7,774 research outputs found

    Data Reduction for Graph Coloring Problems

    Full text link
    This paper studies the kernelization complexity of graph coloring problems with respect to certain structural parameterizations of the input instances. We are interested in how well polynomial-time data reduction can provably shrink instances of coloring problems, in terms of the chosen parameter. It is well known that deciding 3-colorability is already NP-complete, hence parameterizing by the requested number of colors is not fruitful. Instead, we pick up on a research thread initiated by Cai (DAM, 2003) who studied coloring problems parameterized by the modification distance of the input graph to a graph class on which coloring is polynomial-time solvable; for example parameterizing by the number k of vertex-deletions needed to make the graph chordal. We obtain various upper and lower bounds for kernels of such parameterizations of q-Coloring, complementing Cai's study of the time complexity with respect to these parameters. Our results show that the existence of polynomial kernels for q-Coloring parameterized by the vertex-deletion distance to a graph class F is strongly related to the existence of a function f(q) which bounds the number of vertices which are needed to preserve the NO-answer to an instance of q-List-Coloring on F.Comment: Author-accepted manuscript of the article that will appear in the FCT 2011 special issue of Information & Computatio

    Best and worst case permutations for random online domination of the path

    Get PDF
    We study a randomized algorithm for graph domination, by which, according to a uniformly chosen permutation, vertices are revealed and added to the dominating set if not already dominated. We determine the expected size of the dominating set produced by the algorithm for the path graph PnP_n and use this to derive the expected size for some related families of graphs. We then provide a much-refined analysis of the worst and best cases of this algorithm on PnP_n and enumerate the permutations for which the algorithm has the worst-possible performance and best-possible performance. The case of dominating the path graph has connections to previous work of Bouwer and Star, and of Gessel on greedily coloring the path.Comment: 13 pages, 1 figur

    Efficient and Perfect domination on circular-arc graphs

    Get PDF
    Given a graph G=(V,E)G = (V,E), a \emph{perfect dominating set} is a subset of vertices V′⊆V(G)V' \subseteq V(G) such that each vertex v∈V(G)∖V′v \in V(G)\setminus V' is dominated by exactly one vertex v′∈V′v' \in V'. An \emph{efficient dominating set} is a perfect dominating set V′V' where V′V' is also an independent set. These problems are usually posed in terms of edges instead of vertices. Both problems, either for the vertex or edge variant, remains NP-Hard, even when restricted to certain graphs families. We study both variants of the problems for the circular-arc graphs, and show efficient algorithms for all of them

    Fine structure of 4-critical triangle-free graphs I. Planar graphs with two triangles and 3-colorability of chains

    Get PDF
    Aksenov proved that in a planar graph G with at most one triangle, every precoloring of a 4-cycle can be extended to a 3-coloring of G. We give an exact characterization of planar graphs with two triangles in that some precoloring of a 4-cycle does not extend. We apply this characterization to solve the precoloring extension problem from two 4-cycles in a triangle-free planar graph in the case that the precolored 4-cycles are separated by many disjoint 4-cycles. The latter result is used in followup papers to give detailed information about the structure of 4-critical triangle-free graphs embedded in a fixed surface.Comment: 38 pages, 6 figures; corrections from the review proces

    (Total) Vector Domination for Graphs with Bounded Branchwidth

    Full text link
    Given a graph G=(V,E)G=(V,E) of order nn and an nn-dimensional non-negative vector d=(d(1),d(2),…,d(n))d=(d(1),d(2),\ldots,d(n)), called demand vector, the vector domination (resp., total vector domination) is the problem of finding a minimum S⊆VS\subseteq V such that every vertex vv in V∖SV\setminus S (resp., in VV) has at least d(v)d(v) neighbors in SS. The (total) vector domination is a generalization of many dominating set type problems, e.g., the dominating set problem, the kk-tuple dominating set problem (this kk is different from the solution size), and so on, and its approximability and inapproximability have been studied under this general framework. In this paper, we show that a (total) vector domination of graphs with bounded branchwidth can be solved in polynomial time. This implies that the problem is polynomially solvable also for graphs with bounded treewidth. Consequently, the (total) vector domination problem for a planar graph is subexponential fixed-parameter tractable with respectto kk, where kk is the size of solution.Comment: 16 page
    • …
    corecore