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Abstract 
We consider several extremal problems of maximizing the number of colorings and independent sets in 

some graph families with fixed chromatic number and order. First, we address the problem of 

maximizing the number of colorings in the family of connected graphs with chromatic number 𝑘 and 

order n where 𝑘 ≥ 4. It was conjectured that extremal graphs are those which have clique number 𝑘 

and size (𝑘
2
) + 𝑛 − 𝑘. We affirm this conjecture for 4-chromatic claw-free graphs and for all 𝑘-

chromatic line graphs with 𝑘 ≥ 4. We also reduce this extremal problem to a finite family of graphs 

when restricted to claw-free graphs. Secondly, we determine the maximum number of independent 

sets of each size in the family of 𝑛-vertex 𝑘-chromatic graphs (respectively connected 𝑛-vertex 𝑘-

chromatic graphs and 𝑛-vertex 𝑘-chromatic graphs with c components). We show that the unique 

extremal graph is 𝐾𝑘 ∪ 𝐸𝑛−𝑘, 𝐾1 ∨ (𝐾𝑘−1 ∪ 𝐸𝑛−𝑘)and (𝐾1 ∨ (𝐾𝑘−1 ∪ 𝐸𝑛−𝑘−𝑐+1)) ∪ 𝐸𝑐−1respectively. 
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Introduction and Statement of Results 
Let 𝐺 = (𝑉(𝐺), 𝐸(𝐺)) be a finite simple graph. For an integer 𝑥 ≥ 1, a properx-coloring of 𝐺, or 

simply x-coloring of 𝐺, is a function 𝑓: 𝑉(𝐺) → {1, . . . , 𝑥} so that 𝑓(𝑣1) ≠ 𝑓(𝑣2) for every 𝑣1𝑣2 ∈ 𝐸(𝐺). 

We let 𝜋(𝐺, 𝑥) denote the chromatic polynomial of 𝐺 and so for positive integers 𝑥, 𝜋(𝐺, 𝑥) is simply 

the number of 𝑥-colorings of 𝐺. The chromatic number of 𝐺, denoted 𝜒(𝐺), is the smallest positive 

integer so that 𝜋(𝐺, 𝑥) ≠ 0, and we say that 𝐺 is 𝑘-chromatic if 𝜒(𝐺) = 𝑘. A graph 𝐺 is called critical if 

𝜒(𝐺 − 𝑣) < 𝜒(𝐺) for every vertex 𝑣 of 𝐺. A 𝑘-chromatic critical graph is called 𝑘-critical. It is easy to 

see that if 𝐺 is a 𝑘-critical graph then 𝛿(𝐺) ≥ 𝑘 − 1 and 𝑘-critical graphs are 2-connected. 

Much recent work has investigated the question of maximizing the number of 𝑥-colorings over various 

families of graphs, including 𝑛-vertex 𝑚-edge graphs [ 22, 23], 𝑛-vertex 2-connected graphs [ 10], 

connected graphs with fixed minimum degree [ 9, 18], bipartite regular graphs [ 17], and regular graphs 

[ 6, 15, 16]. 

One family that we focus on in this note is the family of 𝑛-vertex 𝑘-chromatic graphs. In this family 

Tomescu [ 28] showed that the disjoint union of the complete graph 𝐾𝑘 with the empty graph 

𝐸𝑛−𝑘 uniquely maximizes 𝜋(𝐺, 𝑥) for all 𝑥 ≥ 𝑘. When restricting to the set of connected 𝑛-vertex 𝑘-

chromatic graphs (which we denote by 𝐶𝑘(𝑛)), the problem of determining the maximum value of 

𝜋(𝐺, 𝑥) for 𝐺 ∈ 𝐶𝑘(𝑛) seems to be much more difficult. The answer is trivial for 𝑘 = 2, where the 

extremal graphs are trees (when 𝑥 ≥ 3), and is known for 𝑘 = 3 (see [ 27, 29]). For 𝑘 ≥ 4, we have the 

following conjecture [ 7, 26]. Let 𝐶𝑘
∗(𝑛) be the set containing all 𝑛-vertex graphs obtained from a 𝑘-

clique by recursively attaching leaves. 

Conjecture 1 
Let 𝑘 ≥ 4 and 𝐺 ∈ 𝐶𝑘(𝑛). Then for every integer 𝑥 ≥ 𝑘 we have  

𝜋(𝐺, 𝑥) ≤ (𝑥)↓𝑘(𝑥 − 1)𝑛−𝑘 

with equality if and only if 𝐺 ∈ 𝐶𝑘
∗(𝑛). 

A complete answer to Conjecture 1 is not yet known, although it has been verified for 𝑘 ≥ 4 

and 𝑥 large [ 2] and graphs with the additional constraint of having independence number at most 2 

[ 11] (equivalently, graphs that are complements of triangle-free graphs). For 𝑘 = 4 the conjecture is 

reduced to understanding a finite number of graphs [ 12] and is also known to hold when the graphs 

are required to be planar [ 29]. 

It is not difficult to see that Conjecture 1 holds for graphs 𝐺 with 𝜒(𝐺) = 𝜔(𝐺). Therefore, when 

studying this problem we only need to consider graphs whose chromatic number is different from the 

clique number. An important family of such graphs is the family of claw-free graphs. So, in this paper 

we first consider the graphs in 𝐶𝑘(𝑛) which are additionally claw-free. For 𝑘 = 4 we obtain a result for 

all 𝑛. 
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Theorem 1 
Let 𝐺 be a connected 𝑛-vertex claw-free 4-chromatic graph. Then for every integer 𝑥 ≥ 4 we have  

𝜋(𝐺, 𝑥) ≤ (𝑥)↓4(𝑥 − 1)𝑛−4 

with equality if and only if 𝐺 ∈ 𝐶4
∗(𝑛). 

For general 𝑘 we have the following result which reduces the problem to a finite family of graphs. 

Theorem 2 
For every 𝑘 ≥ 4, there exists a finite family ℱ of 𝑘-chromatic claw-free graphs such that if every 

graph 𝐺 in ℱ satisfies 𝜋(𝐺, 𝑥) ≤ (𝑥)↓𝑘(𝑥 − 1)|𝑉(𝐺)|−𝑘 then so does every connected 𝑘-chromatic claw-

free graph. 

We also consider line graphs or, equivalently, edge colorings of graphs. A proper 𝑥-edge-coloring of 𝐺, 

or simply 𝑥-edge-coloring of 𝐺 is a function 𝑓: 𝐸(𝐺) → {1, ⋯ , 𝑥} so that 𝑓(𝑒1) ≠ 𝑓(𝑒2) for all distinct 

edges 𝑒1 and 𝑒2 in 𝐸(𝐺) that share an endvertex. The chromatic index of 𝐺, denoted 𝜒′(𝐺), is the 

smallest integer 𝑥 for which 𝐺 has an 𝑥-edge-coloring. The line graph 𝐿(𝐺) of 𝐺 is the graph whose 

vertices represent the edges of 𝐺 (i.e. 𝑉(𝐿(𝐺)) = 𝐸(𝐺)) and 𝑒𝑓 is an edge of 𝐿(𝐺) if and only 

if 𝑒 and 𝑓 are adjacent edges of 𝐺. Observe that 𝜒′(𝐺) = 𝜒(𝐿(𝐺)) for every graph 𝐺. A graph 𝐺 is 

called a line graph if there exists a graph 𝐻 such that 𝐺 = 𝐿(𝐻). Not every graph is a line graph and 

line graphs form a subfamily of claw-free graphs. We find the 𝑛-vertex 𝑘-chromatic line graphs that 

maximize the number of proper 𝑥-colorings for all 𝑛 and 𝑘. 

Theorem 3 
Let 𝐺 be a connected 𝑛-vertex 𝑘-chromatic line graph with 𝑘 ≥ 4. Then for every integer 𝑥 ≥ 𝑘 we have 

𝜋(𝐺, 𝑥) ≤ (𝑥)↓𝑘(𝑥 − 1)𝑛−𝑘 

with equality if and only if 𝐺 is obtained from a 𝐾𝑘 by attaching paths of sizes 𝑛1, ⋯ , 𝑛𝑘 to 

the 𝑘 vertices where 0 ≤ 𝑛𝑖 ≤ 𝑛 − 4 for 𝑖 = 1, ⋯ , 𝑘. 

Let 𝑘 ≥ 3. A tree is called 𝑘-starlike if it has exactly one vertex with degree 𝑘 and all other vertices 

have degree at most 2. An immediate consequence of the above theorem is the following extremal 

result for proper edge-colorings. 

Corollary 1 
For every integer 𝑥 ≥ 𝑘 ≥ 4, 𝑘-starlike trees maximize the number of 𝑥-edge-colorings in the family of 

connected 𝑛-edge 𝑘-edge-chromatic graphs. 

We also consider independent sets in this paper. A set 𝐼 ⊆ 𝑉(𝐺) is an independent set (or stable set) if 

𝑣1, 𝑣2 ∈ 𝑉(𝐺) implies that 𝑣1𝑣2 ∉ 𝐸(𝐺). The size of an independent set 𝐼 is |𝐼|. Let 𝑖(𝐺) denote the 

number of independent sets of 𝐺 and 𝑖𝑡(𝐺) denote the number of independent sets of size 𝑡 in 𝐺. The 

quantity 𝑖(𝐺) has also been referred to as the Fibonacci number of 𝐺 [ 25] (as these values for the path 

𝑃𝑛 are Fibonacci numbers), or in the field of molecular chemistry, the Merrifield-Simmons 

index of 𝐺 [ 24]. Notice that each color class of a proper coloring of 𝐺 is an independent set. 
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There has also been a large amount of work on investigating which graphs maximize 𝑖(𝐺) and 𝑖𝑡(𝐺) in 

various families of graphs, we refer the reader to two surveys and the references therein [ 4, 32] for a 

summary of some of the results and conjectures in this area. 

In [ 21] the 𝑛-vertex graph with clique number 𝜔 containing the maximum number of independent sets 

of each fixed size is found, along with the characterization of uniqueness. Also, it was shown that the 

Turan graph 𝑇𝑛,𝑘 is the unique 𝑛-vertex 𝑘-chromatic graph with the minimum number of independent 

sets [ 31] and the minimum number of independent sets of each size 𝑡 [ 21] (where it is implicit that 

2 ≤ 𝑡 ≤ ⌈
𝑛

𝑘
⌉). We next find the 𝑛-vertex 𝑘-chromatic graph that has the maximum number of 

independent sets of each size. We remark that when 𝑡 = 0 and 𝑡 = 1, all 𝑛-vertex graphs have the 

same number of independent sets of size 𝑡, and for an 𝑛-vertex 𝑘-chromatic graph 𝐺 we have 𝛼(𝐺) ≤

𝑛 − 𝑘 + 1 and hence 𝑖𝑡(𝐺) = 0 for 𝑡 ≥ 𝑛 − 𝑘 + 2. 

Theorem 4 
Let 𝐺 be an 𝑛-vertex 𝑘-chromatic graph. Then we have 

𝑖𝑡(𝐺) ≤ (
𝑛 − 𝑘

𝑡
) + 𝑘 (

𝑛 − 𝑘

𝑡 − 1
) 

For 2 ≤ 𝑡 ≤ 𝑛 − 𝑘 + 1 we have equality if and only if 𝐺 = 𝐾𝑘 ∪ 𝐸𝑛−𝑘. 

We remark that the graph 𝐾𝑘 ∪ 𝐸𝑛−𝑘 also uniquely maximizes the number of proper colorings in this 

family. Theorem 4 immediately gives the following. 

Corollary 2 
Let 𝐺 be an 𝑛-vertex 𝑘-chromatic graph. Then we have 

𝑖(𝐺) ≤ 𝑖(𝐾𝑘 ∪ 𝐸𝑛−𝑘) = (𝑘 + 1)2𝑛−𝑘 

with equality if and only if 𝐺 = 𝐾𝑘 ∪ 𝐸𝑛−𝑘. 

As with proper colorings, we now consider the connected 𝑛-vertex 𝑘-chromatic graph that has the 

most number of independent sets. Results on independent sets of size 𝑡 in graphs with 𝜔(𝐺) = 𝑘 

appear in [ 21] (while not explicitly stated in Theorem 1.8 of [ 21], the maximizing results are 

for connected graphs with clique number 𝑘). 

Observe that an independent set of size 2 induces an edge in the complement of the graph. Therefore, 

maximizing the number of independent sets of size 2 is equivalent to minimizing the number of edges. 

And the latter problem was already solved. 

Theorem 5 
[ 26] Let 𝐺 be a connected 𝑛-vertex 𝑘-chromatic graph. Then we have 

𝑖2(𝐺) ≤ (
𝑛 − 𝑘

2
) + (𝑘 − 1)(𝑛 − 𝑘). 

Furthermore, for 𝑘 = 3, extremal graphs are unicyclic graphs with an odd cycle, while for 𝑘 ≠ 3, 

extremal graphs belong to 𝐶𝑘
∗(𝑛). 

https://0-web-b-ebscohost-com.libus.csd.mu.edu/ehost/detail/detail?vid=5&sid=c3d30e34-decd-47a1-8666-a99771002146%40sessionmgr103&bdata=JnNpdGU9ZWhvc3QtbGl2ZQ%3d%3d#bib4
https://0-web-b-ebscohost-com.libus.csd.mu.edu/ehost/detail/detail?vid=5&sid=c3d30e34-decd-47a1-8666-a99771002146%40sessionmgr103&bdata=JnNpdGU9ZWhvc3QtbGl2ZQ%3d%3d#bib21
https://0-web-b-ebscohost-com.libus.csd.mu.edu/ehost/detail/detail?vid=5&sid=c3d30e34-decd-47a1-8666-a99771002146%40sessionmgr103&bdata=JnNpdGU9ZWhvc3QtbGl2ZQ%3d%3d#bib31
https://0-web-b-ebscohost-com.libus.csd.mu.edu/ehost/detail/detail?vid=5&sid=c3d30e34-decd-47a1-8666-a99771002146%40sessionmgr103&bdata=JnNpdGU9ZWhvc3QtbGl2ZQ%3d%3d#bib21
https://0-web-b-ebscohost-com.libus.csd.mu.edu/ehost/detail/detail?vid=5&sid=c3d30e34-decd-47a1-8666-a99771002146%40sessionmgr103&bdata=JnNpdGU9ZWhvc3QtbGl2ZQ%3d%3d#toc
https://0-web-b-ebscohost-com.libus.csd.mu.edu/ehost/detail/detail?vid=5&sid=c3d30e34-decd-47a1-8666-a99771002146%40sessionmgr103&bdata=JnNpdGU9ZWhvc3QtbGl2ZQ%3d%3d#toc
https://0-web-b-ebscohost-com.libus.csd.mu.edu/ehost/detail/detail?vid=5&sid=c3d30e34-decd-47a1-8666-a99771002146%40sessionmgr103&bdata=JnNpdGU9ZWhvc3QtbGl2ZQ%3d%3d#bib21
https://0-web-b-ebscohost-com.libus.csd.mu.edu/ehost/detail/detail?vid=5&sid=c3d30e34-decd-47a1-8666-a99771002146%40sessionmgr103&bdata=JnNpdGU9ZWhvc3QtbGl2ZQ%3d%3d#bib21
https://0-web-b-ebscohost-com.libus.csd.mu.edu/ehost/detail/detail?vid=5&sid=c3d30e34-decd-47a1-8666-a99771002146%40sessionmgr103&bdata=JnNpdGU9ZWhvc3QtbGl2ZQ%3d%3d#toc
https://0-web-b-ebscohost-com.libus.csd.mu.edu/ehost/detail/detail?vid=5&sid=c3d30e34-decd-47a1-8666-a99771002146%40sessionmgr103&bdata=JnNpdGU9ZWhvc3QtbGl2ZQ%3d%3d#bib26


When 𝑘 = 2, the connected 2-chromatic graphs that maximize the number of independent sets of 

size 𝑡 are trees (as deleting edges from 𝐺 cannot decrease the number of independent sets of size 𝑡). 

The maximization (and minimization) of the number of independent sets of size 𝑡 in trees was solved 

for all 𝑡 by Wingard [ 30]; see also [ 21]. We generalize this to all 𝑘. In the sequel, the join of 𝐺 and H, 

denoted by 𝐺 ∨ 𝐻, is the graph whose vertex set is 𝑉(𝐺) ∪ 𝑉(𝐻) and edge set is 𝐸(𝐺) ∪ 𝐸(𝐻) ∪

{𝑢𝑣: 𝑢 ∈ 𝑉(𝐺) and 𝑣 ∈ 𝑉(𝐻)}. 

Theorem 6 
Let 𝑘 ≥ 2 and let 𝐺 be a connected 𝑘-chromatic graph of order 𝑛. Then 

𝑖𝑡(𝐺) ≤ (𝑛−𝑘
𝑡

) + (𝑘 − 1)(𝑛−𝑘
𝑡−1

) + ( 0
𝑡−1

). 

For 3 ≤ 𝑡 ≤ 𝑛 − 𝑘 + 1 we have equality if and only if 𝐺 = 𝐾1 ∨ (𝐾𝑘−1 ∪ 𝐸𝑛−𝑘). 

This gives the following corollary, whose proof is included in Sect. 3. 

Corollary 3 
Let 𝐺 be a connected 𝑘-chromatic graph with 𝑛 vertices. Then 

𝑖(𝐺) ≤ 𝑘2𝑛−𝑘 + 1 

with equality if and only if 𝐺 = 𝐾1 ∨ (𝐾𝑘−1 ∪ 𝐸𝑛−𝑘). 

We can refine the extremal graphs based on the number of components. 

Theorem 7 
Let 𝐺 be an 𝑛-vertex 𝑘-chromatic graph with c components. Then we have 

𝑖𝑡(𝐺) ≤ (
𝑛 − 𝑘

𝑡
) + (𝑘 − 1) (

𝑛 − 𝑘

𝑡 − 1
) + (

𝑐 − 1

𝑡 − 1
). 

For 3 ≤ 𝑡 ≤ 𝑛 − 𝑘 + 1 we have equality if and only if 𝐺 = (𝐾1 ∨ (𝐾𝑘−1 ∪ 𝐸𝑛−𝑘−𝑐+1)) ∪ 𝐸𝑐−1. 

Corollary 4 
Let 𝐺 be an 𝑛-vertex 𝑘-chromatic graph with 𝑐 components. Then we have 

𝑖(𝐺) ≤ 𝑘2𝑛−𝑘 + 2𝑐−1 

with equality if and only if 𝐺 = (𝐾1 ∨ (𝐾𝑘−1 ∪ 𝐸𝑛−𝑘−𝑐+1)) ∪ 𝐸𝑐−1. 

In the rest of the paper we provide the proofs of these results. In Sect. 2, we study extremal colorings 

and give proofs of Theorems 1, 2 and 3. Section 3 deals with independent sets and we give proofs for 

Theorems 4, 6 and 7. Lastly, in Sect. 4 we pose several questions on extremal colorings and 

independent sets. 

Extremal Colorings 
In this section, we present the proofs of the results about proper colorings. We begin by recalling a few 

results that will be frequently used in our proofs. We let 𝜔(𝐺) denote the size of the largest clique 

in 𝐺. The first result bounds the number of colorings of a 𝑘-chromatic graph which contains a clique of 

size 𝑘. 
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Proposition 1 
[ 11] Let 𝐺 ∈ 𝐶𝑘(𝑛) and 𝜔(𝐺) = 𝑘. Then for all integers 𝑥 ≥ 𝑘 we have 

𝜋(𝐺, 𝑥) ≤ (𝑥)↓𝑘(𝑥 − 1)𝑛−𝑘 

with equality if and only if 𝐺 ∈ 𝐶𝑘
∗(𝑛). 

The next result allows us to focus on subgraphs that have nice properties. 

Proposition 2 
[ 12] If 𝐻 is a connected subgraph of a connected graph 𝐺, then for all 𝑥 ∈ ℕ we have 

𝜋(𝐺, 𝑥) ≤ 𝜋(𝐻, 𝑥)(𝑥 − 1)|𝑉(𝐺)|−|𝑉(𝐻)|. 

4-Chromatic Claw-Free Graphs 
In this section, we present a number of results which, at the end, are used to prove Theorem 1. To 

begin, let ℱ𝑛,𝑡 be the family of graphs 𝐺 with 𝑛 + 𝑡 vertices and 𝑛 + 2𝑡 edges such that 𝐺 contains an 

induced odd cycle 𝐶𝑛 and 𝑡 triangles such that every triangle overlaps the cycle 𝐶𝑛 in an edge and no 

two triangles share a common edge. It is easy to see that if 𝐺 ∈ ℱ𝑛,𝑡, then 

𝜋(𝐺, 𝑥) = (𝑥 − 2)𝑡(𝑥 − 1)((𝑥 − 1)𝑛−1 − 1). 

Let 𝐺 and 𝐻 be two graphs with clique number at least r. We let 𝐺 ⊕𝑟 𝐻 denote a graph which is 

obtained from 𝐺 and 𝐻 by gluing them at an r-clique. 

Proposition 3 
Let 𝐺 be an 𝑛-vertex 4-critical claw-free graph with 𝜔(𝐺) ≠ 4. Then for every integer 𝑥 ≥ 4 we have 

𝜋(𝐺, 𝑥) < (𝑥)↓4(𝑥 − 1)𝑛−4. 

Proof 
(Proof of Proposition 3) We shall consider two cases. 

Case 1 𝐺 contains an odd hole. 

Let 𝐶𝑟 be an odd hole with vertices 𝑣1, ⋯ , 𝑣𝑟 in standard order. 

Subcase 1 There exist a vertex 𝑢 ∉ 𝑉(𝐶𝑟) such that 𝑢 is adjacent to three consecutive vertices of 𝐶𝑟. 

If 𝑢 is adjacent to all vertices of 𝐶𝑟, then 𝐺 has a subgraph 𝐻 ≅ 𝐾1 ∨ 𝐶𝑟 whose chromatic polynomial is 

𝑥𝜋(𝐶𝑟, 𝑥 − 1) = 𝑥((𝑥 − 2)𝑟 − (𝑥 − 2)). By Proposition 2, it suffices to show that 𝑥((𝑥 − 2)𝑟 − (𝑥 −

2))(𝑥 − 1)𝑛−𝑟−1 < (𝑥)↓4(𝑥 − 1)𝑛−4 which is equivalent to (𝑥 − 2)𝑟−1 − 1 < (𝑥 − 3)(𝑥 − 1)𝑟−2. 

Since 𝑟 ≥ 5, to prove the latter it would be sufficient to show that (𝑥 − 2)4 < (𝑥 − 3)(𝑥 − 1)3. 

Calculations show that (𝑥 − 3)(𝑥 − 1)3 − (𝑥 − 2)4 has a positive leading coefficient and its largest 

real root is 3.191.... Hence we are done. 

Now suppose that there is a vertex 𝑣𝑗  of 𝐶𝑟 which is not adjacent to 𝑢. We may assume that 𝑢 is 

adjacent to 𝑣1, 𝑣2, 𝑣3 and that 𝑗 ≥ 4. Since 𝐺 is 4-critical, 𝛿(𝐺) ≥ 3. So 𝑣𝑗  has a neighbor 𝑢′ which is not 

in 𝑉(𝐶𝑟). As 𝐺 is claw-free, 𝑢′ must be adjacent to 𝑣𝑗 − 1 or 𝑣𝑗+1 (𝑣1 if 𝑟 = 5); denote one such 

neighbor by 𝑣. Let 𝐻 be the subgraph of 𝐺 with vertex set 𝑉(𝐶𝑟) ∪ {𝑢, 𝑢′} and edge set 𝐸(𝐶𝑟) ∪
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{𝑢𝑣1, 𝑢𝑣2, 𝑢𝑣3, 𝑢′𝑣𝑗 , 𝑢′𝑣}. Observe that 𝐻 + 𝑣1𝑣3 ≅ 𝐾4 ⊕ 2𝐻𝑟 − 1,1 and 𝐻/𝑣1𝑣3 ≅ 𝐾3 ⊕1 𝐻𝑟−2,1 

where 𝐻𝑝,𝑞 denotes a graph in the family ℱ𝑝,𝑞. It is easy to see that 𝜋(𝐾4 ⊕2 𝐻𝑟−1,1, 𝑥) = (𝑥 −

1)(𝑥 − 2)2(𝑥 − 3)((𝑥 − 1)𝑟−2 − 1) and 𝜋(𝐾3 ⊕1 𝐻𝑟−2,1, 𝑥) = (𝑥 − 1)2(𝑥 − 2)2((𝑥 − 1)𝑟−3 − 1). So 

by the edge addition-contraction formula, 

𝜋(𝐻, 𝑥) = 𝜋(𝐻 + 𝑣1𝑣3, 𝑥) + 𝜋(𝐻/𝑣1𝑣3, 𝑥) < (𝑥 − 1)𝑟−1(𝑥 − 2)3. 

Now by Proposition 2, it suffices to show that (𝑥 − 2)2 ≤ 𝑥(𝑥 − 3), which clearly holds for 𝑥 ≥ 4. 

Subcase 2 There is no vertex in 𝐺 which is adjacent to three consecutive vertices of 𝐶𝑟. 

 

Fig. 1 The graphs 𝐻1 and 𝐻2 

Since 𝛿(𝐺) ≥ 3 and 𝐶𝑟 is an induced subgraph, every vertex of 𝐶𝑟 has a neighbor outside of 𝐶𝑟. Let 𝑢1 

be a vertex such that 𝑣1𝑢1 ∈ 𝐸(𝐺) and 𝑢1 ∉ 𝑉(𝐶𝑟). Since 𝐺 is claw-free, either 𝑢1𝑣2 ∈ 𝐸(𝐺) or 𝑢1𝑣𝑟 ∈

𝐸(𝐺). Without loss, we assume that 𝑢1𝑣2 ∈ 𝐸(𝐺). By the assumption, 𝑢1 cannot be adjacent to 𝑣3. So 

there exists a vertex 𝑢3 such that 𝑢3 ≠ 𝑢1 and 𝑢3𝑣3 ∈ 𝐸(𝐺). Since 𝐺 is claw-free, either 𝑢3𝑣2 ∈ 𝐸(𝐺) 

or 𝑢3𝑣4 ∈ 𝐸(𝐺). So we shall consider two cases again. 

First assume that 𝑢3𝑣2 ∈ 𝐸(𝐺). If there exists a vertex 𝑣𝑗 ∈ 𝑉(𝐶𝑟) with 𝑗 ≥ 4 such that 𝑣𝑗  has a 

neighbor, say 𝑤𝑗, which is not in {𝑢1, 𝑢3}, then 𝑤𝑗 would be adjacent to a neighbor of 𝑣𝑗  in 𝐶𝑟, as 𝐺 is 

claw free. So we would have a subgraph 𝐻 of 𝐺 which belongs to the family ℱ𝑟,3 and 𝜋(𝐻, 𝑥) =

(𝑥 − 2)3(𝑥 − 1)((𝑥 − 1)𝑟−1 − 1). Now by Proposition 2 it suffices to show that (𝑥 − 2)3((𝑥 −

1)𝑟−1 − 1)(𝑥 − 1)𝑛−𝑟−2 is less than (𝑥)↓4(𝑥 − 1)𝑛−4 which follows from (𝑥 − 2)2 ≤ 𝑥(𝑥 − 3) for 𝑥 ≥

4 and (𝑥 − 1)𝑟−1 − 1 < (𝑥 − 1)𝑟−1. Now we may assume that 𝑁𝐺(𝑣𝑗)\𝑉(𝐶𝑟) ⊆ {𝑢1, 𝑢3}. Since there is 

no vertex adjacent to three consecutive vertices of 𝐶𝑟, we get 𝑢1𝑣𝑟 , 𝑢1𝑣3, 𝑢3𝑣4, 𝑢3𝑣1 ∉ 𝐸(𝐺). Also, 

𝑢1𝑣4, 𝑢3𝑣𝑟 ∈ 𝐸(𝐺) by the assumptions. Then we must have 𝑟 ≥ 7, since if 𝑟 = 5 then the vertices 

𝑢1, 𝑣3, 𝑣4, 𝑣5 would induce a claw. As 𝐺 is claw-free, 𝑢3𝑣𝑟−1 and 𝑢1𝑣5 are in 𝐸(𝐺). Now, we have four 

edge disjoint triangles with vertex sets {𝑢1, 𝑣1, 𝑣2}, {𝑢3, 𝑣2, 𝑣3}, {𝑢3, 𝑣𝑟 , 𝑣𝑟−1} and {𝑢1, 𝑣4, 𝑣5}. Let 𝐻 be 

a minimal subgraph containing these four triangles. It is easy to see that 𝜋(𝐻, 𝑥) = 𝑥(𝑥 − 1)4(𝑥 −

2)4 < (𝑥)↓4(𝑥 − 1)5 and the result follows by Proposition 2. 

Now let us assume that 𝑢3𝑣4 ∈ 𝐸(𝐺) (and so 𝑢3𝑣2 ∉ 𝐸(𝐺)). As in the previous case, we may assume 

that 𝑁𝐺(𝑣𝑗)\𝑉(𝐶𝑟) ⊆ {𝑢1, 𝑢3}. Again it must be that 𝑟 ≥ 7, as r=5 implies that the neighbor of 𝑣5 is 

adjacent to three consecutive vertices of 𝐶5. Furthermore, by the assumptions we have 𝑢1𝑣𝑟 , 𝑢3𝑣5 ∉

𝐸(𝐺) and 𝑢3𝑣𝑟 , 𝑢1𝑣5 ∈ 𝐸(𝐺). Now, since 𝐺 is claw free either 𝑢3𝑣𝑟−1 ∈ 𝐸(𝐺) or 𝑢3𝑣1 ∈ 𝐸(𝐺) 



(otherwise {𝑢3, 𝑣𝑟−1, 𝑣𝑟 , 𝑣1} would induce a claw). If 𝑢3𝑣𝑟−1 ∈ 𝐸(𝐺) (resp. 𝑢3𝑣1 ∈ 𝐸(𝐺)) then 𝐺 has a 

subgraph 𝐻1 (resp. 𝐻2) show in Fig. 1. In each case, it is easy to check that 𝜋(𝐻𝑖, 𝑥) <

(𝑥)↓4(𝑥 − 1)|𝑉(𝐻)|−4 holds and we are done by Proposition 2.The graphs H1 and H2 

Case 2 𝐺 does not contain an odd hole. 

By assumption, 𝐺 is not a perfect graph. So by the strong perfect graph theorem [ 3], 𝐺 must contain an 

odd anti-hole. The graph 𝐺 cannot contain an anti-hole of order 5 because 𝐶5 ≅ 𝐶5̅. Also, 𝐺 cannot 

contain an odd anti-hole of order larger than 7 because otherwise it would contain a 𝐾4. Hence, 𝐺 must 

contain a 𝐶7̅. Calculations show that 

𝜋(𝐶7̅, 𝑥) = 𝑥(𝑥 − 1)(𝑥 − 2)(𝑥 − 3)(𝑥3 − 8𝑥2 + 25𝑥 − 29). 

Hence, by Proposition 2, it suffices to show that (𝑥 − 1)3 − (𝑥3 − 8𝑥2 + 25𝑥 − 29) ≥ 0. But (x-1)3-

(𝑥3 − 8𝑥2 + 25𝑥 − 29) is a quadratic with positive leading coefficient and no real roots. Thus, the 

result follows. 

Proof 
(Proof of Theorem 1) Suppose that 𝐺 is a 4-chromatic claw-free graph. If 𝜔(𝐺) = 4, then by 

Proposition 1 we have 𝜋(𝐺, 𝑥) ≤ (𝑥)↓4(𝑥 − 1)𝑛−4 with equality if and only if 𝐺 ∈ 𝐶4
∗(𝑛). If 𝜔(𝐺) < 4, 

then we first find a subgraph 𝐺′ of 𝐺 that is 4-critical and claw-free by removing some vertices from 𝐺. 

Propositions 2 and 3 then show that 𝜋(𝐺, 𝑥) < (𝑥)↓4(𝑥 − 1)𝑛−4, which finishes the Proof of 

Theorem 1. 

Claw-Free Graphs of Large Order 
We next prove Theorem 2. To do so we use the following result, which provides a large number of 

disjoint triangles in 𝐺. 

Theorem 8 

[ 13] If 𝐺 is an 𝑛-vertex claw-free graph, then 𝐺 contains at least (
𝛿(𝐺)−2

𝛿(𝐺)+1
)

𝑛

3
 vertex disjoint triangles. 

Theorem 8 allows us to analyze critical graphs. 

Proposition 4 
Let 𝐺 be an 𝑛-vertex 𝑘-critical claw-free graph where 𝑘 ≥ 4 and 

𝑛 >
3𝑘

𝑘−3
𝑙𝑜𝑔 (

(𝑘−2)!

(𝑘−1)𝑘−2
)

1

𝑙𝑜𝑔(
𝑘−2

𝑘−1
)
. 

Then for every integer 𝑥 ≥ 𝑘 we have 𝜋(𝐺, 𝑥) < (𝑥)↓𝑘(𝑥 − 1)𝑛−𝑘. 

Proof 

(Proof of Proposition 4) Since 𝐺 is 𝑘-critical, 𝛿(𝐺) ≥ 𝑘 − 1. By Theorem 8, 𝐺 contains at least 
(𝑘−3)𝑛

3𝑘
 

vertex disjoint triangles. Let 𝐻 be a minimal connected spanning subgraph containing these triangles. 

So 𝐻 is a block graph and it is easy to see that 

𝜋(𝐻, 𝑥) = 𝑥(𝑥 − 2)𝑡(𝑥 − 1)𝑛−𝑡−1 
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where 𝑡 =
(𝑘−3)𝑛

3𝑘
. It suffices to show that, for every 𝑥 ≥ 𝑘, 

𝑥(𝑥 − 2)𝑡(𝑥 − 1)𝑛−𝑡−1 < (𝑥)↓𝑘(𝑥 − 1)𝑛−𝑘 

which is equivalent to 

𝑡 > log (
(𝑥 − 2)↓𝑘−2

(𝑥 − 1)𝑘−2
)

1

log (
𝑥 − 2
𝑥 − 1)

. 

Now the latter follows as log (
(𝑥−2)↓𝑘−2

(𝑥−1)𝑘−2 )
1

log(
𝑥−2

𝑥−1
)
 is a decreasing function on [𝑘, ∞) and by the 

assumption on 𝑛. 

Proof 
(Proof of Theorem 2) The result follows from Propositions 2 and 4, as every 𝑘-chromatic claw-free 

graph contains a 𝑘-critical subgraph which is claw-free. 

Line Graphs 
In this section we prove Theorem 3. We begin with a classic result for edge-colorings. 

Theorem 9 
(Vizing's Theorem) For every graph 𝐻, either 𝜒′(𝐻) = 𝛥(𝐻) 𝑜𝑟 𝜒′(𝐻) = 𝛥(𝐻) + 1. 

A graph 𝐺 is called chromatic index critical if 𝐺 is connected, 𝜒′(𝐺) = 𝛥(𝐺) + 1 and 𝜒′(𝐺 − 𝑒) < 𝜒′(𝐺) 

for every edge 𝑒 of 𝐺. 

Theorem 10 
(Vizing's Adjacency Lemma) Let 𝐻 be a chromatic index critical graph. If 𝑣 and 𝑤 are two adjacent 

vertices of 𝐻 with 𝑑𝑒𝑔𝐻(𝑣) = 𝛥(𝐻), then 𝑤 is adjacent to at least two vertices of degree 𝛥(𝐻). 

Lemma 1 
Let 𝐺 be an 𝑛-vertex 𝑘-critical line graph with 𝜔(𝐺) = 𝑘 − 1 and 𝑘 ≥ 4. Then for every integer 𝑥 ≥ 𝑘 

we have 

𝜋(𝐺, 𝑥) < (𝑥)↓𝑘(𝑥 − 1)𝑛−𝑘. 

Proof 
Suppose that 𝐺 is the line graph of 𝐻, i.e. 𝐿(𝐻) =  𝐺. It is clear that 𝜒(𝐺) = 𝜒′(𝐻) and 𝜔(𝐺) = 𝛥(𝐻). 

Since 𝐺 is connected we may assume that 𝐻 is also connected (by ignoring isolated vertices, if any). 

Since 𝐺 is a critical graph, the graph 𝐻 is a chromatic index critical graph. First let us show 

that 𝐺 contains at least two edge disjoint (𝑘 − 1)-cliques. Let 𝑣 and 𝑤 be two adjacent vertices of 𝐻 

with deg𝐻(𝑣) = 𝑘 − 1. By Vizing's adjacency lemma, the vertex 𝑤 is adjacent to at least two vertices 

of degree 𝑘 − 1. Let 𝑤′ be a neighbor of 𝑤 in 𝐻 such that deg𝐻(𝑤′) = 𝑘 − 1 and 𝑤′ ≠ 𝑣. Let 𝐸𝑣 (resp. 

𝐸𝑤′) be the set of edges of 𝐻 which are incident to the vertex 𝑣 (resp. 𝑤′). Observe that |𝐸𝑣 ∩ 𝐸𝑤′| ≤

1. Let 𝐺1 and 𝐺2 be subgraphs of 𝐺 induced by the vertices of 𝐺 which represent the edges in 𝐸𝑣 and 

𝐸𝑤′ respectively. It is clear that 𝐺1 ≅ 𝐺2 ≅ 𝐾𝑘−1 and 𝐺1 and 𝐺2 are edge disjoint, as |𝐸𝑣 ∩ 𝐸𝑤′| ≤ 1. 

Case 1 𝑘 ≥ 6. 
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Let 𝐺′ be a connected minimal spanning subgraph of 𝐺 which contains 𝐺1 and 𝐺2. Exactly two blocks of 

𝐺′ are (𝑘 − 1)-cliques and all the rest of the blocks are edges. Therefore, 

𝜋(𝐺′, 𝑥) = (𝑥)↓𝑘−1(𝑥 − 1)↓𝑘−2(𝑥 − 1)𝑛−2𝑘+3. 

Since 𝜋(𝐺, 𝑥) ≤ 𝜋(𝐺′, 𝑥), it suffices to show that 𝜋(𝐺′, 𝑥) < (𝑥)↓𝑘(𝑥 − 1)𝑛−𝑘 which is equivalent to 

(𝑥 − 2)(𝑥 − 3) ⋯ (𝑥 − 𝑘 + 3)(𝑥 − 𝑘 + 2) < (𝑥 − 𝑘 + 1)(𝑥 − 1)𝑘−4. 

Subcase 1 𝑘 ≥ 7. It is clear that (𝑥 − 𝑖) < (𝑥 − 1) for 𝑖 = 2, ⋯ 𝑘 − 4. So we only need to show that 

(𝑥 − 𝑘 + 3)(𝑥 − 𝑘 + 2) ≤ (𝑥 − 𝑘 + 1)(𝑥 − 1) 

holds for 𝑥 ≥ 𝑘. Observe that 

(𝑥 − 𝑘 + 1)(𝑥 − 1) − (𝑥 − 𝑘 + 3)(𝑥 − 𝑘 + 2) = (𝑘 − 5)𝑥 − 𝑘2 + 6𝑘 − 7. 

Since 𝑥 ≥ 𝑘, we get (𝑘 − 5)𝑥 − 𝑘2 + 6𝑘 − 7 ≥ (𝑘 − 5)𝑘 − 𝑘2 + 6𝑘 − 7 = 𝑘 − 7 ≥ 0. 

Subcase 2 𝑘 = 6. In this case it suffices to show that (𝑥 − 2)(𝑥 − 3)(𝑥 − 4) < (𝑥 − 5)(𝑥 − 1)2 holds 

for 𝑥 ≥ 6. Calculations show that the polynomial (𝑥 − 5)(𝑥 − 1)2 − (𝑥 − 2)(𝑥 − 3)(𝑥 − 4) has a 

positive leading coefficient and its largest real root is 5.88.... Thus the result follows. 

Case 2 𝑘 = 5. 

Consider a vertex 𝑢 ∉ 𝑉(𝐺1) ∪ 𝑉(𝐺2). Since deg(𝑢) ≥ 4 and 𝐺 is claw-free, there exist at least two 

triangles 𝑇1 and 𝑇2 containing the vertex 𝑢. Now it is straightforward to check that the number of 𝑥-

colorings of a minimal connected spanning subgraph containing 𝐺1, 𝐺2, 𝑇1 and 𝑇2, combined with 

Proposition 2, gives an upper bound strictly less than (𝑥)↓5(𝑥 − 1)𝑛−5. 

Case 3 𝑘 = 4. 

Since line graphs are claw-free, the result follows from Proposition 3. 

Proof 
(Proof of Theorem 3) Suppose that 𝐺 is a 𝑛-vertex 𝑘-chromatic connected line graph. If 𝜔(𝐺) = 𝑘, then 

the inequality follows from Theorem 1. Since line graphs are claw-free, the only graphs in 𝐶𝑘
∗(𝑛) (which 

are the only graphs that can achieve equality) are those with pendant paths attached to the vertices of 

the 𝑘-clique. This gives the equality statement in Theorem 3. 

Now suppose that 𝜔(𝐺) < 𝑘. We can delete vertices of 𝐺 until we reach a 𝑘-critical line graph 𝐺′ which 

is a subgraph of 𝐺. Then the result follows from Lemma 1 and Proposition 2. 

Independent Sets 
In this section, we prove the results relating to independent sets. 

Fixed Chromatic Number 

Proof 
(Proof of Theorem 4) We proceed by induction on n for all 𝑘 with 1 ≤ 𝑘 ≤ 𝑛. The result is clear when 

𝑛 = 𝑘 or 𝑘 = 1. So suppose that 𝑘 > 1 and 𝑛 > 𝑘. 
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Suppose that there exists a vertex 𝑣 such that 𝐺 − 𝑣 has chromatic number 𝑘. The number of 

independent sets of 𝐺 with size 𝑡 which do not contain 𝑣 is equal to the number of independent sets of 

𝐺 − 𝑣 with size 𝑡. Then by induction on number of vertices, the graph 𝐺 − 𝑣 has at most (
𝑛−1−𝑘

𝑡
) +

𝑘 (
𝑛−1−𝑘

𝑡−1
) independent sets with size 𝑡. The number of independent sets of 𝐺 of size 𝑡 that include 𝑣 is 

at most the number of independent sets of size 𝑡 − 1 in 𝐺 − 𝑣. Again by induction 𝑖𝑡−1(𝐺 − 𝑣) ≤

(𝑛−1−𝑘
𝑡−1

) + 𝑘(𝑛−1−𝑘
𝑡−2

). (Note that this bound still holds when 𝑡 = 2.) Therefore, 

𝑖𝑡(𝐺) ≤ 𝑖𝑡(𝐺 − 𝑣) + 𝑖𝑡−1(𝐺 − 𝑣) ≤ (
𝑛 − 1 − 𝑘

𝑡
) + 𝑘 (

𝑛 − 1 − 𝑘

𝑡 − 1
) + (

𝑛 − 1 − 𝑘

𝑡 − 1
) + 𝑘 (

𝑛 − 1 − 𝑘

𝑡 − 2
)

= (
𝑛 − 𝑘

𝑡
) + 𝑘 (

𝑛 − 𝑘

𝑡 − 1
) 

where the last equality follows from Pascal's identities (𝑛−𝑘
𝑡

) = (𝑛−1−𝑘
𝑡

) + (𝑛−1−𝑘
𝑡−1

) and (𝑛−𝑘
𝑡−1

) =

(𝑛−1−𝑘
𝑡−1

) + (𝑛−1−𝑘
𝑡−2

). 

Suppose then that 𝑣 is a vertex such that 𝜒(𝐺 − 𝑣) = 𝑘 − 1. Then we know that 𝑑(𝑣) ≥ 𝑘 − 1. As 

before, an upper bound on the number of independent sets of size 𝑡 that do not include 𝑣, by 

induction, is (𝑛−1−(𝑘−1)
𝑡

) + (𝑘 − 1)(𝑛−1−(𝑘−1)
𝑡−1

). The number of independent sets of size 𝑡 that 

include 𝑣 is at most (𝑛−𝑘
𝑡−1

) (the number of 𝑡 − 1 sets in the at most 𝑛 − 𝑘 remaining vertices). In all 

cases for 𝑡, summing the two bounds gives the desired upper bound. 

As stated in Sect. 1, the translation to the total count of all independent sets is trivial. 

Connected with Fixed Chromatic Number 
In this section, we focus on the connected graphs with fixed chromatic number. 

Proof 
(Proof of Theorem 6) Notice that for 𝑡 = 0 and 𝑡 = 1 the inequality in Theorem 6 is true as the value of 

𝑖𝑡(𝐺) is constant over all 𝑛-vertex graphs. For 𝑡 = 2 the inequality in Theorem 6 is true by Theorem 5. 

We proceed by induction on the number of vertices. The result is clear if 𝑛 = 𝑘 or 𝑛 = 𝑘 + 1, so we 

may assume that 𝑛 ≥ 𝑘 + 2. Furthermore, by the remarks in the previous paragraph, we assume that 

𝑡 ≥ 3. Let v be a vertex of 𝐺 such that 𝐺 − 𝑣 is connected. Observe that 𝑖𝑡(𝐺) = 𝑖𝑡(𝐺 − 𝑣) + 𝑖𝑡−1(𝐺 −

𝑣 − 𝑁𝐺(𝑣)) ≤ 𝑖𝑡(𝐺 − 𝑣) + 𝑖𝑡−1(𝐺 − 𝑣) and for 3 ≤ 𝑡 ≤ 𝑛 − 𝑘 + 1 the equality can be achieved only if 

𝑁𝐺(𝑣) has no vertex which belongs to an independent set of size 𝑡 − 1 of 𝐺 − 𝑣. We consider two 

cases. 

First suppose that 𝐺 − 𝑣 is 𝑘-chromatic. By induction, 𝑖𝑡(𝐺 − 𝑣) ≤ (𝑛−1−𝑘
𝑡

) + (𝑘 − 1)(𝑛−1−𝑘
𝑡−1

) + ( 0
𝑡−1

) 

and 𝑖𝑡−1(𝐺 − 𝑣) ≤ (𝑛−1−𝑘
𝑡−1

) + (𝑘 − 1)(𝑛−1−𝑘
𝑡−2

) + ( 0
𝑡−2

), and both inequalities can be equalities at the 

same time only if 𝐺 − 𝑣 = 𝐾1 ∨ (𝐾𝑘−1 ∪ 𝐸𝑛−1−𝑘). Adding the right sides of these inequalities and using 

Pascal's identity gives the desired inequality. In the extremal case, let 𝑣′ be the dominating vertex of 

𝐺 − 𝑣. So 𝑣′ is the only vertex of 𝐺 − 𝑣 which cannot belong to any independent set of size 𝑡 ≥ 2. 

Therefore, 𝑣 must be adjacent to 𝑣′ only and 𝐺 = 𝐾1 ∨ (𝐾𝑘−1 ∪ 𝐸𝑛−𝑘) in the extremal case. 
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Now suppose that 𝐺 − 𝑣 is 𝑘 − 1 chromatic. By induction, we have that 𝑖𝑡(𝐺 − 𝑣) ≤ (𝑛−1−(𝑘−1)
𝑡

) +

(𝑘 − 2)(𝑛−1−(𝑘−1)
𝑡−1

) + ( 0
𝑡−1

). Note that v has at least 𝑘 − 1 neighbors as 𝐺 − 𝑣 is 𝑘 − 1 chromatic. 

Choosing any 𝑡 − 1 vertices from the 𝑛 − 𝑘 remaining vertices gives 𝑖𝑡−1(𝐺 − 𝑣 − 𝑁𝐺(𝑣)) ≤ (𝑛−𝑘
𝑡−1

). 

Summing these bounds gives the inequality. In the extremal case, let 𝑣′ be the dominating vertex of 

𝐺 − 𝑣, and note that 𝑣 must have exactly 𝑘 − 1 neighbors. The fact that 𝐺 − 𝑣 is 𝑘 − 1 chromatic 

while 𝐺 is 𝑘-chromatic implies that 𝐺 = 𝐾1 ∨ (𝐾𝑘−1 ∪ 𝐸𝑛−𝑘). 

We now prove Corollary 3. 

Proof 
(Proof of Corollary 3) If 𝑛 = 𝑘, then 𝐺 = 𝐾𝑛 and the result holds. If 𝑛 = 𝑘 + 1, then 𝛼(𝐺) ≤ 2 and so 

the characterization of equality follows from Lemma 5 (note that when 𝑘 = 3, the only unicyclic graph 

with an odd cycle is 𝐾1 ∨ (𝐾2 ∪ 𝐸1), and for other 𝑘 the only graph in 𝐶𝑘
∗ is 𝐾1 ∨ (𝐾𝑘−1 ∪ 𝐸1). For 𝑛 ≥

𝑘 + 2, again notice that 𝐾1 ∨ (𝐾𝑘−1 ∪ 𝐸𝑛−𝑘) ∈ 𝐶𝑘
∗(𝑛), and so the result follows from Lemma 5 and 

Theorem 6. 

The next results interpolate between the results for fixed chromatic number and those for connected 

graphs with fixed chromatic number in that they also fix a number of components. 

Proof 
(Proof of Theorem 7) Since removing edges does not decrease the number of independent sets, we 

may assume that 𝑐 − 1 components are each trees. For a forest on a fixed number of vertices and 

edges, the disjoint union of a star and isolated vertices maximizes the number of independent sets of 

any fixed size [ 5, Theorem 2.2]. Notice that if 𝐺 is the disjoint union of 𝐺1 and 𝐺2, then 𝑖𝑡(𝐺) =

∑ 𝑖𝑘(𝐺1)𝑖𝑡−𝑘(𝐺2)
𝑘

. This implies that we may assume that our graph 𝐺 has a component which is 𝑘-

chromatic, a component that is a (possibly trivial, i.e. 1-vertex) star, and 𝑐 − 2 isolated vertices. 

Let the 𝑘-chromatic component and the star have 𝑥: = 𝑛 − 𝑐 + 2 total vertices. We now show that to 

maximize the number of independent sets of size 𝑡, the star is an isolated vertex and the 𝑘-chromatic 

connected graph is 𝐾1 ∨ (𝐾𝑘−1 ∪ 𝐸𝑥−𝑘−1). 

Suppose the star has 𝑎 vertices and so the 𝑘-chromatic component has 𝑥 − 𝑎 vertices. Then 

𝑖𝑡(𝐾1,𝑎−1) = (
𝑎 − 1

𝑡
) + (

0

𝑡 − 1
) 

and 

𝑖𝑡(𝐾1 ∨ (𝐾𝑘−1 ∪ 𝐸𝑥−𝑎−𝑘)) = (
𝑥 − 𝑎 − 𝑘

𝑡
) + (𝑘 − 1) (

𝑥 − 𝑎 − 𝑘

𝑡 − 1
) + (

0

𝑡 − 1
). 

Now, for any fixed 𝑡, we have 

∑ ((
𝑥 − 𝑎 − 𝑘

𝑖
) + (𝑘 − 1) (

𝑥 − 𝑎 − 𝑘

𝑖 − 1
) + (

0

𝑖 − 1
)) ((

𝑎 − 1

𝑡 − 𝑖
) + (

0

𝑡 − 𝑖 − 1
))

𝑡

𝑖=0

 

which simplifies to 
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(
𝑥 − 𝑘 − 1

𝑡
) + (

𝑥 − 𝑎 − 𝑘

𝑡 − 1
) + (𝑘 − 1) ((

𝑥 − 𝑘 − 1

𝑡 − 1
) + (

𝑥 − 𝑎 − 𝑘

𝑡 − 2
)) + (

𝑎 − 1

𝑡 − 1
) + (

0

𝑡 − 2
). 

Comparing this to 𝐾1 ∨ (𝐾𝑘−1 ∪ 𝐸𝑛−𝑐+1−𝑘) ∪ 𝐸1, which has 

(
𝑥 − 𝑘 − 1

𝑡
) + (

𝑥 − 𝑘 − 1

𝑡 − 1
) + (𝑘 − 1) ((

𝑥 − 𝑘 − 1

𝑡 − 1
) + (

𝑥 − 𝑘 − 1

𝑡 − 2
)) + (

0

𝑡 − 1
) + (

0

𝑡 − 2
) 

independent sets of size 𝑡 and using (𝑦
𝑘

) + (𝑧
𝑘

) ≤ (𝑦+𝑧
𝑘

) for all values of 𝑘, we see that the maximizing 

graph in this family consists of 𝑐 − 1 isolated vertices and a maximizing connected 𝑘-chromatic graph 

on 𝑛 − 𝑐 + 1 vertices. 

Now we consider the cases of equality. For 𝑐 < 𝑛 − 𝑘, the 𝑘-chromatic component has size at least 

𝑘 + 2, and so the characterization of equality follows from the equality characterization in Theorem 6. 

For 𝑐 = 𝑛 − 𝑘, the 𝑘-chromatic component has size 𝑘 + 1, and so the characterization of equality 

comes from Lemma 5. But here 𝑛 = 𝑘 + 1, and so for any 𝑘 the 𝑘-chromatic component is 𝐾1 ∨

(𝐾𝑘−1 ∪ 𝐸1). Finally, for 𝑐 = 𝑛 − 𝑘 + 1, the graph must be 𝐾𝑘 ∪ 𝐸𝑛−𝑘. 

We next give the Proof of Corollary 4. 

Proof 
(Proof of Corollary 4) The inequality is clear, as the extremal graphs for 3 ≤ 𝑡 ≤ 𝑛 − 𝑘 + 1 also have 

equality in the upper bound for 𝑡 = 0,1,2. When 𝑛 > 𝑘 + 1 (and so 𝑛 − 𝑘 + 1 ≥ 3) equality follows 

from the characterization of equality in Theorem 7. When 𝑛 = 𝑘 we have 𝑐 = 1 and 𝐺 = 𝐾𝑘. When 

𝑛 = 𝑘 + 1 and 𝑐 = 1 the result follows from Corollary 3. When 𝑛 = 𝑘 + 1 and 𝑐 = 2 then 𝐺 = 𝐾𝑘 ∪

𝐸1. 

Concluding Remarks 
We end this paper with a few questions and conjectures. While Conjecture 1 is still open, it would also 

be interesting to consider the class of 𝑛-vertex 𝑘-chromatic claw-free connected graphs for 𝑘 > 4, and 

to show that the analogous statement to Theorem 1 holds for these 𝑘. It would also be interesting to 

investigate the maximizing graphs for 𝑛-vertex 𝑘-chromatic ℓ-connected graphs for other values of ℓ. 

There are also plenty of questions related to independent sets. We have given results for maximizing 

𝑖𝑡(𝐺) for graphs 𝐺 which are 𝑘-chromatic and ℓ-connected for ℓ = 0,1. The following is a natural 

question. 

Question 1 
Let ℓ < 𝑘 and let 𝐺 be an ℓ-connected 𝑘-chromatic graph with 𝑛 vertices. Fix 𝑡 ≥ 3. Is it true that 

𝑖𝑡(𝐺) ≤ 𝑖𝑡(𝐾ℓ ∨ (𝐾𝑘−ℓ ∪ 𝐸𝑛−𝑘))? 

In our paper, we answer Question 1 in the affirmative when ℓ = 0 (Theorem 4) and ℓ = 1 (Theorem 6). 

What about other values of 𝑘 and ℓ? Consider 𝑘 = 2 and ℓ ≥ 1. Notice that ℓ-connected graphs have 

minimum degree at least ℓ. Maximizing in this larger family of fixed minimum degree graphs is already 

known. 
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Theorem 11 
[ 1] Let 𝑛, 𝛿, and 𝑡 ≥ 3 be positive integers with 𝑛 ≥ 2𝛿. If 𝐺 is a bipartite graph on 𝑛 vertices with 

minimum degree at least 𝛿, then 

𝑖𝑡(𝐺) ≤ 𝑖𝑡(𝐾𝛿,𝑛−𝛿) 

with equality if and only if 𝐺 = 𝐾𝛿,𝑛−𝛿. 

In other words, this shows that for 𝑛 ≥ 2ℓ we have 𝐾ℓ,𝑛−ℓ is the unique 2-chromatic ℓ-connected 

graph that maximizes 𝑖𝑡(𝐺) for 𝑡 ≥ 3. This leads to a natural question. 

Question 2 
Let ℓ ≥ 𝑘, 𝑛 ≥ 2ℓ and let 𝐺 be a 𝑘-chromatic ℓ-connected graph with 𝑛 vertices. Fix 𝑡 ≥ 3. Is it true 

that 

𝑖𝑡(𝐺) ≤ 𝑖𝑡((𝐾𝑘−1 ∪ 𝐸ℓ−𝑘+1) ∨ 𝐸𝑛−ℓ)? 

We remark that the question of minimizing the number of independent sets of size 𝑡 over graphs 

with 𝑛 vertices and fixed connectivity is studied in [ 21]. 
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