61 research outputs found

    Early aspects: aspect-oriented requirements engineering and architecture design

    Get PDF
    This paper reports on the third Early Aspects: Aspect-Oriented Requirements Engineering and Architecture Design Workshop, which has been held in Lancaster, UK, on March 21, 2004. The workshop included a presentation session and working sessions in which the particular topics on early aspects were discussed. The primary goal of the workshop was to focus on challenges to defining methodical software development processes for aspects from early on in the software life cycle and explore the potential of proposed methods and techniques to scale up to industrial applications

    Aspect-oriented refactoring of Java programs

    Get PDF

    Ubiquitous Computing

    Get PDF
    The aim of this book is to give a treatment of the actively developed domain of Ubiquitous computing. Originally proposed by Mark D. Weiser, the concept of Ubiquitous computing enables a real-time global sensing, context-aware informational retrieval, multi-modal interaction with the user and enhanced visualization capabilities. In effect, Ubiquitous computing environments give extremely new and futuristic abilities to look at and interact with our habitat at any time and from anywhere. In that domain, researchers are confronted with many foundational, technological and engineering issues which were not known before. Detailed cross-disciplinary coverage of these issues is really needed today for further progress and widening of application range. This book collects twelve original works of researchers from eleven countries, which are clustered into four sections: Foundations, Security and Privacy, Integration and Middleware, Practical Applications

    SAVCBS 2004 Specification and Verification of Component-Based Systems: Workshop Proceedings

    Get PDF
    This is the proceedings of the 2004 SAVCBS workshop. The workshop is concerned with how formal (i.e., mathematical) techniques can be or should be used to establish a suitable foundation for the specification and verification of component-based systems. Component-based systems are a growing concern for the software engineering community. Specification and reasoning techniques are urgently needed to permit composition of systems from components. Component-based specification and verification is also vital for scaling advanced verification techniques such as extended static analysis and model checking to the size of real systems. The workshop considers formalization of both functional and non-functional behavior, such as performance or reliability

    End-to-end security in service-oriented architecture

    Get PDF
    A service-oriented architecture (SOA)-based application is composed of a number of distributed and loosely-coupled web services, which are orchestrated to accomplish a more complex functionality. Any of these web services is able to invoke other web services to offload part of its functionality. The main security challenge in SOA is that we cannot trust the participating web services in a service composition to behave as expected all the time. In addition, the chain of services involved in an end-to-end service invocation may not be visible to the clients. As a result, any violation of client’s policies could remain undetected. To address these challenges in SOA, we proposed the following contributions. First, we devised two composite trust schemes by using graph abstraction to quantitatively maintain the trust levels of different services. The composite trust values are based on feedbacks from the actual execution of services, and the structure of the SOA application. To maintain the dynamic trust, we designed the trust manager, which is a trusted-third party service. Second, we developed an end-to-end inter-service policy monitoring and enforcement framework (PME framework), which is able to dynamically inspect the interactions between services at runtime and react to the potentially malicious activities according to the client’s policies. Third, we designed an intra-service policy monitoring and enforcement framework based on taint analysis mechanism to monitor the information flow within services and prevent information disclosure incidents. Fourth, we proposed an adaptive and secure service composition engine (ASSC), which takes advantage of an efficient heuristic algorithm to generate optimal service compositions in SOA. The service compositions generated by ASSC maximize the trustworthiness of the selected services while meeting the predefined QoS constraints. Finally, we have extensively studied the correctness and performance of the proposed security measures based on a realistic SOA case study. All experimental studies validated the practicality and effectiveness of the presented solutions

    Generative aspect-oriented component adaptation

    Get PDF
    Due to the availability of components and the diversity of target applications, mismatches between pre-qualified existing components and the particular reuse context in applications are often inevitable and have been a major hurdle of component reusability and successful composition. Although component adaptation has acted as a key solution for eliminating these mismatches, existing practices are either only capable for adaptation at the interface level, or require too much intervention from software engineers. Another weakness of existing approaches is the lack of reuse of component adaptation knowledge. Aspect Oriented Programming (AOP) is a new methodology that provides separation of crosscutting concerns by introducing a new unit of modularization - an Aspect that crosscuts other modules. In this way, all the associated complexity of the crosscutting concerns is isolated into the Aspects, hence the final system becomes easier to design, implement and maintain. The nature of AOP makes it particularly suitable for addressing non-functional mismatches with component-based systems. However, current AOP techniques are not powerful enough for efficient component adaptation due to the weaknesses they have, including the limited reusability of Aspects, platform specific Aspects, and naive weaving processes. Therefore, existing AOP technology needs to be expanded before it can be used for efficient component adaptation. This thesis presents a highly automated approach to component adaptation through product line based Generative Aspect Oriented Component adaptation. In the approach, the adaptation knowledge is captured in Aspects and aims to be reusable in various adaptation circumstances. Automatic generation of adaptation Aspects is developed as a key technology to improve the level of automation of the approach and the reusability of adaptation knowledge. This generation is realised by developing a two dimensional Aspect model, which incorporates the technologies of software product line and generative programming. The adaptability and automation of the approach is achieved in an Aspect oriented component adaptation framework by generating and then applying the adaptation Aspects under a designed weaving process according to specific adaptation requirements. To expand the adaptation power of AOP, advanced Aspect weaving processes have been developed with the support of an enhanced aspect weaver. To promote the reusability of adaptation Aspects, an expandable repository of reusable adaptation Aspects has been developed based on the proposed two-dimensional Aspect model. A prototype tool is built as a leverage of the approach and automates the adaptation process. Case studies have been done to illustrate and evaluate the approach, in terms of its capability of building highly reusable Aspects across various AOP platforms and providing advanced weaving process. In summary, the proposed approach applies Generative Aspect Oriented Adaptation to targeted components to correct the mismatch problem so that the components can be integrated into a target application easily. The automation of the adaptation process, the deep level of the adaptation, and the reusability of adaptation knowledge are the advantages of the approach.EThOS - Electronic Theses Online ServiceGBUnited Kingdo

    Generative aspect-oriented component adaptation

    Get PDF
    Due to the availability of components and the diversity of target applications, mismatches between pre-qualified existing components and the particular reuse context in applications are often inevitable and have been a major hurdle of component reusability and successful composition. Although component adaptation has acted as a key solution for eliminating these mismatches, existing practices are either only capable for adaptation at the interface level, or require too much intervention from software engineers. Another weakness of existing approaches is the lack of reuse of component adaptation knowledge.Aspect Oriented Programming (AOP) is a new methodology that provides separation of crosscutting concerns by introducing a new unit of modularization - an Aspect that crosscuts other modules. In this way, all the associated complexity of the crosscutting concerns is isolated into the Aspects, hence the final system becomes easier to design, implement and maintain. The nature of AOP makes it particularly suitable for addressing non-functional mismatches with component-based systems. However, current AOP techniques are not powerful enough for efficient component adaptation due to the weaknesses they have, including the limited reusability of Aspects, platform specific Aspects, and naive weaving processes. Therefore, existing AOP technology needs to be expanded before it can be used for efficient component adaptation.This thesis presents a highly automated approach to component adaptation through product line based Generative Aspect Oriented Component adaptation. In the approach, the adaptation knowledge is captured in Aspects and aims to be reusable in various adaptation circumstances.Automatic generation of adaptation Aspects is developed as a key technology to improve the level of automation of the approach and the reusability of adaptation knowledge. This generation is realised by developing a two dimensional Aspect model, which incorporates the technologies of software product line and generative programming. The adaptability and automation of the approach is achieved in an Aspect oriented component adaptation framework by generating and then applying the adaptation Aspects under a designed weaving process according to specific adaptation requirements. To expand the adaptation power of AOP, advanced Aspect weaving processes have been developed with the support of an enhanced aspect weaver. To promote the reusability of adaptation Aspects, an expandable repository of reusable adaptation Aspects has been developed based on the proposed two-dimensional Aspect model.A prototype tool is built as a leverage of the approach and automates the adaptation process. Case studies have been done to illustrate and evaluate the approach, in terms of its capability of building highly reusable Aspects across various AOP platforms and providing advanced weaving process.In summary, the proposed approach applies Generative Aspect Oriented Adaptation to targeted components to correct the mismatch problem so that the components can be integrated into a target application easily. The automation of the adaptation process, the deep level of the adaptation, and the reusability of adaptation knowledge are the advantages of the approach
    corecore