1,328 research outputs found

    Bidimensionality and EPTAS

    Full text link
    Bidimensionality theory is a powerful framework for the development of metaalgorithmic techniques. It was introduced by Demaine et al. as a tool to obtain sub-exponential time parameterized algorithms for problems on H-minor free graphs. Demaine and Hajiaghayi extended the theory to obtain PTASs for bidimensional problems, and subsequently improved these results to EPTASs. Fomin et. al related the theory to the existence of linear kernels for parameterized problems. In this paper we revisit bidimensionality theory from the perspective of approximation algorithms and redesign the framework for obtaining EPTASs to be more powerful, easier to apply and easier to understand. Two of the most widely used approaches to obtain PTASs on planar graphs are the Lipton-Tarjan separator based approach, and Baker's approach. Demaine and Hajiaghayi strengthened both approaches using bidimensionality and obtained EPTASs for a multitude of problems. We unify the two strenghtened approaches to combine the best of both worlds. At the heart of our framework is a decomposition lemma which states that for "most" bidimensional problems, there is a polynomial time algorithm which given an H-minor-free graph G as input and an e > 0 outputs a vertex set X of size e * OPT such that the treewidth of G n X is f(e). Here, OPT is the objective function value of the problem in question and f is a function depending only on e. This allows us to obtain EPTASs on (apex)-minor-free graphs for all problems covered by the previous framework, as well as for a wide range of packing problems, partial covering problems and problems that are neither closed under taking minors, nor contractions. To the best of our knowledge for many of these problems including cycle packing, vertex-h-packing, maximum leaf spanning tree, and partial r-dominating set no EPTASs on planar graphs were previously known

    Laplacian Distribution and Domination

    Get PDF
    Let mG(I)m_G(I) denote the number of Laplacian eigenvalues of a graph GG in an interval II, and let γ(G)\gamma(G) denote its domination number. We extend the recent result mG[0,1)γ(G)m_G[0,1) \leq \gamma(G), and show that isolate-free graphs also satisfy γ(G)mG[2,n]\gamma(G) \leq m_G[2,n]. In pursuit of better understanding Laplacian eigenvalue distribution, we find applications for these inequalities. We relate these spectral parameters with the approximability of γ(G)\gamma(G), showing that γ(G)mG[0,1)∉O(logn)\frac{\gamma(G)}{m_G[0,1)} \not\in O(\log n). However, γ(G)mG[2,n](c+1)γ(G)\gamma(G) \leq m_G[2, n] \leq (c + 1) \gamma(G) for cc-cyclic graphs, c1c \geq 1. For trees TT, γ(T)mT[2,n]2γ(G)\gamma(T) \leq m_T[2, n] \leq 2 \gamma(G)

    Largest reduced neighborhood clique cover number revisited

    Full text link
    Let GG be a graph and t0t\ge 0. The largest reduced neighborhood clique cover number of GG, denoted by β^t(G){\hat\beta}_t(G), is the largest, overall tt-shallow minors HH of GG, of the smallest number of cliques that can cover any closed neighborhood of a vertex in HH. It is known that β^t(G)st{\hat\beta}_t(G)\le s_t, where GG is an incomparability graph and sts_t is the number of leaves in a largest tt-shallow minor which is isomorphic to an induced star on sts_t leaves. In this paper we give an overview of the properties of β^t(G){\hat\beta}_t(G) including the connections to the greatest reduced average density of GG, or t(G)\bigtriangledown_t(G), introduce the class of graphs with bounded neighborhood clique cover number, and derive a simple lower and an upper bound for this important graph parameter. We announce two conjectures, one for the value of β^t(G){\hat\beta}_t(G), and another for a separator theorem (with respect to a certain measure) for an interesting class of graphs, namely the class of incomparability graphs which we suspect to have a polynomial bounded neighborhood clique cover number, when the size of a largest induced star is bounded.Comment: The results in this paper were presented in 48th Southeastern Conference in Combinatorics, Graph Theory and Computing, Florida Atlantic University, Boca Raton, March 201

    Contraction-Bidimensionality of Geometric Intersection Graphs

    Get PDF
    Given a graph G, we define bcg(G) as the minimum k for which G can be contracted to the uniformly triangulated grid Gamma_k. A graph class G has the SQGC property if every graph G in G has treewidth O(bcg(G)c) for some 1 <= c < 2. The SQGC property is important for algorithm design as it defines the applicability horizon of a series of meta-algorithmic results, in the framework of bidimensionality theory, related to fast parameterized algorithms, kernelization, and approximation schemes. These results apply to a wide family of problems, namely problems that are contraction-bidimensional. Our main combinatorial result reveals a general family of graph classes that satisfy the SQGC property and includes bounded-degree string graphs. This considerably extends the applicability of bidimensionality theory for several intersection graph classes of 2-dimensional geometrical objects

    Treewidth versus clique number. II. Tree-independence number

    Full text link
    In 2020, we initiated a systematic study of graph classes in which the treewidth can only be large due to the presence of a large clique, which we call (tw,ω)(\mathrm{tw},\omega)-bounded. While (tw,ω)(\mathrm{tw},\omega)-bounded graph classes are known to enjoy some good algorithmic properties related to clique and coloring problems, it is an interesting open problem whether (tw,ω)(\mathrm{tw},\omega)-boundedness also has useful algorithmic implications for problems related to independent sets. We provide a partial answer to this question by means of a new min-max graph invariant related to tree decompositions. We define the independence number of a tree decomposition T\mathcal{T} of a graph as the maximum independence number over all subgraphs of GG induced by some bag of T\mathcal{T}. The tree-independence number of a graph GG is then defined as the minimum independence number over all tree decompositions of GG. Generalizing a result on chordal graphs due to Cameron and Hell from 2006, we show that if a graph is given together with a tree decomposition with bounded independence number, then the Maximum Weight Independent Packing problem can be solved in polynomial time. Applications of our general algorithmic result to specific graph classes will be given in the third paper of the series [Dallard, Milani\v{c}, and \v{S}torgel, Treewidth versus clique number. III. Tree-independence number of graphs with a forbidden structure].Comment: 33 pages; abstract has been shortened due to arXiv requirements. A previous version of this arXiv post has been reorganized into two parts; this is the first of the two parts (the second one is arXiv:2206.15092
    corecore