429 research outputs found

    On claw-free asteroidal triple-free graphs

    Get PDF
    AbstractWe present an O(n2.376) algorithm for recognizing claw-free AT-free graphs and a linear-time algorithm for computing the set of all central vertices of a claw-free AT-free graph. In addition, we give efficient algorithms that solve the problems INDEPENDENT SET, DOMINATING SET, and COLORING. We argue that all running times achieved are optimal unless better algorithms for a number of famous graph problems such as triangle recognition and bipartite matching have been found. Our algorithms exploit the structure of 2LexBFS schemes of claw-free AT-free graphs

    Group Colorability and Hamiltonian Properties of Graphs

    Get PDF
    The research of my dissertation was motivated by the conjecture of Thomassen that every 4-connected line graph is hamiltonian and by the conjecture of Matthews and Sumner that every 4-connected claw-free graph is hamiltonian. Towards the hamiltonian line graph problem, we proved that every 3-edge-connected, essentially 4-edge-connected graph G has a spanning eulerian subgraph, if for every pair of adjacent vertices u and v, dG(u) + dG(v) ≥ 9. A straight forward corollary is that every 4-connected, essentially 6-connected line graph with minimum degree at least 7 is hamiltonian.;We also investigate graphs G such that the line graph L(G) is hamiltonian connected when L( G) is 4-connected. Ryjacek and Vrana recently further conjectured that every 4-connected line graph is hamiltonian-connected. In 2001, Kriesell proved that every 4-connected line graph of a claw free graph is hamiltonian connected. Recently, Lai et al showed that every 4-connected line graph of a quasi claw free graph is hamiltonian connected, and that every 4-connected line graph of an almost claw free graph is hamiltonian connected. In 2009, Broersma and Vumer discovered the P3-dominating (P3D) graphs as a superfamily that properly contains all quasi claw free graphs, and in particular, all claw-free graphs. Here we prove that every 4-connected line graph of a P3D graph is hamiltonian connected, which extends several former results in this area.;R. Gould [15] asked what natural graph properties of G and H are sufficient to imply that the product of G and H is hamiltonian. We first investigate the sufficient and necessary conditions for G x H being hamiltonian or traceable when G is a hamiltonian graph and H is a tree. Then we further investigate sufficient and necessary conditions for G x H being hamiltonian connected, or edge-pancyclic, or pan-connected.;The problem of group colorings of graphs is also investigated in this dissertation. Group coloring was first introduced by Jeager et al. [21]. They introduced a concept of group connectivity as a generalization of nowhere-zero flows. They also introduced group coloring as a dual concept to group connectivity. Prior research on group chromatic number was restricted to simple graphs, and considered only Abelian groups in the definition of chi g(G). The behavior of group coloring for multigraphs is different to that of simple graphs. Thus we extend the definition of group coloring by considering general groups (both Abelian groups and non-Abelian groups), and investigate the properties of chig for multigraphs by proving an analogue to Brooks\u27 Theorem

    Complexity of Grundy coloring and its variants

    Full text link
    The Grundy number of a graph is the maximum number of colors used by the greedy coloring algorithm over all vertex orderings. In this paper, we study the computational complexity of GRUNDY COLORING, the problem of determining whether a given graph has Grundy number at least kk. We also study the variants WEAK GRUNDY COLORING (where the coloring is not necessarily proper) and CONNECTED GRUNDY COLORING (where at each step of the greedy coloring algorithm, the subgraph induced by the colored vertices must be connected). We show that GRUNDY COLORING can be solved in time O(2.443n)O^*(2.443^n) and WEAK GRUNDY COLORING in time O(2.716n)O^*(2.716^n) on graphs of order nn. While GRUNDY COLORING and WEAK GRUNDY COLORING are known to be solvable in time O(2O(wk))O^*(2^{O(wk)}) for graphs of treewidth ww (where kk is the number of colors), we prove that under the Exponential Time Hypothesis (ETH), they cannot be solved in time O(2o(wlogw))O^*(2^{o(w\log w)}). We also describe an O(22O(k))O^*(2^{2^{O(k)}}) algorithm for WEAK GRUNDY COLORING, which is therefore \fpt for the parameter kk. Moreover, under the ETH, we prove that such a running time is essentially optimal (this lower bound also holds for GRUNDY COLORING). Although we do not know whether GRUNDY COLORING is in \fpt, we show that this is the case for graphs belonging to a number of standard graph classes including chordal graphs, claw-free graphs, and graphs excluding a fixed minor. We also describe a quasi-polynomial time algorithm for GRUNDY COLORING and WEAK GRUNDY COLORING on apex-minor graphs. In stark contrast with the two other problems, we show that CONNECTED GRUNDY COLORING is \np-complete already for k=7k=7 colors.Comment: 24 pages, 7 figures. This version contains some new results and improvements. A short paper based on version v2 appeared in COCOON'1

    On bounding the difference between the maximum degree and the chromatic number by a constant

    Full text link
    We provide a finite forbidden induced subgraph characterization for the graph class Υk\varUpsilon_k, for all kN0k \in \mathbb{N}_0, which is defined as follows. A graph is in Υk\varUpsilon_k if for any induced subgraph, Δχ1+k\Delta \leq \chi -1 + k holds, where Δ\Delta is the maximum degree and χ\chi is the chromatic number of the subgraph. We compare these results with those given in [O. Schaudt, V. Weil, On bounding the difference between the maximum degree and the clique number, Graphs and Combinatorics 31(5), 1689-1702 (2015). DOI: 10.1007/s00373-014-1468-3], where we studied the graph class Ωk\varOmega_k, for kN0k \in \mathbb{N}_0, whose graphs are such that for any induced subgraph, Δω1+k\Delta \leq \omega -1 + k holds, where ω\omega denotes the clique number of a graph. In particular, we give a characterization in terms of Ωk\varOmega_k and Υk\varUpsilon_k of those graphs where the neighborhood of every vertex is perfect.Comment: 10 pages, 4 figure

    Complexity of C_k-Coloring in Hereditary Classes of Graphs

    Get PDF
    For a graph F, a graph G is F-free if it does not contain an induced subgraph isomorphic to F. For two graphs G and H, an H-coloring of G is a mapping f:V(G) -> V(H) such that for every edge uv in E(G) it holds that f(u)f(v)in E(H). We are interested in the complexity of the problem H-Coloring, which asks for the existence of an H-coloring of an input graph G. In particular, we consider H-Coloring of F-free graphs, where F is a fixed graph and H is an odd cycle of length at least 5. This problem is closely related to the well known open problem of determining the complexity of 3-Coloring of P_t-free graphs. We show that for every odd k >= 5 the C_k-Coloring problem, even in the precoloring-extension variant, can be solved in polynomial time in P_9-free graphs. On the other hand, we prove that the extension version of C_k-Coloring is NP-complete for F-free graphs whenever some component of F is not a subgraph of a subdivided claw

    Extremal Colorings and Independent Sets

    Get PDF
    We consider several extremal problems of maximizing the number of colorings and independent sets in some graph families with fixed chromatic number and order. First, we address the problem of maximizing the number of colorings in the family of connected graphs with chromatic number k and order n where k≥4 role= presentation style= box-sizing: inherit; display: inline; font-style: normal; font-weight: normal; line-height: normal; font-size: 18px; text-indent: 0px; text-align: left; text-transform: none; letter-spacing: normal; word-spacing: normal; overflow-wrap: normal; white-space: nowrap; float: none; direction: ltr; max-width: none; max-height: none; min-width: 0px; min-height: 0px; border: 0px; padding: 0px; margin: 0px; position: relative; \u3ek≥4k≥4. It was conjectured that extremal graphs are those which have clique number k and size (k2)+n−k role= presentation style= box-sizing: inherit; display: inline; font-style: normal; font-weight: normal; line-height: normal; font-size: 18px; text-indent: 0px; text-align: left; text-transform: none; letter-spacing: normal; word-spacing: normal; overflow-wrap: normal; white-space: nowrap; float: none; direction: ltr; max-width: none; max-height: none; min-width: 0px; min-height: 0px; border: 0px; padding: 0px; margin: 0px; position: relative; \u3e(k2)+n−k(k2)+n−k. We affirm this conjecture for 4-chromatic claw-free graphs and for all k-chromatic line graphs with k≥4 role= presentation style= box-sizing: inherit; display: inline; font-style: normal; font-weight: normal; line-height: normal; font-size: 18px; text-indent: 0px; text-align: left; text-transform: none; letter-spacing: normal; word-spacing: normal; overflow-wrap: normal; white-space: nowrap; float: none; direction: ltr; max-width: none; max-height: none; min-width: 0px; min-height: 0px; border: 0px; padding: 0px; margin: 0px; position: relative; \u3ek≥4k≥4. We also reduce this extremal problem to a finite family of graphs when restricted to claw-free graphs. Secondly, we determine the maximum number of independent sets of each size in the family of n-vertex k-chromatic graphs (respectively connected n-vertex k-chromatic graphs and n-vertex k-chromatic graphs with c components). We show that the unique extremal graph is Kk∪En−k role= presentation style= box-sizing: inherit; display: inline; font-style: normal; font-weight: normal; line-height: normal; font-size: 18px; text-indent: 0px; text-align: left; text-transform: none; letter-spacing: normal; word-spacing: normal; overflow-wrap: normal; white-space: nowrap; float: none; direction: ltr; max-width: none; max-height: none; min-width: 0px; min-height: 0px; border: 0px; padding: 0px; margin: 0px; position: relative; \u3eKk∪En−kKk∪En−k, K1∨(Kk−1∪En−k) role= presentation style= box-sizing: inherit; display: inline; font-style: normal; font-weight: normal; line-height: normal; font-size: 18px; text-indent: 0px; text-align: left; text-transform: none; letter-spacing: normal; word-spacing: normal; overflow-wrap: normal; white-space: nowrap; float: none; direction: ltr; max-width: none; max-height: none; min-width: 0px; min-height: 0px; border: 0px; padding: 0px; margin: 0px; position: relative; \u3eK1∨(Kk−1∪En−k)K1∨(Kk−1∪En−k) and (K1∨(Kk−1∪En−k−c+1))∪Ec−1 role= presentation style= box-sizing: inherit; display: inline; font-style: normal; font-weight: normal; line-height: normal; font-size: 18px; text-indent: 0px; text-align: left; text-transform: none; letter-spacing: normal; word-spacing: normal; overflow-wrap: normal; white-space: nowrap; float: none; direction: ltr; max-width: none; max-height: none; min-width: 0px; min-height: 0px; border: 0px; padding: 0px; margin: 0px; position: relative; \u3e(K1∨(Kk−1∪En−k−c+1))∪Ec−1(K1∨(Kk−1∪En−k−c+1))∪Ec−1 respectively
    corecore