et al., 2007).  Lesions 

were manually segmented on individual structural MRI images (T1-weighted MP-RAGE, T2-

weighted spin echo images, and FLAIR images obtained 1-3 weeks post-stroke) using the 

Analyze biomedical imaging software system (www.mayo.edu; Robb and Hanson, 1991). Two 

board-certified neurologists (Maurizio Corbetta and Alexandre Carter) reviewed all 

segmentations. Special attention was given to distinguish lesion from CSF, hemorrhage from 

surrounding vasogenic edema, and to identify the degree of periventricular white matter damage 
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present. In hemorrhagic strokes, edema was included in the lesion. A neurologist (MC) reviewed 

all segmentations a second time paying special attention to the borders of the lesions and degree 

of white matter disease. The staff that was involved in segmenting or in reviewing the lesions 

was blind to the individual behavioral data. Atlas-registered segmented lesions ranged from 

0.02cm3 to 82.97cm3 with a mean of 10.15cm3 (SD=13.94cm3). Lesions were summed to display 

the number of patients with structural damage for each voxel (Fig.S1). 

4.3.4 R-fMRI Acquisition  

Patients were studied 2 weeks (mean = 13.4 days, SD=4.8 days), 3 months (mean = 112.5 days, 

SD=18.4 days), and 1 year (mean = 393.5 days, SD=55.1 days) post-stroke onset. Controls were 

studied twice at an interval of 3-months. All imaging was performed using a Siemens 3T Tim-

Trio scanner at the Washington University School of Medicine (WUSM) and the standard 12-

channel head coil. The MRI protocol included structural, functional, pulsed arterial spin labeling 

(PASL) and diffusion tensor scans. Structural scans included: (1) a sagittal T1-weighted MP-

RAGE (TR=1950 msec, TE=2.26 msec, flip angle=90°, voxel size=1.0´1.0´1.0 mm); (2) a 

transverse T2-weighted turbo spin-echo (TR=2500 msec, TE=435 msec, voxel-

size=1.0´1.0´1.0mm); and (3) sagittal FLAIR (fluid attenuated inversion recovery) (TR=7500 

msec, TE=326 msec, voxel-size=1.5´1.5´1.5mm). PASL acquisition parameters were: TR=2600 

msec, TE=13 msec, flip angle=90°, bandwidth 2.232 kHz/Px, and FoV 220mm. 120 volumes 

were acquired (322 seconds total), each containing 15 slices with slice thickness 6 mm and 

23.7mm gap. Resting state functional scans were acquired with a gradient echo EPI sequence 
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(TR = 2000 msec, TE = 27 msec, 32 contiguous 4 mm slices, 4´4mm in-plane resolution) during 

which participants were instructed to fixate on a small cross in a low luminance environment. Six 

to eight resting state fMRI runs, each including 128 volumes (30 min total), were acquired.  

4.3.5 fMRI Data Preprocessing 

Preprocessing of fMRI data included: 1) compensation for asynchronous slice acquisition using 

sinc interpolation; 2) elimination of odd/even slice intensity differences resulting from 

interleaved acquisition; 3) whole brain intensity normalization to achieve a mode value of 1000; 

4) removal of distortion using synthetic field map estimation and spatial realignment within and 

across fMRI runs; 5) resampling to 3mm cubic voxels in atlas space including realignment and 

atlas transformation in one resampling step. Cross-modal (e.g., T2-weighted to T1-weighted) 

image registration was accomplished by aligning image gradients (Rowland et al., 2005). Cross-

model image registration in patients was checked by comparing the optimized voxel similarity 

measure to the 97.5 percentile obtained in the control group. In some cases, structural images 

were substituted across sessions to improve the quality of registration. 

4.3.6 Functional Connectivity Processing 

FC processing was similar to previous work from the lab (Baldassarre et al., 2014c), with the 

addition of surface projection and processing steps developed by the Human Connectome Project 

(Glasser et al., 2013). First, data were passed through several additional preprocessing steps: (i) 

regressors were computed based on freesurfer segmentation; (ii) removal by regression of the 

following sources of spurious variance: (a) six parameters obtained by rigid body correction of 
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head motion, (b) the signal averaged over the whole brain, (c) signal from ventricles and CSF, 

and (d) signal from white matter; (ii) temporal filtering retaining frequencies in the 0.009–

0.08Hz band; and (iii) frame censoring.  The first 4 frames of each BOLD run were excluded. 

Frame censoring was computed using framewise displacement with a threshold of 0.5mm. This 

frame-censoring criterion was uniformly applied to all R-fMRI data (patients and controls) 

before functional connectivity computations. Subjects with less than 120 usable BOLD frames 

were excluded (13 patients, 3 controls). 

4.3.7 Surface Processing 

Surface generation and processing of functional data followed procedures similar to Glasser et 

al.,(Glasser et al., 2013), with additional consideration for cortical segmentation in stroke 

patients. First, anatomical surfaces were generated for each subject’s T1 MRI using FreeSurfer 

automated segmentation (B. Fischl et al., 1999). This included brain extraction, segmentation, 

generation of white matter and pial surface, inflation of the surfaces to a sphere, and surface 

shape-based spherical registration to the subjects “native” surface to the fs_average surface.  

Segmentations were manually checked for accuracy. For patients in whom the stroke disrupted 

automated segmentation, or registration, values within lesioned voxels were filled with normal 

atlas values prior to segmentation, and then masked immediately after (7 patients).  The left and 

right hemispheres were then resampled to 164,000 vertices and registered to eachother (Van 

Essen et al., 2001), and finally downsampled to 10,242 vertices each for projection of functional 

data. 
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Following preprocessing of BOLD data, volumes were sampled to each subject’s individual 

surface (between white matter and pial surface) using a ribbon-constrained sampling available in 

Connectome Workbench. Voxels with a high coefficient of variation (0.5 standard deviations 

above the mean coefficient of variation of all voxels in a 5mm sigma Gaussian neighborhood) 

were excluded from volume to surface mapping (Glasser et al., 2013).  Timecourses were then 

smoothed along the 10,242 vertex surface using a 6mm FWHM Gaussian kernel. Finally, 

timecourses of all vertices within a parcel are averaged to make a parcel-wise timeseries.  

Functional connectivity (FC) was then computed between each parcel using Fisher z-transformed 

Pearson correlation.  Connectivity for any parcel that fell within the boundaries of the lesion was 

removed from univariate analyses and set to zero for multivariate models.   

Homotopic FC was computed for each region by measuring FC with the corresponding vertices 

on the opposite hemisphere.  Subjects with severe hemodynamic lags (greater than 0.5 second 

inter-hemispheric difference) measured from R-fMRI (Siegel et al., 2015) were excluded from 

all further FC analyses. This criterion excluded 21 subjects leaving a total of n = 100 stroke 

patients and n = 27 controls with FC data that met all of our quality controls.   

4.3.8 Parcellation (Regions of Interest) and Community Assignments 

We used a cortical surface parcellation generated by Gordon & Laumann and colleagues 

(Gordon et al., 2016) (Figure S1). The parcellation is based on R-fMRI boundary mapping and 

achieves full cortical coverage and optimal region homogeneity. The parcellation includes 324 

regions of interest (159 left hemisphere,165 right hemisphere). The original parcellation includes 
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333 regions, and all regions less than 20 vertices (approx. 50mm2) were excluded. Notably, the 

parcellation was generated on young adults age 18-33 and is applied here to adults age 21-83. 

However, we know of no evidence to suggest that boundaries between cortical areas shift in the 

course of healthy aging. 

To validate the community structure, we conducted modularity optimization on controls and 

patients (Figure S2). Consistent with larger investigations of aging (Chan et al., 2014), we found 

that optimal community structure was largely, but not completely, consistent with predefined 

assignments. The location of intermingled colors in the spring-embedded areal graphs on the 

right of Figure S2 suggest that regions that switch assignment are typically on the edge between 

communities. Note that community assignments have no bearing on FC-deficit models discussed 

below. 

4.3.9 Univariate Network FC Analysis 

Group-wide patient (n = 100) versus control (n = 27) FC differences were interrogated based on 

the resting state network described above. We compared distributions of homotopic, ipsi-

lesion/contralesional (randomly assigned L/R in control), and inter/intranetwork FC for patients 

and controls. In each case, patient-control distributions were compared using a two-tailed 

Student t-test. Three types of within-network connectivity were compared at the whole brain 

level; homotopic, ipsilesional, and contralesional. FDR correction was conducted on these three 

statistical tests.   
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For nine individual RSNS, within and between network differences were assessed. Here, 99 

stroke-control t-tests (45 ipsilesional, 45 contralesional, 9 homotopic) were computed, 

significance cutoffs were determined via 10,000 permutations of group assignment (stroke versus 

control).  Finally, the relationship between homotopic connectivity and ipsi-lesional DMN 

connectivity was assessed for eight RSNs (the nine used previously, minus the DMN), and 

results were FDR corrected for eight statistical tests. 

4.3.10 Multivariate Ridge Regression 

Lesion-deficit and FC-deficit relationships were interrogated using leave-one-out ridge 

regression models (Fig.2).  We chose to use a linear multivariate ridge regression function to 

minimize bias but retain the ability to plot predictive weights back to brain anatomy (Phan et al., 

2010). Transductive PCA (Zhu et al., 2008) was performed prior to modeling for both lesion 

topography as well as vectorized FC matrices (Smith et al., 2014). This step was carried out 

independently for every model and components that explained 95% of variance were retained. 

For lesion location, the PCA was performed on voxel-wise lesion maps from 65,549 3mm3 brain 

voxels and for functional connectivity, the PCA was performed on 324-choose-2 = 52,326 edges. 

The number of components retained for each model were as follows: 1) Attention (50 lesion 

components, 74 FC components), 2) Visual Memory: (43,72), 3) Verbal Memory (43,72), 4) 

Language (56,90), 5) Left Motor (50/84), 6) Right Motor (50/84), 7) Left Visual (28/49), and 8) 

Right Visual (28/49). 
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All ridge regression models were trained and tested using a leave-one-out cross validation 

(LOOCV) loop (Golland and Fischl, 2003). In each loop, the regularization coefficient lambda 

was optimized by identifying a lambda between λ=1 and 105 that minimized leave-one-out 

prediction error over the training set. Next, optimal weights were solved across the entire training 

set using gradient descent to minimize error for the ridge regression equation shown in figure 2. 

Optimal model weights were applied to the lesion/FC of the left-out subject to predict that 

subject’s behavioral score. A prediction was generated for all subjects in this way. Model 

accuracy was assessed using the square of the Pearson correlation coefficient between measured 

and predicted behavior scores. To visualize feature weights, the weight matrix was averaged 

across all n leave-one-out loops to generate a single set of consensus weights. Thus, solving for 

all behavioral scores in each domain produced two outputs: 1) accuracy – % variance explained 

(r2), and 2) a consensus weight map – a vector (ω) containing relative predictive weights for 

every voxel/connection.  The weights (ω) from the model were back-projected to the brain to 

display the most predictive functional connections and displayed using Caret (Van Essen et al., 

2001).   

Two models were combined for the left and right motor domains and left and right visual 

hemifields to determine the percent of variance explained for motor and visual models. The 

combined models were later used to determine total within and between RSN contributions to 

FC-deficit models. Difference in prediction accuracy between lesion-deficit versus FC-deficit 

models were assessed by a two-tailed Wilcoxon signed rank test on the squared prediction error 

((ω)L𝑥" − 𝑦")O, where 𝑖 indexes participant.   
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FC-deficit network contribution was also quantified based on a priori assigned RSN membership 

(Carl D Hacker et al., 2013). Thus, weights of all connections within and between each RSN 

were averaged to generate a 7x7 RSN weight matrix for each FC-deficit model.  

The top 1% of weights were also classified according to four weight types: inter-hemispheric 

positive, inter-hemispheric negative, intrahemispheric positive, and intrahemispheric negative. 

The number of weights in the top 1% belonging to each of the four types was counted in each 

model. An ANOVA was run across all seven models to test for a difference in contribution 

between the four weight types.  

An additional post-hoc model was run to predict global homotopic connectivity (averaged across 

all parcels) based on lesion location. This lesion-homotopic FC model was set up in the same 

manner as the lesion-deficit prediction models.  

4.3.11 Multi-task Learning 

To separate features of functional connectivity change that predict shared deficit across multiple 

domains versus those that are domain-specific, we applied multi-task learning (Daumé III, 2009). 

Multi-task learning (MTL) is a way to combine the FC-deficit prediction models by learning 

them jointly. In the setting of brain network decoding, it is reasonable to assume that some 

shared features determine domain-general functionality. The MTL equation simultaneously 

optimizes prediction for every domain by combining a domain-specific set of weights with a 

second set of weight that are held constant across all domains. L1 regularization is used to apply 



 

87 

 

 

a equal cost function to each, such that the model is not biased towards using either shared or 

domain-specific weights. 

The multitask optimization equation is: 

 argmin
U
	𝜆||ωX||O + ((ωX + ωY)L𝑥" − 𝑦")O + 𝜆||ωY||OF

"Z[
\
YZX    (X-1) 

 

In equation 1, the 𝑥 vector indicates FC (in PCA space). The 𝑦 vector contains behavioral scores 

for these same patients. 𝜆, a regularization coefficient, is determined empirically using a leave-

one-out approach over a range of 𝜆 values. The vector ω is the weight vector that describes the 

relative importance of each feature in 𝑥 to the prediction of 𝑦. 𝑛 is the number of subjects, and 𝐾 

is the number of behavioral domains being combined in the MTL problem. The prediction for 

subject i in domain k is generated by combining a set of domain specific weights ωY with 

domain general weights ωX in the expression: 𝑦" = 	 (ωX + ωY)L𝑥".  

Nodal contribution to the across-domain weights (ωX) for the 324 ROIs was determined by 

taking the root-mean-square weight of all connections for each node.  
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4.4 Results 

4.4.1 Abnormal FC patterns in stroke 

We recruited 132 first-time symptomatic stroke patients 1-2 weeks after stroke, and 31 

demographically matched controls. Patients were assessed with a broad neuropsychological 

battery measuring performance across six behavioral domains (vision, motor, language, visual 

memory, verbal memory, and attention), lesions were manually identified with multi-modal 

segmentation, and 30 minutes of R-fMRI data were acquired.  21 patients were excluded for 

hemodynamic lags (Lv et al., 2013; Siegel et al., 2015) and 11 patients and 4 controls were 

excluded for excessive head motion(Power, n.d.). After exclusion, 100 stroke patients and 27 

age-matched controls were studied. To investigate the general effects of stroke, we compared FC 

features in the entire stoke cohort to those of the age-matched control cohort. A cortical 

parcellation of 324 regions was divided into 13 networks based on Gordon & Laumann et al. 

2014 (Gordon et al., 2016) (Figs.S1, S2). Within-network connections were further classified as 

inter-hemispheric homotopic, ipsilesional intra-hemispheric, and contralesional intra-

hemispheric connections.  

Figure 1 shows the distribution of FC values in patients (red) and controls (blue) for three types 

of within-network connections: homotopic, ipsilesional, and contralesional. Decreased 

homotopic FC was the most prominent difference between patients and controls (t-statistic = 

4.26, p= 10-4, FDR correction). This effect was also tested for individual networks and significant 

differences were observed in all networks except CON, VAN, and DMN (Fig.S3B). A three-
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factor analysis of variance (ANOVA) on homotopic FC revealed a significant effect of group (p 

= 3x10-22), a significant effect of RSN (p = 4x10-7), no significant effect of subject head motion (p 

=  0.26), and no significant interaction. By contrast, within-network intra-hemispheric 

connectivity was not significantly changed in both the ipsilesional and contralesional 

hemispheres (Fig.1B-C).  

 
Figure 4-1. Stroke preferentially affects homotopic connections.  
Red curves represent the distribution of within-RSN FC estimates over stroke patients (n = 100), blue curves 
represent the distribution of within-RSN FC over controls (n = 27). A FC between homotopic region pairs (the same 
location on opposite hemispheres) is averaged for each subject (pat: mean = 0.53, sd = 0.11; control: mean = 0.63, 
sd = 0.090; two-tailed t-test: p = 4.0x10-5). B FC between all within-network ipsilesional region pairs is averaged for 
each subject. Intrahemispheric connections on a randomly chosen hemisphere are averaged in controls. (pat: mean = 
0.41, sd = 0.064; control: mean = 0.43, sd = 0.046; two-tailed t-test: p = 0.26). C FC between all within-network 
contralesional region pairs is averaged for each subject. (pat: mean = 0.42, sd = 0.058; control: mean = 0.44, sd = 
0.036; two-tailed t-test: p = 0.32). P-values for panels A-C are based on two-tailed t-test of overall within-network 
FC are corrected for three comparisons. D FC between all DAN-DMN between-network ipsilesional region pairs is 
averaged for each subject. (pat: mean = -0.024, sd = 0.077; control: mean = -0.078, sd = 0.075; two-tailed t-test: p = 
0.0021).  DAN-DMN was the only network pair that showed a significant ipsilesional connectivity difference after 
multiple comparison correction with permutations (see Fig.S3D)   E Ipsilesional DAN-DMN FC is compared to 
homotopic FC between DAN nodes to show that within-hemisphere segregation of task positive and task negative 
RSNs relates to across-hemisphere integration. P-value is FDR corrected for eight comparisons. 
 

To determine if differences observed between groups might result from differences in global 

neuronal fluctuations, R-fMRI data were additionally processed without global signal regression 

but instead using CompCor to remove non-neuronal sources of BOLD signal variance (Behzadi 

et al., 2007; Muschelli et al., 2014). We found that functional connectivity analyses conducted 

without global signal regression produced highly similar results (Fig.S3). 
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Next, we compared connectivity values between networks. Only a single RSN pair showed 

significant FC changes in the stroke group. Ipsilesional DAN-DMN FC connectivity was 

negative in controls but less negative in patients (Figs.1D & S3) (t-statistic = -3.15, p = 0.0021). 

Further, we found a strong relationship between decreased DAN homotopic FC and increased 

ipsilesional DAN-DMN FC (r = -0.61, p = 9e-10; Fig.1E), and no correlation in age-matched 

controls (r = 0.25, p = 0.19), with a significant difference between the two groups (Fisher r-to-z-

transform; z = -4.24, p < 0.001).  Other networks showed a similar relationship between 

ipsilesional network segregation (from the DMN) and homotopic integration, but to a lesser 

degree (SMD, r = -0.45, p = 5.2e-6 ; SMV,  r = -0.28, p = 0.0103;  CON,  r = -0.56, p = 4.4e-7; 

VAN,  r = -0.24, p = 0.0043; p-values are DFR corrected for eight comparisons).  

We tested the relationship between damage and homotopic FC (averaged across the brain) using 

a univariate correlation with lesion size and a multivariate correlation with lesion topography. 

We found that lesion size predicted average homotopic connectivity (r=-0.46 p=6x10-7), but the 

prediction was not improved by adding information about lesion topography (multivariate 

prediction: PVE=21% r=0.46 p=7x10-7). This result shows that average homotopic FC is 

decreased by a similar amount following lesions of similar sizes, irrespective of the topography 

of the lesions. Therefore, a decrease in homotopic FC is a general consequence of stroke.  

However, the topography of the decrease in FC (i.e. which connections show a decreased as 

opposed to the overall magnitude of the decrease) likely depends on the topography of the lesion. 

Potential sources of unwanted variance were compared to homotopic connectivity to determine 

effects on FC differences within or between groups.  Group and individual differences in 
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homotopic FC were not significantly explained by head motion, % time with eyes open, or lag 

laterality (Fig.S4). 

4.4.2 Prediction of behavioral deficits based on lesion and FC 

Next, we investigated the extent to which structural data and functional data explained deficits in 

the stroke patients. Following manual lesion segmentation and R-fMRI processing (Fig.S1), 

lesion maps and vectorized FC matrices were used to generate Lesion-deficit and FC-deficit 

models using leave-one-out ridge regression (Fig.2).   

 
Figure 4-2. Prediction of behavioral deficits on the basis of structural and functional imaging.  
A Experimental procedures for manual lesion segmentation (top), and for ROI-based functional connectivity 
estimation. B Ridge regression was applied using either lesion or functional connectivity to predict deficit for a left-
out patient.  A ridge regression function using lesion/FC to explain deficit is trained for n-1 subjects. For each 
patient, this function generates a prediction of deficit in each domain based on data, and a beta weight matrix that 
can be projected back on to the brain. C Predicted deficit scores were compared to measured scores for each patient 
to determine model accuracy. D Beta weights used to predict left motor deficit with either the lesion (top) or the FC 
matrix (bottom) are projected back on to the brain. 
Abbreviations: R-fMRI = resting functional magnetic resonance imaging; FC = functional connectivity; ROI = 
region of interest; RSN = resting state network; MTL = multi-task learning; BVMT = brief visuospatial memory 
test; HVLT = hopkins verbal learning test; 
 

Figure 3 shows the accuracy of lesion-deficit and FC-deficit model predictions in each domain. 

The bar graphs indicate percent of variance explained (r2) by lesions (white bars) or by FC (black 

bars) in each model. The two rows of scatter plots show predicted and measured scores used to 

determine model accuracy for every subject. For simplicity, left and right motor and visual 
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predictions have been combined to only show contralesional prediction. The significance of each 

model was determined using permutation tests: attention (n = 80, lesion p = 4x10-4, FC p < 1x10-

4), visual memory (n = 79, lesion p = 9x10-4, FC p < 1x10-4), verbal memory (n = 79, lesion p = 

1.5x10-3, FC p < 1x10-4), language (n = 98, lesion p < 1x10-4, FC p < 1x10-4), left motor (n = 91, 

lesion p < 1x10-4, FC p = 1.1x10-3), right motor (n = 91, lesion p < 1x10-4, FC p < 1x10-4), left 

visual (n = 53, lesion p = 4x10-4, FC p = 0.0104), right visual (n = 53, lesion p = 1x10-4, FC p = 

0.0902). See also figure S5. An additional control analysis confirmed that FC-deficit model 

accuracies surpassed chance when information from lesion location was included in null models 

(see supplemental data and Fig.S5). 

 
Figure 4-3. Lesion-deficit and FC-deficit model accuracies vary by domain.  
The bar graph shows percent of variance explained across the six behavioral domains.  White bars are lesion-deficit 
models, black bars are FC-deficit models. Lesion location predicts deficit significantly better in motor, and visual 
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domains. FC predicts deficit significantly better in the visual memory, and verbal memory domains. Statistical 
comparison between lesion-deficit and FC-deficit models (indicated by asterisks) were performed using a Wilcoxon 
signed rank test of prediction error and FDR corrected.  Horizontal gray lines represent p = 0.05 cutoffs for the null 
model generated by permuting domain scores 10,000 times for each domain. All models perform significantly better 
than chance.  The scatter plots below show the comparison between predicted and measured scores from lesion-
deficit models (top row) and FC-deficit models (bottom row). Behavior scores are a composite of multiple tests in 
each domain and are on a z-normalized (mean = 0, sd = 1) scale. Motor and visual deficits were predicted separately 
for each hemisphere and the contralateral side but combined for visualization.  
 

Prediction accuracy of the FC and lesion models was directly compared using a two-tailed 

Wilcoxon paired signed rank test of prediction errors. After false discovery rate correction, four 

domains showed significant differences between lesion-deficit and FC-deficit model accuracy. 

Visual memory (lesion = 10.9%, FC = 36.4%, p = 0.015), and verbal memory (lesion = 18.7%, 

FC = 41.6%, p = 0.007) were better predicted by FC than lesion location, whereas motor (lesion 

= 44.8%, FC = 23.4%, p = 0.009), and visual deficits (lesion = 49.9%, FC = 13.3%, p = 0.013) 

were better predicted by lesion location than FC. Attention showed a trend for higher prediction 

by FC, while language was equally predicted by both inputs (Attention - lesion = 32.3%, FC = 

45.0%, p = 0.074; Language - lesion = 64.6%, FC = 51.1%, p = 0.21). For a complete description 

of permutation testing and control analyses, see supplement. 

To determine if domain prediction results generalized to individual task performance scores, FC- 

and lesion-models were also generated for every performance measure included in the generation 

of domain scores. Some measures were predicted poorly. However, for measures that showed 

good prediction accuracy, the prediction differences observed in the domain scores frequently 

generalized to the raw scores (Fig.S6).  
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4.4.3 Topography of behaviorally predictive FC 

 
Figure 4-4. Most predictive connections and nodes for each FC-deficit model. Left:  
The top 200 connections driving each FC-behavior model are projected back on to a semi-transparent cerebrum 
(PALS atlas). Green connections indicate positive weights (increased FC predicts better performance), orange 
connections indicate negative weights (increased FC predicts worse performance). The subset of the 324 parcels 
included in the top 200 weights are displayed as spheres, sized according to their contribution to the model. Below, 
weights from each FC-behavior model are divided into 4 groups: inter-hemispheric positive, inter-hemispheric 
negative, intrahemispheric positive, and intrahemispheric negative. Bars indicate the average contribution of each of 
the four groups. The average across models is shown at the bottom right. An ANOVA indicates a significant 
difference in contribution of the four connection types (p = 1.6x10-6). 
 

Weights from the FC and lesion prediction models were averaged across all leave-one-out 

models and projected back onto the brain (Fig.4; see also Fig.S7 for further visualization of FC-

deficit and lesion-deficit weights). In figure 4, green edges indicate that increased FC predicted 

better behavior, and orange edges indicate that decreased FC predicted better behavior. It should 
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be noted that positive and negative weights do not imply positive or negative FC values, only a 

positive or negative relationship with the behavior of interest.  The top 200 strongest weights are 

illustrated. The size of each node is relative to the total contribution of all of its connections to 

the model. 

Considered side-by-side, common features of the FC-deficit maps are apparent (Fig.4). 

Specifically, the strongest weights tend to be positive inter-hemispheric, i.e. stronger FC 

correlates with better performance; and negative intra-hemispheric, i.e. stronger FC correlates 

with poorer performance. To compare the types of connections that were most heavily weighted 

in each domain, the top 1% of weights from each FC-deficit model were divided into four groups 

– inter-hemispheric positive, inter-hemispheric negative, within-hemisphere positive and within-

hemisphere negative. The bar graphs in figure 4 show the average contribution of each of the 

four types of connections across all prediction models. An ANOVA confirmed a significant 

difference in the contribution of connection types (p = 1.6x10-6) to deficit prediction, with 

positive inter-hemispheric weights showing the greatest contribution followed by negative 

within-hemisphere weights.  Language is an exception since a significant prediction comes from 

positive intra-hemispheric weights in the left hemisphere, i.e. accurate language performance 

depends on communication between regions of the left hemisphere. 

In figure 5, the average contribution of all positive connections within an RSN (circle radius) and 

between RSN pairs (line thickness) is illustrated for each FC-behavior prediction. In attention 

and memory domains, connections between RSNs are particularly prominent. By contrast, 

language weights are more limited to connections within the auditory network, motor weights to 
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connections within auditory and somatomotor networks, and visual weights to connections 

within visual and somatomotor networks, while connections between RSNs are not as prominent. 

To quantify this observation, we measured the ratio of positive weights within RSNs to positive 

weights between RSNs: attention: 1.431, visual memory: 1.526, verbal memory: 1.499, language 

= 1.768, motor = 1.605, visual = 1.624. 

 
Figure 4-5. Network view of FC-deficit domain models.   
Consensus positive weights (averaged across all leave-one-out cross validations) from each model are divided up by 
RSN to determine network influence. RSNs with at least 8 parcels are included (9 out of 13 RSNs). Node sizes are 
proportional to the average contribution of all within-network connections. Edge thicknesses are proportional to the 
average weighting of all between-network connections. Grayed edges (e.g. DMN-VIS in the Attention model) 
indicate no between-network weights. The key indicates RSN identities. Network diagrams are generated using 
Gephi (Bastian et al., 2009). 
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4.4.4 Prediction of common behavioral impairment 

To further investigate shared features between models, we used multi-task learning. All domains 

were predicted by two sets of weights simultaneously. One set (ωY) was optimized by domain 

while the other set (ωE) was shared across all domains (Eq. 1). This procedure enabled us to 

differentiate domain-specific versus shared (across-domain) correlates of neurological deficit in 

these eight domains.  The optimized multi-task learning model explained 28.7% of the variance 

across all patients and all five domains. The shared across-domain weights were explored to 

understand features of connectivity that predict common deficit across domains (Fig.6).  The 

shared weights involved overwhelmingly inter-hemispheric connections (Fig.6b). Positive shared 

weights (green bars; reduced FC corresponds to worse deficit across domains) were distributed 

across RSNs, but weighed most heavily on dorsal attention network, cingulo-opercular network, 

auditory network, and somato-motor dorsal network (Fig.6d/e). 
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Figure 4-6. Multi-task learning shared weights.  
A The multi-task learning (MTL) model explains 28.7% variance across all domains. B The top 200 weights for the 
MTL shared features are visualized in the brain. C Weights are divided in to 4 groups: inter-hemispheric positive, 
inter-hemispheric negative, intrahemispheric positive, and intrahemispheric negative. D Weights visualized by RSN. 
Node sizes are proportional to the average contribution of all within-network connections. Edge thicknesses are 
proportional to the average weighting of all between-network connections. E Shared weights are projected to the 
324 surface parcels. 
 

4.5 Discussion 

We identified robust changes in network synchrony (measured with R-fMRI) after focal injury 

post-stroke, and determined their behavioral significance in six domains (attention, visual 

memory, verbal memory, language, motor, and visual). In addition, we compared the behavioral 

significance of network synchrony and lesion location across domains. 

We found that changes in inter- and intra-hemispheric FC following stroke showed a consistent 

pattern across networks (Figs.1, S3). The largest changes in FC between patients and controls 

involved decreases in inter-hemispheric FC. Decreases in inter-hemispheric FC were 
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accompanied by increases in intra-hemispheric FC between networks that are normally 

segregated (e.g. DAN and DMN). Moreover, decreased inter-hemispheric FC was also the 

feature of FC that best predicted behavioral deficits within the patient sample. Decrement in 

specific RSNs predicted deficits in corresponding behavioral domains, consistent with the large-

scale network organization of the brain (Figs.3-5). A multi-task model revealed that reduced 

inter-hemispheric FC in a set of nodes predicted shared deficits across domains (Fig.6).  Jointly, 

the inter- and intra-hemispheric changes in FC constitute a general physiological network 

phenotype of stroke injury.  

We also found a fundamental difference between behavioral domains. Memory deficits were 

better predicted by functional connectivity than by lesion location, while motor and visual 

deficits were better predicted by lesion location than by functional connectivity. Language 

deficits were well predicted by both and attention deficits showed a trend towards FC > lesion 

(Figs.3, S6). These results suggest that the behavioral significance of network synchrony was 

greater for associative domains whereas the behavioral significance of lesion topography was 

greater for sensorimotor domains. Below, we suggest that this division follows naturally from the 

greater dependence of associative functions on large-scale distributed interactions between brain 

systems, and of sensory-motor functions on input-output pathways. 

4.5.1 Inter-hemispheric Connectivity and Stroke 

Two lines of evidence from our study converge on the conclusion that disrupted communication 

between the hemispheres is a central feature of stroke. First, the largest and most consistent 
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change in FC from controls to patients involved a decrease in inter-hemispheric, homotopic FC. 

Second, alterations in inter-hemispheric connections showed the strongest association with 

behavioral impairment across nearly all domains. Reductions in inter-hemispheric coherence 

were predominant not only in the functional connectivity related to specific deficits (Baldassarre 

et al., 2014c; Carter et al., 2010; He et al., 2007; Rehme et al., 2014; van Meer et al., 2010b), but 

also in the multi-domain FC that generalized across deficits (Fig.6). This result reveals a key 

insight into how a stroke disrupts cognition: severe strokes not only cause local damage but 

produce a disruption of inter-hemispheric balance.  

The physiology underlying reduced inter-hemispheric FC following a stroke remains unclear. 

One explanation is that the structural connections or mechanisms that mediate the transfer of 

signals between the hemispheres might be damaged or functioning abnormally. For example, 

reduced inter-hemispheric FC is accompanied by decreases in manganese transfer from the 

contralesional to the ipsilesional hemisphere (van Meer et al., 2010b), consistent with a reduction 

in callosal fibers. Alternatively, signals in the damaged and undamaged hemispheres might 

undergo hemisphere-specific changes that reduce their correlation. EEG signals (power, 

coherence) are abnormal both within and across hemispheres post-stroke, and correlate with 

behavioral impairment (Dubovik et al., 2012; Wu et al., 2015).  

We find that the global average reduction in inter-hemispheric FC could be partly predicted by 

lesion load (r = 0.46), but could not be better predicted with additional information about lesion 

location. This is not to say that specific lesions do not disrupt inter-hemispheric FC in specific 

areas or networks. Prior studies have identified RSN-specific relationships between lesion 
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location and FC disruption (Baldassarre et al., n.d.; Nomura et al., 2010). But our results 

establish disrupted inter-hemispheric FC as a common effect of strokes, rather than a result of 

damage to specific structures such as the corpus callosum or thalamus. Further work is needed to 

better elucidate the cause of reduced inter-hemispheric coherence. 

In our cohort, a decrease in inter-hemispheric FC was correlated with an increase in intra-

hemispheric FC between DMN and DAN (Fig.1E). A similar phenomenon has been observed in 

monkeys following disconnection of the corpus callosum and anterior commissure (O’Reilly et 

al., 2013). This suggests that integration of RSNs across the hemispheres is linked to segregation 

of task-positive and task-negative RSNs within the hemispheres. The post-stroke reduction in 

integration and segregation can be thought of as resulting from a single disruptive process such 

as previously observed reductions in brain network modularity (Gratton et al., 2012) and 

information capacity (Deco et al., 2015).  

4.5.2 Structure vs. Function - relative contribution to different behavioral 

deficits 

In 1885, Karl Wernicke made the prescient observation that sensory and motor functions could 

be localized, but higher cognitive functions were instead dependent on communication across 

distributed brain networks. 

“The acoustic images find their abode within the cortical terminals of the acoustic nerve, 
the visual images, within the cortical endings of the optic nerve, and the olfactory images 
in that of the olfactory nerve … Movement representation could be located in the cortical 
sites of the motor nerve origins... Any higher psychic process could not, I reasoned, be 
localized, but rested on the mutual interaction of these fundamental psychic elements 
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mediated by means of their manifold connections via the association fibers” (Wernicke, 
1885) 

However, only recently have the tools been available to quantitatively test this hypothesis.  Here, 

we found that associative domains were better predicted by FC than lesion topography while 

sensorimotor domains such as vision and motor were better predicted by lesion topography than 

FC.  

Lesion-deficit mapping has been the cornerstone of functional localization since the early 19th 

century (Broca, 1861). The basic principle is that specific functions are performed in specific 

parts of the brain (Broca, 1861; Brodmann, 1909), and therefore careful anatomo-clinical 

correlations between behavioral impairment and structural damage can identify the part of the 

brain necessary for that function. One tacit assumption, however, is that sensory, motor, and 

cognitive functions are equally affected by structural damage. A second important set of results 

in our work instead emphasizes a fundamental distinction between cognitive and sensori-motor 

domains in relation to how well structural or functional connectivity damage explain behavioral 

variability. Below, we discuss the implication of our observations in understanding and 

comparing sensorimotor, memory, and language deficits.  

Sensorimotor deficit 

Behaviors that are directly dependent on the immediate interface with the environment can be 

localized with high fidelity in the cerebral cortex and depend on input/output white matter 

pathways. Accordingly, lesion location either in specialized cortex, underlying white matter, or 

connected subcortical regions, reliably predicted hemianopia (50% of variance) and hemiparesis 
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(45% of variance). By contrast, FC explained a significantly smaller amount of behavioral 

variance, and motor and visual FC-deficit models showed positive weights that were largely 

confined within the corresponding damaged RSN rather than reflecting between-network 

connections, i.e. the connectivity changes occurred mainly within the damaged network. These 

results are consistent with the peripheral location of the visual and sensorimotor networks in the 

overall brain graph (Power et al., 2011), and computational studies showing that damage to 

peripheral nodes do not cause widespread alterations in network structure (Alstott et al., 2009).  

Visual and verbal memory deficit 

Visual memory, and verbal memory deficit scores were better predicted by FC changes than 

lesion topography. The visual and verbal memory scores included measures of encoding and 

retrieval of visual shapes and words at short and long time intervals (Table S1).  These functions 

require the coordination of an ensemble of mental operations and computations occurring in 

parallel across distributed networks (Corbetta and Shulman, 2002; Mesulam, 1990; Ullman, 

1984). Correspondingly, weights in the memory FC-deficit models were distributed across many 

brain systems, in comparison with the more constrained distribution of motor and visual model 

weights.  

Lesion-behavior studies have not clearly isolated a critical lesion site for visual or verbal 

memory. Likewise, a large literature on neglect indicates that a similar syndrome emerges for 

lesions at multiple cortical and subcortical sites (Corbetta and Shulman, 2011). Single unit 

studies have localized signals consistent with spatial working memory in multiple cortical and 

subcortical regions that are connected by reciprocal anatomical pathways, suggesting that 
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functions like memory and attention are distributed across many regions of the brain (Goldman-

Rakic, 1988; Mesulam, 1990; Posner et al., 1988). This idea is also consistent with a large 

number of neuroimaging studies (Owen et al., 2005; Smith and Jonides, 1998).  

Language deficit 

Language impairments represent an interesting counterpoint to both sensorimotor and cognitive 

deficits. Both lesion topography and FC accounted for >40% of behavioral variance, with no 

significant difference in accuracy between the two models. FC regions predictive of language 

impairment involved canonical language regions, but also bilateral connections within and 

between other RSNs (Figures 4 & 5). Unlike other domains, language deficit showed substantial 

dependence on left intra-hemispheric connectivity. Language disorders can arise not only from 

pure disruption of language processing, but also from disruption of bilaterally distributed support 

processes including auditory processing, visual attention as in reading, and motor planning for 

speech (Connor et al., 2000; Gracco and Abbs, 1988; Tallal et al., 1996). That both lesion and 

FC predicted above 40% of variance supports the increasingly accepted theory that language 

function relies on highly localized brain regions as well as bilaterally distributed brain networks 

and connections (Fedorenko and Thompson-Schill, 2014). Damage to any of these structures can 

compromise the communication and function of the language system as a whole.  

4.5.3 Caveats/Limitations 

The accuracy of brain network models depends in part on the brain regions used in the models. 

Important considerations for FC analysis include 1) which the structures included, and 2) how 
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those structures are parcellated.  We chose a cortical parcellation previously demonstrated to 

optimally separate FC data in healthy young adults (Gordon et al., 2016). However data from the 

cerebellum and basal ganglia were not included in this parcellation.  Inclusion of these structures 

may improve FC-deficit models in future studies.  Secondly, differences in connectivity between 

patients and age-matched controls could result from differences in parcellation fit (i.e. how well 

the parcellation matches real boundaries between functional brain areas) between groups. We 

assessed parcellation fit by measuring parcel homogeneity (Craddock et al., 2012). We found a 

small, but significant differences in parcel homogeneity (Fig.S2) with patients showing lower 

homogeneity than age-matched controls (paired t-test: t-stat = 8.0, p < 0.0001). Thus, some 

univariate FC differences reported between patients and controls may result from greater 

homogeneity in controls than patients. However, the small difference in homogeneity is unlikely 

to account for the large difference in FC reported in Figure 1.   

Additionally, because our stroke cohort was chosen to represent the normal clinical population, 

lesions were not evenly distributed across the cortex. Lesion-deficit accuracy may be further 

improved in a more evenly sampled population.  

As is the case with multivariate regression, a larger sample might also improve prediction 

accuracy. This is especially the case for the visual domain, in which only 58 subjects were 

included. Still, FC- and lesion-deficit models within each domain use identical subject, thus 

comparisons drawn between the two should be robust. 

Homotopic FC is more stable across time and across conditions than other types of functional 

connections (Shen et al., 2015).  It is possible that our FC-deficit models load most heavily on 
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inter-hemispheric FC because this stability enables greater fidelity in measurement of disruption. 

However, both the difference between patients and controls and the ability of inter-hemispheric 

FC to predict subtle deficits associated with disruption to the contralesional hemisphere suggests 

that this is not the only explanation for our observations.      

4.5.4 Conclusions 

The present work points to the fundamental importance of inter-hemispheric integration and 

intra-hemispheric segregation, and their disruption post-stroke. More generally, this study links 

major features of the pathophysiology of stroke to the normal organization of brain networks.  

Deficits in behavioral domains involve abnormal FC in corresponding networks, while deficits 

across domains emphasize homotopic FC in a small number of key brain regions.  Similarly, 

abnormal connectivity best accounts for behavioral deficits involving associative functions such 

as memory that involve interactions between brain systems.  Conversely, FC is less predictive in 

sensorimotor domains, and the predictive connections that are observed tend to be local and 

within-network.  
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4.7 Supplemental Figures and Tables 

 
Figure S1: Lesion and FC visualization.  
A: Topography of stroke. Lesion overlay map in atlas space for 132 stroke patients. Lesion distribution is 
representative of a larger source population. B: 324 region on interest parcellation from Gordon & Laumann et al., 
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2014. Regions are color coded by RSN membership. C: Average Functional Connectivity. Average Fisher z-
transformed FC matrices are shown for age-matched controls (n = 27) and stroke patients (n = 100) excluding 
regions that overlap lesions.  

 
Figure S2: Parcel homogeneity and community (RSN) modularity of the Gordon & Laumann parcellation in 
controls and stroke patients.  
A: Homogeneity of each parcel, calculated as the percent of the variance in RSFC patterns explained by the parcel’s 
first PCA eigenvariate. Regional variability is highly consistent between patients and controls. Bottom: homogeneity 
is compared between controls and patients for every parcel. Patients show a small but consistent reduction in parcel 
homogeneity (control: mean = 0.70.8, sd = 8.3; pat: mean = 69.4, sd = 8.3; paired t-test: t-stat = 8.0, p < 0.0001). B: 
the leftmost column provides predefined community assignment based on Gordon et al. Here, as in later RSN-based 
analyses, RSNs with less than 7 regions are excluded. Modularity optimization was initialized with predefined 
community labels and run at a range of tie densities (0.02:0.15) in controls and patients. Below each visualization of 
modularity optimization is a plot of Newman’s Q at every tie density for predefined community assignments (red) 
and optimized community assignments (blue).  Optimal assignments show marginally greater modularity for the 9 
major RSNs. C: Spring embedded graphs at 4% tie density. Areas are color-coded based on predefined community 
assignment.   
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Figure S3: Stroke preferentially affects homotopic connections.  
Functional connectivity changes are investigated without global signal regression, and within and between all RSN 
pairs. A: Red curves represent the distribution of FC estimates for all 324-choose-2 edges averaged over all patients 
(n=100), blue curves represent FC over all controls (n=27). B: Group FC comparisons using the same statistical 
analysis and multiple comparison correction as main Figure 1A-E, but with CompCor functional connectivity 
processing (see Supplemental Experimental Procedures). C: Homotopic FC distributions for patients and controls 
are shown for each RSN with at least 8 parcels (9 out of 13 RSNs). D: Intra-network and Inter-network FC 
differences were assessed within hemisphere. Black squares indicate patients > controls, white indicate patients < 
controls. C and D are jointly corrected for multiple comparisons using 10,000 permutations of group labels and 99 
stroke-control t-tests (45 ipsilesional, 45 contralesional, 9 homotopic).VIS = Visual network (38 ROIs), SMD = 
dorsal somato-motor (37 ROIs); SMV = ventral somato-motor (8 ROIs); AUD = auditory (23 ROIs); CON = 
cingulo-opercular (39 ROIs); VAN = ventral attention (23 ROIs); DAN = dorsal attention network (32 ROIs); FPN 
= frontoparietal control network (24 ROIs); DMN = default mode network (40 ROIs).  
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Figure S4: Group and individual homotopic FC differences are not explained by head motion, eyes open, or 
hemodynamic lag.  
Left: Root mean square framewise displacement (FD) was not significantly different in patients (red dots) as 
compared to controls (blue dots) and shows no significant correlation with homotopic FC in the stroke patients. 
Middle: Percent of frames with eyes open was not significantly different in patients than controls, and shows no 
significant relationship to homotopic FC in the stroke patients.  Right: After excluding 15 subjects with excessive 
hemodynamic lags, lag laterality was still significantly different in patients than controls (Wilcoxon rank sum test; P 
= 0.0021), however lag laterality showed no significant relationship with homotopic FC in the stroke patients.  
 

 
Figure S5: Permutation Testing.  
Average variance explained and 95% cutoff from 10,000 permutations of each prediction model: lesion-deficit 
models (white), FC-deficit models (black), and FC-deficit models with lesion location retained (gray). Lesion-deficit 
and FC-deficit models were generated by randomly permuting behavioral scores. The ‘FC – hold lesion location’ 
models was generated by holding values within lesioned connections to zero, and then selecting all other FC values 
at random from the distribution of values for patients with no lesion. Note that with lesion information included, 
language and motor FC-deficit null models show substantial mean prediction, suggesting that FC models in these 
domains are picking up implicit structural information. Domains predicted by FC better than lesion (memory, 
attention) show very little influence.  
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Figure S6. FC- and lesion-based prediction of individual performance measures.  
To assess whether conclusions based on domain scores generalized to individual performance measures, we 
generated FC- and lesion-deficit prediction models for each measure. For some measures, the FC prediction was far 
worse than the domain score (e.g., bvmt_perc – brief visuospatial memory test percent correct). However, for 
measures that showed good prediction accuracy, the domain differences observed in the domain scores (e.g., that 
memory is better explained by FC and motor is better explained by lesion) appears to generalize to the raw scores. 
Full names of performance measures can be found in table S1.  
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Figure S7: FC-deficit and Lesion-deficit maps.  
Left: The top 200 connections driving each FC-behavior model are projected back on to a semi-transparent 
cerebrum (PALS atlas).  Green connections indicate positive weights (increased FC predicts better performance); 
orange connections indicate negative weights (increased FC predicts worse performance). Also displayed are the 
324 nodes, sized according to their contribution to the model. Right: lesion-deficit model weights projected on to a 
Montreal Neurological Institute brain atlas.  Weights are normalized to have a mean of zero and standard deviation 
of 1. 
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Figure S8. Motor and Visual pattern deviation results separated by lesioned hemisphere.  
A) Motor and visual function were predicted separately for the left and right hemisphere lesion and then combined 
to determine prediction accuracy. B) Prediction accuracy is calculated separately for right lesion and left lesion 
patients.   Note that left motor deficit is predicted for the ipsilesional hand, the FC-deficit significantly predicts 
ipsilesional function for both the left and right, but lesion-deficit model does not. 
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Supplementary Table 4-1. Factor score correlation with raw behavioral measures.  
Domains of function, function tested, list of tests, score recorded, and correlation with the 8 behavioral factors. The 
table is divided in to (A) sensorimotor domains and (B) cognitive domains. The behavioral factors are referred to in 
the text by the following labels: ATTN = attention, VIS MEM = visuospatial memory, VER MEM = verbal 
memory, LAN = language, L MOT = left motor, R MOT = right motor, L VIS = left visual, R VIS = right visual. 
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5 The circuitry of abulia: insights from functional 
connectivity MRI 

This chapter has been published as a journal article. The citation is: 
 

Siegel, J.S., Snyder, A.Z., Metcalf, N.V., Fucetola, R.P., Hacker, C.D., Shimony, J.S., Shulman, 
G.L., Corbetta, M., 2014. The circuitry of abulia: Insights from functional connectivity MRI. 

NeuroImage: Clinical. 6, 320–326.  
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5.1 Abstract 

Background: Functional imaging and lesion studies have associated willed behavior with the 

anterior cingulate cortex (ACC). Abulia is a syndrome characterized by apathy and deficiency of 

motivated behavior. Abulia is most frequently associated with ACC damage, but also occurs 

following damage to subcortical nuclei (striatum, globus pallidus, thalamic nuclei). We present 

resting state functional connectivity MRI (fcMRI) data from an individual who suffered a stroke 

leading to abulia. We hypothesized that, although structural imaging revealed no damage to the 

patient3s ACC, fcMRI would uncover aberrant function in this region and in the relevant cortical 

networks.  

Methods: Resting state correlations in the patient3s gray matter were compared to those of age-

matched controls. Using a novel method to identify abnormal patterns of functional connectivity 

in single subjects, we identified areas and networks with aberrant connectivity.   

Results: Networks associated with memory (default mode network) and executive function 

(cingulo-opercular network) were abnormal. The patient’s anterior cingulate was among the 

areas showing aberrant functional connectivity. In a rescan 3 years later, deficits remained stable 

and fcMRI findings were replicated.  

Conclusions: These findings suggest that the aberrant functional connectivity mapping approach 

described may be useful for linking stroke symptoms to disrupted network connectivity.   
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5.2 Introduction 

Historically, neurologists have struggled to reconcile the principle of functional localization and 

the observation that the relationship between behavioral deficits and anatomical damage is only 

partial. A more modern view is that functionality is represented in distributed functional systems 

and their internal connections. And a growing body of evidence demonstrates that remote 

dysfunction can occur in regions functionally connected to – but outside of – the area of lesion. 

Resting state functional connectivity magnetic resonance imaging (fcMRI) can measure widely 

distributed brain networks and offers a promising avenue of investigation into ways in which 

injury and disease affect the connectivity of the brain. Numerous studies have found a 

correspondence between behavioral measures and brain connectivity.(Vaidya and Gordon, 2013) 

Moreover, previous stroke research has shown that deficits within attention networks are 

predictive of spatial neglect and that deficits in motor networks are predictive of motor 

deficits.(Carter et al., 2010; He et al., 2007; van Meer et al., 2010a) In the present case study of a 

patient with abulia following stroke, we employ fcMRI to map functional abnormalities by 

comparison with age-matched controls.  

Abulia is characterized by the lack of spontaneous, goal-directed behavior. Clinically, it falls 

between apathy and akinetic mutism on a continuum of disorders of drive and motivation.(Barris 

and Schuman, 1953) Abulia is most commonly associated with lesions of the anterior cingulate 

cortex (ACC).(Cohen et al., 1999) This association is consistent with neuroimaging evidence 

linking the ACC to the initiation of goal-directed behavior.(Carter et al., 1999) However, abulia 
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or some degree of apathy is also caused by subcortical lesions of the anterior thalamus, caudate 

nucleus, globus pallidus, and internal capsule (for a review of Abulia see Vijayaraghavan et al., 

2002).(Ghoshal et al., 2011; Jorge et al., 2010; Vijayaraghavan et al., 2002) It is therefore likely 

that a more accurate functional localization of abulia, and related deficits of willed behavior, 

involves a network-level dysfunction. A number of networks (fronto-parietal, cingulo-opercular, 

ventral attention network) have been recently described in relation to executive control.(Corbetta 

et al., 2008; Dosenbach et al., 2007; Seeley et al., 2007; Vincent et al., 2008)  

This report describes findings in a patient who developed abulia, anterograde amnesia, and left-

sided weakness following multiple small embolic infarcts. The patient sustained small infarcts in 

various brain regions, but not the ACC. We investigated the neural correlates of abulia in this 

patient using fcMRI and a novel analytic strategy designed to identify atypical functional 

connectivity both at specific locations and across brain networks.  The method compares 

observed functional connectivity in individuals against an aged-matched reference group. We 

hypothesized that this tool would identify atypical functionality in abulia-associated cortical 

areas that were structurally intact. 

5.3 Case History 

A 38-year-old right-handed male lawyer (CS02) presented in the emergency room in December 

of 2005 with febrile illness and progressive unresponsiveness. The patient was hypoxemic and in 

septic shock secondary to infectious endocarditis of the aortic and mitral valves. CT and MRI 

revealed multiple small embolic strokes as well as a left subdural hematoma. CS02 remained in a 
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vegetative state for several weeks. He underwent aortic and mitral valve replacement six weeks 

post-onset, and acute inpatient rehabilitation at the Rehabilitation Institute of St. Louis for about 

3 weeks. He continued to show improvements in cognitive function over the subsequent three 

months. FLAIR MRI images taken about 3 months post-onset (Fig 2A) showed areas of hyper-

intensity in the left hippocampal formation, anterior thalamus, and inferior parietal lobe. Other 

lesions were present in the right occipital lobe, bilateral basal ganglia, right motor cortex, and 

right cerebellum. 

Subsequent evaluations indicated that the patient’s residual deficits included abulia, anterograde 

amnesia, left motor weakness and left homonymous upper quadrantanopia. This clinical picture 

was stable from May, 2006 through the dates of functional imaging and neuropsychological 

assessment in October, 2009 and again in December 2012.  

Before the illness, CS02 was a highly intelligent, successful district attorney, with an active 

social life. He was passionate about history, baseball, and was an excellent golfer. After his 

illness, he was unable to return to the practice of law or live independently. He currently lives 

with his parents, manages his own finances, and spends his time reading and watching television. 

He still enjoys playing golf and remains a skilled golfer. He likes to exercise and will participate 

in cardio-vascular training if brought to a gymnasium. He is well groomed and socially 

appropriate, but rarely speaks spontaneously. When addressed, he answers tersely and 

concretely. His emotional range is restricted with absent or minimal positive or negative affect. 

He will engage in a game of catch as long as balls are thrown to him. He retains an excellent 
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memory for past events, facts, and pictures, but he has trouble learning new verbal information. 

He retains an interest in baseball statistics, which he continues to acquire.  

For the last seven years (2006-2013), CS02 has been seen twice a year in the Cognitive 

Neurology Clinic (Dr. Corbetta). CSO2 has been tried on multiple medications in isolation or 

combination including dopaminergic agonists (L-Dopa; amantadine); stimulants 

(methylphenidate; nicotine); a cholinergic agent (donezepil); and, a nootropic agent (piracetam) 

with no significant change in his behavior. 
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 Table 5-1. Neuropsychological Data.  
Normalized scores are based on an age and 
demographic adjusted population with a mean of 50 
and a standard deviation of 10.  In rows in which two 
scores are given, the first is performance at scan 1 
(2009) and the second is performance at scan 2 
(2012). In all other rows, data were only available 
from 2012. Indices for which the patient fell outside 
the confidence interval of healthy controls are 
highlighted. D-KEFS = Delis-Kaplan Executive 
Function System; BVMT = brief visuospatial 
memory test; HVLT = Hopkins Verbal Learning Test 
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5.4 Methods 

5.4.1 Subjects and MRI Acquisition and Preprocessing 

CS02, and 23 control subjects within 10 years of age of the patient and without any neurological 

or psychiatric history were studied. All participants provided informed consent in accordance 

with the Declaration of Helsinki. All study procedures were approved by the Washington 

University School of Medicine (WUSM) Institutional Review Board. CS02, as well as 14 of the 

23 control subjects, underwent a comprehensive neuropsychological and behavioral evaluation in 

the domains of language, memory, attention, and motor function at the time of the fMRI.  CS02 

additionally underwent campimetry to identify visual field cuts. All structural and resting state 

scans were acquired on a Siemens Tim-Trio 3T Scanner. Scanning parameters were identical for 

both of the patient’s visits and for all controls. Following atlas transformation of all fMRI data, 

functional connectivity was assessed in CS02 and all controls within a mask that included gray 

matter voxels and excluded areas of lesion (see Supplementary Methods).  

5.4.2 Aberrant Functional Connectivity 

Aberrant Functional Connectivity (AFC) mapping is a novel approach that compares an 

individual (i.e., the patient) to healthy controls (see Supplemental Methods and Figure 1 for a 

detailed description of this approach). Voxel-wise correlation matrices were computed by 
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correlating the time series within each gray-matter voxel (excluding those lesioned in the patient) 

against all other gray-matter voxels. For each voxel in the patient, the correlation map was 

compared to that of each control subject using spatial correlation. This comparison generated a t-

statistic map representing the degree to which the patient differed from the reference population. 

To evaluate statistical significance, the same analysis was performed on the controls, treating 

each of the control subjects as a surrogate patient. The resulting AFC maps were explored using 

a 1) seed-based analysis and 2) a network-based analysis. In both cases, a t-score threshold 

(t=4.8) was chosen to define ‘AFC+’ voxels based on significance after multiple comparisons 

correction (p=1.3e-6).  

The Yeo 2011 seven-network cortical map was used to define networks.(Yeo et al., 2011) Six 

sub-networks were included: the default mode network (DMN), cingulo-opercular network 

(CON), motor network, dorsal attention network (DAN), fronto-parietal network (FPN), and 

visual network. The seventh network was excluded as it is comprised of ventral areas affected by 

susceptibility inhomogeneity artifact.(Ojemann et al., 1997)  The AFC map was thresholded and 

voxels were tallied according to network affiliation. In the region-based analysis, a peak finding 

algorithm was applied to the AFC map to define spherical regions of interest (ROIs) that showed 

significant difference from controls (high AFC scores). ROIs were then used to generate 

correlation maps. Seed-based correlation maps enabled qualitative inspection of FC 

abnormalities. 

A number of follow-up experiments were run to validate the AFC results. CS02 was brought 

back for additional functional imaging and neuropsychological testing evaluation 3 years after 
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the initial scan. After masking out non-brain and lesioned voxels, spatial correlation between 

pairs of AFC maps was computed.  Both fcMRI scans were split in half and within-scan 

correlation (between AFC maps generated with data from halves of the scan) and between-scan 

(between AFC maps generated 3 years apart) correlations were computed. Additionally, A 2-

flourodeoxy-D-glucose (FDG) positron emission tomography (PET) scan of CS02 was obtained 

using a Siemens EXACT 962 HR+ scanner while the patient was resting with his eyes closed. 

 
Figure 5-1. AFC Methodology Schematic.  
fcMRI data are acquired, preprocessed, and registered to atlas space. For each subject, a correlation matrix is 
produced comparing every gray matter voxel to every other gray matter voxel .  Each column of the matrix 
represents one voxel’s full connectivity map. Next, every correlation matrix is compared to every other correlation 
matrix, column-by-column using spatial correlations, producing an (n+1)x(n+1) similarity matrix for each gray 
matter voxel.   For each voxel, a Student t-test is computed to determine if 23 P-C similarity values (green) fell 
outside of the distribution of the n(n-1)/2 or 253 C-C similarity values (brown). Finally, the resultant image was 
overlaid on the patient’s anatomical image, creating an Aberrant Functional Connectivity (AFC) map.  
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5.5 Results 

5.5.1 Neuropsychological Evaluation identified Abulia and Anterograde 

Amnesia 

The patient showed low scores on standardized measures of executive functions, as well 

as anterograde verbal memory and left-sided motor deficits (Table 1). The patient self-reported 

mild elevations in apathy and executive dysfunction, but collateral sources reported far more 

significant apathy. On the basis of these results and clinical evaluation, a diagnosis was made of 

abulia and moderate anterograde amnesia. 

5.5.2 Aberrant Functional Connectivity (AFC) 

Quality control metrics confirmed that atlas registration, fMRI signal properties, subject head 

motion, and brain-wide functional connectivity were within the range of the 23 controls (Table 

S1). The ‘patient’ correlation matrix was then compared to ‘control’ correlation matrices (Fig 1). 

The patient was individually compared to every control on a column-by-column basis using 

spatial correlation, thereby producing a patient-to-control (P-C) similarity image (1x34,428). The 

same comparison was computed between every pair of controls, producing n×(n-1)/2 control-to-

control C-C similarity images. For each of the 34,428 voxels, a Student t-test was computed 

comparing P-C values to C-C values. The t-test was chosen after both groups were shown to 

have normally distributed data (not shown). An image of t-scores throughout the brain could then 

be overlaid on the patient’s anatomical image, creating an aberrant functional connectivity map 
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(AFC map). A t-score threshold (t=4.8) was chosen to define ‘AFC+’ voxels by calculating 

significance after multiple comparisons (p=1.3e-6).  

 
Figure 5-2. FLAIR, aberrant functional connectivity (AFC) map, and correlation maps demonstrate lesion-
dysfunction relationship and functional connectivity changes.   
A) FLAIR images with red arrows highlighting a lesion in the left anterior thalamus and micro-infarcts elsewhere.  
Atrophy of the left hippocampuis also evident. B) AFC map, produced using the aberrant functional connectivity 
method, demonstrates multiple foci of abnormality. Voxels masked out due to structural damage are shown in black 
(i.e. the left anterior thalamus).   C) Correlations maps demonstrate aberrant functional connectivity. Peaks in the 
AFC map (circled in B) are used as seeds to generate whole-brain connectivity maps (no lesion mask) for the CS02 
(top) and average connectivity maps for the 23 controls (bottom). Talairach coordinates for each correlation map are 
given in parenthesis. Left: a correlation map placed at the center of the lesion in controls illustrates ACC 
connectivity.  CS02 demonstrates expected absence of functional connectivity. Middle and Right:  Red arrows 
highlight areas of connectivity dropout in the patient. 
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Figure 2B shows the patient’s AFC t-score map. Overall, the patient showed greater number of 

AFC+ voxels than 22 out of the 23 controls (Fig S1B). Areas of aberrant functional connectivity 

(AFC+) were observed near as well as distant to structural lesions. Regions showing aberrant 

functional connectivity included left hippocampus, left thalamus surrounding the thalamic lesion, 

left inferior parietal lobule, and anterior cingulate cortex.  

5.5.3  Seed-based correlation mapping 

A subset of AFC+ regions (red circles in Fig 2B) was selected to represent resting state networks 

that, in subsequent analyses, were shown to be especially aberrant in this patient. These regions 

were used to generate correlations maps to elucidate changes to functional connectivity patterns 

in AFC+ regions (Fig 2C). The left panel in figure 2C shows the correlation map corresponding 

to a seed in the lesioned left thalamus. The result obtained in the controls demonstrates 

functional connectivity with anterior cingulate cortex in addition to homotopic thalamus. By 

comparison, the result obtained in CS02 demonstrates expected absence of functional 

connectivity. The middle panel shows maps obtained with a seed in the inferior parietal lobule. 

Controls show a well-defined DMN including anticorrelations with the cingulo-opercular 

network (CON). CS02 shows a less well-defined DMN with abnormal anticorrelation between 

the IPL and the frontal pole. The right panel shows maps obtained with a seed in the ACC. 

Controls show a well-defined CON, with strong bilateral anterior insula functional connectivity 

with the dorsal ACC. None of these features are evident in CS02. Instead, CS02 shows diffuse 

connectivity with anterior portions of the frontal lobe. For comparison, some single control 
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subject correlation maps are shown in Figure S3. Figure S3 additionally shows connectivity from 

the AFC+ left anterior thalamus is disrupted for CS02 relative controls. 

5.5.4 Network-based analysis 

Distribution of AFC+ voxels across a seven network parcellations was assessed. Results were 

averaged between the patient’s two visits and compared to averages across the 23 controls.(Yeo 

et al., 2011) When measured as percentage of network disrupted, the left default, bilateral 

cingulo-opercular, right motor network, and right visual network showed significant abnormality 

compared to controls (Fig 3). In controls, roughly 5% of voxels were above the AFC+ threshold. 

On average, these were evenly distributed across the resting state networks.  

 
Figure 5-3. Left DMN, CON, and motor networks show the largest degree of disruption.  
 Voxels with significant AFC scores are classified based on the seven-network parcellation of Yeo et al 2011.(Yeo 
et al., 2011) Networks are additionally split by hemisphere (hemi-networks). In order to account for difference in 
network sizes, results are displayed as the percent of each network with AFC t-score greater than 4.8.  Light gray 
bars display CS02 AFC results averaged over visits 1 and 2. White bars represent the network breakdown of 
aberrant functional connectivity in the 23 controls. Error lines represent upper 95% confidence intervals. Asterisks 
indicate hemi-networks in which CS02 shows disruption outside of the 95% CI of controls. The parcellation 
includes default mode network (DMN), cingulo-opercular network (CON), motor network, dorsal attention network 
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(DAN), fronto-parietal network (FPN), visual network. The total percent of AFC+ voxels in the patient and controls 
is shown in the far right. 

 

5.5.5 Rescan and within-scan Validation 

The within-scan spatial correlation was 0.81 and 0.80 for visits one and two respectively. The 

between-scan (3 years apart) spatial correlation was 0.60. Dominant patterns of aberrant 

functional connectivity remained qualitatively similar (Fig 4A). For comparison, spatial 

correlation between control subjects’ AFC maps was measured. Spatial correlation between pairs 

of controls was 0.01 (s.d.=0.07), demonstrating that within-scan and between-scan correlation for 

CS02 is well above between-subject correlation (Fig 4B). These results show that AFC results in 

CS02 are consistent and reproducible. 

 
Figure 5-4. Reproducibility of AFC maps at 3 year follow up.  
A) a visual comparison of AFC results from visit 1 and visit 2.  The Pearson correlation between AFC maps is 
0.5937. B) Pearson correlation for CS02 between AFC maps generated from half scans (‘within scan’) and AFC 
maps generated 3 years apart (‘between scan’) are shown and spatial correlation between different control subjects’ 
AFC maps (‘between subjects’) is given as a control. Correlation between halves were 0.81 and 0.80 for visits 1 and 
2 respectively. 
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AFC t-score distributions were generated for both scans of CS02 (Fig S1) and for controls. A t-

test comparing rightward skewness between CS02 (both scans) and 23 controls yielded p=0.0565 

(t=1.6579, df=23). This result means that the number of AFC+ voxels throughout the brain of 

CS02 was greater than that of controls, although the difference did not reach statistical 

significance. 

5.5.6 Positron Emission Tomography  

FDG PET scans were acquired to compare functional connectivity to metabolic activity (Fig. 

S2). No significant relationship between PET-FDG and AFC scores was observed (p-

value=0.274).  

5.6 Discussion 

Abulia is most commonly associated with lesions of the anterior cingulate cortex (ACC), but has 

also been described in association with a variety of subcortical lesions.(Ghoshal et al., 2011; 

Jorge et al., 2010; Vijayaraghavan et al., 2002) These observations raise the question of whether 

common circuitry is disrupted by both types of lesion. It has been suggested that disconnections 

of limbic tracts projecting from the anterior thalamus to the cingulate might cause abulia.(Mega 

and Cohenour, 1997; Mega and Cummings, 1994) This is the first study to directly support this 

hypothesis. Our findings suggest that, even in the absence of cingulate damage, abulia with 

anterograde amnesia is associated with disruption of functional network organization including 

cingulate cortex. Furthermore, among the various recently proposed ‘executive’ 

networks(Corbetta et al., 2008; Dosenbach et al., 2007; Seeley et al., 2007; Vincent et al., 2008), 
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AFC identified the cingulo-opercular network as most closely affected in a case in which 

motivational behavior is severely disrupted. 

5.6.1 Case summary – Links to behavior 

CS02 sustained multiple embolic strokes that resulted in profound abulia, anterograde amnesia, 

left motor weakness, and left homonymous upper quadrantanopia. Some of these deficits could 

be explained in terms of focal damage (i.e., left hippocampal atrophy and anterograde amnesia). 

With respect to abulia the link was less clear . We speculate that the patient’s neurologic status is 

better characterized by network-level disruption of functional organization, and not just for 

abulia. The association of right motor network AFC with left hemiparesis and of right visual 

network AFC with a left visual field cut seems apparent.  The resting state network correlates of 

abulia and amnesia likely involve multiple networks and cannot be determined on the basis of a 

single case that is clinically complex. Possible implications of default mode network and 

cingulo-opercular network disruption are considered below. 

Some AFC+ peaks were adjacent to structural lesions; but others, such as left Iateral posterior 

parietal cortex and dorsal ACC, were not. Elevated AFC scores could result from disconnection 

caused by damaged cortex or white matter tracts, but correlation maps from AFC peaks suggest 

that this is not the case. For example, functional connections between ACC and bilateral insula 

were disrupted despite absence of direct damage to ACC, insula, or the interconnecting white 

matter tracts. Similar considerations apply to inferior parietal lobule and ventromedial prefrontal 

cortex (Fig 2C).  
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5.6.2 Cingulo-opercular Network (CON) 

The CON includes the anterior cingulate, bilateral anterior insula, and bilateral anterior 

thalami.(Corbetta et al., 2008; Dosenbach et al., 2007; Seeley et al., 2007; Vincent et al., 2008) 

This network is partially overlapping with other networks putatively related to executive control: 

fronto-parietal, ventral attention network, and salience network. The CON is implicated in task 

initiation, task switching, and conflict monitoring. FC strength between the ACC and the rest of 

the CON directly correlates with performance on a range of executive function tasks involving 

working memory, attention, inhibitory control, fluency, and task switching.(Onoda et al., 2012) 

The anterior cingulate receives input from the anterior thalamus(PAPEZ JW, 1937) and has been 

associated with willed action across a variety of paradigms and a variety of imaging 

modalities.(Bush et al., 2000; Carter et al., 1999; Jahanshahi, 1998) Theoretical models of willed 

action have been formulated in terms of exploration of the environment(Swanson, 2000) and 

determining actions necessary to obtain desired goals.(Carter et al., 1999; Luu et al., 2003) A 

recent report in patients with implanted electrodes indicates that stimulation of dorsal ACC 

cortex leads to ‘feelings of strong motivation and willingness’.(Parvizi et al., 2013) Our patient 

demonstrates the converse; functional disruption of the ACC has led to an amotivational state. 

Together, these findings highlight the critical role of the ACC, and CO network, in willed action.  

 



 

134 

 

 

5.6.3 Default Mode Network 

The DMN is implicated in introspection, prospection, social cognition and memory (for a review 

see (Buckner et al., 2008). The hippocampus is functionally coupled within the DMN (Vincent et 

al., 2006), and DMN resting state functional connectivity has consistently shown association 

with memory encoding and recall (Sestieri et al., 2011). Changes to DMN functional 

connectivity have been observed in amnesic patients (Hayes et al., 2012) and reduced DMN 

connectivity has been reported in patients with memory-associated conditions such as 

Alzheimer’s disease (Greicius et al., 2004). A prior study on a case of abulia and amnesia 

similarly found decreased ipsilateral default network connectivity (Jones et al., 2011). 

Interestingly, cases of left anterior thalamic lesions causing abulia appear to consistently show 

comorbid memory deficit (Nishio et al., 2011). Our interpretation is that disruption of DMN 

functional connectivity is related to the patient’s anterograde amnesia. The patient’s DMN AFC 

was lateralized to the left hemisphere. Correspondingly, CS02 exhibits a verbal memory deficit, 

but not a visuospatial memory deficit (Table 1) (Kelley et al., 1998).  

5.6.4 Limitations and Conclusions 

This paper demonstrates the use of fcMRI in an individual. Challenges to such an approach arise 

from normal individual variability in brain function and brain anatomy. But recent work has 

shown that reliable identification of resting state network topography within individuals is 

possible (Carl D Hacker et al., 2013; Mennes et al., 2010). To the extent that normality can be 

defined in resting state network terms, fcMRI can potentially offer a non-invasive tool for 
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identifying disruption to function and network structure. Not withstanding these advantages, a 

single case is insufficient to demonstrate a link between network dysfunction and clinical deficit.  

Our approach was inspired by Stufflebeam et al.(Stufflebeam et al., 2011) who identified 

epileptogenic foci in individuals by comparing each voxel's local and global connectedness to 

that of controls.  Although conceptually similar, our approach differs in that the spatial pattern of 

functional connectivity of a given region (functional connectivity ‘fingerprint’) is compared to 

controls. This strategy allows for the possibility that a region's functional connectivity fingerprint 

may be altered despite no change in sum connectedness.  Further comparisons are needed to 

determine the extent to which ‘aberrant’ regions identified by these approaches differ. 

The patient presented herein had multiple lesions and structural changes. Structural alterations 

make registration challenging. However, in our experience, adequate atlas transformation 

(misregistration < 2mm) is possible even in cases with large lesions provided that the lesion is 

segmented and masked out of the registration computations.(He et al., 2007) AFC+ regions (Fig. 

S2) had normal FDG PET scores, suggesting that these regions were in gray matter, and 

therefore, not identified as abnormal owing to misregistration.  

Our patient's total AFC score fell within the tail of the control distribution (Fig S1B). However, 

we have not here demonstrated that this measure can reliably distinguish patients from controls. 

We attribute this limitation to the small sample size, limited signal to noise ratio of functional 

connectivity data, and natural variability within the population.(Mueller et al., 2013)  A much 

larger subject sample would be needed to determine if the AFC approach can be used to 

differentiate affected individuals from the normal population. Future technical improvements in 
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resting state fMRI (Uğurbil et al., 2013) most likely will contribute to making the AFC approach 

more robust. 

Nevertheless, our AFC technique reproducibly localized aberrant functional connectivity within 

an individual (Fig. 4). We believe that AFC has illuminated the pathophysiology of abulia in a 

patient without ACC structural damage. Moreover, our results illustrate the utility of functional 

imaging as a means of improving the understanding of neurologic deficits. 
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 Controls 
(SD) 

Patient  
visit1, visit2 

Age 44.8 (8.2) 43, 46 
Atlas Registration 0.985(0.004) 0.984, 0.983 

Framewise 
displacement 0.159 (0.036) 0.132, 0.126 

DVAR (%) 2.14 (0.28) 2.26, 2.20 
SD1 3.3(0.69) 3.0, 3.2 

Frames 530(219) 603, 766 
RMS Correlation 0.127(0.027) 0.089, 0.127 

Table S1: Quality controls.  
The Abulia patient falls within the normal range of controls for all quality control metrics tested.  The atlas 
registration figure is the spatial correlation between the patients atlas-registered MP-RAGE and the atlas target 
image.  Framewise displacement, DVAR, and SD1(Power et al., 2014) were calculated after high motion frames 
were removed. 
 

 
Figure S1: AFC t-value distribution in CS02 and in the 23 controls.   
Both figure use CS02’s AFC scores averaged between the initial scan and revisit. A) Negative values indicate the 
patient-control difference is less than the control-control difference and thus are essentially meaningless.  Positive 
values above t=4.8 indicate voxels for which the patient-control difference is significantly greater than the control-
control difference.  As expected we see a skew to the right.  A test that CS02’s AFC distribution showed a greater 
degree of rightward skewness than controls trended towards significance (p=0.0565, df=23). B) Histogram of the 
total percent of voxels that surpass t=4.8 (indicated by the dashed line in A) in the 23 controls and in CS02 (red 
line). CS02 has a greater number of AFC+ voxels than 22 of the 23 controls. 
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Figure S2. AFC scores did not correlate with regional glucose metabolism.    
The open circles represent PET FDG values in CS02 in a set of canonical ROIs (Brier et al.,2012) excluding those 
overlapping structural lesions and positive AFC values. The PET FDG values have been normalized such that a 
value of 1 represents the mean in a separate cohort of 33 control subjects.  The black circles represent 18 AFC peak 
ROIs. Note no correlation between increased AFC and glucose metabolism.  
 

 
Figure S3: Individual correlation maps, obtained with the ACC seed used in the right panel of Figure 1C.  
On top is the control subject closest to the mean, below is the control subject furthest from the mean, CS02 is on the 
bottom. CS02 falls outside the range defined by the control group. 
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6.1 Abstract 

Studies of stroke have identified local reorganization in perilesional tissue. However, because the 

brain is highly networked, strokes also broadly alter the brain’s global network organization. 

Here, we assess network structure longitudinally in stroke patients, using resting state fMRI. The 

topology and boundaries of cortical regions remain unchanged across recovery. In contrast, the 

modularity of brain regions i.e. the degree of integration within and segregation between 

networks, was significantly reduced sub-acutely (n=107), but partially recovered by 3 months 

(n=85), and remains recovered by 1 year (n=67). Importantly, the return of modular network 

organization parallels recovery of language and attention, but not motor function. Finally, we 

explore individual subjects in depth using different tools for visualization of changes in brain 

connectivity over the course of recovery. This exploration provides more intuitive insights in to 

how changes in the brain’s network organization can produce successful and unsuccessful 

recovery. In a patient with left temporo-parietal stroke and severe aphasia, acute loss of 

modularity reflected loss of association between frontal and temporo-parietal regions bi-

hemispherically across multiple networks. These long distance connections then returned over 

time paralleling aphasia recovery. This work establishes the importance of normalization of 

large-scale modular brain systems in stroke recovery. 
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6.2 Introduction 

The human brain is a collection of widely distributed cortical and sub-cortical systems that 

flexibly interact to enable cognitive function. The analysis of temporally correlated spontaneous 

activity, measured in the resting state with BOLD signal has emerged as a powerful tool for 

mapping brain network connectivity (Fox et al., 2005). R-fMRI studies have defined hierarchical 

and distributed brain networks (Power et al., 2011; Yeo et al., 2011) that correspond to the 

brain’s functional domains (Bertolero et al., 2015; Smith et al., 2009). The spatial and temporal 

features of this organization appear to be optimized to support the segregation and integration of 

information (Petersen and Sporns, 2015). 

A major goal in the study of stroke is to understand how stroke affects distributed brain 

networks. Although structural damage from stroke is focal, remote perturbations occur in regions 

of the brain distant from the area of damage (Carrera and Tononi, 2014). The set of regions that 

are directly damaged or indirectly affected is in turn embedded within a larger functional system 

that is in dynamic balance with other systems in the brain (Corbetta, 2012).  

The healthy brain demonstrates integration within functional systems – measurable as highly 

correlated resting BOLD signal within systems – as well as segregation between systems – 

measurable as low correlation in resting BOLD signal across systems. This network property can 

be quantified with Modularity - a global network measure that compares the density of 

connections inside communities to the connections between communities (Newman, 2004). 
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Modular brain architecture is thought to enable efficient processing and flow of information 

(Bullmore and Sporns, 2009).  

In contrast with the healthy brain, a common phenotype of stroke is a reduction of inter-

hemispheric homotopic integration, and a reduction of within-hemisphere segregation between 

brain systems (Siegel et al., 2016). Both of these changes are consistent with a reduction in 

network modularity, which has been observed in stroke patients, even in the unaffected 

hemisphere (Gratton et al., 2012).  

In the months following stroke, patients typically recover between 40-70% of initial clinical 

deficit (Lazar and Antoniello, 2008; Prabhakaran et al., 2007; Ramsey et al., n.d.). Evidence for 

functional remapping has been observed within a few millimeters of lesion boundaries (Murphy 

and Corbett, 2009; Nudo and Milliken, 1996). Normalization of connectivity with sites distant 

from the lesion has been observed in parallel with recovery (He et al., 2007; Lim et al., 2014; 

Ramsey et al., 2016; van Meer et al., 2010a). Little is known about how brain networks change 

on a larger spatial and temporal scale after stroke, and the behavioral relevance of both local and 

global changes remains unclear.  

In the present work, we relate deficit and recovery following stroke to disruptions of the modular 

organization of brain systems. Specifically, we hypothesize that brain systems become less 

modular following stroke and that recovery of deficit can be predicted by the return of 

modularity. To test this, we follow a large prospective cohort of stroke patients over the course 

of deficit and chronic recovery – acquiring R-fMRI, and neuropsychological assessment at two 

weeks, three months, and one-year post-stroke.  
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6.3 Materials & Methods 

6.3.1 Subject Enrollment 

Written informed consent was obtained from all participants in accordance with the Declaration 

of Helsinki ND procedures established by the Washington University in Saint Louis Institutional 

Review Board. All participants were compensated for their time. All aspects of this study were 

approved by the Washington University School of Medicine (WUSM) Internal Review Board. 

Subject enrollment and demographics are described in detail in (Corbetta et al., 2015).  First time 

stroke patients with clinical evidence of motor, language, attention, visual, or memory deficits 

based on neurological examination were included. 132 patients met all inclusion criteria and 

completed the entire sub-acute protocol (mean age 52.8 years with range 22-77, 119 right 

handed, 63 female, 64 right hemisphere). Of those, 107 were included after all image processing 

and data quality exclusion criteria (Table 1).  

Patients returned for a second timepoint at 3 months.  At three month, 85 patients were included 

after all image processing and data quality exclusion criteria. Patients returned for a final 

timpeoint timepoint at 1 year.  At one year, 67 patients were included after all image processing 

and data quality exclusion criteria. There was no difference in behavioral scores in any domains 

reported between those patients that returned for follow up at 1 year and those that did were lost 

to follow-up or data exclusion criteria (Language: t(122) = 1.18, p = 0.24; Left Motor: t(115) = 1.00, p = 

0.32; Right Motor: t(115) = 0.40, p = 0.69; Attention t(99) = –0.50, p = 0.62) 
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Demographically matched controls (n = 31) were recruited and underwent the same behavioral 

and imaging exams. Controls were healthy adult matched to stroke study population by age, 

gender, handedness, and level of education. In total, 31 controls completed the entire sub-acute 

protocol (mean age 55.7 years (SD =11.5) with a range 21-83). Of those, 26 were included after 

all image processing and data quality exclusion criteria (Table 1). 

6.3.2 Neuropsychological evaluation 

All participants underwent a behavioral battery that included several assessments of motor, 

language, and attention following each scanning session. Imaging and behavioral testing session 

usually were performed on the same day. Scores were only recorded for tasks that subjects were 

able to complete. Dimensionality reduction was performed on the performance data using a 

factor analysis described in detail in Corbetta et al., 2015. As a results, the behavior measures 

used here represent multiple neuropsychological tests combined to generate more stable 

composite scores. For example, the language score was well aligned with measures of word 

comprehension (r = 0.858), complex ideational material (r = 0.885), and object naming (r = 

0.925). The spatial attention score was well aligned with Mesulam center of cancellation (r = 

0.749) and Posner task visual field effect (r = 0.828). The left motor score was well aligned with 

let shoulder flexion (r = 0.947), left hand 9-hole peg test (r = 0.850), and left lower extremity 

motricity index (r = .917). The right motor score was well aligned with right shoulder flexion (r 

= 0.893), right hand 9-hole peg test (r = 0.825), and right lower extremity motricity index (r = 

0.896). For the complete list of tests used and correlations with the factor scores, see Corbetta et 

al., 2015.   
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Behavioral scores at chronic timepoints were calculated using the factors defined at the sub-acute 

timepoint. Recovery scores were calculated by first z-scoring behavioral factor scores relative to 

controls, and then determining the difference in z-normalized score between one year and two 

weeks. For example, patient 108 began with a language score 11.7SD below controls and had a 

language score 1.2SD below controls at one year, thus the recovery ∆language = 10.5. 

6.3.3 Imaging 

Patients were studied two weeks (mean = 13.4 days, SD=4.8 days), three months (mean = 112.5 

days, SD=18.4 days), and one year (mean = 393.5 days, SD=55.1 days) after stroke onset. 

Controls were studied twice at an interval of 3-months. All imaging was performed using a 

Siemens 3T Tim-Trio scanner at the Washington University School of Medicine (WUSM) and 

the standard 12-channel head coil. The MRI protocol included structural, functional, pulsed 

arterial spin labeling (PASL) and diffusion tensor scans. Structural scans included: (1) a sagittal 

T1-weighted MP-RAGE (TR=1950 msec, TE=2.26 msec, flip angle=90°, voxel 

size=1.0´1.0´1.0 mm); (2) a transverse T2-weighted turbo spin-echo (TR=2500 msec, TE=435 

msec, voxel-size=1.0´1.0´1.0mm); and (3) sagittal FLAIR (fluid attenuated inversion recovery) 

(TR=7500 msec, TE=326 msec, voxel-size=1.5´1.5´1.5mm). Resting state functional scans 

were acquired with a gradient echo EPI sequence (TR = 2000 msec, TE = 27 msec, 32 

contiguous 4 mm slices, 4´4mm in-plane resolution) during which participants were instructed 

to fixate on a small cross in a low luminance environment. Six to eight resting state fMRI runs, 

each including 128 volumes (30 min total), were acquired. A camera fixated on the eyes was 
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used to determine when a subject’s eyes were open or closed during scans.  Patients had eyes 

open on 65.6+-31.9% of frames, and controls had eyes open on 76.8+-30.2% of frames (t(114)=-

1.7, p = 0.091). 

6.3.4 Lesion Masking 

Lesions were manually segmented on individual structural MRI images (T1-weighted MP-

RAGE, T2-weighted spin echo images, and FLAIR images obtained 1-3 weeks post-stroke) 

using the Analyze biomedical imaging software system (www.mayo.edu; Robb and Hanson, 

1991). Two board-certified neurologists (Maurizio Corbetta and Alexandre Carter) reviewed all 

segmentations. In hemorrhagic strokes, edema was included in the lesion. A neurologist (MC) 

reviewed all segmentations a second time paying special attention to the borders of the lesions 

and degree of white matter disease. Atlas-registered segmented lesions ranged from 0.02cm3 to 

82.97cm3 with a mean of 10.15cm3 (SD=13.94cm3). Lesions were summed to display the number 

of patients with structural damage for each voxel (Fig 1A).   

6.3.5 fMRI data preprocessing 

Preprocessing of fMRI data included: 1) compensation for asynchronous slice acquisition using 

sinc interpolation; 2) elimination of odd/even slice intensity differences resulting from 

interleaved acquisition; 3) whole brain intensity normalization to achieve a mode value of 1000; 

4) removal of distortion using synthetic field map estimation and spatial realignment within and 

across fMRI runs; 5) resampling to 3mm cubic voxels in atlas space including realignment and 

atlas transformation in one resampling step. Cross-modal (e.g., T2-weighted to T1-weighted) 
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image registration was accomplished by aligning image gradients. Cross-model image 

registration in patients was checked by comparing the optimized voxel similarity measure to the 

97.5 percentile obtained in the control group. In some cases, structural images were substituted 

across sessions to improve the quality of registration. 

6.3.6 Functional Connectivity Processing 

Following cross-modal registration, data were passed through several additional preprocessing 

steps: (i) tissue-based regressors were computed based on freesurfer segmentation; (ii) removal 

by regression of the following sources of spurious variance: (a) six parameters obtained by rigid 

body correction of head motion, (b) the signal averaged over the whole brain, (c) signal from 

ventricles and CSF, and (d) signal from white matter; (ii) temporal filtering retaining frequencies 

in the 0.009–0.08-Hz band; and (iii) frame censoring. The first four frames of each BOLD run 

were excluded. Frame censoring was computed using framewise displacement with a threshold 

of 0.5 mm. This frame-censoring criterion was uniformly applied to all R-fMRI data (patients 

and controls) before functional connectivity computations.  

FC quality-based exclusion criteria included 1) less than 180 usable frames after motion 

scrubbing, and 2) severe hemodynamic lags (greater than 1 second inter-hemispheric difference) 

measured from R-fMRI (Siegel et al., 2015). After motion and lag exclusion, 107 patients were 

included at two weeks, 85 patients at three months, 67 patients at 1 year, 26 controls at timepoint 

one, and 25 at timepoint two (Table 1).  
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6.3.7 Surface Processing 

Surface generation and processing of functional data followed procedures similar to Glasser et al. 

(Glasser et al., 2013), with additional consideration for cortical segmentation in stroke patients. 

First, anatomical surfaces were generated for each subject’s T1 MRI using FreeSurfer automated 

segmentation (B. Fischl et al., 1999). This included brain extraction, segmentation, generation of 

white matter and pial surface, inflation of the surfaces to a sphere, and surface shape-based 

spherical registration to the subjects “native” surface to the fs_average surface.  Segmentations 

were manually checked for accuracy. For patients in whom the stroke disrupted automated 

segmentation, or registration, values within lesioned voxels were filled with normal atlas values 

prior to segmentation, and then masked immediately after (7 patients).  The left and right 

hemispheres were then resampled to 164,000 vertices and registered to each other (Van Essen et 

al., 2001), and finally down-sampled to 10,242 vertices each (a combined total of 18,722 vertices 

after exclusion of medial wall) for projection of functional data. 

Following preprocessing, BOLD data was sampled to each subject’s individual surface (between 

white matter and pial surface) using a ribbon-constrained sampling available in Connectome 

Workbench. Voxels with a high coefficient of variation (0.5 standard deviations above the mean 

coefficient of variation of all voxels in a 5mm sigma Gaussian neighborhood) were excluded 

from volume to surface mapping (Glasser et al., 2013).  Timecourses were then smoothed along 

the 10,242 vertex surface using a 3mm FWHM Gaussian kernel.  
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All brain surface visualizations were generated using Connectome Workbench (Marcus et al., 

2013). 

6.3.8 Gordon & Laumann Parcellation 

We used a cortical surface parcellation generated by Gordon & Laumann and colleagues 

(Gordon et al., 2016) (Figure 1). The parcellation is based on R-fMRI boundary mapping and 

achieves full cortical coverage and optimal region homogeneity. The parcellation includes 324 

regions of interest (159 left hemisphere,165 right hemisphere). The original parcellation includes 

333 regions, and all regions less than 20 vertices (approx. 50mm2) were excluded. Notably, the 

parcellation was generated on 120 young adults age 18-33 and is applied here to adults age 21-

83.  

To generate parcel-wise FC, timecourses of all vertices within a parcel were averaged. 

Functional connectivity (FC) was then computed between each parcel timeseries using Fisher z-

transformed Pearson correlation.  All vertices that fell within the lesion were masked out, and 

parcels with greater than 50% lesion overlap excluded from all analyses.   

6.3.9 Parcel Homogeneity 

Prior to homogeneity analysis, whole-brain connectivity was computed between every pair of 

vertices (18722x18722). Next, the following steps were taken to measure parcellation 

homogeneity. 1) for each parcel, a principal component analysis was run across the connectivity 

maps of all vertices belonging to that parcel. Parcels contained between 23 and 233 vertices - 
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each first principal component is a connectivity map that explains X% of variance across those 

vertices. 2) The percent of variance explained by the first principal component was used as a 

measure of parcel homogeneity. 3) This measured was averaged across all 324 brain parcels to 

produce a brain-wide measure of parcel homogeneity. 4) To compare this measure to a null 

distribution (Gordon et al., 2016), the parcellation was rotated randomly around the cortical 

surface (1,000 times for the group average FC homogeneity, 100 times for each individual 

subject). 5) Parcel homogeneity was re-assessed in the same manner using the randomly rotated 

parcels.  

For the group analysis, parcel homogeneity was expressed as a p-value based on the number of 

null rotations with greater homogeneity than the real parcellation. For the individual subject 

analyses, parcel homogeneity was turned in to a z-score (difference from the mean of the null 

rotations divided by the standard deviation of the null rotations). Parcels overlapping with the 

lesion were excluded from the real and null homogeneity. Values were imputed for parcels 

overlapping the lesion, medial wall, and high susceptibility areas (those colored gray in Fig. 1B) 

after null rotations.  

 

6.3.10 Modularity  

Modularity (Newman’s Q) was calculated using the equation given in (Newman, 2004) 
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𝑄 = 𝑒BB − 𝑒Bb
c∈e

O

f∈e

																																																																																																(1) 

where the network (including nodes and binary undirected links) is fully subdivided into a set of 

nonoverlapping modules M, and 𝑒Bb is the proportion of all links that connect nodes in module 𝜇 

with nodes in module 𝜈. Modules assignments were chosen a priori based on infomap 

community detection in healthy young adults (Gordon et al., 2016). Parcels with greater than 

50% damage due to stroke were removed completely from networks prior to calculating 

modularity. Modularity was calculated at edge densities ranging from 4%-20%. This is the range 

between which modularity was found to be reduced in prior stroke FC analyses (Gratton et al., 

2012).  

We chose to assess modularity using a priori systems rather than systems defined individually 

using community detection for a number of reasons: 1) we would be measuring modularity in a 

community structure that has been optimized to increase modularity, thereby making Q a biased 

statistic, 2) the number of communities found by modularity optimization can vary, and 3) highly 

localized clusters may appear modular, though they may in reality be attributed to absence of 

synchronized BOLD fluctuations across distributed brain systems (and thus, predominance of 

distance dependent influences on the BOLD signal).  

Modularity was found to correlate with magnitude of hemodynamic lags (r = 0.374, p = 7x10-5), 

number of frames remaining after scrubbing (r = 0.316, p = 9x10-4), and RMS head motion after 

scrubbing (r = 0.279, p = 0.0036). At each edge density, Modularity estimates from all subjects 
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at all timepoints were concatenated in to a single vector, and the three confounds were 

simultaneously regressed out. After confound regression, no significant association remained 

between any group and any confound measure at any edge density threshold. 

Modularity was also measured within each hemisphere. Brainstem stroke patients were excluded 

from this analysis, and cerebellar strokes were flipped (i.e. for a right cerebellar stroke, the left 

cerebral cortex is ipsilesional). For comparison, control subject hemispheres were randomly 

labeled ipsilesional or contralesional. 

To compare modularity with behavior measures, we first attained a single summary measure of 

modularity (across edge densities). Modularity values were normalized to average values in 

controls at each edge density (to have a mean of 1 and sd of .15), and then averaged across edge 

densities. Next, we modeled change in behavior and change in modularity in each patient. 

Because more stroke recovery is nonlinear, behavioral recovery was model in each subject using 

a log function (Suzuki et al., 2013): 

𝑌 = 	𝑚 ∗ log 𝑡 + 	𝑏																																																																																																																	(2) 

where t is time post-stroke in days (14, 90, 365) and Y is any of the four behavior scores 

(language, attention, left motor, right motor) at those timepoints. The slope 𝑚 and intercept 𝑏 

were then solved using a least squares fit. A slope of modularity change was estimated in the 

same way (replace Y with modularity scores). Finally, the slopes for behavioral recovery in each 

domain were compared to the slope for modularity change using Pearson correaltion to 
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determine of the two were related. P-values were corrected for four comparisons (Benjamini and 

Hochberg, 1995). 

6.3.11 Community Detection, Assignment, and Visualization 

Community detection was accomplished using an implementation of the Louvain community 

detection algorithm (Blondel et al., 2008) accessed from the Brain Connectivity Toolbox 

(Rubinov and Sporns, 2010). This is an iterative algorithm that identifies the subdivision of the 

network into non-overlapping groups of nodes, which maximizes the number of within-group 

edges, and minimizes the number of between-group edges.  For visualization, individuals 

Louvain-defined communities were assigned network labels (and thus colors) based on 

maximum similarity with the a priori communities. System-to-system assignment was 

accomplished using the Hungarian algorithm (Munkres, 1957). Sping-embedded graphs were 

generated using the Social Network Image Animator (SoNIA) software package (Bender-deMoll 

and McFarland, 2006). 

6.4 Results  

6.4.1 Functional brain areas defined in healthy young adults remain present 

across stroke and recovery 

In this study we recruited 132 stroke patients with heterogeneous lesions (Fig. 1A) using MRI, 

R-fMRI and neuropsychological evaluation. After careful censoring for motion and 

hemodynamic lags, data at two weeks (n=107), thee months (n=85), and one year (n=67) were 
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investigated and compared to controls at two timepoints (n=26 & n=25). We first asked whether 

brain areas, areal boundaries, and community structure remain constant in stroke patients.  Of 

note, these questions were posed with respect to gross changes occurring throughout the cortex 

and should be thought of as complementary to studies of remapping that have focused with high 

resolution on perilesional cortex. We applied a cortical parcellation developed on an independent 

sample of 120 healthy young adults (mean age 25, range 19-31) (Fig. 1B: Gordon et al., 2014) to 

R-fMRI data from 107 stroke patients (mean age 53, range 22-77) and 26 age-matched controls 

(mean age 56, range 21-83).  To determine if the cortical parcellation could accurately define 

functional brain areas and areal boundaries in our patients and controls, parcel homogeneity was 

assessed (Gordon et al., 2016). Briefly, for a parcel, the brain-wide connectivity pattern of all 

vertices was entered in to a principal component analysis (PCA). Parcel homogeneity was 

determined as the percent of variance in connectivity across all vertices explained by the first 

principal component. Mean parcel homogeneity was determined by averaging homogeneity 

values across all parcels. To determine parcellation fit, real mean parcel homogeneity was 

compared to the mean homogeneity values from 1,000 randomly rotated null model 

parcellations.  
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Figure 6-1. Functional brain areas and networks remain present across stages of stroke and recovery.  
A: Topography of stroke. Lesion overlay map in atlas space for 132 stroke patients. Lesion distribution is 
representative of a larger source population. B: 324 regions of interest parcellation from Gordon et al., 2016. 
Regions are color coded by RSN membership. C: Parcellation fit for group-averaged functional connectivity – 
average parcel homogeneity is shown in acute stroke patients and age-matched controls (red circles) compared to 
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1,000 null model iterations (black dots). In both groups the 324-region parcellation surpassed all 1,000 null models 
(p<0.001). A z-score can be generated by measuring the distance between real homogeneity and average null model 
in standard deviations. Group-averaged FC z-score is 4.86 in controls and 3.78 in patients.   D: Z-scored parcellation 
homogeneity in individual subjects: patients (2 weeks, 3 months, 1 year) and controls (2 timepoints, 3 months apart). 
Difference between real homogeneity and 100 null model homogeneity is measured for each subject. E: Louvain 
modularity optimized community assignments. The leftmost column provides community assignment defined in 
healthy young adults with the Infomap algorithm by Gordon et al., 2016 (Gordon et al., 2016). Here, unassigned 
parcels and communities with less than 7 parcels are excluded, resulting in 280 parcels. Louvain modularity 
optimization on group average FC matrices is shown for controls and patients in the community assignment color 
plots. In the community assignment color plots, each cell represents a specific parcel (280 parcels along the vertical 
dimension) at a specific tie density (2%-20% along the horizontal dimension). Parcels are ordered by predefined 
community membership, but colored by modularity-optimized community assignment (e.g. cells colored red have 
been assigned to the default mode network). The more similar that a color plot looks to the predefined network plot 
on the far left, the greater the consensus between predefined and optimized communities. Below each community 
assignment color plot is a plot of Newman’s Q at every tie density for predefined (red) and optimized community 
assignments (blue). 

 

Mean parcel homogeneity in age-matched controls was 76.7%	and in sub-acute stroke patients 

was 75.1%. In both cohorts, the 324-region cortical parcellation yielded higher average parcel 

homogeneity than all 1,000 null rotations (Fig. 1C). These results indicate that cortical areas and 

the boundaries between areas remain largely constant in aging adults and even following stroke. 

The same procedure was then conducted on individual subjects. Fig. 1D illustrates the relative 

homogeneity (average real homogeneity minus average null parcel homogeneity) for each 

subject at each timepoint. In all cohorts at all timepoints, parcel homogeneity was significantly 

greater than null. No significant difference was observed between groups or timepoints. Never-

the-less, a correlation was observed lesion size and parcel homogeneity (Spearman’s rho = -

0.266, p = 0.009). Parcel homogeneity scores were similar between two weeks and three months 

in patients (Pearson’s r = 0.58, p = 2.9e-7), and across timepoints in controls (Pearson’s r = 0.62, 

p = 0.002).  
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From this set of analyses we concluded that the parcellation provides a reasonable representation 

of cortical areas in the majority of individual subjects, and that cortical areas remain largely 

stable over the course of stroke recovery. 

Next, we assessed community structure (connectivity between parcels). The community structure 

described using the InfoMap algorithm in healthy young adults by (Gordon et al., 2016) is highly 

similar to structures defined here via unsupervised Louvain modularity optimization (Blondel et 

al., 2008) in patients and age-matched controls (Fig. 1E).  

6.4.2 Modularity is reduced sub-acutely but returns in parallel with behavior 

Having validated the use of the 324-region cortical parcellation, we next investigated our central 

question: how does network modularity change following stroke? Modularity is calculated on 

binary graphs (Fig. 2A), whereas functional connectivity values are continuous (z-transformed 

Pearson correlation coefficient). Thus, we thresholded each subject’s connectivity matrix at a 

range of edge densities (between 4% and 20%), and calculated modularity (as defined in 

equation 1).  Figure 2 B/C illustrates average modularity in controls and in stroke patients at 2 

weeks, 3 months, and 1 year post-stroke (after controlling for subject motion and hemodynamic 

lags (Siegel et al., 2015)).  As expected, we found that modularity in patients was significantly 

lower than controls two weeks after stroke (Fig. 2B), indicating a reduction in segregation of 

resting state networks. Over the course of stroke recovery, modularity increased towards the 

level of controls (Fig. 2C), with the majority of gains coming between two weeks and three 
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months (paired t-test; t(73) = -4.0, p = 6.3e-5) and no significant change between 3 months and 

one year (t(60) = -0.19, p = .43).  

 

 
Figure 6-2. Behavior recovery following stroke is predicted by recovery of brain network modularity. 
A: Modularity measures the density of links inside communities compared to links between communities. 
Modularity is decreased in acute stroke patients (B), but returns to near control levels at 3 month and 1 year 
timepoints (C). D: Modularity, normalized to controls and averaged across densities (2-20%) is shown for the whole 
brain, ipsi-lesional, and contra-lesional hemisphere (compared to single hemisphere modularity in controls).  
** indicates p < 0.005 (uncorrected) for an unpaired t-test between patients and controls in B and for a paired t-test 
between 2 weeks and 1 year for patients in C/D. 

For all subsequent analyses, modularity values were normalized and then averaged across edge 

densities such that controls had a mean of 1 and standard deviation of 0.15.  

We observed that ipsilesional and contralesional hemispheres showed an initial decrease in 

within-hemisphere modularity, but the decrease was larger in the ipsilesional hemisphere.  

Correspondingly, the ipsilesional hemisphere showed a significant increase by three months, 

while the contralesional hemisphere did not (Fig. 2D).  

In patients, there was a significantly correlation between number of nodes damaged and 

modularity at two weeks (r = -.27, p = 0.0048), but not at three months (r = -.16, p = 0.15), or 

one year (r = -0.09, p = 0.47). To confirm that observed modularity decrease in stroke was not 

trivially caused by exclusion of lesioned nodes, we masked the same nodes in controls. Masking 

equivalent nodes did not significantly change modularity in controls (Fig.  2D). Neither did 
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number of nodes removed in controls correlate with modularity (r = 0.03, p = .73). Additionally, 

there was no significant correlation between percent of frames with eyes open and modularity in 

patients (r = 0.09, p = 0.42).Next, we hypothesized that return of modular network structure is 

related to recovery of function. To test this, we assessed function in four domains: 1) language – 

including both receptive and productive measures, 2) spatial attention – assessing visual attention 

to the contralesional hemifield, and 3/4) left/right motor – including a composite of upper and 

lower limb function. Consistent with prior reports (Lazar and Antoniello, 2008; Prabhakaran et 

al., 2007; Ramsey et al., n.d.), the majority of clinical recovery occurred in the first three months, 

with small additional improvement by 1 year (Fig. 2A).  

 
Figure 6-2. Recovery of modularity correlates with behavioral recovery by one year. 
A: Behavioral scores (z-scored relative to age-matched controls) are plotted at 2 weeks, 3 months, and 1 year. For 
left hemisphere stroke patients, scores are shown for language and right (contralesional) motor function. For right 
hemisphere damage patients, scores are given for attention and left motor function. B: In left hemisphere stroke 
patients, recovery of network modularity in the first year predicts recovery of aphasia but not right motor function.  
In right hemisphere stroke patients, recovery of network modularity in the first year predicts recovery of spatial 
attention, but not left motor function.  
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To determine if a relationship was present between change in behavior and change in modularity, 

we first modeled each separately in each patient with a logarithm function (Eq. 2).  We then 

compared the coefficients (i.e. rate of recovery) between modularity and behavior across 

subjects. Importantly, return of network modularity correlated with recovery of cognitive 

function by one year (Fig. 3B). In patients with right hemisphere lesions, change in modularity 

correlated with recovery of spatial attention (r = 0.60, pcorrected = 0.018, n = 21), but did not correlate 

with recovery of left motor deficit (r = -0.01, pcorrected = 0.95, n = 24). In patients with left 

hemisphere lesions, change in modularity correlated with recovery of aphasia (r = 0.46, pcorrected = 

0.031, n = 27), but did not correlate with recovery of right motor deficit (r = 0.20, pcorrected = 0.60, n 

= 19). These results indicate that clinical recovery from stroke in adults parallels a return to the 

modular network structure of the healthy brain. Moreover, they suggest that higher cognitive 

functions such as attention and language are more dependent on segregation of processing across 

brain systems than is basic motor function.  

 
Figure 6-3. Modularity is related to interhemispheric integration and ipsilesional segregation. 
A: The left scatter plot demonstrates the relationship between homotopic FC strength, averaged across the entire 
cerebral cortex, and modularity across all patients at 2 weeks (r = 0.45, p – 9.9x10-6). The right scatter plot 
demonstrates the relationship ipsilesional DAN-DMN FC strength and modularity in all patients at 2 weeks (r = -
0.38, p = 2.9x10-4). The brain images next to each provide schematic visualizations of the type of connectivity tested. 
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B: A significant increase in modularity over time is still observed even after HFC and DAN-DMN FC are regressed 
from all data. 

Previous work identified reduced homotopic integration and reduced within-hemisphere 

segregation as important and related phenotypes of stroke (Siegel et al., 2016). We conducted 

additional analyses to determine how the global measure of modularity relates to homotopic FC 

and ipsilesional DAN-DMN FC. We found that modularity in patients correlated with both 

homotopic connectivity (r = 0.45, p – 9.9x10-6) and with ipsilesional DAN-DMN FC (r = -0.38, p 

= 2.9x10-4) at 2 weeks. However, when both of these FC measures were regressed out from 

modularity in patients and controls, modularity still showed significant increase over time (Fig.  

4). 

6.4.3 Visualizing recovery of the brain graph in an aphasic case 

Modularity is a brain-wide measure that cannot provide insight into what is happening at the 

level of individual brain areas or brain systems. Thus, to gain insight into how brain systems are 

changing as modularity returns, we investigated related measures in a series of three single case 

studies. 

Patient 108 (P108) suffered a large stroke to the left parietal and temporal lobes (Fig. 5), 

resulting in severe acute aphasia, performing 11.7 standard deviations below control average. 

The patient recovered to 2.3 standard deviations below controls by 3 months, and showed a small 

additional improvement (to within 2 standard deviation) by 1 year post-stroke.  The patient’s 

modularity was 0.66 at 2 weeks (control mean=1, SD=0.15), and had returned to 1.00 by 3 

months.  
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Figure 6-4. Case study of aphasic patient P108. 
At two weeks post-stroke, language performance was 11.7 standard deviations below age-matched controls. This 
improved to 2.3 at 3 months and 1.2 at 1 year. Network visualizations are given at all three timepoints, with control 
averages shown in the right-most column for reference. Top: vertex-wise within hemisphere segregation, measured 
by FC variance across all within-hemisphere connections. Middle: unsupervised modularity-optimized community 
assignment for the 8% edge density threshold.  The granularity of network communities increases with recovery. 
Bottom: Spring-embedded network representation at 8% edge density, based on modularity-defined communities 
(community colors are matched to figure 1). Note that the control average will look smoother than any individual 
subject. See Supplementary Fig.  9 for the same visualizations in a control with average modularity. Right: T1 and 
T2 MRIs. Red ovals highlight the stroke. 
 

Figure 5 illustrates the re-emergence and re-segregation of functional brain systems over the 

course of recovery in P108 (relative to controls in the right column). The top row shows within-

hemisphere variance in connectivity at each vertex (squared standard deviation of all within-

hemisphere correlation coefficients greater than 20 mm from the seed). A normally functioning 

area will show strong positive FC within system and negative FC with other systems, resulting in 

higher FC variance (as is seen in the control average in the right column). Whereas, a 
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nonfunctional area should not show strong positive or negative correlations. Thus, FC variance 

reasonably assays segregation. 

The middle row shows the results of unsupervised community detection using the Louvain 

algorithm. Community assignments are optimized for maximum modularity, and communities 

are colored based on maximal similarity with predefined communities (Munkres, 1957). At two 

weeks (Fig. 5, left column), brain systems appear highly localized. For example, the default 

mode system (red) is broken into an anterior and posterior component. Similarly, the fronto-

parietal (yellow) and ventral attention networks are assigned to regions in temporal lobe and 

frontal lobe, respectively, but we do not see systems spanning lobes. By three months, the 

granularity of network communities in the intact cortex increases substantially, showing 

communication between frontal and parietal components restored in both the default mode 

network and control systems. The improvement is maintained at one year. 

The bottom row shows the same community assignments, visualized as a spring-embedded 

graph. The spring-embedded graphs make it possible to visualize the ‘distance’ (in the graph-

theoretical sense) between brain systems. At 2 weeks, systems that are normally highly 

segregated are clustered together (e.g. the somato-motor and default mode networks, indicated 

by cyan and red ovals, respectively). Over recovery, the somato-motor and default mode systems 

become more segregated (e.g. the distance between the cyan and red ovals increases over 

recovery, becoming more similar to controls). Together, the different visualizations in Figure 6 

provide a picture of acute loss and chronic return of distributed and segregated brain systems in 

an individual brain.  
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In figures 6 and 7, the same visualizations are shown for two additional subjects. Patient P30 

suffered a large MCA stroke to the insula, prefrontal cortex, and underlying white matter (Fig. 

8).  This patient showed severe left hemi-neglect, poor recovery by one year, and low modularity 

at all three timepoints (Fig. 6).  Note that network assignments remain very similar to controls 

(Fig. 6, middle row), however, segregation between communities is substantially lower than 

controls (Fig. 6, bottom row), and remains low across timepoints, in parallel with the patients 

poor functional recovery.  

 
Figure 6-5 P30: Severe left hemi-neglect with poor recovery, low modularity throughout. 
Results are generated and displayed as in Figure 6.  
 

Patient P161 suffered a large MCA stroke in the caudate, putamen, and insula (Fig. 7). The 

patient exhibited severe left hemiparesis sub-acutely, but recovered substantially over time 
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(though remained 3.8SD below average). Despite this, the patient showed normal modularity at 

all timepoints. Modularity was not related to recovery in this patient because the deficits was in 

motor function rather than higher cognitive function.  

 

 
Figure 6-6. P161: Severe left hemiparesis with good recovery, minimal change in modularity by 1 year. 
Results are generated and displayed as in Figure 6.  

 

6.5 Discussion 

We assessed longitudinal changes in brain networks after stroke, using R-fMRI. We first 

established that the topology and boundaries of cortical regions remain unchanged across 

recovery. Next, we found that brain network modularity was significantly reduced sub-acutely, 
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but partially recovered over time. Reduced modularity reflects both reduced integration within 

functional brain systems, and reduced segregation between systems. Importantly, the return of 

modular network organization paralleled recovery of language and attention, but not motor 

function. This suggests that return of efficient processing and flow of information is critical to 

the return of higher cognitive function. 

Remapping and reorganization have been demonstrated as a critical part of adult stroke recovery, 

but these processes are only observed within a few millimeters of lesion borders and the first 

month after stroke (Murphy and Corbett, 2009; Nudo and Milliken, 1996; Winship and Murphy, 

2009).  Our results argue that a normalization of balanced and modular brain systems is 

occurring over a much larger spatial and temporal scale. This is consistent with prior findings of 

acute decrease and chronic recovery of long-range interhemispheric connections in mice (van 

Meer et al., 2010a) and in humans (Ramsey et al., 2016) paralleling behavioral recovery. The 

principle of simultaneous local reorganization and global normalization is supported by mouse 

models of stroke in which neural activity was measured both globally and locally (1-2mm from 

the infarct) using optogenetic photostimulation (Lim et al., 2014). A global scaling (relative 

decrease) in connectivity occurred acutely, but recovered with time. Whereas, in perilesional 

tissue, non-uniform changes in connectivity were observed, consistent with remapping. These 

local and global observations likely reflect different processes occurring in the course of stroke 

recovery.   

In the period following a stroke, molecular, cellular, and physiological changes occur not only in 

perilesional tissue, but throughout the brain (Carrera and Tononi, 2014; Feeney and Baron, 1986; 
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Murphy and Corbett, 2009).  Thus, a variety of mechanisms (likely both neural and 

hemodynamic) converge to produce a disruption in the synchrony of infra-slow resting BOLD 

fluctuations across distributed brain systems. The more spatially constrained network structure 

shown sub-acutely in P108 may not reflect increased local communication (in the structural or 

informational sense), but rather an absence of synchronized BOLD fluctuations in distributed 

brain systems. A similar observation has been reported in correlation with data quality, so it is 

important to note that all data in this study was carefully censored for head motion (using both 

head motion and DVAR thresholds), tissue-based timecourse regression was applied, and 

potential confounds (FD, frames remaining, hemodynamic lag) were regressed from modularity 

at the group level. P108 showed low motion at all timepoints, but lowest sub-acutely (Table 1) – 

obviating head motion as an explanation for observed changes.  

 
Figure 6-7. Group FC Similarity to controls. 
Pearson correlation between all members of a given group and control at timepoint 1. The X-axis is correlation 
coefficient between pairs of FC matrices. This measure is computed by turning the 324-by-324 FC matrix in to a 
52,326 vector for each subject. For a given group (i.e. patients at 2 weeks), a spatial correlation was computed 
between the FC vector of every subject and the FC vector of every subject in the control group. Each curve is a 
histogram of similarity values for one group. Similarity to controls increases between 2 weeks and 1 year post-stroke 
(paired t-test: t = 3.9, p < 0.0001). 
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In this work, we assess modularity relative to an a priori community structure defined in an 

independent group of young adults. An alternative approach would be to find community 

structure in each individual, and then measure modularity. However, such an approach would be 

less biologically valid and less interpretable for a number of reasons (see Methods: Modularity 

for a more lengthy consideration). Likewise, using an a priori community structure defined on 

our age-matched controls would bias controls towards greater modularity. An assumption of our 

approach is that community structure remains largely constant over the course of recovery. We 

validate this assumption by showing that, over recovery, patterns of brain connectivity become 

more similar to controls (Fig. 8).  

A limitation of this work is that lesion and deficit were heterogeneous in our cohort. Thus, if 

multiple specific patterns of reorganization were present, these would have been overshadowed 

by the common trend of normalization. Animal models with controlled lesions (Watson et al., 

1985) are better suited to studying reorganization, although specific interventions in commonly 

deficient human cohorts have also shown success (Liepert et al., 2000). An additional limitation 

is that the Newman’s modularity is formulated for binary graphs. Thus, negative FC values are 

set to zero in binary matrices. The putative role that restoration of anti-correlations plays in 

recovery (Ramsey et al., 2016) may be downplayed by this approach. 

Here, we followed a large cohort of stroke patients longitudinally over the course of deficit and 

recovery, measuring functional connectivity (using R-fMRI) and behavior. We observed that 

modular network structure was reduced after stroke, but recovered over time, in concert with 

behavioral recovery. Critically, our work suggests that the global normalization of network 
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structure predicts recovery of higher cognitive functions of language and attention, but not motor 

function. Future studies should therefore explore how rehabilitation strategies can target global 

brain systems.  Moreover, further work will be needed to provide a more detailed picture of 

recovery within specific brain systems and cognitive domains.  
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  Timepoint 1 Timepoint 2 

C
on

tro
ls

 n 26 25 
Frames 571.4(210.0)	 525.4(216.6)	

FD .234(0.062)	 .246(0.053)	
Lag .191(0.046)	 0.239(0.136)	

Table 6-1A 

 

  2 weeks 3 months 1 year 

Pa
tie

nt
s n 107 85 67 

Frames 596.0(209.6)	 649.4(177.8)	 632.9(177.8)	
FD 0.231(0.063)	 0.224(0.057)	 0.223(0.057)	
Lag 0.182(0.156)	 0.291(0.156)	 0.276(0.119)	

Pa
tie

nt
 1

08
 

Frames 737/896	 644/896	 637/896	
FD 0.2392	 0.2495	 0.2408	
Lag 0.1428	 0.1448	 0.1514	

Table 6-1B 
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7 Further Discussion: Integrated hierarchical brain systems 
and human behavior  

 
The contents of this chapter are not published elsewhere 
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7.1 Abstract 

In this final chapter, we discuss how recent studies of brain-behavior relationships present new 

principles that can be incorporated in to the framework introduced at the end of chapter 1. Focal 

lesions, when examined at the population level, do not cause heterogeneous and unrelated 

symptoms, but instead produce clusters of correlated behavioral deficits that span 

neuropsychological tasks and behavioral domains. Correspondingly, the physiological disruption 

induced by stroke spans beyond the boundaries of the lesion, and even beyond the set of areas 

directly connected to the lesion, often producing global disruption to brain connectivity and 

network organization. These disruptions are low dimensional relative to the high variability of 

possible lesions. They frequently fall into canonical patterns of multi-nodal disruption – such as 

reduction in interhemispheric integration and brain network modularity. These observations are 

consistent with an integrated and hierarchical brain organization and these global disruptions 

appear to explain observed deficit. Here, we discuss principles of connectomics and information 

theory that unify recent observations on behavioral and connectivity deficits in stroke with 

advances in network models of the brain. We consider evidence linking brain function with 

behavior, and explore how connectomics principles can guide future studies.  
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7.2 Interdependent Behavior Deficits 

Mounting evidence suggests that focal lesions, when examined at the population level do not 

cause isolated and heterogeneous symptoms, as suggested by traditional neurological models 

(see chapter 1), but instead produce a few clusters of correlated behavioral deficits both within 

and between domains of function. Importantly, these clusters account for the great majority 

(~70%) of variability across a large neuropsychological battery aimed at testing in depth multiple 

domains (motor, sensory, vision, language, attention, and memory). These clusters of deficits do 

not eliminate the possibility that pure behavioral syndromes may exist in a few selected cases, 

however, they indicate that behavioral impairment post-stroke is more accurately represented, 

certainly at the population level, by a few clusters of correlated deficits (Corbetta et al. 2015).  

These conclusions run counter to a long honored tradition in neuropsychology of double 

dissociations, but fit with more recent principles garnered from functional neuroimaging.  

In the motor system, deficits of shoulder, arm, and hand functions are highly correlated across 

stroke patients with upper extremity impairment. A single component explains 85.7% of variance 

across 11 functional measures (Lang and Beebe, 2007). For instance, range of motion at the 

shoulder predicts hand function, even though these functions are supposedly mediated by 

different motor and premotor mechanisms.   These findings are consistent with the emerging idea 

that cortex represent the most common components of natural movements, so called muscle 

synergies. Interesting synergies do not involve uniquely either proximal or distal upper extremity 

movements, but whatever combination of muscle activation that goes together during natural 



 

174 

 

 

movements.  Interestingly, the space of muscle synergies is low dimensional, which solves a 

classic problem in motor control, i.e. how the brain independently control the high dimensional 

combination of torques, directions, and muscles that are necessary for any natural movement 

(Cheung et al., 2012, 2009; Howard et al., 2009; Ingram et al., 2008; Leo et al., 2016).  Even 

though there are literally hundreds of possible hand finger combinations, it turns out that in 

natural conditions, two or three components explain nearly the entire variance of finger 

movements.  

Clinical studies have adopted an easy to measure impairment scale to assess the effects of stroke. 

The NIH stroke scale (NIHSS) examines, at least at a cursory level, language, level of 

consciousness, and attention, even though it is heavily biased toward motor deficits that are the 

most common in stroke. Studies on the factor structure of the NIH Stroke Scale (NIHSS) (Lyden 

et al., 2004, 1999; Zandieh et al., 2012) indicate that with only two factors, one related to left 

hemisphere and one to right hemisphere damage, the majority of variability (~80-90%) in 

performance can be explained.  This is surprising in relation to traditional neurological teaching 

about syndromes.    

Our recent study shows that this simplified factor structure is not the result of poor sensitivity of 

the NIHSS in measuring cognitive impairment.  We also found two mainly hemispheric factors, 

one loading on left motor/attention function, the other loading on right motor/attention function, 

but in addition identified a more cognitive factor which loaded on language and memory scores 

(Corbetta et al., 2015).  Importantly, these clusters were similar in patients with cortical or 



 

175 

 

 

subcortical lesions, were largely independent of lesion size, and remained highly consistent 

across multiple timepoints (2 weeks, 3 months, 1 year) (Figure 1A-C).  

It is our interpretation that this structure of behavioral impairment represents the abnormal output 

of a hierarchical brain organization, in which lesions in different locations lead to a simplified set 

of neural, hence behavioral, states.  This idea is consistent with the demonstration of robust inter-

dependencies between behavioral deficits.  For instance, we have shown that in the course of 

recovery, deficits are not only consistently correlated between different domains, but that the 

degree of recovery can be predicted by specific across-domain relationships. Recovery from 

deficits of attention is worse in patients with acute deficits in motor, language, or spatial memory 

(Figure 1D). And conversely, patients with acute deficit in attention show worse recovery of 

language and spatial memory. 

 
Figure 7-1. Behavioral clusters at 2 weeks, 3 months, 1 year, and moderation.   
The correlations between the domains at 2 weeks (A), 3 months (B) and 1 year (C) and the moderation of 2 week 
deficit on recovery in a different domain (D). P<0.05, Bonferroni corrected. 

These results are consistent with previous work showing inter-dependency of post-stroke 

deficits. In patients with unilateral spatial neglect, hence with visuospatial deficits, these deficits 

are made worse by deficits in sustained attention and working memory (Malhotra et al., 2005). 

Moreover, language problems in patients are increased when executive and working memory 
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deficits are present, which can disrupt a patient's ability to control lexical selection and to 

maintain phonological codes during sentence processing (Brownsett et al., 2014; Fillingham, 

Sage, & Lambon-Ralph, 2005; Francis, Clark, & Humphreys, 2003).  

In a behavioral sense, correlation of performance between tasks can be explained by positing that 

many neuropsychological tests of behavior require the subject to perform a combination of 

cognitive operations. This can be thought of in two ways; first, that a cognitive component may 

be activated across a variety of mental operations (for example, the dorsal anterior cingulate 

from (Dosenbach et al., 2006)), and second, that a given task might activate numerous cognitive 

components (with the number of components varying depending on how simple or complex the 

task is). Work exploring intrinsic relationships between thousands of neuroimaging experiments 

has begun to model the complex relationships that exists between laboratory tasks and cognitive 

components (Yeo et al., 2015). It has been shown that a relatively small number of activation 

patterns are shared across many different behavioral conditions.  We can think of this 

observation as ‘cognitive synergies’ akin to motor synergies in motor/premotor cortex.  

The implications of this cognitive ontology for stroke is that damage to a single brain area will 

affect performance on numerous tasks. A study of 287 stroke patients modeled these complex 

relationships by studying performance on a broad range of cognitive tests (putatively targeting 

attention and executive functions, language, memory, praxis, motor function, affect, and number 

processing) from the Birmingham cognitive screen (Massa et al., 2015). When relationships 

between test scores were modeled, nominal assignment of specific tests to specific cognitive 

functions were largely invalid. For example, complex figure copying linked to tests of executive 
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function (such as rule finding and shifting), tests of attention (apple cancellation), tests of praxis 

(multi-step object use), language tests (sentence reading), and the Barthel index of activities of 

daily living and motor function. We argue that this interdependency of cognitive/behavioral 

deficits is not separable from the interdependent and hierarchical nature of brain systems.  

To understand why some deficit are correlated, others localize to multiple locations, and still 

others cannot be localized at all, it is necessary to explore to network effects of stroke. We 

propose that such phenomena may best be understood as a consequence of focal injury to a 

hierarchically segregated and integrated brain network.  In the next section, we explore this 

principle further with studies of brain connectivity after stroke. 

7.3 Interdependent Functional Brain Systems 

R-fMRI studies have defined spatially distributed brain systems (Doucet et al., 2011; Carl 

Hacker et al., 2013; Power et al., 2011; Yeo et al., 2011) that correspond to the brains functional 

domains (Bertolero et al., 2015; Smith et al., 2009). One key feature of functional brain system 

defined using R-fMRI is their modular but hierarchical organization (Doucet et al., 2011). At the 

highest level of brain organization, a division exists between the task-negative epi-system - 

primarily involved in memory of past events, visualization in future events, and 

conceptualization of the self – and the task-positive epi-system - primarily involved in the 

transient and sustained mental operations required to complete any external action or task. At a 

finer grain of detail, these epi-systems break in to specific brain systems – the task-negative epi-

system containing the default mode network and fronto-parietal network, and the task-positive 



 

178 

 

 

epi-system containing sensory, motor, and attention systems. These systems break further in to 

sub-systems that exhibit repeating motifs of organization across the cortical surface (Power et al., 

2011). These observations have cast prior studies localizing attention and hemispatial neglect in 

a new light (Fig. 2). 

7.3.1 Lesions have widespread effects  

A fundamental property of this organization is that a critical balance exists at each level of the 

hierarchy – disruption of one node has the potential not only to alter the function and the 

connection of distant nodes in that system but also to disrupt the balance between systems 

(Albert et al., 2000; Bullmore and Sporns, 2009). This has been illustrated by models of 

oscillatory cortical interactions derived from priors of structural connectivity (Alstott et al., 2009; 

Honey and Sporns, 2008). When lesions to different parts of the system were simulated, damage 

to central hubs produced widespread changes to network connectivity that extended beyond the 

functional system that was damaged and in some cases even to connections within the opposite 

hemisphere. The widespread effects of lesions on FC spanning numerous brain systems have 

since been borne out in real stroke data (Ovadia-Caro et al., 2013; Wang et al., 2014). And 

importantly, in controlled ablation experiments, modeled indirect network disruptions fit well 

with observed changes (Grayson et al., 2016). 

A converse implication of these models is that damage to peripheral parts of the brain graph will 

have more constrained effects on the whole system. This bears out in a very interesting way 

when comparing damage and connectivity as correlates of behavior. Domain-general deficits and 
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deficits to higher associative functions such as learning and memory are predictable by large-

scale distributed interactions between brain systems but only weakly related to damage in any 

particular location (Chapter 4, Figure 4-3). Whereas, sensory and motor deficits are strongly 

predicted by damage to a limited set of locations that are more peripheral in the overall brain 

graph (Power et al., 2011) and their associated input-output pathways in the white matter. 

7.3.2 The relationships between FC and deficit  

Evidence that the distributed network effects of lesions is relevant to behavioral deficits comes 

from recent studies comparing functional connectivity to behavior after stroke. Early stroke FC 

studies using small samples enabled the testing of more constrained hypotheses. For example, He 

and colleagues described how a relatively small cohort of 11 hemispatial neglect patients with 

heterogenous frontal/temporal/parietal lesions showed a common disruption in connectivity of 

the posterior inferior parietal sulcus that was predictive of acute severity and chronic recovery of 

neglect symptoms (He et al., 2007). When the study of FC-correlates of neglect expanded from 

n=11 to n=87 it became possible to examine the relationship between functional connectivity and 

neglect more broadly across the brain. This revealed a striking phenomenon – more than half of 

the cortical surface showed some alteration in it’s pattern of connectivity that corresponded with 

severity of hemispatial neglect (Fig. 2F) (Baldassarre et al., 2014b).  This included many brain 

areas and systems that are known to primarily support functions other than attention. Thus, the 

likely implication was that changes in attention systems were not functionally independent from 

changes in other brain systems. Concomitant changes occurred in attention networks, default 
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mode network and sensory-motor networks [as discussed previously, hemispatial neglect clusters 

with sustained attention, memory, and motor deficits]. 

 
Figure 7-2. Structural and functional correlates of spatial bias in neglect patients. 
A) Neglect is characterized in the laboratory by an ipsilesional gaze bias while searching for a target (Fruhmann 
Berger et al. 2008). B) Cortical areas associated with neglect in numerous studies (a) Vallar and Perani, 1986; b) 
Husain and Kennard, 1996; c) Leibovitch et al., 1998; d) Karnath et al, 2001; e) Mort et al., 2003; f) Doricchi and 
Tomaiuolo, 2003; g) Karnath et al., 2004; h) Thiebaut de Schotten et al., 2005; i) Corbetta et al ., 2005; j) 
Gharabaghi et al., 2006; k) Committeri et al., 2007;  l) Verdon et al., 2010 ).  C) White matter tracts associated with 
attention shifting and neglect. D) Dorsal and ventral attention areas described in Corbetta & Shulman 2003. E) 
Functional connectivity based whole brain parcellation from Yeo et al., 2011. F) Brain areas showing disruption FC 
in neglect patients compared to lesion-matched controls (Baldassarre et al., 2014).  

This is not incompatible with evidence that the disruptive effects of a lesion are most pronounced 

in the brain system in which the lesion occurs (Nomura et al., 2010). In fact, because both 

functional brain systems and behavioral domains are interdependent, a reliable way to isolate 
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FC:behavior relationships is by comparing specific connections to specific behaviors across the 

population only after other connections and other behaviors have been covaried out. This 

approach was used to illustrate both the behavioral dissociation between motor and attention 

systems, but also their interdependence (Baldassarre et al., 2016). Thus, brain-wide patterns of 

abnormalities co-exist with more behaviorally specific patterns. 

When FC-deficit relationships are compared across behavioral domains, another principle of 

connectomics emerges. Attention, spatial memory, verbal memory, language, motor and visual 

deficits were all best predicted by a decreased in connections between the hemispheres and an 

increase in connection strength (typically, a loss of anti-correlations) within a hemisphere 

(Chapter 4, Figure 4-4). Thus, a common correlate of behavioral deficits is reduction to 

homotopic integration and reduction in within-hemisphere segregation between normally 

dissociated networks. This same overall pattern of reduced homotopic integration and reduced 

within-hemisphere segregation predicted domain-general deficit.  

Interestingly, transection of the corpus callosum has also been found to results in both an 

expected drop off in interhemispheric FC, but also an increase in within-hemisphere correlation 

in human (Johnston et al., 2008) and monkey studies (O’Reilly et al., 2013). This suggests that 

integration of RSNs across the hemispheres is linked to segregation of task-positive and task-

negative RSNs within the hemispheres. The post-stroke reduction in integration and segregation 

can be thought of as resulting from a single disruptive process such as previously observed 

reductions in brain network modularity (Gratton et al., 2012). 
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In fact, the healthy brain’s modular network organization appears to be critical for higher 

cognitive functions such as language and attention. Despite severe disruptions following stroke, 

the post-stroke brain is capable of returning to a state of modular organization in the course of 

recovery (Chapter 6). Research using calcium channel signaling in mice has been particularly 

important in demonstrating that widespread FC changes observed in humans likely reflect neural 

and not vascular disruption. Recently, neural activity following stroke was measured both 

globally and locally (1-2mm from the infarct) using optogenetic photostimulation (Lim et al., 

2014). Lim and colleagues observed a global scaling (relative decrease) in connectivity acutely, 

that recovered with time. 

One way to understand reduction in the modularity of the system is as a decrement in the 

variability of available neural states. In information theory, information capacity is the 

segregative ability of a system to encode distinct stimuli and can be measures as the range of 

distinct neural states available to the brain in response to different stimuli (Deco et al., 2015). A 

recent study used real data from stroke patients and controls to generate models of the brain 

network and then quantified information capacity by simulating thousands of different 

perturbations the network (Adhikari, under review). A significant decrease in information 

capacity was observed after stroke, and this decrease correlated with reductions in homotopic 

connectivity (in the real R-fMRI data) in multiple RSNs. If we think of the healthy brain as a set 

of networks that can flexibly interact to produce the tremendous range of behavioral responses, 

than a reduction in the variability of available neural states may explain the clustered deficit seen 

after stroke.  
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1.2 Limitations & Considerations 

The hypothesis that clusters of correlated behavioral impairments in stroke reflect abnormal 

interactions at the neural level must be weighed against an alternative explanations for clustered 

structure - that behavioral covariance results from anatomical covariance caused by proximity or 

shared vascular supply of distinct brain areas. For instance, the left middle cerebral artery 

provides vascular supply to both Wernicke’s area, and left central sulcus, thus occlusion of the 

MCA would produce apparently correlated language and right motor deficits. Thus, stroke is a 

crude tool for testing hypotheses about local computations.  Even if a lesion is constrained to a 

single brain area, this problem might persist. Precise tools developed in the laboratory are 

sometimes able to differentiate modular units even within a brain area. For example, 

electrophysiology physiology studies within the frontal eye field (FEF) of the macaque suggest 

find that some cells in the FEF are active during saccades and a distinct but overlapping 

population of cells are involved in covert shifting of attention (Thompson et al., 2005).  

In the case of subcortical and white matter lesions, this logic would also apply to distinct white 

matter tracts that pass in close proximity. In such cases, a relatively small area of ischemia is 

likely to affect multiple tracts. This principle likely further explains correlated deficit between 

behavioral domains (Corbetta 2015) and requires further exploration.  

While anatomical proximity certainly must be considered, many of the behavioral relationships 

described are occurring between areas no obvious vascular overlap. For example, language and 

spatial memory deficits are correlated (r = .59), despite localizing to different hemispheres 
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(Corbetta et al., 2015). Moreover, the correlation of deficits is the same when a population of 

only subcortical lesions is compared to a population of only cortical lesions. But most 

importantly, this does not explain the above observations of distributed effects of stroke and the 

reproducible links between global connectivity changes and behavioral deficit. 

Additionally, the contention may be raises that the famous case of bilateral temporal lobectomy, 

HM, indicates that the encoding of memories is localizable (Scoville and Milner, 1957). We do 

not dispute this. It is our view that medial temporal structures provide a critical input to cortical 

memory systems, but the results given in chapter 4 demonstrate that verbal and spatial memories 

performance (both encoding and retrieval) are better represented in the cerebral cortex by 

distributed connectivity rather than location. Even if all of the deficits explored in chapter 4 

could be localized given precise enough lesions, this would not change the distinction that some 

were well predicted by distributed FC changes while others are not.  

7.4 Conclusion 

In chapter 1, we explored historical and more contemporary prospective on how behavior is 

represented in the brain. In the final chapter, we closed by reviewing how recent findings from 

stroke studies by our lab and others have led to new principles of behavioral representation. 

Principles of integration of brain organization described using resting fMRI [and the 

consequences of disrupting such a network] explain why behavioral deficits form reliable 

clusters across a stroke population. Differences in the centrality of networks in the brain graph 

explain why some deficits are highly localizable while others are best understood as disruptions 



 

185 

 

 

to multi-network synchrony. And principles of network modularity explain why common 

patterns reduced integration and segregation are seen across domains and systems.  It is our hope 

that these principles of brain organization might be used, to built a new framework with which to 

understand behavioral variability in diseases, be they neurological, psychiatric, or developmental 

conditions, or genetic. 
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