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LAPLACIAN DISTRIBUTION AND DOMINATION

DOMINGOS M. CARDOSO, DAVID P. JACOBS, AND VILMAR TREVISAN

Abstract. Let mG(I) denote the number of Laplacian eigenvalues of a graph G in
an interval I, and let γ(G) denote its domination number. We extend the recent result
mG[0, 1) ≤ γ(G), and show that isolate-free graphs also satisfy γ(G) ≤ mG[2, n]. In
pursuit of better understanding Laplacian eigenvalue distribution, we find applications
for these inequalities. We relate these spectral parameters with the approximability

of γ(G), showing that γ(G)
mG[0,1) 6∈ O(log n). However, γ(G) ≤ mG[2, n] ≤ (c + 1)γ(G)

for c-cyclic graphs, c ≥ 1. For trees T , γ(T ) ≤ mT [2, n] < 2γ(G).

Key words and phrases: graph, Laplacian eigenvalue, domination number.
AMS subject classification: 05C50, 05C69.

1. Introduction

Let G = (V,E) be an undirected graph with vertex set V = {v1, . . . , vn}. For v ∈ V ,
its open neighborhood N(v) denotes the set of vertices adjacent to v. The adjacency
matrix of G is the n × n matrix A = [aij] for which aij = 1 if vi and vj are adjacent,
and aij = 0 otherwise.

The Laplacian matrix of G is defined as LG = D−A, where D = [dij] is the diagonal
matrix in which dii = deg(vi), the degree of vi. The Laplacian spectrum of G is the
multi-set of eigenvalues of LG, we number

µ1 ≥ µ2 ≥ . . . ≥ µn = 0.

It is known that µ1 ≤ n. Unless indicated otherwise, all eigenvalues in this paper are
Laplacian. We refer to [22, 23] for more background on the Laplacian spectra of graphs.

A set S ⊆ V is dominating if every v ∈ V − S is adjacent to some member in S.
The domination number γ(G) is the minimum size of a dominating set. Its decision
problem is well-known to be NP-complete, and it is even hard to approximate. For
more information on domination in graphs, we refer to [17].

Since 1996, several papers have been written relating the Laplacian spectrum of a
graph G with γ(G). Often these results obtain a bound, involving γ(G), for a specific

eigenvalue such as µ1 or µn−1. For example, it was shown that µ1 < n − dγ(G)−2
2
e by

Brand and Seifter [6] for G connected and γ(G) ≥ 3. This was recently improved in
[26]. We refer to the introduction of [18] for a summary of these results.

Other spectral graph theory papers, including this one, are interested in distribution,
that is, the number of Laplacian eigenvalues in an interval. For a real interval I, mG(I)
denotes the number of Laplacian eigenvalues of G in I. There exist several papers in
the literature that relate Laplacian distribution to specific graph parameters, including
γ(G). For example, the paper by Zhou, Zhou and Du [27] shows that for trees T ,
mT [0, 2) ≤ n− γ(T ).

The following spectral lower bound for γ(G) was proved in [18]:

Theorem 1. If G is a graph, then mG[0, 1) ≤ γ(G).
1
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In this paper we observe that for G isolate-free one has

γ(G) ≤ mG[2, n].

Since mG[0, 2) +mG[2, n] = n, this inequality generalizes the result in [27] for trees.
Our paper seeks applications to the inequalitiesmG[0, 1) ≤ γ(G) and γ(G) ≤ mG[2, n].

We also seek insight into the ratios of these numbers. In the examples given in [18], the
numbers γ(G) and mG[0, 1) were equal or differed by one. We will see that this does
not happen in general.

The remainder of our paper is organized as follows. We finish this introduction by
considering the sharpness of these inequalities. In the next section we recall the proof
of Theorem 1 and modify it to obtain an inequality involving mG[2, n]. In Section 3 we
obtain several new results based on existing Nordhaus-Gaddum inequalities and Gallai-
type theorems. One interesting new Nordhaus-Gaddum result is that for any graph G,
mG[0, 1) + mḠ[0, 1) ≤ n + 1 with equality if and only if G = Kn or G = K̄n. Another
interesting result is that a graph must have fewer than

√
n Laplacian eigenvalues in at

least one of the intervals [0, 1) or (n − 1, n]. Furthermore, the inequality mG[1, n] ≥
∆(G) obtained in Theorem 8 relates the combinatorial structure of the graph with the
Laplacian distribution in that more eigenvalues less than 1 implies a smaller maximum
degree.

In Section 4, using results from the approximation literature, we explain why we
can’t expect the quantities mG[0, 1) or mG[2, n] to be close to γ(G). Using some results

on Vizing’s conjecture, we show that γ(G)
mG[0,1)

/∈ O(log n). For trees, γ(T ) ≤ mT [2, n] <

2γ(T ). For c-cyclic graphs G, c ≥ 1, mG[2, n] ≤ (c + 1)γ(G). These results seem
interesting in light of the domination number’s general inapproximability. In Section 5
we observe that many results also hold for the signless Laplacian spectrum.

Tightness. We briefly discuss whether γ(G) is the natural graph parameter bounded
below by mG[0, 1) and above by mG[2, n]. For example, one might ask if there exists a
graph parameter p(G) for which

mG[0, 1) ≤ p(G) ≤ γ(G).

We considered three well-known graph parameters, each bounded above by γ(G), and
observed that they are not always bounded below by mG[0, 1). More precisely, while
the 2-packing number ρ(G) (see [3]) is always at most γ(G), we can find a graph for
which ρ(G) < mG[0, 1). Similar examples can be found for the fractional domination
number γf (G) [14], and the irredundance number ir(G) [11]. We omit the details.

One can also ask if there is a known graph parameter q(G) for which

γ(G) ≤ q(G) ≤ mG[2, n]

for isolate-free G. Graph parameters q(G) for which γ(G) ≤ q(G) include the inde-
pendent domination number i(G), the edge covering number α1(G), and the match-
ing number β1(G). In the first two cases we can provide counter examples to show
they are not necessarily bounded above by mG[2, n]. Interestingly, we will see that
γ(G) ≤ β1(G) ≤ mG[2, n], when G is isolate-free.

2. Upper bound for γ(G)

In this section we show how to modify the proof of Theorem 1 to obtain a new
inequality. For convenience, we recall the facts used to prove Theorem 1. Proofs or
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references can be found in [18]. In this paper, a star Sn is the complete bipartite graph
K1,n−1, and n ≥ 2.

Lemma 1. The star Sn on n vertices has Laplacian spectrum 0, 1n−2, n.

Lemma 2. For graphs G1 = (V,E1) and G2 = (V,E2) where E1 ∩ E2 = ∅, and
G = (V,E1 ∪ E2), we have LG = LG1 + LG2.

Let λi(A) denote the i-th largest eigenvalue of a Hermitian matrix A.

Lemma 3. If A and B are Hermitian matrices of order n, and B is positive semi-
definite, then λi(A+B) ≥ λi(A), for 1 ≤ i ≤ n.

Lemma 4. Let G = (V,E) and H = (V, F ) be graphs with F ⊆ E. Then

(1) for all i, µi(H) ≤ µi(G);
(2) for any a, mH [0, a) ≥ mG[0, a);
(3) for any a, mH [a, n] ≤ mG[a, n].

Let S be a set of vertices, and u ∈ S. A vertex v ∈ V − S is an external private
neighbor of u (with respect to S) if N(v) ∩ S = {u}. That is, v ∈ V − S is a neighbor
of u, but not a neighbor of any other member of S.

Lemma 5 ([4]). Any graph without isolated vertices has a minimum dominating set in
which every member has an external private neighbor.

We will say that G has a star forest F = (Sn1 , . . . , Snk), if there exists a sequence
of pairwise vertex-disjoint subgraphs Hi of G, with Hi ' Sni , for all i, 1 ≤ i ≤ k. We
emphasize that stars have order ni ≥ 2.

Lemma 6. Any isolate-free graph G = (V,E) with domination number γ has a star
forest F = (Sn1 , . . . , Snγ ) such that every v ∈ V belongs to exactly one star, and the
centers of the stars form a minimum dominating set.

Theorem 1 gives a spectral lower bound for γ(G). The key to its proof was to take
the star forest that cover all vertices,

F = (Sn1 , Sn2 , . . . , Snγ(G)
),

guaranteed by Lemma 6. By Lemma 1 mSni
[0, 1) = 1, and so mF [0, 1) = γ(G). By

part (2) of Lemma 4 we have γ(G) = mF [0, 1) ≥ mG[0, 1).
If instead of counting the smallest eigenvalue in each star we count the largest, we

can also obtain a spectral upper bound for γ(G). Assume that G is isolate-free. In
the construction of F , each star Sk contains k ≥ 2 vertices. When k = 2, the star has
eigenvalues 0, 2. When k ≥ 3, the star has eigenvalues 0, 1k−2, k. So mSni

[2, n] = 1
for all i. Since these are disjoint stars, mF [2, n] = γ(G). By Lemma 4, part (3),
mF [2, n] ≤ mG[2, n]. We conclude that

Theorem 2. If G is an isolate-free graph, then γ(G) ≤ mG[2, n].

We will use some ideas from our proof of Theorem 2 to establish Theorem 10 and
Theorem 11, later in Section 4. However, there is actually an alternative and simpler
proof to Theorem 2 which we sketch. Recall that the matching number β1(G), is the
size of a largest set of independent edges in G. We first claim that β1(G) ≤ mG[2, n] for
any graph G. To see this, let F be the subgraph of G consisting of β1(G) disjoint K2’s
and n− 2β1(G) isolated vertices. Then mF [2, n] = β1(G). By part (3) of Lemma 4, we
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must have β1(G) = mF [2, n] ≤ mG[2, n]. Finally, it is known [17] that if G is isolate-free
then γ(G) ≤ β1(G), and so Theorem 2 follows.

A connection between β1(G) and the number of Laplacian eigenvalues strictly greater
than two was shown in 2001 by Ming and Wang [21]. They proved that if G is connected
and n > 2β1(G), then β1(G) ≤ mG(2, n].

Theorem 2 strengthens a recent result by Zhou, Zhou and Du [27] which says that
for trees T , mT [0, 2) ≤ n− γ(T ). Note that Theorem 2 requires G be isolate-free while
Theorem 1 does not. This happens because isolates in Theorem 1 can be disregarded
as they increase both sides of the inequality by one. In Theorem 2 an isolate increases
one side of the inequality but not the other. Theorem 1 and Theorem 2 imply

Corollary 1. If G is isolate-free then mG[0, 1) ≤ γ(G) ≤ mG[2, n].

It seems interesting in its own right that

Corollary 2. If G is isolate-free, then mG[0, 1) ≤ mG[2, n].

When combined with a known lower bound on mT [0, 2) for trees, Theorem 1 implies
something interesting about the interval [1, 2).

Corollary 3. If T is a tree, then mT [1, 2) ≥ dn
2
e − γ(T ).

Proof. We have

mT [1, 2) = mT [0, 2)−mT [0, 1)

≥ dn
2
e −mT [0, 1)

≥ dn
2
e − γ(T )

The first inequality follows by the bound mT [0, 2) ≥ dn
2
e for trees given in [5, Thr. 4.1].

The second inequality follows from Theorem 1. �

3. Applications

Recall that the distance between vertices u and v is the number of edges in a shortest
path between them, and the graph’s diameter, diam(G), is the greatest distance between

any two vertices. It is known [15] that for trees T , bdiam(T )
2
c is a lower bound for both

mT (0, 2) and mT (2, n]. For G connected, it is also known [17] that 1+diam(G)
3

≤ γ(G),
so Theorem 2 implies

Corollary 4. For connected graphs G, 1+diam(G)
3

≤ mG[2, n].

Nordhaus-Gaddum inequalities. A Nordhaus-Gaddum inequality is a bound on the
sum or product of a parameter for a graph G and its complement Ḡ. For an overview of
Nordhaus-Gaddum inequalities for domination-related parameters we refer to Chapter
10 in [17]. A result of Jaeger and Payan [19] says that if G is a graph then

γ(G) + γ(Ḡ) ≤ n+ 1 (1)

γ(G)γ(Ḡ) ≤ n (2)

and these bounds are tight. The following theorem by Cockayne and Hedetniemi char-
acterizes when equality occurs in (1).

Theorem 3 ([10]). For any graph G, γ(G) + γ(Ḡ) ≤ n+ 1 with equality if and only if
G = Kn or G = K̄n.
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We can use this to obtain the following:

Theorem 4. For any graph G, mG[0, 1) +mḠ[0, 1) ≤ n+ 1 with equality if and only if
G = Kn or G = K̄n.

Proof. From Theorem 1 and (1) we must have

mG[0, 1) +mḠ[0, 1) ≤ γ(G) + γ(Ḡ) ≤ n+ 1 (3)

for any G. Since mKn [0, 1) = 1 and mK̄n [0, 1) = n, we must have equality if G = Kn or
G = K̄n. Conversely if mG[0, 1)+mḠ[0, 1) = n+1, then (3) forces γ(G)+γ(Ḡ) = n+1.
By Theorem 3 it follows that G = Kn or G = K̄n. �

From Theorem 1 and (2) we also have

Theorem 5. For any graph G, mG[0, 1) ·mḠ[0, 1) ≤ n.

Recall [22, Theorem 3.6] that if G has Laplacian eigenvalues

0 = µ1 ≤ µ2 ≤ . . . ≤ µn

then the Laplacian eigenvalues of Ḡ are:

0, n− µn, n− µn−1, . . . , n− µ2

It follows that mḠ[0, 1) = mG(n− 1, n] + 1. Then from Theorem 5

mG[0, 1) ·mG(n− 1, n] < mG[0, 1) · (mG(n− 1, n] + 1) =

mG[0, 1) ·mḠ[0, 1) ≤ n.

We have

Theorem 6. For any graph G, mG[0, 1) ·mG(n− 1, n] < n.

We conclude that any graph of order n must have fewer than
√
n Laplacian eigen-

values in at least one of the intervals [0, 1) or (n− 1, n].

Gallai-type theorems. A Gallai-type theorem has the form x(G) + y(G) = n where
x(G) and y(G) are graph parameters. There are exactly n Laplacian eigenvalues, so
the equation

mG[0, 1) +mG[1, n] = n (4)

can be regarded as a trivial Gallai-type theorem. A spanning forest of a graph G is a
spanning subgraph which contains no cycles. Let ε(G) denote the maximum number
of pendant edges in a spanning forest of G.

Theorem 7 ( Nieminen [24] ). For any graph G, γ(G) + ε(G) = n.

Corollary 5. For any graph G, ε(G) ≤ mG[1, n].

Proof. From Theorem 1 and (4) we know that

n− γ(G) ≤ mG[1, n] (5)

the left side being ε(G) by Theorem 7. �

Corollary 6. γ(G) = mG[0, 1) if and only if ε(G) = mG[1, n].

Proof. This follows from (4) and Theorem 7. �
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Berge [2] gives an early bound for γ(G):

γ(G) + ∆(G) ≤ n (6)

where ∆ denotes the maximum vertex degree. In [12] the authors study when equality
in (6) occurs. Combining (5) and (6) give

Theorem 8. For any graph G, mG[1, n] ≥ ∆(G).

As a simple application to Theorem 8, suppose we are given a list σ

0 = µn ≤ µn−1 ≤ . . . ≤ µ1

of non-negative numbers and wish to know if there is a graph G whose Laplacian
spectrum is σ. Then Theorem 8 imposes a necessary condition on G. Let B = |{i :
µi ≥ 1}|. Any graph G such that Spec(G) = σ must have vertices whose degrees are
bounded by B.

We notice that in Theorem 8 the number of large eigenvalues says something about
the structure of the graph. For example, graphs with high maximum degree seem to
have few number of Laplacian eigenvalues smaller than 1.

4. Approximating γ(G)

In this section we explain why it is hard to approximate γ(G) with a polynomial
computable spectral quantity of the form mG[a, b]. We show that mG[0, 1) and mG[2, n]
do not even achieve logarithmic approximation ratios. Yet, for certain classes of graphs

such as trees and c-cyclic graphs, mG[2,n]
γ(G)

is bounded by a constant.

Inapproximability. It is well-known that the decision problem DOMINATING SET
is NP-complete [13], even for planar graphs. In the approximation algorithm literature
the problem is classified as class II in the taxonomy of NP-complete problems given in
[1]. Roughly speaking, this means that approximating with better than a logarithmic
ratio is hard. A problem is called quasi-NP-hard if a polynomial-time algorithm for it
could be used to solve all NP problems in time 2poly(logn). Thus the notion is slightly
weaker than NP-hard.

Lund and Yannakakis [20, Th. 3.6] showed that it is quasi-NP-hard to compute a
polynomial-time function f(G) ≥ γ(G) for which

f(G)

γ(G)
≤ c log2 n

when 0 < c < 1
4
. Letting g(G) = f(G)

c log2 n
, we see this is equivalent to computing a

polynomial time g(G) ≤ γ(G) for which

γ(G)

g(G)
≤ c log2 n.

Good approximations of γ(G) do exist. The fractional domination number γf (G) can
be computed in polynomial time using linear programming. Given a vertex ordering,
we can compute in polynomial time an approximation γg(G) for γ(G) using the greedy
domination algorithm. Clearly for any graph G,

γf (G) ≤ γ(G) ≤ γg(G).

In [8] Chappell, Gimbel and Hartman proved that γg(G)

γf (G)
is in O(log n). It follows that

both γg(G)

γ(G)
and γ(G)

γf (G)
must also be in O(log n). Note this result does not contradict that
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of Lund and Yannakakis [20], provided the constants of proportionality are sufficiently
large.

Figure 1. mT [0, 1) = 24 < γ(T ) = 25

Example. We now construct an infinite sequence of graphs for which the ratio γ(G)
mG[0,1)

6∈
O(log n). Our construction uses the tree T of order n = 65, shown in Figure 1. It is
known [18] that mT [0, 1) = 24 and γ(T ) = 25.

Recall that the Cartesian product G�H of two graphs G = (V,E) and H = (W,F )
is the graph with vertex set V ×W for which (v1, w1) and (v2, w2) are adjacent if and
only if v1 = v2 and w1w2 ∈ F or w1 = w2 and v1v2 ∈ E.

In 1968 V. G. Vizing conjectured [25] that for all graphs G and H,

γ(G) · γ(H) ≤ γ(G�H) (7)

While this currently remains an open problem, many partial results exist. We say
that G satisfies Vizing’s conjecture if (7) holds for all graphs H. Many classes of graphs
are known to satisfy Vizing’s conjecture.

Lemma 7 ( Theorem 8.2, [7]). All trees satisfy Vizing’s conjecture.

It is easy to show that the Cartesian product is an associative operation. Let Gk

denote the Cartesian product G� · · ·�G of k copies of G.

Lemma 8. If G satisfies Vizing’s conjecture, then γ(G)k ≤ γ(Gk).

Proof. By induction on k, the case for k = 1 being trivial. Assume that γ(G)k ≤ γ(Gk).
Using the induction assumption, the fact that G satisfies Vizing’s conjecture, and the
associativity of �, we have

γ(G)k+1 = γ(G)γ(G)k ≤ γ(G)γ(Gk) ≤ γ(G�Gk) = γ(Gk+1)

completing the proof. �

The following is well-known (See, for example, [22, Thr. 3.5]).

Lemma 9. Let G and H be graphs with Laplacian spectra

0 = µn ≤ µn−1 ≤ · · · ≤ µ1

and
0 = µ′m ≤ µ′m−1 ≤ · · · ≤ µ′1

respectively. Then the Laplacian spectrum of G�H is

{µi + µ′j|1 ≤ i ≤ n, 1 ≤ j ≤ m}.
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Lemma 10. For any graphs G and H, mG�H [0, 1) ≤ mG[0, 1) ·mH [0, 1).

Proof. By Lemma 9, Laplacian eigenvalues of G�H are of the form µi + µ′j, where µi
and µ′j are eigenvalues of G and H respectively. A necessary condition for µi + µ′j < 1
is that µi < 1 and µ′j < 1. There are at most mG[0, 1) ·mH [0, 1) such pairs. �

Lemma 11. For any graph G and any k ≥ 1, mGk [0, 1) ≤ mG[0, 1)k.

Proof. The case k = 1 is trivial, and k = 2 is handled by Lemma 10. Assume
mGk [0, 1) ≤ mG[0, 1)k. Then using Lemma 10 and the induction assumption, we have:

mGk+1 [0, 1) = mG�Gk [0, 1) ≤ mG[0, 1) ·mGk [0, 1) ≤ mG[0, 1) ·mG[0, 1)k.

The right side is mG[0, 1)k+1 completing the induction. �

Let T be the tree of order 65 in Figure 1 for which

mT [0, 1) = 24 and γ(T ) = 25. (8)

We claim that for all k ≥ 1

mTk [0, 1) ≤ mT [0, 1)k ≤ γ(T )k ≤ γ(T k) (9)

The first inequality follows by Lemma 11, and the second inequality follows by Theo-
rem 1. The third inequality follows by Lemma 7 and Lemma 8.

Theorem 9. There exists a sequence of graphs Gk with γ(Gk)
mGk [0,1)

6∈ O(log n).

Proof. We let Gk = T k. Using n = 65k, (8) and (9) we have

γ(T k)

mTk [0, 1)
≥ γ(T )k

mT [0, 1)k
=

(
25

24

)k

=

(
25

24

)log65 n

= nlog65
25
24 = n.009779.

�

Ratios for certain classes. Consider the two approximation ratios:

γ(G)

mG[0, 1)
(10)

mG[2, n]

γ(G)
(11)

Both ratios can get arbitrarily large. By Theorem 9 the first of these ratios is not
bounded by log(n). The second ratio also gets arbitrarily large. When G = Kn is the
complete graph, we see that ratio (11) is n− 1.

Consider (11) for paths Pn. It is well-known that γ(Pn) = dn
3
e. By Thr. 4.1 in [5]

we also know mPn [2, n] ≤ bn
2
c, and so (11) is at most 3

2
. Using ideas from Section 2, we

show that for all trees ratio (11) is less than two.

Lemma 12. Let G be a graph on n vertices and m <
(
n
2

)
edges, and let G′ be the graph

obtained by adding an edge. Then for any a ≥ 0,

mG[a, n] ≤ mG′ [a, n] ≤ mG[a, n] + 1.

Proof. Let 0 = µn ≤ . . . ≤ µ2 ≤ µ1 and 0 = µ′n ≤ . . . ≤ µ′2 ≤ µ′1 be the respective
Laplacian spectra of G and G′. By the well-known interlacing theorem [16, Thr. 2.4]
for Laplacian eigenvalues we know

0 = µn = µ′n ≤ . . . ≤ µk ≤ µ′k ≤ . . . ≤ µ2 ≤ µ′2 ≤ µ1 ≤ µ′1
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If a = 0, then mG[a, n] = mG′ [a, n] = n. If µ1 < a then mG[a, n] = 0 and mG′ [a, n] = 0
if µ′1 < a and 1 otherwise. We may assume that 0 < a ≤ µ1. Choose k to be the
largest index for which a ≤ µk. Then µk+1 < a ≤ µk. There is a single eigenvalue
of G′, namely µ′k+1 in [µk+1, µk]. If µ′k+1 < a, then mG′ [a, n] = mG[a, n]. Otherwise,
mG′ [a, n] = mG[a, n] + 1. �

Theorem 10. If T is a tree, then 1 ≤ mT [2,n]
γ(T )

< 2.

Proof. Let F = (Sn1 , . . . , Snγ ) be the star forest guaranteed by Lemma 6. Then mF [2, n]
is exactly γ(T ). Starting with F , we can construct T by adding γ(T ) − 1 edges. By
Lemma 12 the addition of each edge can increase mT [2, n] by at most one. Therefore

mF [2, n] ≤ mT [2, n] ≤ mF [2, n] + γ(T )− 1.

But the right side is 2γ(T )− 1 and the theorem follows. �

A connected graph having n − 1 + c edges is called c-cyclic. We can generalize
Theorem 10 as follows.

Theorem 11. If G is c-cyclic, c ≥ 1, then 1 ≤ mG[2,n]
γ(G)

≤ c+ 1.

Proof. Let F = (Sn1 , . . . , Snγ ) be the star forest in G from Lemma 6. Then we may
select γ(G) − 1 additional edges to form a spanning tree T . Since T has n − 1 edges,
there must be c remaining edges. Therefore G can be constructed from F by adding
γ(G)− 1 + c edges. By Lemma 12

mG[2, n] ≤ mF [2, n] + γ(G)− 1 + c = 2γ(G) + c− 1,

or

mG[2, n]

γ(G)
≤ 2 +

c− 1

γ(G)
≤ 2 + c− 1,

the last inequality holding because c ≥ 1 and γ(G) ≥ 1. �

Let us now consider ratio (10) for trees. For the tree in Figure 1, the ratio (10)
is 25

24
. It is possible to generalize this example. We construct the tree Tk on 65k + 1

vertices by taking k copies of this tree, and adjoining the root to each copy. Using the
algorithm in [5], it is straightforward to determine that mTk [0, 1) = 24k. Using the
domination algorithm in [9] it can be shown that γ(Tk) = 25k. Thus, the difference
between γ(Tk) −mTk [0, 1) grows arbitrarily large. However, the ratio (10) remains at
25
24

. In all known examples of trees ratio (10) is either 1 or 25
24

, and it is tempting to
conjecture that the ratio is bounded by a constant for trees.

5. Concluding remarks

Many of the results of this paper also apply to the signless Laplacian spectrum. For
example, if we let m+

GI denote the number of signless Laplacian eigenvalues of G in I,
then Theorem 1 and Theorem 2 are also true if we replace mG with m+

G.
We conclude by suggesting two problems for further study. First, characterize those

graphsG for whichmG[0, 1) = γ(G). Second, determine if γ(T )
mT [0,1)

bounded by a constant

for trees T .
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