

Generative Aspect-oriented Component
Adaptation

Yankui Feng

Submitted in partial fulfilment of
the requirements of Napier University

for the Degree of
Doctor of Philosophy

School of Computing

April 2008

II

Abstract

Due to the availability of components and the diversity of target applications,

mismatches between pre-qualified existing components and the particular

reuse context in applications are often inevitable and have been a major

hurdle of component reusability and successful composition. Although

component adaptation has acted as a key solution for eliminating these

mismatches, existing practices are either only capable for adaptation at the

interface level, or require too much intervention from software engineers.

Another weakness of existing approaches is the lack of reuse of component

adaptation knowledge.

Aspect Oriented Programming (AOP) is a new methodology that provides

separation of crosscutting concerns by introducing a new unit of

modularization - an Aspect that crosscuts other modules. In this way, all the

associated complexity of the crosscutting concerns is isolated into the

Aspects, hence the final system becomes easier to design, implement and

maintain. The nature of AOP makes it particularly suitable for addressing

non-functional mismatches with component-based systems. However,

current AOP techniques are not powerful enough for efficient component

adaptation due to the weaknesses they have, including the limited reusability

of Aspects, platform specific Aspects, and naive weaving processes.

Therefore, existing AOP technology needs to be expanded before it can be

used for efficient component adaptation.

This thesis presents a highly automated approach to component adaptation

through product line based Generative Aspect Oriented Component

adaptation. In the approach, the adaptation knowledge is captured in

Aspects and aims to be reusable in various adaptation circumstances.

III

Automatic generation of adaptation Aspects is developed as a key

technology to improve the level of automation of the approach and the

reusability of adaptation knowledge. This generation is realised by

developing a two dimensional Aspect model, which incorporates the

technologies of software product line and generative programming. The

adaptability and automation of the approach is achieved in an Aspect-

oriented component adaptation framework by generating and then applying

the adaptation Aspects under a designed weaving process according to

specific adaptation requirements. To expand the adaptation power of AOP,

advanced Aspect weaving processes have been developed with the support

of an enhanced aspect weaver. To promote the reusability of adaptation

Aspects, an expandable repository of reusable adaptation Aspects has been

developed based on the proposed two-dimensional Aspect model.

A prototype tool is built as a leverage of the approach and automates the

adaptation process. Case studies have been done to illustrate and evaluate

the approach, in terms of its capability of building highly reusable Aspects

across various AOP platforms and providing advanced weaving process.

In summary, the proposed approach applies Generative Aspect Oriented

Adaptation to targeted components to correct the mismatch problem so that

the components can be integrated into a target application easily. The

automation of the adaptation process, the deep level of the adaptation, and

the reusability of adaptation knowledge are the advantages of the approach.

IV

Acknowledgments

I would like to thank my supervisors Dr. Xiaodong Liu and Professor Jon

Kerridge, my PhD panel chair Kathy Buckner for all their help, support,

expertise and understanding throughout my period of PhD study. I would

also like to thank all staff at the School of Computing at Napier University,

especially the members at the Centre for Information and Software Systems

group, for providing me valuable feedback and suggestions during my PhD

study.

I am most indebted to my beloved wife, Lei, who was supportive and

understanding during the period of my PhD study. Finally, great appreciation

and thanks to my mum, dad and my parents-in-law. Although they are in

China, they always encourage me on the phone and give me consistent

spiritual support. I am proud of them and appreciate what they contribute to

my life.

V

Publications from the PhD Work

Journal articles:

[1] Liu, X., Feng, Y., & Kerridge, J. "Generative Aspect-Oriented Component

Adaptation", IET Software, Volume 2, No. 2, ISSN: 1751-8806, April 2008.

[2] Liu, X., Feng, Y., & Kerridge, J. "Automated Responsive Web Service

Evolution through Generative Aspect-Oriented Component Adaptation".

International Journal of Computer Applications in Technology (IJCAT),

Special Issue on: "Agent and Aspect-Oriented Software Development and

Evolution", Volume 31, Issue 1/2, 2008.

[3] Feng, Y., Liu, X., & Kerridge, J. "An Aspect-Oriented Component-Based

Approach to Seamless Web Service Composition", System and Information

Sciences Notes, SIWN-The Systemics and Informatics World Network, 1(2),

ISSN: 1753-2310 (Print), July 2007.

Conference papers:

[4] Feng, Y., Liu, X., and Kerridge, J., Smooth Quality Oriented Component

Integration through Product Line Based Aspect-Oriented Component

Adaptation. Proceedings of International Conference on Software

Engineering and Knowledge Engineering (SEKE'2007), Boston, USA, pp.

71-76, July 9-11, 2007.

[5] Feng, Y., Liu, X., & Kerridge, J. "A product line based aspect-oriented

generative unit testing approach to building quality components",

Proceedings of The IEEE International Workshop Quality-Oriented Reuse of

Software (IEEE QUORS’07), Beijing, China, July 24-26, 2007.

[6] Liu, X., Feng, Y., & Kerridge, J. "Achieving Dependable Component-

Based Systems Through Generative Aspect Oriented Component

VI

Adaptation", Proceedings of 30th Annual International Computer Software

and Applications Conference, Chicago, pp. September 18-21, 2006.

[7] Feng, Y., Liu, X., & Kerridge, J. "Achieving Smooth Component

Integration with Generative Aspects and Component Adaptation",

Proceedings of 9th International Conference on Software Reuse, Torino,

Italy, LNCS 4039, pp. 260-272, June 11-15, 2006.

VII

Table of Contents

ABSTRACT ... II

ACKNOWLEDGMENTS ... IV

PUBLICATIONS FROM THE PHD WORK ... V

TABLE OF CONTENTS .. VII

LIST OF FIGURES .. XII

LIST OF TABLES ... XIV

CHAPTER 1 INTRODUCTION .. 1

1.1 Problem Statement .. 1

1.2 Aim and Objectives of the Research... 4

1.3 Contribution to Knowledge ... 5

1.4 The Structure of the Thesis ... 6

CHAPTER 2 LITERATURE REVIEW .. 8

2.1 Current State of Component Based System .. 8
2.1.1 Component Based Technology ... 8
2.1.2 Component Qualification ... 13
2.1.3 Component Composition .. 13
2.1.4 Component Adaptation ... 14
2.1.5 Classification of Component Adaptation Techniques .. 18
2.1.6 Requirements for Component Adaptation Techniques ... 21
2.1.7 Conventional Component Adaptation Techniques ... 23

2.2 Current State of Web Services and Web Service Composition ... 29
2.2.1 Introduction .. 29
2.2.2 Web Service Composition .. 31

2.3 Current State of Software Reuse .. 33
2.3.1 Design Patterns ... 35
2.3.2 Generative Reuse .. 36
2.3.3 Application Frameworks .. 37
2.3.4 COTS Product Reuse .. 38
2.3.5 Component Based Software Reuse .. 39

VIII

2.4 Current state of Aspect Oriented Programming (AOP) ... 40
2.4.1 Introduction to AOP ... 40
2.4.2 Classification of Current AOP Frameworks ... 50

2.5 Current State of Software Product Line .. 54

2.6 Summary .. 56

CHAPTER 3 RELATED WORK .. 58

3.1 Component Adaptation Approaches .. 58
3.1.1 Superimposition ... 58
3.1.2 Binary Component Adaptation (BCA) ... 59
3.1.3 Customizable Components ... 59
3.1.4 SAGA ... 60
3.1.5 A Non-Invasive Approach to Dynamic Web Service Provisioning 61
3.1.6 Interface Level “wrapper” for Web Service Adaptation .. 62
3.1.7 Evaluation of Component Adaptation Techniques ... 62

3.2 Generative Programming Related Approaches .. 63
3.2.1 XVCL ... 63

3.3 AOP Related Projects .. 64
3.3.1 Aspectual Component .. 64
3.3.2 JAsCo ... 65
3.3.3 Shared Join Points Model ... 66
3.3.4 Framed Aspects .. 67
3.3.5 Critical Analysis of AOP technologies ... 67

3.4 Summary and Conclusions .. 70
3.4.1 Requirement 1: Deep level component adaptation with high automation 70
3.4.2 Requirement 2: Highly reusable Aspects in AOP platforms .. 71
3.4.3 Requirement 3: Advanced weaving process support in AOP platform 72
3.4.4 Requirement 4: Short learning curve of AOP platform .. 72
3.4.5 Conclusions .. 72

CHAPTER 4 THE APPROACH ... 73

4.1 Introduction .. 73

4.2 Product Line Based Aspect Model ... 74
4.2.1 Component View .. 75
4.2.2 Abstraction View .. 78

4.3 The Approach ... 80
4.3.1 The Framework .. 80
4.3.2 Aspect Oriented Adaptation Design ... 81
4.3.3 Aspect Oriented Adaptation Implementation ... 82

4.4 Aspect Generation Process .. 83

4.5 The Adaptation Process ... 87

CHAPTER 5 ASPECT REPOSITORY ... 91

IX

5.1 Introduction .. 91
5.1.1 Reusable Aspects and Platform Independence ... 91
5.1.2 Aspect Repository .. 92

5.2 Two-dimensional Multiple Abstraction Level Aspect Model ... 93
5.2.1 The Architecture ... 93
5.2.2 Abstract Aspect Frames .. 95
5.2.3 Aspect Frames .. 98
5.2.4 Aspect Instances ... 99
5.2.5 Validation of new Aspects ... 100

CHAPTER 6 PROCESS BASED ASPECT ORIENTED COMPONENT
ADAPTATION 102

6.1 Introduction .. 102

6.2 Basic Entities of PCAS ... 103

6.3 Process-based Component Adaptation Specification (PCAS) .. 104

6.4 Aspect Framework ... 107

6.5 Aspect Generation and the Weaving Process .. 109

CHAPTER 7 THE CASE TOOL .. 114

7.1 System Architecture... 114

7.2 Aspect Oriented Adaptation Design Phase .. 115
7.2.1 Component Analyzer .. 115
7.2.2 PCAS Editor ... 116
7.2.3 Aspect Manager .. 118

7.3 Aspect Oriented Adaptation Implementation Phase .. 121
7.3.1 Semantic Interpreters .. 121
7.3.2 Aspect Generator .. 123
7.3.3 Aspect Weaver ... 124

7.4 Testing of the tool ... 125

CHAPTER 8 CASE STUDIES ... 128

8.1 Introduction .. 128

8.2 Case Study 1: Student Record Management System .. 128
8.2.1 Background .. 128
8.2.2 Solution .. 130
8.2.3 PCAS .. 130
8.2.4 Aspects ... 132
8.2.5 Summary .. 134

8.3 Case Study 2: On-line Testing System ... 134
8.3.1 Background .. 135
8.3.2 Solution .. 136
8.3.3 PCAS .. 137

X

8.3.4 Aspects ... 138
8.3.5 Summary .. 140

8.4 Case Study 3: Company Policy Enforcement .. 140
8.4.1 Background .. 140
8.4.2 Problem Statement ... 141
8.4.3 Solution .. 142
8.4.4 PCAS .. 143
8.4.5 Aspects ... 145
8.4.6 Summary .. 147

CHAPTER 9 CONCLUSIONS AND FUTURE WORK 149

9.1 Critical Analysis of the Approach .. 149

9.2 Conclusions and Technique Contributions .. 155
9.2.1 Conclusions .. 155
9.2.2 Contributions .. 158

9.3 Future work .. 160
9.3.1 Aspect oriented binary code adaptation .. 160
9.3.2 Classification of mismatch problems and adaptation types .. 160
9.3.3 Intelligent Aspect repository and automatic Aspect selection .. 161
9.3.4 Aspect-oriented web service adaptation ... 161

REFERENCES .. 162

APPENDIX A ABBREVIATIONS AND ACRONYMS 172

APPENDIX B THE SCREEN DUMPS OF THE PROTOTYPE TOOL ... 174

B.1 Main Interface ... 174

B.2 Aspect Manager ... 175
B.2.1 The manipulation of AFs .. 175
B.2.2 The manipulation of AAFs ... 179
B.2.3 AInsts ... 183

B.3 Component Analyzer .. 184

B.4 Semantic Interpreter ... 185

B.5 System Preferences .. 186

B.6 PCAS Editor .. 187

B.7 Aspect Generation ... 189

B.8 PCAS Weaver .. 190

APPENDIX C THE CASE STUDIES SOURCE CODE 191

C.1 Student record management system .. 191
C.1.1 PCAS .. 191

XI

C.1.2 AFs ... 192
C.1.3 AInst ... 193
C.1.4 Part of the adapted component source code in if selected target AOP language is Java 195

C.2 On-line testing system ... 195
C.2.1 PCAS .. 195
C.2.2 AFs ... 196
C.2.3 Part of the adapted component source code in Java ... 198

C.3 Policy enforcement .. 198
C.3.1 PCAS .. 198
C.3.2 AFs ... 199
C.3.3 AInsts ... 200

APPENDIX D THE CORE IMPLEMENTATION CODE OF THE SYSTEM
 201

D.1 XML schema for PCAS .. 201

D.2 XML schema (AAF) for Logging aspect ... 202

D.3 XML schema (AAF) for DB connection pool aspect .. 204

D.4 Semantic Interpreter ... 206

APPENDIX E THE SAMPLE TEST CASES OF THE TOOL 209

E. 1 Sample test cases in unit testing ... 209

E. 2 Sample test cases in integration testing ... 211

E. 3 Sample test cases in system testing .. 212

XII

List of Figures

Figure 2.1 Crosscutting concerns .. 41
Figure 2.2 Code tangling ... 41
Figure 2.3 Code scattering .. 42
Figure 2.4 Aspect Oriented Programming ... 43
Figure 2.5 The difference between the conventional approach and AOP in
software development ... 44
Figure 2.6 Aspect in AOP .. 46
Figure 2.7 AOP development stages ... 48
Figure 4.1 A two dimensional view of an Aspect 75
Figure 4.2 The Generative Aspect-oriented component adaptatIoN (GAIN)
framework 80
Figure 4.3 Product line based Aspect generation 84
Figure 4.4 The transformation between AAF and AF 86
Figure 4.5 The transformation between AF and AInst 87
Figure 4.6 Adaptation process .. 87
Figure 4.7 The Weaving process .. 90
Figure 5.1 A comparison between existing AOP methods and GAIN 92
Figure 5.2 Three abstraction layers of Aspects 94
Figure 5.3 Variations in Aspects .. 94
Figure 5.4 An example of AAF .. 98
Figure 5.5 An example of AF ... 99
Figure 5.6 An example of AInst in AspectJ .. 100
Figure 6.1 XML Schema of PCAS ... 105
Figure 6.2 Process based component adaptation specification 107
Figure 6.3 An example of Aspect Framework 109
Figure 6.4 The generic weaving process ... 110
Figure 6.5 The weaving process ... 111
Figure 6.6 Weaving process in existing AOP platform in the approach . 112
Figure 7.1 CASE tool in the framework ... 114
Figure 7.2 PCAS Editor in graphics view ... 116
Figure 7.3 Main interface ... 117
Figure 7.4 Save Aspect Framework to Aspect repository 117
Figure 7.5 Load Aspect Framework from Aspect repository 118
Figure 7.6 Aspect Manager ... 118
Figure 7.7 AAF/AF meta data definition window 119
Figure 7.8 Source view of AF .. 120
Figure 7.9 Aspect generation .. 121
Figure 7.10 Semantic Interpreters and XSLT processing 122
Figure 7.11 The implementation of Aspect Generator 123
Figure 7.12 Flow chart of Aspect generator .. 124

XIII

Figure 8.1 Student record management system 129
Figure 8.2 The PCAS for student record system 131
Figure 8.3 The PCAS for student record system 132
Figure 8.4 Logging Aspect in AF level in student record system 133
Figure 8.5 AInst for Logging Aspect .. 134
Figure 8.6 On-line testing component ... 135
Figure 8.7 The PCAS for On-line Testing system 138
Figure 8.8 An AF of DB connection pool ... 139
Figure 8.9 AInst of DB connection pool Aspect 140
Figure 8.10 Polices for SuperDev ... 142
Figure 8.11 The PCAS for policy enforcement .. 145
Figure 8.12 No standard output policy definition in AF 146
Figure 8.13 No standard output policy definition in AInst in AspectJ 146
Figure 8.14 Warning message while compiling
PolicyEnforcement_NoStandardOutput Aspect with original component .. 146
Figure 8.15 No standard output policy definition in AInst in C# 147
Figure 8.16 Warning message while running
PolicyEnforcement_NoStandardOutput Aspect ... 147
Figure B.1 Main interface ... 174
Figure B.2 Graphics view of AFs ... 175
Figure B.3 Source view of AFs .. 176
Figure B.4 AF meta data edit window .. 177
Figure B.5 Creating new AF file ... 177
Figure B.6 Common structure part of AF ... 178
Figure B.7 Variation part of Logging Aspect .. 178
Figure B.8 Variation part of DBPooling Aspect 179
Figure B.9 AAF meta data edit window .. 179
Figure B.10 Changing icon of AAF ... 180
Figure B.11 AAF edit window ... 181
Figure B.12 Create AAF meta data .. 182
Figure B.13 Create AAF file ... 182
Figure B.14 AAF file edit window ... 182
Figure B.15 Generated AInst ... 183
Figure B.16 Component Analyzer .. 184
Figure B.17 Semantic Interpreters ... 185
Figure B.18 System preferences .. 186
Figure B.19 PCAS Editor ... 187
Figure B.20 Save Aspect Framework ... 188
Figure B.21 Load Aspect Framework ... 188
Figure B.22 Aspect Generation .. 189
Figure B.23 PCAS weaving .. 190

XIV

List of Tables

Table 2.1 Evaluation of conventional component adaptation techniques
 29
Table 3.1 Requirements for component adaptation techniques 63
Table 3.2 Evaluation of current AOP approaches 70
Table 8.1 The availability of Semantic Interpreters for policies 143
Table 9.1 The comparison between GAIN and other component
adaptation techniques ... 150
Table 9.2 The comparison between GAIN and other AOP techniques 153

1

Chapter 1 Introduction

1.1 Problem Statement

The idea underlying the paradigm of Component Based Software

Development (CBSD) is to develop software systems not from scratch but by

assembling pre-existing parts, as is common in other engineering

disciplines. CBSD focuses on building large software systems by integrating

previously-existing software components. By enhancing the flexibility and

maintainability of systems, this approach can potentially be used to reduce

software development costs, assemble systems rapidly, and reduce the

maintenance burden associated with the support and upgrade of large

systems. At the foundation of this approach is the assumption that certain

parts of large software systems reappear with sufficient regularity that

common parts should be written once, rather than many times, and that

common systems should be assembled through reuse rather than rewritten

again and again [1][132].

However, the reality is that CBSD has not been as widely adopted as it

should be. From a technical perspective, the reason is largely due to the

difficulty of locating suitable components in a library and adapting these

components to meet the specific needs of the user. Ideally, previously-

existing components can be assembled by simply plugging perfectly

compatible components together to build component based systems [9]. In

practice, due to the availability of components and the diversity of target

applications, in many cases mismatches1 between pre-qualified available

components and the specific reuse context of particular applications are

inevitable and have been a major hurdle for wider component reusability and

1. Component mismatch refers to the situation that the selected component does not work well for or is not
suitable for the target application. Full details are discussed in section 2.1.4.1.

2

component composition. These mismatches may occur in a range of issues

of system quality, e.g. dependability and safety, and degrade the quality of

the target component-based system severely. Consequently, the component

marketplace will only exist when software developers can adapt software

components to work within the applications [55].

Therefore, component adaptation is recognized as an unavoidable, crucial

task in CBSD and has been researched over years as a key solution to the

above mismatch problem [9][55][90][104][154][155]. The possibility for

application developers to easily adapt COTS (Commercial-Off-The-Shelf)

components to work properly within their application is a must for the

creation of component based systems [17]. Until now, however, due to the

complex nature of the mismatch problem, available approaches still have

their disadvantages:

 Some approaches are only capable for adaptation at simple levels

such as wrappers [155]. In this type of adaptation, only interface level

adaptation can be performed, e.g. changing the number of

parameters for methods.

 Some other approaches [104][154] are inefficient to use as a result of

lack of automation in their adaptation process, which limits the wide

use of the approaches. Too much user intervention is required to

provide the necessary information for adaptation.

 Current approaches such as [155] are not proficient in Quality-of-

Service (QoS) related adaptation. While fulfilling typical functional

adaptation requirements during the adaptation process, these

approaches are not capable of improving the QoS of the target

components.

To assure the quality of target component-based software, more efficient

and automated adaptation mechanisms are still needed to eliminate the

above mismatches.

3

Aspect Oriented Programming (AOP) is a new methodology that provides

separation of crosscutting concerns1 by introducing a new unit of

modularization - an Aspect that crosscuts other modules

[91][113][128][137][147]. In this way, all the associated complexity of the

crosscutting concerns is isolated into the Aspects. It is asserted [13][127]

[151] that the final system becomes easier to design, implement and

maintain. The nature of AOP makes it particularly suitable for addressing

non-functional issues with component-based systems. However, there are

still some unaddressed issues associated with current AOP techniques,

which limit the wide adoption of AOP in software development:

 The reusability of Aspects. Currently, the research communities focus

on the implementation of different aspect-oriented programming

languages. However, the reusability issues of Aspects have not been

addressed properly, which restricts the wider use of AOP.

 Platform specific Aspects. All current AOP platforms are bound to

specific programming languages, e.g. AspectJ for Java, Aspect

C/C++ for C/C++, and aoPHP for PHP. For generic reuse,

semantically equivalent Aspects may be needed in different

heterogeneous systems which are implemented by various

programming languages. As a result, these semantically equivalent

Aspects have to be re-implemented again and again for application in

different systems.

 Naive weaving process2. To use Aspects in a component based

system, an advanced weaving process, e.g. to fulfil the complex

adaptation requirements, complex flow control such as a switch

structure, is needed. However, the weaving mechanisms in current

AOP projects only support individual Aspect weaving, rather than put

them into a flexible and advanced weaving process.

 1. Crosscutting concerns are aspects of a program which affect (crosscut) other concerns, full details are provided
 in section 2.4.1.1.
2. Weaving in AOP means compiling the Aspects with the affected software modules, full details are provided in
 section 2.4.1.4.

4

1.2 Aim and Objectives of the Research

To solve the problems of component based systems and aspect-oriented

programming mentioned in Section 1.1, a Generative Aspect-oriented

component adaptatIoN (GAIN) approach is proposed to achieve high

adaptability, and therefore high reusability of components with Aspect-

oriented component adaptation technologies.

The objectives of the research are as follows:

 To define a framework to support generative aspect oriented

component adaptation. The key elements are defined in the

framework, e.g. Reusable Aspect model, advanced weaving process.

 To develop a novel component adaptation approach within the

defined framework. Based on existing fields of software product lines,

generative programming, component adaptation, and AOP

techniques, to develop a concrete component adaptation approach to

solve the problems associated with existing AOP and component

adaptation approaches. The approach applies aspect-oriented

generative adaptation to targeted components to correct the

mismatch problem so that the components can be integrated into the

target application easily. Automation, deep level adaptation1 and

reusable adaptation knowledge should be the benefits of the

approach.

 To build a prototype tool to illustrate and scale up the approach. As

the implementation of the approach, a prototype tool is developed to

support the automation of component adaptation in the approach and

to demonstrate its scalability.

 To do case studies to evaluate the approach. Thereby evaluating the

usability and correctness of the approach; case studies in various

programming languages and platforms are performed.

1. Deep level component adaptation refers to the adaptation that changes the component functionalities.

5

1.3 Contribution to Knowledge

The proposed approach applies aspect-oriented generative adaptation to

targeted components to correct component mismatches so that the

components can be integrated into the target application more easily.

Automation and deep level adaptation, reuse of adaptation knowledge, QoS

correction, and flexible adaptation process support are the benefits of the

approach, which are achieved with the following key techniques in an

aspect-oriented product line based component reuse framework:

 Product line based reusable adaptation aspect model. In the

approach, the adaptation knowledge is captured in Aspects and aims

to be reusable in various adaptation circumstances. To achieve

product line based automatic generation of the adaptation Aspects, a

two dimensional aspect model is developed.

 Highly reusable and AOP platform independent adaptation

Aspects. With the support from the product line based adaptation

Aspect model, the adaptation knowledge is reusable via adaptation

Aspects. Currently, the approach supports four AOP platform

independent adaptation Aspects, namely Logging, Authentication,

Database connection pool, and Policy enforcement. These Aspects

are mapped to specific AOP platforms by automatically generating

platform-specific Aspects via selecting and applying corresponding

Semantic Interpreters.

 Aspect repository for adaptation Aspect reuse and automatic

generation. As an embodiment of the product line based reusable

adaptation Aspect model, the Aspect repository was developed as a

key element to structure the three layers of an Aspect, to realize

reusable Aspects in different layers in the approach, and to provide a

mechanism for incremental reuse of Aspects.

 Advanced adaptation Aspect weaving process. The enhanced

Aspect weaver supports the advanced weaving processes, e.g.

6

sequence and switch structure in a weaving process. The advanced

weaving processes may be also added into the Aspect repository for

further reuse.

1.4 The Structure of the Thesis

The thesis is organized as follows:

Chapter 1 gives the introduction of the research, including the problem

statement, the aim and objectives of the research, and the contributions to

knowledge.

The literature review is presented in Chapter 2, which includes the current

state of software reuse, component based systems, software product lines,

aspect oriented programming, and model driven architecture.

Chapter 3 summarises the related research projects in component

adaptation, AOP, and software product lines, and describes typical research

projects in detail. In addition, these projects are critically analysed and a

conclusion is drawn, which gives the motivation of the research.

Chapter 4 presents a formal description of the approach, which includes the

product line aspect model, the approach framework, the process based

component adaptation, and the Aspect repository.

Chapter 5 describes the multi-layered reusable Aspect structure and the

Aspect repository.

Chapter 6 demonstrates the process based component adaptation in detail.

The prototype tool, including its architecture and implementation is described

in chapter 7.

7

In chapter 8, three case studies are used to illustrate and evaluate the

approach and the tool.

Chapter 9 presents the conclusions of the research and future work.

8

Chapter 2 Literature Review

This chapter conducts a broad survey of many techniques that have been

found useful for developing reusable component based systems such as

Component Based Software Development, Web Services, Software Reuse

technique, Generative Reuse technique, Aspect Oriented Programming, and

Software Product Lines. These techniques are the foundation of the

development of the proposed approach.

2.1 Current State of Component Based System

2.1.1 Component Based Technology

In past decades, object-oriented software development has achieved great

success in software development. However, it has not achieved extensive

reuse since individual classes are too detailed, specific, and bound to

application domains. As a result, Component Based Software Development

(CBSD) emerged in the late 1990s as a reuse-based approach to software

systems development [89][122][132].

CBSD focuses on building large scale software systems by integrating

existing software components. By enhancing the flexibility and

maintainability of systems, the CBSD approach can potentially be used to

reduce software development costs, assemble systems rapidly, and reduce

the maintenance burden associated with the support and upgrade of large

systems [17][79][122][132][139]. Under the methodology of CBSD, both

Commercial-Off The Shelf (COTS) [79] components and in-house

components can be integrated to build a range of target applications,

9

including traditional systems and most modern applications such as web

services in a service-oriented architecture [20][34][45][46][94][95].

CBSD is being increasingly adopted as a major approach to software

engineering even though reusable components are not always available.

Components are independent and their implementation details are hidden,

hence components do not interfere with each other. Without affecting the

rest of the system, components can be easily replaced or upgraded by

others which provide additional functionalities reflecting new customers’

requirements. Components communicate with each other by using well-

defined interfaces. In addition, the cost of software development is reduced

by adopting existing, mature components [132].

CBSD is concerned with the assembly of pre-existing software components

into larger pieces of software. Underlying this process is the idea that

software components are written in such a way that they provide functions

common to many different systems. Borrowing ideas from hardware

components, the goal of CBSD is to allow parts (components) of a software

system to be replaced by newer, functionally equivalent components.

The idea is not new. Componentizing software had been suggested by

McIlorys [110] as a way of tackling the software crisis, yet only in the last

decade or so has the idea of component-based software development taken

off. Nowadays there is an increasing market place for COTS components

[79], embodying a “buy, not build” approach to software development. The

promise of CBSD is a reduction in development costs: component systems

are flexible and easy to maintain due to the intended plug-and-play nature of

components.

Commercial off-the-shelf component is a term for software components that

are ready-made and available for sale, lease, or license to the general

public. They are often used as alternatives to in-house developments. The

10

use of COTS is being mandated across many business programs, as they

may offer significant savings in costs and time. However, since COTS

software specifications are written by external sources, end-users are

sometimes worried about using of these products because they fear that

future changes to the product will not be in their control.

Components can be categorised into two groups [132]:

 Specific components: they are the components bound to an

application domain.

 General components: they are general purpose components such as

user interface and database connection components.

The widely used component models include:

 Common Object Request Broker Architecture (CORBA) [72]. CORBA

is a distributed object standard developed by the Object Management

Group (OMG). CORBA is a mechanism for normalizing the method-

call semantics between application objects that reside either in the

same or remote address. CORBA uses an interface definition

language (IDL) to specify the interfaces that objects will present to the

outside world. CORBA then specifies a “mapping” from IDL to a

specific implementation language like C++ or Java. Standard

mappings exist for Ada, C, C++, Lisp, Smalltalk, Java, COBOL, PL/I

and Python. There are also non-standard mappings for Perl, Visual

Basic, Ruby, Erlang, and Tcl implemented by Object Request Brokers

(ORBs) written for those languages.

 Common Object Model (COM), COM+ and Distributed Common

Object Model (DCOM) [76]. Microsoft COM (Component Object

Model) technology is used to support communications between

components and dynamic object creation in any programming

language that supports the technology. COM is used by developers to

create reusable software components, build applications by linking

11

components together. For example COM OLE (Object Linking and

Embedding) technology allows Word documents to dynamically link to

data / diagrams in Excel spreadsheets. Microsoft also provides COM

interfaces for many Windows application services such as Microsoft

Active Directory (AD) and Microsoft Message Queuing (MSMQ).

“COM+ is the name of the COM-based services and technologies first

released in Windows 2000. COM+ brought together the technology of

COM components and the application host of Microsoft Transaction

Server (MTS).”[76]. Difficult programming tasks such as resource

pooling, and event publication and subscription are automatically

handled by COM+.

DCOM[76] is a technology enabling software components distributed

across several networked computers to communicate with each other.

DCOM extends Microsoft's COM, and provides the communication

substrate under Microsoft's COM+ application server infrastructure. It

has been deprecated in favour of Microsoft .NET.

COM is expected to be replaced to at least some extent by the

Microsoft .NET framework [77]. However, Microsoft claims that COM

objects can still be used with all .NET languages.

 Microsoft .NET Framework [77]. “The .NET Framework is Microsoft's

managed code programming model for building applications on

Windows clients, servers, and mobile or embedded devices.” The pre-

coded solutions that form the framework's class library cover a large

range of programming needs in areas including: user interface, data

access, database connectivity, cryptography, web application

development, numeric algorithms, and network communications. The

Microsoft .NET Framework is a software component that can be

added to or is included with Microsoft Windows operating system. It

provides pre-coded solutions to common program requirements, and

manages the execution of programs written specifically for the

framework. The .NET Framework is a key Microsoft offering, and is

intended to be used by most new applications created for the

12

Windows platform. The functions of the class library are used by

programmers who combine them with their own code to develop

applications.

 JavaBeans / Enterprise JavaBeans (EJB) [63] are the components

model developed by SUN. JavaBeans are classes written in the Java

programming language conforming to a particular convention. They

are used to encapsulate many objects into a single object (the bean),

so that the bean can be passed around rather than the individual

objects. The EJB specification is one of the several Java APIs on the

Java Platform Enterprise Edition (J2EE). EJB is a server-side

component that encapsulates the business logic of an application.

The EJB specification intends to provide a standard way to implement

the back-end business logic code typically found in enterprise

applications (as opposed to front-end user-interface code). Such code

was frequently found to solve the same problems, and it was found

that solutions to these problems are often repeatedly re-implemented

by software developers. Enterprise Java Beans were intended to

handle such common concerns such as persistence, transactional

integrity, and security in a standard way, leaving programmers free to

concentrate on the business logic.

 Web services [81]: Web services are Web based applications that use

open, XML-based standards and transport protocols to exchange

data with clients. A Web service is described via WSDL (Web Service

Description Language) and is capable of being accessed via standard

network protocols such as but not limited to SOAP (Simple Object

Access Protocol) over HTTP (Hyper Text Transfer Protocol). There

are some simple mechanisms for interested parties to locate the

service and locate its public interface. The most prominent directory

of Web services is currently available via UDDI (Universal

Description, Discovery, and Integration).

13

2.1.2 Component Qualification

Qualification is the process of discovering and determining the suitability of a

component for use within the intended system [1]. Reusable components are

normally identified by the characteristics of their interfaces. However, the

interface does not provide a complete picture of the degree to which the

component will fit the architecture design and requirements. The software

engineer must use a process of discovery and analysis to select the most

suitable components.

Selection is dependent on the condition that measures exist for comparing

one component against another and evaluating the fitness of use of

components. During this activity, the issues of trust and certification arise.

The process of certification is two-fold [1]:

1. To establish facts about a component and to determine that the

properties a component possesses are also conformant with its published

specification; and

2. To establish trust in the validity of these facts, perhaps by having a

trusted third-party organisation check the truth of this conformance and to

provide a certificate to verify this.

The motivation for component certification is that there is a causal link

between a component's certified properties and the properties of the final

system. If enough information is known about the certified components

selected for assembly then it may be possible to predict the properties of the

final assembled system. For many of components in the marketplace

prediction is difficult because of a lack of information about a component's

capabilities and a lack of trust in this information.

2.1.3 Component Composition

Component composition is the process of integrating components to form a

working system if reusable components are available. In component based

14

software development, most systems will be constructed by composing

these reusable components together [132].

There are a number of types of component composition [132], for example:

 Sequential composition: this occurs when the components are

executed in sequence.

 Hierarchical composition: this occurs when one component uses

functionalities provided by another component.

 Additive composition: this occurs when the interfaces of several

components are put together to create a new component. The

interfaces of the composite component are created by integrating all

of the interfaces of the related components, and removing duplicate

operations if necessary.

All types of component composition may be used when creating a system. In

component composition, ‘glue code’ is used to link components. For

example, in sequential composition, the output of component C1 may

become the input to component C2. Intermediate statements are needed to

call component C1, get the result and then call component C2 with that

result as a parameter [132].

2.1.4 Component Adaptation

2.1.4.1 Component Mismatch Problem

In CBSD, while integrating various existing components to build a system,

side effects may occur. Component mismatch problems arise while those

side effects clash. The typical mismatch problems include risks,

dependability, safety, incompatibilities, inconsistencies, and functional

unsuitability. These mismatches may degrade the quality of the target

component-based system severely [38] [50].

15

For example, the incompatibility problem [10] [122] [146] [159] during

component composition is likely caused by the interface of the component.

In some cases, where components are developed independently for reuse,

developers will often be faced with interface incompatibilities where the

interfaces of the components that they wish to compose are not the same.

The component incompatibility problem can be compared to the

incompatible problems to electrical appliances. The plugs are standardized,

and therefore can be used by different electrical appliances. However, the

standardization of plugs is often limited within a country. The electrical

appliances are usually not plug compatible in other countries (for

composition). In this situation, adaptors are needed to bridge the different

interfaces (for composition) [122].

In practice, due to the availability of components and the diversity of target

applications, in many cases mismatches between pre-qualified components

and the specific reuse context of particular applications are inevitable and

have been a major hurdle for wider component reusability and component

composition[50][103].

Many of the existing approaches classify component mismatch to syntactic,

semantic, and pragmatic mismatches and connect them to various issues of

the component like functionality, architecture, and quality [9][10][159].

However, if component mismatches do happen in a component-based

system, software developers need to fix these mismatches by using various

component adaptation techniques (introduced in section 2.1.7 and section

3.1) in different circumstances. For example, mismatches may be solved by

writing an adaptor component that reconciles the interfaces of the

components being reused. Usually, an adaptor component converts one

interface to another. The precise form of the adaptor depends on the type of

composition. In some cases, the adaptor simply takes a result from one

16

component and converts it into a form where it can be used as an input to

another.

The mismatch can be determined by various methods. Firstly, the interface

of the component should be checked against the required interface in the

target system. If they have different interfaces, it means that some

mismatches exist. Secondly, the documentation of the component can also

be used as a reference to find potential mismatch problems because the

original component may require specific conditions such as operating

system, hardware/software environments to work properly. Last but not

least, the verification process should be used to determine whether the

properties a component possesses are conformant with its published

specification.

2.1.4.2 Component Adaptation

Despite the success of component-based reuse, the mismatches between

available pre-qualified components and the specific reuse context in

individual applications continue to be a major factor hindering component

composition and therefore reusability. From a technical perspective, the

reason is largely due to the difficulty of locating suitable components in a

library (retrieval) and adapting these components to meet the specific needs

of the user. As how to locate a suitable component in a library is beyond the

scope of the research during the study, it is discussed in the future work

(Section 9.3.3). The research focused on component adaptation.

Many researchers [54][122][132][155][160] have identified that “as-is” reuse

is very unlikely to occur and that in the majority of the cases, a reused

component has to be adapted in some way to match the application’s

requirements. The reason for this is that individual components are written to

meet different requirements, each one making certain assumptions about

the context in which it is deployed.

17

Therefore, components often must be adapted when used in a new system.

The process of changing the component for use in a particular application is

often referred to as component adaptation. The purpose of component

adaptation is to ensure that mismatches among components are minimised.

Component adaptation is recognized as an unavoidable, crucial task in

CBSD and has been researched over the years as a key solution to the

mismatch problem (section 2.1.4.1) [9][55][90][104][154][155].

Component adaptation is the sequence of steps performed whenever a

software component is changed in order to comply with new requirements

emerging from end users. Such changes can be performed at different

stages during the software development life cycle. Therefore, component

adaptation can be distinguished as requirement adaptation, design-time

adaptation, and run-time adaptation [9][21]:

 Requirement adaptation is used to react to changes during

requirements engineering, especially when new requirements are

emerging in the application domain.

 Design-time adaptation is applied during architectural design

whenever an analysis of the system architecture indicates a mismatch

between two constituent components.

 Run-time adaptation takes place when the system offers different

behaviour depending on the context the parts are running in.

2.1.4.3 Functional and Non-functional Requirements

In software engineering, a functional requirement defines a function of a

software system or its sub systems. A function can be described as a set of

inputs, the behaviour or the processing, and outputs. Non-functional

requirements are requirements which specify criteria that can be used to

judge the operation of a system, rather than specific behaviours. In general,

18

functional requirements define what a system is supposed to do whereas

non-functional requirements define how a system is supposed to be [61].

2.1.5 Classification of Component Adaptation Techniques

Components must be adapted based on rules that ensure mismatches

among components are minimized. Adapting a component can be achieved

in several ways, but traditional techniques can be categorized into white-box,

e.g. inheritance and copy-paste, grey-box, e.g. own extension language in

components, and black-box, e.g. wrapping, depending on the accessibility of

the internal structure of a component [122]:

However, in practice, the above classification is not absolutely appropriate.

For example, wrapping a component may require more understanding of the

component, rather than its interface specification.

2.1.5.1 White-box Adaptation

White-box adaptation techniques require the software engineer to adapt a

reused component either by changing its internal specification or by

overriding and excluding parts of the internal specification. An adapted

component is a component together with the glue code necessary for the

original component to plug into the component system.

The main disadvantage of the white-box adaptation approach is that the

modification to source code requires additional testing and can result in

serious maintenance and evolution concerns in the long term. A new

component derived by modifications to an existing component must be

regarded as a new component and thoroughly tested. Additionally, the new

component requires separate maintenance [122].

19

2.1.5.2 Grey-box Adaptation

In Grey-box component adaptation, a component provides its own extension

language or application programming interface (API). Therefore, the end-

user can adapt the component by using the extension language or API,

instead of changing the source code of the component.

However, using an extension language or API is not an easy job for end-

users, which limits the use of grey-box adaptation.

2.1.5.3 Black-box Adaptation

In Black-box adaptation, only a binary executable form of the component is

available and there is no extension language or API. Therefore, the

component can be either reused as it is, or adapted at the interface level of

the component. Software engineers need to have the knowledge about the

interface of the component, rather than the internal specifications.

2.1.5.4 Simple Level Adaptation and Deep Level Adaptation

Simple level adaptation refers to the adaptation that does not change the

component itself. Normally, simple level adaptation is performed at

component interface level, for example, Wrapper (refer to section 2.1.7.3 for

details) is a typical simple level adaptation.

Deep level adaptation refers to the adaptation that changes the component

functionalities, such as adding a new service, removing or modifying an

existing service of the component, or altering quality features of the

component.

Black/white box and simple/deep level adaptation are the different views of

component adaptation technologies. Black/white box focus on whether the

source code of original component is available. Simple/deep level

20

adaptations focus on the effect of the adaptation e.g. whether the original

component is changed. For example, deep level adaptation is not

necessarily white box adaptation as some black box / grey box adaptations

can adapt the component without knowing the internal details of the

component.

2.1.5.5 Source Code Adaptation and Binary Code Adaptation

Source code adaptation is an adaptation technique using source code level

analysis, and adaptation to modify the source code directly. Rather than

modifying source code manually in normal software development,

developers use an existing source code adaptation tool to adapt the source

code automatically. For example, in some UML (Unified Modelling

Language) modelling tools [75][83], when developers change the UML

model in the graphic view, the source code will be changed accordingly and

automatically.

However, there are some criticisms to source code adaptation. First of all, a

typical criticism to source code adaptation is the effort to glue-code

development [4][58]. “Although the cost of glue-code development in a

component based system accounts for less than half of the total cost, the

effort per line of glue-code is about three times the effort per line of

application code” [4]. In addition, the glue code layer is often fragile [4][58],

and can break if either one of the modules it is gluing together is changed.

Therefore, it requires making sure that the glue layer is kept up to date with

any changes in either module.

Secondly, as the original application is modified during source code

adaptation, recovering the original application will become difficult, which

introduces the common version control problems for software systems [122].

Binary level adaptation is a component adaptation technique that modifies

binary level components without knowing the source code of those

21

components. It is appropriate to use binary level adaptation when the source

code of the components is not available. Two types of binary level

adaptation are recognized: static binary adaptation and dynamic binary

adaptation. Static binary adaptation applies adaptation to components

before loading components into the run-time environment while dynamic

binary adaptation applies adaptation to components at run-time, for

example, the Java Virtual Machine (JVM) is often modified to support

additional adaptations in some Java based binary adaptation projects [90].

2.1.6 Requirements for Component Adaptation Techniques

The following shows the requirements (R1-R8) for component adaptation

techniques that have been compiled from various papers [56][90][155].

These requirements can be used to evaluate component adaptation

techniques. It may not be possible for an adaptation technique to fulfil all

requirements because there are conflicts between these requirements such

as black-box vs. deep level. Moreover, there is no clear indication which

requirement has priority.

R1. Black-box

Ideally, the adaptation of a component and the component itself should be

two separate entities. In other words, the adaptation mechanism requires no

access to the internal details of the component, only the interface level of the

component is accessed. Therefore, the developer adapting the component

only needs to understand the interface to the component.

However, in practice, black-box adaptation is not always feasible for most

types of adaptation because insufficient information about a component is

available. Sometimes the internal information of a component is required

because software developers have to understand the design details of the

component prior to performing the adaptation.

22

R2. Transparent

Transparent can be understood as that both the end-user of the adapted

component and the component itself should be unaware of the adaptation

between them. In addition, the functionalities of the component that do not

need to be adapted should be accessible directly without the help from the

adaptation.

R3. Composable

The composable requirement deals with the inter-relationships between

adapted components, or between adaptations themselves. A composable

adaptation provides recombinant adapted components and adaptation

themselves that can be selected and assembled in various combinations to

satisfy specific user requirements.

The composable requirement has three relevant aspects [56]:

First, the adaptation process should be easily applied to the original

component.

Second, the adapted component should be able to integrate with other

components as it was without the adaptation.

Finally, the adaptation should be able to integrate with other adaptations,

which means the adaptation can be applied to other adapted components.

R4. Reusable

Reusable means that the code performing an adaptation can be used again

and again in other adaptation scenarios. The purpose of component

adaptation is to use the existing components repeatedly in different

situations. Therefore, it would be highly desirable if the adaptation process is

23

repeatable because the adaptation process may be required in similar

adaptations.

R5. Configurable

The adaptation mechanism should be able to apply the same adaptation to a

set of target components with different settings.

R6. Automatic

Ideally, while adapting components, the adaptation process should work

without user intervention. With the tool support, developers should be

released from the heavy-coded tasks as the adaptation knowledge should

be saved in the adaptation framework, e.g. a repository.

R7. Deep level adaptation

Component adaptation mechanisms should be able to deal with different

level of adaptations. For example, some adaptation techniques deal with

interface level adaptation such as adding parameters to a method. On the

other hand, some other adaptation mechanisms can change the

functionalities of a component, such as adding a new method or modifying

the behaviour of an existing method.

R8. Language independence

As all components are implemented in many different programming

languages, the mechanism for adaptation should not depend on any

language-specific feature. The benefit of language independence is that the

same adaptation mechanism can be applied to different components.

2.1.7 Conventional Component Adaptation Techniques

When using a conventional object-oriented language, the software engineer

has three component adaptation techniques that can be used to modify a

reused component, i.e. copy-paste, inheritance and wrapping. In the

24

following sections, each technique is described and subsequently evaluated

with respect to the identified requirements.

2.1.7.1 Copy-paste

When a previously used component has some similarity with a new

component, the most straightforward way is to copy the code of that part of

the component that is suitable to be reused in the new component under

development. Software engineers usually need to make changes to the code

copied from existing components to fit the requirements for the new

component.

However, Copy-paste has many disadvantages. First of all, software

engineers must fully understand the code to be copied. Otherwise, the code

may be used inappropriately, which may introduce errors to the new

component. Secondly, if the code to be copied has a bug, then after Copy-

paste, the bug will spread over the new component. Last but not least, if the

same code is copied and pasted everywhere in the new component, it is

very difficult to maintain the code in the new component when the original

code is changed. Therefore, Copy-paste is also called a “quick and dirty”

approach for reuse.

According to the aforementioned requirements, the evaluation of the Copy-

paste technique can be summarised as follows:

• Black-box: Since Copy-paste is a simple source code level operation,

there is no adaptation code at all. Therefore, the black-box requirement is

not fulfilled.

• Transparent: Since the reused code and the modification to it are mixed

together to build a new component, the end-user is unaware of the

change to source code. The transparency requirement is fulfilled.

25

• Composable: Due to the manual based code modification, composability

of adaptation functionality with the reused component is very low. When

software engineers want to compose several types of adaptation

behaviour, they have to do it manually.

• Reusable: Since the adaptation code is mixed with the code of the reused

component, there is no reuse of for the component and the adaptation

behaviour at all, except through the same copy-paste behaviour.

• Configurable: Adapting a component through copy-paste does not

represent the adaptation behaviour as a first class entity, thus no

configurability is available.

• Automatic: Due to the manual based code modification, there is no

automation during the whole process. The automation requirement is not

fulfilled.

• Deep level adaptation: Since software developers can write any code

they want to modify the previously existing source code, the deep level

adaptation requirement is fulfilled.

• Language independence: As a source code level adaptation technique,

Copy-paste is programming language specific.

2.1.7.2 Inheritance

In object-oriented programming languages, inheritance [65] is provided to

support the reuse of components. Depending on the language model, all or

part of internal aspects are available to the reusing component. For

example, in Java, while using private, protected and public keywords, none,

or part of, or all methods/attributes can be accessed in a sub class. The

advantage of using Inheritance is that the reusable code only exists in the

superclass. As a result, better maintainability can be achieved by using

Inheritance.

However, as a typical white box adaptation technique, Inheritance inevitably

has its disadvantages. For example, software developers have to fully

26

understand the details of the superclass when they want to define a

subclass.

With respect to the requirements, the evaluation of Inheritance can be

summarised as follows:

• Black-box: Whether inheritance is black-box, depends primarily on its

implementation in the language model. For example, in Java / C++, if an

attribute or method is declared as private in a superclass, the superclass

is treated as a black box because the adaptation behaviour is separated

from the original component.

• Transparent: Since the end-user of the subclass is unaware of the

adaptation between superclass and subclass, the transparent requirement

is fulfilled.

• Composable: Even the adaptation behaviour in inheritance is specified in

the subclass, and therefore separated from the original component, it is

still difficult to apply the same adaptation behaviour to different

components or compose multiple adaptation behaviours together.

Therefore, the composable requirement is not fulfilled.

• Reusable: Despite the fact that inheritance improves the reusability of

original component, the adaptation behaviour itself is still not reusable

because the adapted behaviour is bound to the specific requirements of

the subclass. Therefore, the reusable requirement is not fulfilled.

• Configurable: Although the adaptation behaviour is represented as a

subclass, inheritance provides no means to configure the specific part of

the adaptation behaviour. As a result, the configurable requirement is not

fulfilled.

• Automatic: As a manual based coding process, inheritance does not

support automation.

• Deep level adaptation: Since software developers can write code to

modify the super class, the deep level adaptation requirement is fulfilled.

• Language independence: As a source code level adaptation technique,

inheritance is programming language specific.

27

2.1.7.3 Wrapping

Wrapping [122][155] is a typical black-box component adaptation technique.

A wrapper is a container that wholly encapsulates a component and

provides an interface that can either restrict or extend a component’s

functionality. For example, the wrapper may be used to adapt the interface

of the component, forwarding all calls to the wrapper to appropriate

corresponding methods of the component.

Wrapping components is a very common solution in solving interoperation

problems [122]. For example, text-based components can be reused in a

Graphical User Interface application after being wrapped. In this way, the

direct modification of the component can be avoided.

The main disadvantages of wrappers [58] are:

 Excessive amount of adaptation code: if wrappers are applied

frequently, then an excessive amount of adaptation code will be

required.

 Performance: as all the calls to the component will be received by the

wrapper and then forwarded to the component, more processing time

is required, which result in performance overhead.

The evaluation of wrapping with respect to the requirements is the following:

• Black-box: Since only the interface of wrapped components is available

to the wrapper, the wrapping technique is black-box. The wrapper has no

way to access the internals of the original component.

• Transparent: As the wrapper completely encapsulates the adapted

component, all messages from the clients are intercepted by wrapper first.

Therefore, the transparent requirement is not fulfilled.

• Composable: Since a wrapper and its wrapped components can be

wrapped by another wrapper, the composable requirement is fulfilled.

28

• Reusable: Since the design of wrapper highly depends on its wrapped

components, a new wrapper is required when underlying components are

changed. Therefore, the reusable requirement is not fulfilled.

• Configurable: As a hard coded technique, wrapper does not support

flexible configurations while being changed. Developers have to write

corresponding code to support the change to the wrapper.

• Automatic: Since software developers need to understand the interface

of underlying component(s) and write the code manually, the automatic

requirement is not fulfilled.

• Deep level adaptation: Without knowing the internal specification, only

simple interface level adaptation can be performed by a wrapper.

Therefore, the deep level adaptation requirement is not fulfilled.

• Language independence: Since developers need to write language

specific wrappers to wrap different underlying components, the language

independence requirement is not fulfilled. However, if the underlying

components are published as web services and the wrapper works on

existing web services, the wrapper can be language independent.

2.1.7.4 Evaluating Conventional Techniques

In Table 2.1, an overview of the conventional adaptation techniques

including Copy-paste, Inheritance, and Wrapping is presented that indicates

how well each technique fulfils the specified requirements.

29

Adaptation techniques R1 R2 R3 R4 R5 R6 R7 R8
Copy-paste - + - - - - + -
Inheritance - + - - - - + -
Wrapping + - + - - - - +/-

R1: Black-box

R2: Transparent

R3: Composable

R4: Reusable

R5: Configurable

R6: Automatic

R7: Deep level adaptation

R8: Language independence

+: fulfilled

-: not fulfilled

+/-: fulfilled or not fulfilled depends on the adaptation circumstance, details

can be found in section 2.1.7.3

Table 2.1 Evaluation of conventional component adaptation techniques

2.2 Current State of Web Services and Web Service
Composition

2.2.1 Introduction

An XML web service is a self-described and self-contained software

component developed for the integration of web based loosely-coupled

distributed systems [19][20][34][95][126]. A web service is the end result of

research into the problems with distributed applications based on binary

protocols, like DCOM, CORBA and EJB [93][115] [157]. The fast adoption of

web protocols was one of the factors that made XML based web services

possible. An XML web service is based on the XML standard, as the name

implies, but there are a number of other standard protocols, including Hyper-

Text Transfer Protocol (HTTP) and Simple Object Access Protocol (SOAP)

that are instrumental in making XML web services functional. In addition,

30

web services could be described by Web Service Description Language

(WSDL).

Based on standard description languages and protocols, web services can

be used as a common mechanism to wrap up enterprise software

applications for integration beyond the enterprise boundary across

heterogeneous platforms in a distributed environment [22][24].

XML web services provide a model for design and implementation in which

an application is built up from a number of smaller web services which can

inter-operate regardless of how they are implemented and where they are

hosted. This style of application development relies on three essential

ingredients [94][121][145]:

 A protocol (SOAP) to allow communication between heterogeneous

components on heterogeneous computers in heterogeneous

networks;

 A means of agreeing the interface (WSDL) between service providers

(servers) and service users (clients);

 A means for service users to find the service provider(s) who can

satisfy their requirements.

Based on XML web services, Service Oriented Architecture (SOA)[15] is the

latest evolution in distributed computing. The key differences between SOA

and Object Oriented Programming (OOP) are listed below [94][126]:

OOP SOA

Invoke Find-bind-use
Synchronous Asynchronous
Stateful Stateless

A SOA consists of three primary parts [109][121]:

 The service provider: provides web services.

 The service requester: consumes web services.

31

 The service agency: provides interfaces of different web services. The

service requester finds appropriate web services from the service

agency and then consumes web services from the service provider.

2.2.2 Web Service Composition

In SOA, business process languages are used to describe the workflow, e.g.

Business Process Execution Language for Web Services (BPEL4WS)

[73][97]. Developers focus on the composition of different web services.

Web service composition does not involve the physical integration of all web

services: the basic web services that participate in the composition remain

separated from the composite web service. The main goal of web service

composition is to specify which operations need to be invoked, in what order,

and how to handle exceptional situations [26][37].

Composition of web services can be analysed from two standpoints[18]

[37][141]:

 Composition in the "part-of" sense (granularity), i.e. larger part

encapsulates web services and exposes itself as a web service.

 Composition in the "sequencing" sense, i.e. definition of the

invocation order of web services.

Web service composition can be broadly classified into three categories

[34][84][109][120][126][130][131]: manual composition, semi-automated

composition and automated composition.

In manual composition, users have to generate workflow scripts either

graphically or through a text editor, which are then submitted to a workflow

execution engine. For instance, Triana [108] provides a graphical user

interface, allowing the user to select the service from a toolbox and drag and

drop onto a canvas. Then, the composed graph can be executed over a

peer-to-peer or Grid network. BPEL4WS [73] allows the user to compose

32

web services at XML level. The composed web services are then submitted

to an underlying execution engine. However, these systems have several

drawbacks [53][156]. Firstly, the discovery and selection of web services is

impossible with the increasing number of services. Secondly, users have to

get some low-level knowledge, e.g. in the case of BPEL4WS, users are

expected to build a workflow at the XML level. Although Triana provides a

graphical interface, it is not suitable for a large workflow. Third, if the service

is unavailable, the execution will fail.

Semi-automated composition techniques [120][129] make semantic

suggestions during service composition process. Users still have to select

appropriate services from a shortlist and link them together. Although these

systems solve some problems of manual composition frameworks, they are

still un-scalable as the filtering process may provide too many services for a

user to select from [53].

Automated composition techniques [11][23][53][109][120][126][140][144] use

smart software with embedded artificial intelligence which automatically

detects what users need, finds out appropriate web services on the Internet,

composes them in the right order and execute users’ requests.

Currently, web service composition is still a highly complex task, and it is

already beyond human capability to deal with the whole process manually.

The complexity, in general, comes from the following sources. First, the

number of services available over the web has increased dramatically during

recent years, and one can expect to have a huge web service repository to

be searched. Second, web services can be created and updated on the fly,

thus the composition system needs to detect the updating at runtime and the

decision should be made based on the up to date information. Therefore,

most researchers work in the realm of workflow composition or AI planning

[120][132][134].

33

2.3 Current State of Software Reuse

Software reuse is the use of existing software, or software knowledge, to

build new software [52][86][119]. Ad hoc reuse has been widely practiced

from the earliest days of programming. Programmers have always reused

sections of code, templates, functions, and procedures. However, as early

as 1968, Douglas McIlroy[110] proposed that the software industry should

be based on reusable components, software reuse is recognized as an area

of study of software engineering.

A very common example of software reuse is the technique of using a

software library. Many common operations, such as accessing network

resources, manipulating database systems, designing graphical user

interfaces, etc. are needed by many different software systems. Developers

of new systems can use the code in a software library to perform these

tasks, instead of “re-inventing the wheel”, by writing fully new code directly in

a program to perform an operation.

Reuse-based software engineering is an approach to development that tries

to maximise the reuse of existing software [132]. Although the benefits of

reuse have been recognised for many years [110] , it is only in the past 10

years that there has been a gradual transition from traditional software

development to reuse-based development. The change to reuse-based

development has been in response to demands for lower software

production and maintenance costs, faster delivery of systems and increased

software quality [100]. More and more companies regard their software as a

valuable asset and are promoting reuse to increase their return on software

investments [132].

In practice, different requirements come from different contexts and hence

software components are reusable if these components can be adapted to

these contexts to conform to the different requirements [13]. Therefore,

34

adaptability is the key to reusability: software components are reusable only

when these components can be adapted to various situations.

Object oriented technology offers more sophisticated adaptation

mechanisms such as inheritance, object delegation, object composition, and

object aggregation. However, these mechanisms only cover functional

adaptability. The non-functional issues of the adaptability of an application

are difficult or impossible to model and implement [132].

The software units that are reused may have different sizes [132]. For

example:

 Application system reuse. The whole of an application system may be

reused by customizing the application for different users or by

developing application families that have the same architecture but

are tailored for specific users.

 Component reuse. All components of an application may be reused.

For example, GUI components developed as part of a word-

processing system may be reused in a spreadsheet system.

 Object and function reuse. Software components that implement

single functions, such as a database connection or a class, may be

reused. This type of reuse, based on function libraries or class

libraries, has been commonly used for the past 40 years. Many

libraries of functions and classes for different types of application and

platform are available. These can be easily used by invoking them

with other application code.

Software systems and components are specific reusable entities, but

sometimes it is expensive to modify them for a new system. A

complementary type of reuse is concept reuse, which is more abstract and is

designed to be configured and adapted for a range of circumstances.

35

Concept reuse can be embodied in approaches such as design patterns,

configurable system products and program generators [132].

“An obvious advantage of software reuse is that overall development cost is

reduced.” However, there are still some problems associated with reuse. For

example, the cost of understanding whether a component is suitable for a

particular reuse circumstance and testing that component is still high. The

benefits of using reuse may decrease because of these additional costs

[132] (p417).

2.3.1 Design Patterns

The pattern is a description of the problem and the essence of its solution,

so that the pattern can be reused in different situations. Gamma et al. [49]

define the four essential elements of design patterns:

 A name of the pattern.

 A description of the problem area that explains when the pattern may

be used.

 A solution description, which is the template of a concrete solution. In

other words, the solution description can be instantiated in different

ways.

 A statement of the consequences – the results of applying the

pattern.

The design patterns can be divided into three types [32][49]:

 Creational patterns: create objects for you, so you do not have to

instantiate objects directly. Your program gains more flexibility in

deciding which objects need to be created for a given case. For

example, the factory pattern, the factory method pattern, the abstract

factory pattern, and the singleton pattern.

 Structural patterns: help you to organize groups of objects, such as

a complex user interface. For example, the facade pattern.

36

 Behavioural patterns: help you to define the communication

between objects in your system and how the flow is controlled in a

complex system. For example, the Observer pattern.

2.3.2 Generative Reuse

Generative reuse is a black-box reuse technique. In generator based reuse,

domain knowledge and relevant system building knowledge is embedded

into a domain specific application generator [7][12][47][122][132]. In such a

system, the input for a program generator is the application specification,

which provides the parameters to the generator. With these parameters and

domain knowledge, the generator translates the specification into code for

the new system in a selected language. The generation process may be

automated, or may require manual intervention.

Generator based reuse has been particularly successful for business

application systems. These generators may generate complete applications

or part of the applications. The generator based approach is also used in

other areas [29][51][123][132], for example:

 Parser generators for language processing. The input to the

generator is a grammar describing the language to be parsed, and

the output is a language parser. For example, JavaCC (Java

Compiler Compiler) [67] is an open source parser generator for the

Java programming language.

 Code generators in CASE tools. The input to code generators is the

software design and the output is an implemented system. For

example, in UML CASE tools, e.g. IBM Rational Rose [83] and

MagicDraw [75], based on UML models, CASE tool generates either

a complete program or a code skeleton. The software developer then

adds detail to complete the code.

37

Generator-based reuse is a cost-effective approach for application

development. It is much easier for end-users to develop programs using

generators compared to other component-based approaches [132].

2.3.3 Application Frameworks

In the early stages of Object Oriented Programming (OOP), objects were

regarded as the most appropriate abstraction for reuse. However,

experience has shown that objects are often too fine-grain and too

specialised to a particular requirement. The larger-grain abstractions called

Frameworks provide better solution for object-oriented reuse [132].

An Application Framework is a system built by a collection of various classes

and interfaces between them [158]. Applications are often constructed by

integrating a number of different Frameworks with various functionalities.

There are three classes of Framework [40][114]:

 System infrastructure Frameworks. These Frameworks are used to

develop the essential system infrastructures such as

communications, user interfaces and compilers.

 Middleware integration Frameworks. These Frameworks are used to

support component communications. These Frameworks include

CORBA, Microsoft’s COM+, and Enterprise Java Beans.

 Enterprise application Frameworks. These Frameworks focus on

specific application domains such as global travel information,

telecommunications or financial systems. These Frameworks

encapsulate application domain knowledge as standard APIs and

support the development of end-user applications.

Applications developed by Frameworks have the great potential for further

reuse through software product line technologies. Consequently, the

38

maintenance of these systems such as modifying family members to create

new family members is simplified [132].

2.3.4 COTS Product Reuse

A commercial-off-the-shelf (COTS) [2][3][16][79][132] product is a software

system that can be used directly by its buyer without any modifications.

Typical desktop software and a wide variety of server products are COTS

software. As COTS software is developed for general purpose, such as

word-processing, database management, etc., it usually has many features

that can be reused in many different applications. Although there can be

problems with this approach to system construction [143], COTS is widely

used across government and enterprises because they offer significant

savings, in terms of costs and development time.

Some types of COTS components have been very popular for many years,

such as database management systems and GUI components. Very few

developers want to implement their own database system. However, until

the mid-1990s, integrating these large systems and making them work

together was a big challenge because most large systems were designed as

standalone systems [118][132][142].

At present, well-defined Application Programming Interfaces (APIs) that

allow program access to system functions is always available in COTS

systems. Consequently, constructing a large system by integrating a range

of COTS systems is a popular approach. This way, the costs of development

and delivery times are reduced. Furthermore, risk may be reduced as the

mature COTS systems are already available.

39

2.3.5 Component Based Software Reuse

There are various component characteristics that lead to reusability

[122][132]:

 The component should reflect stable domain abstractions. Stable

domain abstractions are fundamental concepts in the application

domain that change slowly.

 The component should hide the way in which its state is represented

and should provide operations that allow the state to be accessed and

updated.

 The component should be as independent as possible. Ideally, a

component should be stand-alone so that it does not need any other

components to operate. In practice, this is only possible for very

simple components, and more complex components will inevitably

have some dependencies on other components.

 All exceptions should be part of the component interface.

Components should not handle exceptions themselves as different

applications will have different requirements for exception handling.

Rather, the component should define what exceptions can arise and

should publish these as part of the interface.

As more and more systems are built from existing components, it is

important to identify the major challenges of component based software

reuse. Sommerville[132] proposes three critical requirements for software

design and development with reuse:

 It must be possible to find appropriate reusable components.

 The reuser of the components must be confident that the components

will behave as specified and will be reliable.

 The components must have associated documentation to help the

reuser understand them and adapt them to a new application.

40

2.4 Current state of Aspect Oriented Programming (AOP)

2.4.1 Introduction to AOP

2.4.1.1 Crosscutting Concerns

The separation of concerns is an important principle of software design and

implementation [132]. The basic idea of this principle is that each element

(class, method, procedure, etc.) should do one thing and one thing only.

Separation of concerns breaks down a program into distinct parts that

overlap in functionality as little as possible. Consequently, developers can

focus on each element without knowing other elements in the system. When

developers need to modify their system later, they are only required to

understand and modify a small number of elements. All programming

methodologies such as procedural programming and object-oriented

programming support some separation and encapsulation of concerns into

single programming elements. For example, procedures in procedural

programming, packages, interfaces, classes, and methods in OOP all help

programmers encapsulate concerns into single elements.

However, as shown in Figure 2.1, in many situations, some concerns such

as logging, performance optimization, and policy enforcement defy these

forms of encapsulation. Software developers call these crosscutting

concerns [91][98] [127][132], because they cut across many modules in a

program. For example, if software developers want to keep track of the

usage of each system module by each system user; they have a logging

concern that has to be associated with all components. The specific logging

that is carried out needs context information from the system function that is

being monitored. Therefore, the related code spreads all over the system,

which makes the system difficult to maintain and upgrade since the addition

of new crosscutting features and even certain modifications to the existing

crosscutting functionality require modifying the relevant core modules.

41

Figure 2.1 Crosscutting concerns

As shown in Figure 2.2, “Code tangling is caused when a module is

implemented that handles multiple concerns simultaneously” [98](p15). Code

tangling is the result of the implementation of crosscutting concerns in a

traditional OOP system. Cross-cutting concerns must be implemented by

modifying many methods in many classes. This approach prevents

modularization and is error-prone when requirements affecting crosscutting

concerns are changed or added. Software developers often need to consider

crosscutting concerns such as Logging, Performance, Policy enforcement,

etc in each component across the system. As a result, code tangling is

inevitable.

Policy
enforcement

Logging

Software
component

Performance

Figure 2.2 Code tangling

42

“Code scattering is caused when a single issue is implemented in multiple

modules” [98](p16). As crosscutting concerns are spread over different

modules, the implementation of those concerns are also scattered over all

those modules. For example, as shown in Figure 2.3, in a software system,

Logging concerns may affect all the modules accessing the Logging module.

Logging
module

Module 3

Module 2

Module 1

Method call

Figure 2.3 Code scattering

Figure 2.3 shows how a software system would implement Logging using

traditional approaches. Each client in module1, module 2, and module 3

needs the code to call the related Logging method. Consequently, the effect

is an undesired code scattering between all the modules needing Logging

and the Logging module itself.

2.4.1.2 Introduction to AOP

“Aspect Oriented Programming (AOP) is a methodology that provides

separation of crosscutting concerns by introducing a new unit of

modularization - an Aspect that crosscuts other modules.”[98](p4). This is a

“divide and conquer” strategy. As shown in Figure 2.4, developers

implement crosscutting concerns in Aspects (e.g. Logging, Transaction and

Persistence) instead of putting them into core modules. AOP allows

crosscutting concerns to be developed independently. In this way, all the

43

associated complexity of the crosscutting concerns is isolated into the

Aspects [98][112][127], hence the final system becomes easier to design,

implement and maintain. Software developers do not need to think about the

crosscutting concerns throughout the whole development process – what

they need to think about are these crosscutting concerns only at design

stage.

Figure 2.4 Aspect Oriented Programming

“An aspect weaver, which is a compiler-like entity, composes the final

system by combining the core and crosscutting modules through a process

called weaving.” [98](p4).The Aspect Weaver will weave these concerns

into the system automatically and in the maintenance stage, software

developers only need to update these concerns and re-weave them into the

system. Therefore, crosscutting concerns are logically separated from the

system in the design stage.

AOP builds on top of existing methodologies such as Object Oriented

Programming (OOP) and procedural programming, equipping them with new

concepts such as Aspect, Advice, etc. in order to modularize crosscutting

concerns. With AOP, the core concerns are implemented by using the

chosen base methodology. For example, in OOP, developers implement

core concerns as classes. All crosscutting concerns can be put into Aspects,

which support how the different modules in the system need to be woven

together to form the final system [98]. AOP is the appropriate technology for

44

addressing non-functional issues that could be resolved by introducing extra

process, operations and resources, e.g., Monitoring, Policy enforcement,

Persistence, Optimization, Authentication, Authorization, Transaction

Management, and implementing business rules. However, AOP can not be

used to address all non-functional issues during software development

process, e.g., platform compatibility, documentation, budget, and deadlines.

The key benefit of AOP is that it addresses the problem associated with

crosscutting concerns in an elegant way by supporting the separation of

concerns. Separating concerns into other elements rather than including

different concerns in the core business modules is good software

engineering practice [132]. By describing cross-cutting concerns as Aspects,

these concerns can be used and reused independently. For example, if

Logging is described as an Aspect that logs necessary information to a file

system. This Aspect can be automatically woven into the system wherever

Logging is required. In addition, as shown in Figure 2.5, with the help from

AOP, software evolution and maintenance become easier [28][116].

Figure 2.5 The difference between the conventional approach and
AOP in software development

45

Aspect Oriented Software Development (AOSD) is rapidly developing as an

important, new software engineering technique [39][91][151]. Research and

development in AOSD has primarily focused on aspect oriented

programming [91]. Aspect-oriented programming languages such as

AspectJ [60] have been developed to extend object-oriented programming in

supporting separation of concerns. Some companies, such as IBM, are

starting to use aspect-oriented programming in their software production

processes [30]. However, it has now been recognised that cross-cutting

concerns are equally problematic at other stages of the software

development process. Researchers [112][116][152] are now investigating

how to utilise aspect-orientation in system requirements engineering and

system design and how to test and verify aspect-oriented programs.

2.4.1.3 Terminologies in AOP

In AOP, as shown in Figure 2.6, to address the problem associated with

crosscutting concerns, the basic idea is to encapsulate these crosscutting

concerns in an Aspect. An important characteristic of Aspects is that they

include a definition of where they should be included in a program, as well

as the code implementation of the cross-cutting concerns. Thus, developers

can specify when the crosscutting code should be called, such as before or

after a specific method call or when an attribute is accessed. For example,

the end user asks developers that user authentication is required before any

change to customer details is made in a database. This requirement can be

fulfilled by declaring an Aspect, which specifies that the authentication code

should be included before each call to methods that update customer

details. By this way, developers can apply this authentication Aspect to all

database updates, which can be easily implemented by modifying the

Aspect through changing the definition of where the authentication code is to

be woven into the system. Developers do not have to search the whole

system to find all occurrences of these methods. In addition, fewer mistakes

46

might be made and the possibility of introducing security vulnerabilities into

the program can be reduced [91][116][127].

Within the Aspects, developers need to define where an Aspect is

associated, which is called a join point. “A join point is an identifiable point in

the execution of a program. It could be a call to a method or an assignment

to a member of an object. ” [98](p35)

Logging
module

Module 3

Module 2

Module 1

Logging
Aspect

Module 3Module 1

Module 2

Logging
module

Method call

Method call

Figure 2.6 Aspect in AOP

Aspects provide two constructs to specify the new behaviour and where it

should apply: advice and pointcuts.

47

“A pointcut is a program construct that selects join points and collects

context at those points.” [98](p35). These pointcuts indicate where advice

should be executed. For example, a pointcut can select a join point that calls

a method, and it could also capture the method’s context, such as the target

object on which the method was called and the method’s parameters.

“Advice is the code to be executed at a join point that has been selected by

a pointcut.” [98](p35). Advice can execute before, after, or around the join

point. Before/After advice can be used to do some operations before/after

executing the code at certain join points that are spread across several

modules. Around advice can modify the execution of the code that is at the

join point, such as replacing or bypassing the code at the join point. The

content of advice looks like a method as it encapsulates the logic executed

at a join point.

Often the term interception is used when implementing AOP techniques.

Interception is a technique which captures method calls and presents the

call to some pre- or post-code for additional processing. It can be realized by

the decorator pattern [32] [124] but is often part of component runtime

environments. For example, the Java 2 Enterprise Edition (J2EE) container

technology uses interception to add advanced functionality to components

during deployment like container managed persistency or security.

2.4.1.4 Weaving Process

In AOP, Aspects are developed separately; then, in a pre-compilation step

called Aspect weaving, they are linked to the join points. Aspect weaving is a

form of program generation – the output from the weaver is a program where

the Aspect code has been integrated. Finally, an Aspect weaver combines

Aspect functionality with the original system to produce an executable

system.

48

Aspect weaving can be seen as a source code transformation process and

the Aspect oriented language can be seen as a sort of meta-language that

specifies the code transformation [14]. The Aspect weaver works like a

compiler that reads the Aspect program and uses it to modify the original

code and automatically generate new code modified to implement the

desired Aspect.

Some AOP frameworks perform static weaving, where invocation of the

advice is statically compiled in at each join point. Others are capable of

dynamic weaving, where the advice is connected to its join points at the time

code is loaded or even at run time.

One problem associated with the weaving process of current AOP platforms

is that only simple weaving processes are supported. Multiple Aspects might

be woven to the same join points but only in sequential order, or even worse,

the order of the Aspects to be woven is not guaranteed. However, in a

complex Aspect-oriented system, an advanced weaving process is desired

such as determining the exact execution order and dependencies among the

Aspects [117].

2.4.1.5 AOP Development Stages

Figure 2.7 AOP development stages

49

As shown in Figure 2.7, aspect oriented software development includes the

following stages:

 Identify the concerns: based on the requirements from the users;

developers need to identify the crosscutting concerns from the

requirements. This stage is also called Aspectual decomposition.

 Implementation of concerns: the crosscutting concerns then need to be

implemented in appropriate AOP platform(s) as Aspects.

 Form the final system by weaving Aspects into the original system: after

gathering all crosscutting concerns, developers weave those Aspects

into the original system. This stage is also called Aspectual re-

composition because at the binary code level, all crosscutting concerns

are woven into the original system to form the final system.

2.4.1.6 The Pitfalls of AOP

Although AOP solves crosscutting concern problems in software

development, it has not been widely used in the software industry because

there are still problems associated with this approach, or even worse, AOP

can be dangerous when not used properly [31]. Its drawbacks are shown as

follows:

First of all, today’s mainstream Aspect oriented languages suffer from

pointcut languages because pointcut declarations result in a high coupling

between Aspects and the original system [27]. Some researchers [31]

identified that the action of AOP is very similar to the “goto” statement and is

as harmful as the “goto” statement. While looking at an original class in an

AOP environment, you have to find all Aspects impacting the original class.

Although some tools are available to help, it’s much more difficult to indicate

program flow in an AOP environment as opposed to a standard non-AOP

program.

50

Secondly, the pointcuts in AOP are fragile because further changes to the

Aspect’s source code by other developers may break pointcut semantics

easily [31].

Last but not least, the incorrect view of AOP is that AOP is just a crutch to

allow developers to quickly and easily add new functions that they forget to

specify at requirements design stage [36]. AOP could even be used to

‘patch’ programs without doing the necessary design to properly install the

missing function.

2.4.2 Classification of Current AOP Frameworks

Current AOP research projects can be classified into two categories:

heavyweight AOP and lightweight AOP. Heavyweight AOP is usually

characterised where the actual language itself has AO concepts built in,

such as AspectJ [60]. Lightweight AOP uses existing OO or other methods

to implement Aspects with minimal disruption to the existing language or

approach. Lightweight AOP is often found in Enterprise frameworks such as

Spring [80], JBoss [74] or even within standalone development like

AspectWerkz [59] and is usually based on configuration files defining the

Aspects that are to be woven into an unchanged language such as Java or

C#.

2.4.2.1 Popular Heavyweight AOP Frameworks

AspectJ

AspectJ [60][92] is the most popular and mature aspect-oriented Java

implementation, which was developed specifically to popularize the idea of

aspect oriented programming in the Java community. AspectJ is now

51

available as an Eclipse Foundation open-source project [62], both stand-

alone and integrated into Eclipse.

AspectJ is a heavyweight AOP implementation. It uses Java-like syntax and

has included IDE integrations for displaying crosscutting structure since its

initial public release in 2001. AspectJ introduces new keywords to the Java

language for defining Aspects and join points. Tightly integrated with Java,

the major advantage of AspectJ is the expressiveness of its “pointcut”

language, which can be used to describe the pointcuts and advices clearly.

The pointcut language describes the condition on which the corresponding

Aspect advice is executed. This means that the developer must learn

additional language syntax and use the AspectJ compiler in order to build

any code written with AspectJ. In AspectJ, developers do not need to modify

the client code because all Aspects, pointcuts, advices, etc. are saved in

separate source files.

AspectJ uses static weaving at compile time, although the most recent

version of AspectJ does provide some initial support for weaving to be

performed at class load time. In all cases, the AspectJ program is

transformed into a valid standard Java program running in a Java virtual

machine. All classes affected by Aspects are binary-compatible with the

unaffected classes.

However, AspectJ also has its weakness [99][137][152] as shown below:

 High coupling: most of the current pointcut designators explicitly

specify their target locations by naming these classes/methods.

These explicit references obviously introduce a high coupling

between the original system and the Aspects, making Aspect reuse

harder. AspectJ does not allow the specification for a crosscutting

concern to be written as a separate entity from the Aspect itself,

therefore the developer must have a full understanding of the Aspect

52

code and thus cannot use or reuse the Aspect in a black box manner

[107]. AspectJ offers wild-cards to reduce coupling. However, this

introduces a new problem as the wild-cards are not checked by the

compiler. As a result, programmers have to be very careful with their

pointcuts to avoid wrong or missed matches.

 Complicated syntax: although very powerful, the language is now full

of complicated, semantically challenged constructions that are added

to standard Java syntax.

 Debugging: one of the greatest problems for AspectJ is debugging.

While at the syntactic level AspectJ program code appears separate,

at run-time it is not. Therefore, after weaving, the execution of the

final system can become unpredictable.

AspectC++

AspectC++ [71][133] extends the AspectJ approach to C/C++. It is a set of

C++ language extensions to facilitate aspect-oriented programming with

C/C++. While being strongly influenced by the AspectJ language model,

AspectC++ claims that it supports all additional concepts that are unique to

the C++ domain. This ranges from global functions, operators, and multiple

inheritance up to weaving in template code and join point-specific

instantiation of templates [105].

aoPHP

aoPHP [70] is an addition to PHP that allows the use of Aspect-Oriented

programming in web based applications.

aoPHP was originally developed in Java 1.5. It relied on a PHP script and

Apache's mod_rewrite module to properly redirect incoming calls to PHP

Scripts. The calls to PHP Scripts were redirected to the aoPHP weaver

where Aspects were woven at run-time on the server. The resulting code,

53

which was the output of aoPHP weaver, was then passed to Apache PHP

engine to be executed and displayed.

The current versions of aoPHP (version: 4.0) works in a very similar way to

the original version. It still relies on a PHP script to call the weaver. However

the weaver is now written in C++ with full support for Regular Expressions.

Therefore, the new weaver provides a good improvement in both

performance and speed of the parser and weaver.

2.4.2.2 Popular Lightweight AOP Frameworks

AspectWerkz

AspectWerkz [59] is a lightweight AOP framework without modifying the

Java language in any way. This means that there is no new syntax for a

developer to learn. It is capable of compile time, load-time, and run-time

weaving.

AspectWerkz also supports annotations. That is, join points can be marked

through Java annotations. This is a powerful mechanism that can alleviate

some of the concerns caused by having the Aspects completely separate

from the implementation. Now, Aspect oriented features can be declared as

annotations.

Spring AOP

Spring AOP [80] is implemented in pure Java. There is no need for a special

compilation process. Spring AOP does not need to control the class loader

hierarchy, and is thus suitable for use in a J2EE web container or application

server.

54

Spring AOP currently supports only method execution join points (advising

the execution of methods on Spring beans). Field interception is not

implemented, although support for field interception could be added without

breaking the core Spring AOP APIs.

Spring AOP's approach to AOP differs from that of most other AOP

frameworks. The aim is not to provide the most complete AOP

implementation; therefore Spring AOP does not compete with AspectJ to

provide a comprehensive AOP solution. Spring AOP tries to provide a close

integration between AOP implementation and to help solve common

problems in enterprise applications.

AOP in JBoss

The JBoss AOP is an alternative to the AspectJ Java implementation. JBoss

AOP [68] is a pure Java Aspect Oriented Framework. JBoss AOP is not only

a framework, but also a pre-packaged set of Aspects that are applied via

annotations, pointcut expressions, or dynamically at runtime such as

caching, transactions, security, etc. The JBoss AOP Framework, although

available as a separate library, is also heavily used by the latest version of

the JBoss application server.

2.5 Current State of Software Product Line

One of the most effective approaches to software reuse is building software

product lines or application families. “A product line is a set of applications

with a common application-specific architecture. Each specific application is

specialised in some way.” [6][35][47][132](p432).

The common core of the application family is reused each time and

variations are implemented in different ways when a new application is

developed. The development of new applications may involve specific

55

component configuration, implementing new components and adapting

some of the existing components to meet new requirements.

 “Software product lines are designed to be reconfigured.” While

reconfiguring the new application, developers may need to add or remove

components from the system, define parameters and constraints for system

components, and include knowledge of business processes [8][132](p432).

There are various types of specialisation of an application family that may be

developed [35][132]:

 Platform specialisation, which means that different versions of the

application need to be developed for different platforms. In this case,

the core functionality of the application is normally unchanged; only

those components that relate to various hardware and operating

systems are modified. For example, a Global Positioning System

(GPS) system may have different versions depending on the type of

Personal Digital Assistant (PDA) device used.

 Environment specialisation, where different versions of the

application are created to deal with different operating environments

and peripheral devices. In this case, the functionality may vary to

reflect the functionality of various environment and peripherals, and

components that interface with peripherals must be modified.

 Functional specialisation, where different versions of the application

are developed for customers with different requirements. In this

case, components implementing the functionality may be modified to

fulfil the different requirements.

 Process specialisation, where the system is modified to handle

different business processes. For example, a Human Resource

management system may be adapted to deal with a centralised

recruitment process in a local company and a distributed recruitment

process in another multi-national enterprise.

56

The steps involved in adapting an application family to create a new

application [132]:

 Elicit stakeholder requirements.

 Choose most appropriate family member.

 Renegotiate requirements.

 Adapt existing family member.

 Deliver new family member and add it to the product family.

The software product line technology has been used in the approach

because the nature of product line makes it a suitable ingredient of the

proposed approach. The idea of product line such as separating variations

from core assets and related technology such as generative programming

can be developed in the approach to improve the reusability of Aspects such

as implementing platform-independent Aspects. Functional variations,

parameter variations, and platform variations are allowed by applying

software product line technology to the approach.

2.6 Summary

Based on the literature review, the following conclusions have been reached:

 Component adaptation techniques are the key solution to address the

mismatch problem in component based systems. However, due to the

complex nature of the mismatch between reuse requirements and

components, available component adaptation approaches are either

only capable of adaptation at simple levels such as wrappers, or

inefficient to use as a result of lack of automation in their adaptation

process. Deep-level, automatic component adaptation is still needed.

 Generative based reuse technology is a cost-effective approach with

reasonable automation for application development. The nature of this

technology makes it a potentially suitable ingredient of the proposed

component adaptation approach to support the automation.

57

 AOP introduces a new unit of modularization - an Aspect that

crosscuts other modules. The nature of AOP makes it particularly

suitable for addressing non-functional mismatches with component-

based systems. Therefore, AOP may be employed in achieving

adaptable components by imposing needed effects on the

components [33]. Hence, the mismatch problem can be addressed

and the quality of target components can be improved by using AOP.

 Existing AOP technology is inefficient to be used in the component

adaptation because AOP-based system implementation still has its

disadvantages, e.g., reduced readability and maintainability of the

final system, poor reusability of Aspect assets. Some AOP based

frameworks have been developed to achieve reusable Aspects.

However, an AOP platform independent framework is still desired in a

heterogeneous distributed environment to solve crosscutting problem

since a common model for AOP is still missing. Furthermore, current

AOP techniques only support weaving Aspects sequentially. To cope

with complex adaptation, it often requires weaving Aspects in more

sophisticated control flow, e.g. dynamically deciding whether to invoke

a particular Aspect.

 A software product line is an effective approach to software reuse.

Common core concerns and variations are the two parts of software

product lines. As the Aspects in AOP also have their common parts

and variations, software product line techniques may be applied to

AOP to achieve highly reusable Aspects.

 It is promising to develop a novel method to conduct Generative

Aspect-oriented Component Adaptation by integrating software

product line, AOP and generative component adaptation to correct the

above weakness of component adaptation techniques and AOP. Such

an approach is expected to be highly automatic, feasible at deep

level, and supports reuse of adaptation assets.

58

Chapter 3 Related Work

This chapter conducts a review of many approaches that have been found

useful for component adaptation, generative programming, and AOP related

projects. The problems associated with these approaches are the motivation

of the development of the proposed approach.

3.1 Component Adaptation Approaches

3.1.1 Superimposition

Superimposition [155] is a black-box adaptation technique. In

Superimposition, software developers are able to apply a number of

predefined, but configurable types of functionality to reusable components.

The principle behind superimposition is that a component and the

functionality adapting the component should be decoupled from each other.

There are three categories of typical adaptation types: component interface,

component composition and component monitoring.

The notion of superimposition has been implemented in the Layered Object

Model (LayOM), an extensible component object language model. The

advantage of layers over traditional wrappers is that layers are transparent

and provide reuse and customizability of adaptation behaviour.

Superimposition uses nested component adaptation types to compose

multiple adaptation behaviours for a single component. However, due to lack

of component information, modification is limited to a simple level, such as

conversion of parameters and refinement of operations. Moreover, with more

layers of code imposed on original code, the overhead of the adapted

component increases heavily, which degrades system efficiency.

59

3.1.2 Binary Component Adaptation (BCA)

Binary Component Adaptation (BCA) [90] is an adaptation technique that

applies adaptations on-the-fly (during program loading) to component

binaries without requiring any source code access. BCA rewrites component

binaries before (or while) they are loaded.

The BCA system is currently implemented to work with Java. An application

builder wishing to adapt a Java component constructs a delta file

specification containing information about the desired changes to a class;

this includes adding or renaming an interface, method, field, or method

reference. One can even alter the super class for a component. A Delta File

Compiler (DFC) creates a binary delta file containing the necessary byte

code adjustments to the component being adapted. Once a component is

adapted, other classes that refer to the adapted component must be

recompiled using a modified Java compiler. The class Loader for the Java

compiler merges byte code streams from the original Component class file

and the extra byte code stored in the binary delta file.

However, together with the binary code adaptation, especially with “online”

(on-the-fly) adaptations, extra processing time is required because BCA

needs to rewrite class files while they are loaded. As a result, the load-time

overhead is a major problem. Consequently, when more adaptation

processes are required, the load-time will be the bottleneck of the system

performance.

3.1.3 Customizable Components

Customizable components [96], as part of the COMPOSE project, is an

environment for building customizable software components, it is an

60

approach to expressing customization properties of components. The

declarations enable the developer to focus on what to customize in a

component, as opposed to how to customize it. Customization

transformations are automatically determined by compiling both the

declarations and the component code; this process produces a customizable

component. Such a component is then ready to be custom-fitted to any

application.

In this work, the customized components generated for various usage

contexts have exhibited performance comparable to, or better than manually

customized code, however, component adaptation is limited to pre-defined

optional customization, and deeper adaptation is not supported.

3.1.4 SAGA

Scenario-based dynamic component Adaptation and GenerAtion (SAGA)

[104][153][154] developed a deep level component adaptation approach

through XML-based component specification, interrelated adaptation

scenarios and corresponding component adaptation and generation.

In the SAGA project, a Component Definition Language (CDL) is used to

record the design configuration of components reused in specific

applications. Scenarios are an XML document of a series of adaptation

actions. Scenarios may be adjusted, composed or associated interactively to

cope with complex reuse cases. Scenarios are used by the adaptor and the

generator to perform adaptation and generation automatically.

The SAGA project mainly focused on generative component adaptation at

binary code level, i.e., the adapted part of the component will be generated

as new blocks of binary code and these blocks will then be composed with

other unchanged blocks of code to form a new adapted component. The

SAGA project achieved deep adaptation with little code overhead in the

adapted component.

61

However, automation is a challenge in the SAGA approach because it is

always complex to generate blocks of code according to scenarios and the

original component code. To reach a high level of automation, a large set of

adaptation rules and domain knowledge have to be developed to support the

process, and probably the application domain has to be restricted as well.

Based on the above features, the SAGA approach is more suitable for the

development of traditional component-based systems where developers

have more access to the internal design of components and can impose

more intervention on the adaptation and integration process.

3.1.5 A Non-Invasive Approach to Dynamic Web Service
Provisioning

Based on .NET Common Language Runtime, a dynamic web service

provision approach [22] has been proposed. In this approach, the runtime

code manipulation at the Intermediate Language (IL) level with a repository

of adaptation aspects is used to support service provisioning. The main idea

of this approach is to intercept the web service call at IL level before it is

compiled.

However, the invasive change of web service code will pollute the original

application such that recovering the original application will become difficult,

which introduces the common version control problems for software

systems. In addition, the change to Common Language Runtime (CLR)

brings potential stability issues to the system and its performance will

decrease because web service calls are intercepted by a profiler first. Last

but not least, most web services are available only in binary form, rather

than in source code or intermediate language. This approach is not

applicable to web services in binary form.

62

3.1.6 Interface Level “wrapper” for Web Service Adaptation

In SOA, it is not cost effective to require each base web service to

individually handle the variety of messages than can come its way.

Therefore, there is the need for an adaptation layer in an SOA to deal with

all the aspects of message handling.

In Fuchs’s approach [48], web service adaptation can be achieved by

altering the WSDL contract. They proposed a framework to wrap the

underlying web services with an adaptation layer to organize meta-

information about operation behaviour. The adaptation layer mediates

between the underlying services and the service consumers. ‘Virtual’ APIs

are provided in the adaptation layer to change the name and parameters of

operations.

However, working as a wrapper, this approach only deals with the simple

adaptation requirements because adaptations only occur at the interface

level.

3.1.7 Evaluation of Component Adaptation Techniques

In table 3.1, the approaches that adapt a software component to create a

new component are listed. All these approaches are evaluated on how well

each technique fulfils the component adaptation requirements specified in

section 2.1.6.

63

Adaptation techniques R1 R2 R3 R4 R5 R6 R7 R8
SAGA - + - + - - + -
Superimposition + - + + + - - -
BCA - + - - - - + -
Customizable
Components

- - + + + + - -

Non-Invasive approach
to WS

+ + + + - +/- + +

Wrapper for WS
adaptation

+ - + - - - - +

R1: Black-box

R2: Transparent

R3: Composable

R4: Reusable

R5: Configurable

R6: Automatic

R7: Deep level adaptation

R8: Language independence

+: fulfilled.

-: not fulfilled.

+/-: The automation of a particular adaptation case highly depends on

whether an adaptation aspect is available in the repository. If the related

aspects are available, the profiler works automatically.

Table 3.1 Requirements for component adaptation techniques

3.2 Generative Programming Related Approaches

3.2.1 XVCL

XVCL (XML-based Variant Configuration Language) [87][138] is a general-

purpose mark-up language for configuring variants in programs and other

types of documents.

64

XVCL is capable of injecting changes, according to pre-defined plans, into

programs represented as a hierarchy of highly parameterized meta-

components or templates. Meta-component parameters may be as integer

or string values, or complex as a hierarchy of other meta-components. XVCL

uses a “composition with adaptation” mechanism to instantiate parameters

and to generate concrete programs from generic meta-component

architectures. Many template engines have been proposed to tackle specific

problems, in specific domains. XVCL is a language, problem and domain

independent template based generative engine.

However, in each frame in XVCL, the code templates and variables to

support software product lines are mixed together, which can make the code

difficult to read, understand and therefore maintain.

3.3 AOP Related Projects

3.3.1 Aspectual Component

To achieve reusable Aspects, Karl Lieberherr et al. introduce the concept of

Aspectual Components [99]. In Aspectual Components, Aspects are

specified independently as a set of abstract join points. They believe that

aspect-oriented programming means expressing each Aspect separately, in

terms of its own modular structure. With this model, an Aspect is described

as a set of abstract join points which are used when an Aspect is combined

with the base-modules of a software system. The Aspect-behaviour is kept

separate from the core components, even at run-time. Explicit connectors

are then used to bind these abstract joinpoints with concrete joinpoints in the

target application.

Aspectual components propose a new type of interface that allows

components to describe adaptations independent of the concrete

components that will be adapted.

65

Aspectual components distinguish between components that enhance and

cross-cut other components and components that only provide new

behaviour. An Aspectual component has a provided and a required

interface. The required interface includes a participant graph that describes

an ideal structure for formulating the behaviour of the component. The

purpose of a component is to add data members and function members to

other components and to modify function members of other components.

The provided interface of a component includes both new function members

and modified function members. Connectors connect the provided and

required interfaces of other components. The connection process starts with

level-zero components consisting of very simple class definitions.

However, since Java interfaces are rather an implementation mechanism

than an Aspect-description mechanism, this approach violates the

separation of component description and implementation [125].

3.3.2 JAsCo

JAsCo [137] is an Aspect based research project for component based

development, in particular, the Java Beans component model. JAsCo

combines the expressive power of AspectJ with the Aspect independency

idea of Aspectual Component.

The JAsCo language introduces two concepts: Aspect beans and

connectors. An Aspect bean is used to define Aspects independently from a

specific context, which interferes with the execution of a component by using

a special kind of inner class, called a hook. Hooks are generic and reusable

entities and can be considered as a combination of an abstract pointcut and

advice [88][137]. Because Aspect beans are described independently from a

specific context, they can be reused and applied upon a variety of

components. Connectors are used to connect Aspect beans to specific

components. Connectors have two main purposes [88]: instantiating the

66

abstract Aspect beans onto a concrete context and thereby binding the

abstract pointcuts with concrete pointcuts. In addition, a connector allows

specifying precedence and combination strategies between the Aspects and

components.

However, JAsCo is not very suitable for specific modification requirements

since it does not provide a mechanism for conducting users’ requirements.

In addition, the application of Aspects on target components or systems is

based on traditional AOP processes, and therefore, may result in lower

readability, maintainability and performance. Moreover, the current

implementation of JAsCo has been bound to Java, which means it can not

be used in a heterogeneous system including different programming

language implementations.

3.3.3 Shared Join Points Model

In AOP, it is possible that several units of Aspectual behaviour need to be

woven at the same join point. In these cases, Aspects are said to ‘share’ the

same join point. Such shared join points may have problems such as

determining the exact execution order and dependencies among the

Aspects. Shared Join Points Model [117] is a general and declarative model

for defining constraints upon the possible compositions of Aspects at a

shared join point. Currently, Shared Join Points Model is integrated with

AspectJ.

Most AOP platforms provide reflective information about the current join

point. For example, “thisJoinPoint” in AspectJ provides the context

information within an advice. In this way, “thisJoinPoint” acts as a

communication channel among the aspect instances that are sharing the

same join point. Thus, aspect instances being applied at the same join point

can exchange information placed in the “thisJoinPoint” and conditional

execution of aspects can be achieved.

67

However, Shared Join Points Model highly depends on the language

features of the existing AOP platform, which limits the wider use of the

model.

3.3.4 Framed Aspects

Since current AOP does not support configuration mechanisms and

generalisation capabilities that are required to realise variability, the potential

for Aspects to be reused in different contexts is limited [106][107].

Frame technology [5] provides mechanisms to support configuration and

generalisation capabilities. Loughran & Rashid [107] introduced an approach

to support reusable Aspects that combines the respective strengths of AOP

and frame technology.

In Framed Aspects, parameterisation is supported for AOP, which enables

Aspects to be customised for a particular scenario, and therefore increases

the reusability of the Aspects. Meanwhile, conditional compilation allows for

optional and alternative variant features of an Aspect module to be included

or excluded, thus resulting in optimal usage of code.

However, templates are not supported within some mainstream languages

such as Java and C# and therefore, the approach is limited to a small range

of AOP platforms.

3.3.5 Critical Analysis of AOP technologies

AOP developers claim that compared with traditional software development

approaches, Aspect oriented approaches make it easier to develop and

maintain certain kinds of application code which has crosscutting concerns.

To assess these claims, the following criteria are proposed to assess the

68

technical requirements (T1-T7) for Aspect oriented approaches. These

requirements can be used to evaluate AOP approaches. It may not be

possible for an adaptation technique to fulfil all requirements.

T1: Short Learning Curve

Since various features are supported to solve crosscutting concerns in AOP

approaches, the syntax to support these features normally is not easy to

learn, which restricts the usability of these AOP technology. Therefore, the

ease of learning an AOP approach is an important requirement.

T2: Reusable

The code of each Aspect should be used repeatedly in other Aspect oriented

development. The purpose of AOP is to reduce the complexity of software

development process. Therefore, it is highly desired that mature Aspects can

be used repeatedly, i.e. to be applied to recurring systems.

T3: Light Weight

As discussed in section 2.4.2, current AOP frameworks may be heavy

weight or light weight. Rather than mixing Aspects with standard

programming code in heavy weight AOP, light weight AOP is preferred

because based on existing programming code, only extra configuration files

are needed to describe the basic information of Aspects.

T4: Configurable

Since the same Aspects may be reused in similar situations, the AOP

weaver should be able to apply the same Aspects to a set of target

components with different settings.

69

T5: Advanced Weaving Process

While applying Aspects to existing component based systems, multiple

Aspects may be needed in the weaving process. Sequential weaving is not

powerful enough to handle sophisticated adaptation (section 2.4.1.4), hence

more advanced weaving process, such as a switch structure is needed. With

advanced weaving process, Aspects can be used flexibly and widely to

address complex crosscutting problems.

T6: AOP Programming Language Independence

As AOSD is a general approach in software development, the AOP idea is

independent of any programming language. However, current AOP

platforms and their implementations are bound to a specific programming

language, which restricts the wide use of current AOP platforms. Therefore,

an AOP platform will be more reusable if a programming language

independent mechanism is included.

T7: Generative Aspects

After identifying the crosscutting concerns, developers need to implement

related Aspects. Due to the complicated syntax of existing AOP languages,

the automatic generation of Aspects is desired in AOP development.

Generative requirement is used to describe whether an approach supports

automatic Aspect generation.

In table 3.2, an overview of discussed AOP approaches including Aspectual

Component, JAsCo, Shared Join Points Model, and Framed Aspects is

presented that indicates how well each approach fulfils the specified

requirements.

70

AOP approaches T1 T2 T3 T4 T5 T6 T7
Aspectual Component - + - - - - -
JAsCo - + - + - - -
Shared Join Points Model - - - - + - -
Framed Aspects - + + + - + +

T1: Short learning curve
T2: Reusable
T3: Light weight
T4: Configurable
T5: Advanced weaving process
T6: Language independence
T7: Generative Aspects
+: fulfilled
-: not fulfilled

Table 3.2 Evaluation of current AOP approaches

3.4 Summary and Conclusions

To summarise, available component adaptation approaches are either only

capable for adaptation at simple levels such as wrappers, or inefficient to

use as a result of lack of automation in their adaptation process. Some AOP

based frameworks have been developed to achieve reusable aspects.

However, current AOP techniques only support weaving aspects

sequentially. To cope with complex adaptation, it often requires weaving

aspects in more sophisticated control flow, e.g. dynamically deciding

whether to invoke a particular aspect, and synchronizing in multi-thread

applications.

In conclusion, to address these problems and develop a novel component

adaptation approach, the following requirements need to be considered:

3.4.1 Requirement 1: Deep level component adaptation with high
automation

Due to the complex nature of the mismatches between existing components,

available component adaptation approaches are either only capable of

71

adaptation at simple levels, or are inefficient to use as a result of lack of

automation in their adaptation process. Therefore, a deep level component

adaptation technique with high automation is desirable.

The nature of AOP makes it particularly suitable for addressing quality-

oriented issues with component-based systems. Generative programming is

an ideal technology to increase the degree of automation of the proposed

adaptation approach. Therefore, AOP and Generative programming can be

used in the proposed approach to fulfil this requirement.

3.4.2 Requirement 2: Highly reusable Aspects in AOP platforms

Some AOP based frameworks have been developed to achieve reusable

Aspects. However, current approaches do not support Aspect reusability

efficiently. For example, in some approaches, reusable Aspects are not

supported at all. In other approaches, the reusable Aspects are bound to a

specific programming language. As a result, the Aspects developed for a

specific programming language are not reusable in the other languages. In

other words, in current available AOP platforms, semantically equivalent

Aspects still crosscut in different AOP platforms.

Consequently, an AOP platform independent framework is still desired in a

heterogeneous distributed environment to solve crosscutting problem since

a common model for AOP is still missing [111]. The design of AOP platform

independent framework to avoid repetition is the heart of and prerequisite to

achieving highly reusable Aspect. Failure to design an AOP platform

independent framework leads to low level reuse and high maintenance

costs.

72

3.4.3 Requirement 3: Advanced weaving process support in AOP
platform

Current AOP platforms only support a simple weaving process. Individual

Aspects can be weaved to target components individually. A single join point

may have more than one Aspect associated with that join point. However,

when these Aspects are woven to a target component, the sequence of the

execution of these Aspects is not guaranteed.

In aspect oriented systems, it is often the case that Aspects at the same join

point may require a specific execution order or conditional execution.

Therefore, to cope with complex aspect oriented component adaptation, it

often requires weaving Aspects in more sophisticated control flow, e.g.

dynamically deciding whether to invoke a particular Aspect.

3.4.4 Requirement 4: Short learning curve of AOP platform

As the learning curve of current AOP platforms is steep, an easy-to-use

approach is desirable to promote AOP being more widely used. Generative

techniques are cost effective approaches to generate source code.

Therefore, Generative techniques can be used to generate Aspects

automatically. As the AOP platform specific knowledge can be hidden in the

generator, the learning curve will be reasonably short.

3.4.5 Conclusions

In conclusion, based on the investigation of current techniques on

component adaptation, generative programming, and AOP, a new approach

is required to eliminate the problems associated with these techniques, and

therefore achieve deep level component adaptation with high automation.

The requirements from Section 3.4.1 to Section 3.4.4 must be fulfilled.

73

Chapter 4 The Approach

This chapter introduces the approach in detail including the two dimensional

Aspect model, the approach, the Aspect generation process, and the aspect

oriented adaptation process.

4.1 Introduction

To achieve automated component adaptation at a deep level, particularly

aiming at eliminating mismatches in non-functional issues such as system

performance, dependability and safety, a Generative Aspect-oriented

component adaptatIoN (GAIN) approach is proposed. The problems

associated with current AOP frameworks such as the reusability of Aspects,

programming language independent Aspect support, and advanced weaving

process support are also addressed in the approach. In addition, as the

generative programming is used in the approach, the AOP specific

knowledge is hidden which results in the short learning curve of the

approach.

In the GAIN approach, component adaptation is carried out within an aspect-

oriented component adaptation framework by generating and then applying

the adaptation Aspects to original component(s) under a designed weaving

process according to specific adaptation requirements.

The approach is based on the successful points in a few technologies, i.e.,

Aspect Oriented Programming, Software Product Line, Generative

Programming, and Component Adaptation. First of all, Generative

Programming and AOP techniques are applied to component adaptation;

hence deep level adaptation is achieved with high automation. Secondly,

based on the software product line concepts and generative component

74

adaptation techniques, a two dimensional Aspect model (refer to section 4.2)

has been developed to support highly reusable and AOP platform

independent Aspects. To facilitate the reusability of adaptation knowledge,

an expandable library of reusable adaptation Aspects is required. Thirdly,

compared with traditional AOP, the weaving process of Aspects in the

approach supports more complex control flow, i.e., not only sequence, but

also switches, to make the adaptation more accurate and efficient for

components reused in more complicated applications. Last but not least, the

approach absorbs the variation concept of a software product line and

Generative Programming techniques. All the specific knowledge of AOP is

hidden in the generator; hence the learning curve is short.

4.2 Product Line Based Aspect Model

In the approach, the adaptation knowledge is captured in Aspects and aims

to be reusable in various adaptation circumstances. To achieve product line

based automatic generation of the adaptation Aspects and to enlarge the

reusability of Aspects, a two dimensional Aspect model is developed and in

practice an Aspect repository is built as an embodiment of the above model.

Different abstract levels of Aspects is supported in the Aspect repository.

Figure 4.1 presents the views of an Aspect from two different dimensions:

component view and abstraction view. From component view, the CS

(Common Structure) and V (Variations) of each component are separated

from each other to support various product family members. The different

levels of abstraction for each Aspect are described in abstraction view as

AAF (Abstract Aspect Frame), AF (Aspect Frame), and AInst (Aspect

Instance). With the two-dimensional Aspect model, reusable Aspects are

achieved and AOP language independent Aspects are implemented.

75

CS: Common Structure

V: Variations

AAF: Abstract Aspect Frame

AF: Aspect Frame

AInst: Aspect Instance

Figure 4.1 A two dimensional view of an Aspect

As shown in figure 4.1, during the whole Aspect oriented adaptation process,

from the designing of different Aspects in AAFs, to the implementation of

AOP platform independent Aspects in AFs, to the implementation of

concrete AOP platform specific Aspects in AInsts, all Aspects are presented

in two parts: CS and V, no matter which abstract level they are, such as

AAF, AF, or AInst. This mechanism maximise the reusability of Aspects by

separating variations from the common core assets in the two dimensional

model.

4.2.1 Component View

In software product lines, a family of applications are derived from one base

architecture. Software product lines have two parts: core assets, which can

be used in different product family members, and variations, which show the

difference between different product family members. A challenge with the

76

product line approach is to model the variability between the core assets and

the applications.

In the approach, each Aspect consists of two parts, namely CS (Common

Structure) and V (Variations) to realize the main idea of a software product

line approach and reflect the core assets and the variability of software

product family members.

The commonness of various Aspects is summarized in CS which can be

reused in all similar Aspects in various Aspect oriented systems. All Aspects

in the approach have the same structure in CS because only common

information for each Aspect such as the details of pointcut and advice, is

kept in the CS part. The CS parts of different Aspects are produced by filling

detailed content information into the basic CS structure.

Each Aspect varies in its V part, which includes the implementation details of

various functionalities, and the configuration information of a particular

Aspect. Together with the basic information in CS, distinctive information

reflecting the variations is used to define different Aspects. For example, for

logging Aspects, the output device such as a hard drive and a file name

need to be specified. On the other hand, for a database connection pool

Aspect, the capacity of the pool, and the expiry time of each connection are

needed to instantiate a specific Aspect.

In the abstraction dimension, the CS and V are presented in different forms

with different abstraction details at the three abstraction levels. For example,

XML Schema files for different types of Aspects at AAF level, XML files for

programming language independent Aspects at AF level, and program

source code for executable Aspects at AInst level. Full details are described

in section 4.2.2.

77

In summary, the component view presents the structural elements inside an

Aspect: CS and V. Therefore, in the component view, an Aspect is defined

as follows in the proposed model:

ASPECT = (CS, V), where

CS = (P, A), where

 P = Declaration of Pointcut = (D, O), where

 D = Details of the pointcut

 O = Object that the pointcut applies to

 A= Declaration of Advice

 V = (C, SI) , where

 C = Content of variations

 SI= Semantic Interpreters

 CS is the Common Structure of Aspects. CS defines the common

structural elements that any Aspect will have despite its functionality

or implementation platform. CS consists of two sub-elements:

Pointcut (P) and Advice (A). All Aspects have the same CS at AAF

level (refer to section 4.2.2 for details) no matter how different these

Aspects are in functionality and implementation platform.

 P is the specification of the pointcut, which includes two parts: D and

O. D defines the details of the pointcut, such as the name of the

pointcut, the applying time of the pointcut, etc. and O is the object that

the pointcut applies to, including the component name and method

signatures.

 A is the declaration of advice, which contains the basic information of

the advice, e.g. when the joint point will be inserted into the target

component.

 V is Variations, which defines the variations of different Aspects. V

consists of two parts: the content of the variations (C) and the

Semantic Interpreters (SI).

78

 C refers to the contents of the variations. For example, in a logging

Aspect, C includes the logging message to be saved, and the file

name used to save the message, whilst in a database connection

pool Aspect, the capacity of the pool is part of its variation parameter.

 SI is the Semantic Interpreters of the Aspect, which specifies the

actions to be carried out when the Aspect is applied. SI is unique

when the type of Aspect (refer to section 4.2.2) and the target AOP

platform are specified.

4.2.2 Abstraction View

In the proposed Aspect model, to achieve high reusability, an Aspect is

defined at three abstraction levels, which constitutes the abstraction view.

Therefore, an Aspect can be described as follows in the abstraction view:

ASPECT ::= { AAF | AF | AInst }, where

 AAF stands for Abstract Aspect Frame, which defines the structure of

the Aspect.

AAF is the fundamental and the most abstract level of the Aspect

definition in the model. As an XML schema file, AAF is used to define

the structure of different types of Aspects. According to the

functionality, AAF forms a hierarchical structure that reflects functional

variations of different adaptation Aspects. Adaptation Aspects are

modelled into different types (refer to section 5.2.2 for the

implementation of AAF), for example, logging, caching,

authentications, etc. Each AAF consists of CS and V. All Aspects

have exactly the same CS part because they all have identical

definition in a XML schema for their CS. On the other hand, different

Aspects have unique V part definitions in AAF to reflect the variations.

79

 AF stands for Aspect Frame, which is an AOP platform independent

instantiation of AAF in a specific adaptation circumstance.

Each AAF may have many Aspect Frames (AFs), depending on the

usage of the AAF in various adaptation scenarios. AF is the second

abstraction layer in an Aspect definition. An AF is an instance of the

related AAF in a specific adaptation circumstance. Compared with its

AAF, an AF has the details of a concrete Aspect populated into it by

assigning values to the parameters. User interaction is required to

create an AF from an AAF. Defined in XML format, AF is independent

from concrete AOP platforms. From the component view, the AFs

generated from the same AAF have the same structure but may have

different data in both CS and V parts.

 AInst stands for Aspect Instance, which is an instantiation of AF on a

specific AOP platform.

An AF is not executable until it is mapped onto a concrete AOP

platform. The result of this mapping is a family of Aspect Instances

(AInst) based on various AOP platforms. An Aspect Instance is

executable and specific to a concrete AOP platform, and it reflects

platform variations of an Aspect on different AOP platforms. The

template based transformation mechanism to generate AInst from

their AF is called a Semantic Interpreter, which is Aspect and AOP

platform specific. The generation process is fully automatic. The

AInsts generated from the same AF may have different CS and V

parts because they may be mapped into different AOP platforms.

80

4.3 The Approach

4.3.1 The Framework

The general process of the approach is given in Figure 4.2 as a framework.

It is presumed that a component has been found with suitable potential to be

used in a component-based application, however, based on reading of the

related design documents, the application developer identified some

mismatches of the component and wishes to have it adapted.

Figure 4.2 The Generative Aspect-oriented component adaptatIoN

(GAIN) framework

The mismatches will be eliminated by applying Aspect-oriented adaptation to

the original component. The whole adaptation process includes Aspect-

oriented adaptation design and Aspect-oriented adaptation implementation.

As shown in Figure 4.2, in the Aspect oriented adaptation design stage, the

adaptation requirements are captured and as a result, the Process-based

81

Component Adaptation Specification (PCAS) is produced at the end of the

design stage. In the implementation stage, with tool support, the component

adaptation process is performed automatically.

4.3.2 Aspect Oriented Adaptation Design

The purpose of this phase is to define the detailed component adaptation

specification. To achieve this goal, two types of information need to be

identified first:

 Component specification: Initially, the original component is

analyzed with a tool called Component Analyzer, which performs

simple source code analysis to the component and extracts basic

information of the component including class names and method

signatures. The information gathered is referred as component

specification and will be used to build the PCAS and perform

component adaptation.

 Available Aspects: During the adaptation process, available Aspects

are retrieved from the Aspect Repository to be used in the adaptation.

The Aspect repository supports highly and incrementally reusable

Aspects. Reusable Aspects are defined at different abstraction levels

and kept in the repository as AAF, AF, and AInst. The reusable assets

in the repository include both primitive Aspects and Aspect

Frameworks, which come from the adaptation process in PCAS. The

saved Aspects, particularly Aspect Frameworks are potentially

reusable for component adaptations in other applications with similar

scenarios. While the framework is used, the repository will be

populated with more and more Aspects incrementally.

Then based on the adaptation requirements, a Process-based Component

Adaptation Specification (PCAS) will be composed by selecting Aspects

defined at the abstraction level of Abstract Aspect Frames (AAF). The

82

selection of Aspects is actually the process to determine functional variations

of a specific adaptation. An AAF is considered as a template to produce

specific Aspects. The composition of Aspects in PCAS is supported by an

interactive IDE called PCAS Editor, which supports both a graphical view

and an XML source view of the PCAS.

A PCAS is an XML formatted document, which includes the details of

component adaptation, such as the target component, the weaving process,

and the Aspects to be applied. In a PCAS, sequence and switch structure

are supported to achieve flexible adaptation on components. In PCAS, the

adaptation process is depicted with only the ID of the selected Aspects. Full

details of all related Aspects are kept in the Aspect Repository.

4.3.3 Aspect Oriented Adaptation Implementation

In the Aspect oriented adaptation implementation, the whole process is fully

automatic with the support from the Aspect Generator and PCAS based

Aspect Weaver. The aim of this stage is to perform component adaptation

according to the pre-defined PCAS in the design stage.

Based on PCAS and the detailed Aspect definition, namely Aspect Frame

(AF) in the Aspect repository, executable Aspect instances (AInsts) are

generated by the Aspect Generator according to different AOP

implementation specifications. As a result, platform variations are supported

during Aspect generation. The input for the Aspect Generator is AF and the

output is AInst.

The generated executable Aspects (AInsts) are finally weaved to the

component by the PCAS based Aspect Weaver. A new adapted version of

the component is then created through Aspect weaving. As existing AOP

platforms that do not support complicated flow control such as switch in the

weaving process, a pre-process is developed to enable process-based

advanced weaving in the framework. Basically, during the pre-weaving

83

process, the Aspect weaver takes PCAS and the individual Aspects in AF

format as input, and then generates the AInsts for the selected AOP platform

with complex flow control implemented.

4.4 Aspect Generation Process

In the proposed Aspect model, the generation process of an Aspect can be

viewed as the refinement of an AAF into an AF and finally into an AInst. If we

define ∋ as refinement, then

 AAF ∋ AF ∋ AInst

During this process of refinement, the Aspects are refined from the most

abstract form of Aspect, namely AAF, to the less abstract form of Aspect,

namely AF, and finally to the concrete and executable form of Aspect,

namely AInst. There are different variations such as functional variations,

parameterization variations, and platform variations among these three

forms of Aspect.

AAF is defined by a set of XML Schemas, which specify the structure of an

Aspect. AF is an XML file with the above schemas populated with data. User

interaction is needed when refining an AAF to an AF. AInst is the final

concrete programming source code of the Aspect. The transformation from

an AF to an AInst is done by the Aspect Generator which takes AF and

Semantic Interpreter (SI) as input. The process is automatic.

84

Figure 4.3 Product line based Aspect generation

As shown in Figure 4.3, a product family of the adaptation Aspects is

designed to achieve high reusability. All Aspects are defined at three

abstraction levels: AAF, AF, and AInst. These three abstraction levels of

Aspects facilitate the reusability of adaptation Aspects as they realize

different variations of these Aspects:

 Functional variations are achieved by a hierarchical classification of

Aspects at AAF level. Aspects are classified into different types. With

each type, an XML schema is used to define the structure of the

selected Aspect.

 Parameter variations reflect the refinement of Aspects in specific

adaptation circumstances, which is achieved by the determination of

the values of CS and V in AF. Typically, user interaction is required to

get parameter values. A software tool was developed to conduct the

user interaction.

 Platform variations reflect the implementation of Aspects on particular

AOP platforms, which is done by mapping the Aspect in AF format to

AInsts in particular AOP platforms. The mapping process is fully

automatic by using AOP platform and Aspect related Semantic

85

Interpreters. For each AOP platform, a set of corresponding

interpreters need to be developed to deal with various types of

Aspects in the specific AOP platform. The adaptation framework is

extensible to new AOP platforms by developing appropriate

interpreters.

With the basic definition in Figure 4.1, the tuple (CS, V) is refined across the

three abstraction layers in both format and contents.

At AAF level, the tuple is an XML schema definition. CS consists of the

elements to describe the common structure of an Aspect. V consists of the

elements to declare the parameters of variations of the Aspect. All Aspects

have the same CS at AAF level.

At AF level, conforming to the structure definition in AAF, the tuple is filled

with the XML format data specific to an adaptation circumstance. CS will

have the data such as the Aspect name, the signature of the particular

component and method(s) on which the Aspect is to be applied. V will be

filled with parameter values which determine the specific adaptation

circumstances in which the Aspect is applied. Aspects at AF level are bound

to specific Aspect types but are still AOP platform independent.

At AInst level, a concrete executable Aspect is generated automatically by

the Aspect Generator. The common structure (CS), and variations (V) are

finally mapped by a Semantic Interpreter into executable program code.

We define T as the transformation process between AAF, AF, and AInst. We

define ST as the three states during the transformation. We define AT as the

actions during the transformation. Then the transformation is defined as

follows:

86

T = <ST, AT>, where

 ST = {AAF, AF, AInst}

 AT = {a1, a2}, where

 = {<AAF, AF>},

 = {<AF, AInst>}

Hence,

AAF AF AInst

The process of a1 is described in Figure 4.4:

1. GET AAF FROM ASPECT REPOSITORY
2. CHECK WHETHER AAF IS WELL-FORMED
3. VERIFY CS PART OF AAF
4. VERIFY V PART OF AAF
5. IF AAF IS INVALID
6. RETURN Ø
7. END IF
8. READ POINTCUT DEFINITION INFORMATION FROM USER
9. VALIDATE POINTCUT DATA AGAINST ITS AAF DEFINITION
10. IF POINTCUT DATA IS INVALID
11. RETURN Ø
12. END IF
13. READ ADVICE DEFINITION INFORMATION FROM USER
14. VALIDATE ADVICE DATA AGAINST ITS AAF DEFINITION
15. IF ADVICE DATA IS INVALID
16. RETURN Ø
17. END IF
18. READ VARIATIONS DATA FROM USER
19. VALIDATE VARIATIONS DATA AGAINST ITS AAF DEFINITION
20. IF VARIATIONS DATA IS INVALID
21. RETURN Ø
22. END IF
23. CREATE A NEW AF
24. FILL POINTCUT DATA INTO AF
25. FILL ADVICE DATA INTO AF
26. FILL VARIATIONS DATA INTO AF
27. RETURN AF

Figure 4.4 The transformation between AAF and AF

87

The process of a2 is described in Figure 4.5:

1. GET AF FROM ASPECT REPOSITORY
2. CHECK WHETHER AF IS WELL-FORMED
3. VERIFY AF AGAINST ITS AAF DEFINITION
4. IF AF IS INVALID
5. RETURN Ø
6. END IF
7. READ TARGET AOP PLATFORM FROM USER
8. CHECK SI IN REPOSITORY
9. IF SI IS UNAVAILABLE
10. RETURN Ø
11. END IF
12. GET POINTCUT DATA FROM AF
13. GET ADVICE DATA FROM AF
14. GET VARIATIONS DATA FROM AF
15. FILL POINTCUT DATA INTO PRE-DEFINED TEMPLATE IN SI
16. FILL ADVICE DATA INTO PRE-DEFINED TEMPLATE IN SI
17. FILL VARIATIONS DATA INTO PRE-DEFINED TEMPLATE IN SI
18. GENERATE AInst
19. RETURN AInst

Figure 4.5 The transformation between AF and AInst

4.5 The Adaptation Process

Original
Component (C)

Component
Specification

PCAS

Adapted
Component (CA)

Aspect
Instances (A)

Component
Analyzer

PCAS
Editor

Aspect
Generator

Aspect
Weaver

Aspect
Repository

1
2

3
4

Figure 4.6 Adaptation process

88

Figure 4.6 describes the process of the proposed Aspect-oriented generative

component adaptation, which involves the creation and application of

suitable Aspects with the Aspect model defined in section 4.2. It is presumed

that in a component based system, a component has been found potentially

suitable to be reused in a new system and some mismatches still exist. Prior

to performing component adaptation in GAIN to make the component

reusable in a new system, the following criteria must be considered:

 Suitability of component for target application. According to the

component interface and related documentation, the component is

examined whether it is potentially suitable for the target system.

 Some mismatches still exist. If the component can potentially be used

in the target system, the details of the mismatch problem must be

provided as the foundation of the adaptation.

 Available Aspects. Whether the approach can be used to perform the

adaptation also depends on the availability of the Aspects in the

Aspect Repository.

The mismatch will be eliminated by applying Aspect-oriented adaptation to

the original component. Initially, the component is analyzed with the

Component Analyzer (refer to section 7.2.1), which analyzes the source of

the component and extracts component specification information, e.g. class

names and method signatures. The component specification will be used

during the component adaptation.

Then based on the adaptation requirements, a PCAS will be created by

selecting appropriate Aspects defined at the abstraction level of Aspect

Frames (AF) and define the weaving process of these Aspects in the support

tool called PCAS Editor (refer to section 7.2.2). The selection of Aspects is

actually the process to determine functional variation of a specific

adaptation. The composition of PCAS is supported by an interactive IDE

called PCAS Editor, which supports both a graphical and XML source view

of the PCAS.

89

A PCAS is an XML formatted document, which includes the details of

component adaptation, such as the target component, the weaving process,

and the AAFs to be applied. In a PCAS, sequence and switch structure are

supported to achieve flexible adaptation on components. All Aspects used in

the adaptation process are depicted with their unique ID. Full details of the

Aspects can be retrieved from the Aspect Repository by using their ID as a

key.

Based on PCAS and the details of the Aspect definition, namely Aspect

Frame (AF) in the Aspect repository, executable Aspect instances (AInsts)

are generated by the Aspect Generator according to different AOP

implementation specifications. As a result, platform variation is achieved

during Aspect generation. The inputs for the Aspect Generator are PCAS

which tells ‘which Aspects are needed’ and AF which tells ‘the details of

each needed Aspects’, and the output is an AInst.

The Aspect Repository is an embodiment of the proposed product line based

Aspect model. Reusable Aspects are defined at three abstraction levels and

kept in the repository as AAF, AF, and AInst. The reusable assets in the

repository include both primitive Aspects and Aspect Frameworks (refer to

section 6.4), which comes from the adaptation process in PCAS.

The generated executable Aspects are finally applied to the component by

the Aspect Weaver. A new adapted version of the component is then

created through Aspect weaving. Since current AOP platforms do not

support complicated flow control such as switch in weaving process, pre-

processing (refer to 6.5) is applied to enable process-based weaving in an

existing AOP platform.

90

If we define the original component as C, the individual AInsts as A, and the

adapted Component as CA, then the weaving process is described in Figure

4.7 as below:

Figure 4.7 The Weaving process

The Aspect Weaver takes C, A, and PCAS as input and generates CA as

output. Depending on the target AOP platforms, various Aspect Weavers

can be employed to perform the weaving process. For example, by default,

the embedded Aspect Weaver will adapt C and generate CA as standard

programming source code. However, if the target AOP platform is an

existing AOP platform, the pre-weaver is used to add advanced weaving

processes to Aspects in the existing AOP platform. The details of pre-

weaving process are introduced in section 6.5.

The adapted component must be tested before being deployed into the

target system. All the test cases applied to the original component should

also be applied to the adapted component to assure the correctness of the

adapted component. Additionally, the adapted component should also be

tested on its new features. The standard testing process including unit

testing, integration testing, and system testing should be used to test the

new features of an adapted component.

91

Chapter 5 Aspect Repository

This chapter describes the multi-layered reusable Aspect structure and the

Aspect repository in detail.

5.1 Introduction

5.1.1 Reusable Aspects and Platform Independence

AOP is designed to deal with the crosscutting concerns, e.g. logging,

authentication in software systems and write elegant code to avoid code

tangling and scattering.

However, current AOP platforms are bound to specific programming

languages, e.g. AspectJ for Java, AspectC++ for C/C++, aoPHP for PHP.

Consequently, these AOP platforms produce a new crosscutting problem in

AOP platforms while solving traditional crosscutting problems, particularly in

a heterogeneous system. For example, as shown in Figure 5.1, in a

heterogeneous distributed system including a Java based subsystem, a C#

based subsystem, logging Aspects are required in all subsystems. In

existing AOP platforms, developers have to develop the same logging

Aspects in different AOP platforms, e.g. logging in AspectJ for Java based

subsystem 1, logging in Aspect C# in C# based subsystem 2. Therefore, a

new crosscutting concern - logging spreads over different subsystems.

In the GAIN framework, platform independent Aspects namely the Abstract

Aspect Frame (AAF) and the Aspect Frame (AF) are developed to address

the above problem. In other words, a new crosscutting concern – platform

variation concern is considered and addressed in higher abstraction levels.

For example, as shown in Figure 5.1, the platform independent abstract

92

logging Aspect can be designed in AAF and the platform independent

concrete logging Aspect can be designed in AF. Platform specific Aspect

code can be generated from AF by employing a set of Semantic Interpreters.

Logging in
sub-system 1 (in Java)

Logging in
sub-system 2 (in C#)

Logging in
sub-system n (in language n)

AInst in
AspectJ

AInst in
AspectC#

…...

Semantic
Interpreter

Semantic
Interpreter

Logging in AspectJ

Logging in AspectC#

Logging in language n

Abstract
Logging in AAF

Logging in AF

Logging in existing AOP platform(s) Logging in GAIN

Figure 5.1 A comparison between existing AOP methods and
GAIN

5.1.2 Aspect Repository

To achieve highly reusable and platform independent Aspects, a two-

dimensional multiple-abstraction level Aspect Repository is developed. The

reusability is improved via the following:

 The meta data of Aspects are saved in the Aspect Repository. The

definition of Aspects is stored in the Aspect Repository as AAF. A

type system is built by declaring hierarchical AAFs. AAF can be

reused in different applications, e.g. new AFs can be created by

providing detailed content information for each Aspect.

 The platform independent Aspects are saved as AFs in the Aspect

Repository. The XML format concrete Aspects are saved in the

Aspect Repository for further reuse. For each AF, different

programming source code is generated for different AOP platforms by

using different Semantic Interpreters.

 The platform specific Aspects can be generated automatically as

AInsts by Aspect Generator and Semantic Interpreters.

93

With the support of three abstract levels of Aspects and the Aspect

Framework in the Aspect Repository, the reusability of the framework is

increased incrementally. First, all currently available AAFs and AFs in

Aspect Repository are reusable in similar adaptation scenarios, e.g. AAFs

can be reused directly without modification since they define Aspect types.

AFs are reusable with the pre-defined structure populated by new content.

Also, all newly designed AAFs and AFs required by a new adaptation

scenario are kept automatically in the repository for further reuse. Moreover,

the typical combination of various Aspects can also be saved in the

repository as an Aspect Framework for further reuse as well. In summary,

the more the framework is used, the more Aspects are available in the

framework, the more reusable the framework becomes. The approach is

able to address the non-functional requirements that need extra process,

operations and resources to correct, e.g., performance and security.

Currently, four Aspects have been added into Aspect Repository:

Authentication, Logging, Database Connection Pool, Policy enforcement for

new object creation, and Policy enforcement for the restriction to standard

output methods.

5.2 Two-dimensional Multiple Abstraction Level Aspect
Model

5.2.1 The Architecture

In the approach, the content of each Aspect such as Aspect name, Aspect

type, which component(s) to be adapted, when to adapt, and how to adapt

are saved in Aspects in three different layers. The adaptation knowledge

(what) is captured in the Aspects and PCAS (Details are discussed in

Chapter 6) and the adaptation is implemented via related tools such as

Aspect Generator (Section 7.3.2) and PCAS-based Aspect Weaver (Section

7.3.3).

94

As shown in Figure 5.2, to achieve automated and precise adaptation, these

Aspects are defined at three abstraction levels, i.e., Abstract Aspect Frame

(AAF), Aspect Frame (AF), and Aspect Instance (AInst).

Figure 5.2 Three abstraction layers of Aspects

As shown in Figure 5.3, the three abstraction levels of Aspects facilitate the

reusability of adaptation Aspects as they show different variations of these

Aspects, including functional variations, parameter variations and platform

variations.

Figure 5.3 Variations in Aspects

Only AAFs and AFs are kept in the Aspect repository because all AInsts are

generated from AFs.

95

At each level, a pair, namely (CS, V) is used to describe the Common

Structure (CS) and the Variations (V). Common core assets are defined in

CS and product specific variations are defined in V.

CS provides the basic information of an Aspect, e.g. which component to be

adapted (target component), pointcut name. All Aspects have the same CS

at AAF level no matter how different these Aspects are in functionality and

AOP implementation platform because all Aspects have the same structure

to define their basic characters.

V provides the information of the variations of different Aspects of the same

or different Aspect types. For example, for an Aspect of logging type, an

output file name must be provided; similarly an authentication Aspect must

be supplied with an authentication type.

5.2.2 Abstract Aspect Frames

Abstract Aspect Frames are the most abstract level of the Aspect

Repository. As XML schema files, an AAF is used to define the structure of

different Aspects. According to the functionality, the AAF forms a hierarchical

structure that shows functional variations of different Aspects. Adaptation

Aspects are modelled into different types, for example, logging, caching,

authentications, etc. Each Aspect type can be refined into a group of sub-

types. For example, Aspects of authentication may consist of operating-

system-based authentication and database-based authentication.

AAF is a hierarchical Aspect type system defined in XML schema format.

This type hierarchy includes many levels of Aspect types and sub-types,

which capture various functionalities of the adaptation Aspects. The Aspect

Repository, assisted with the Aspect Manager, can adjust its Aspect type

structure to accommodate Aspects with different functionalities as long as

they are defined in the required AAF formats.

96

An example of database connection pool Aspect in AAF is shown in Figure

5.4. As discussed in section 4.2, each Aspect has two parts: CS and V,

which are declared as CommonStructure and Variation elements in AAF. In

AAF level, all Aspects are identical in their CommonStructure parts, which

consist of PointCut and Advice elements. PointCut and Advice are used to

describe the basic information of an Aspect such as pointcut and advice

(refer to section 2.4.1.3 for the definition of pointcut and advice). For

example, the name of the pointcut (Name element in AAF), when and where

the pointcut happens (When, ReturnType, ClassName, MethodName, and

Parameters element), when the advice code is applied (When element). On

the other hand, Variation defines the unique elements for each Aspect. For

example, Figure 5.4 shows the definition of Capacity, ExpireTime,

CheckPoint, MaxIdleTime elements for database connection pool Aspect.

<?xml version="1.0" encoding="UTF-8" ?>
<xs:schema xmlns:xs="http://www.w3.org/2001/XMLSchema">
 <!-- Each Aspect has two parts: CommonStructure and Variation -->
 <xs:element name="Aspect">
 <xs:complexType>
 <xs:sequence>
 <xs:element ref="CommonStructure" />
 <xs:element ref="Variation" />
 </xs:sequence>
 <xs:attribute name="name" type="xs:string" use="required" />
 </xs:complexType>
 </xs:element>
 <!-- Following is the definition of CommonStructure part -->
 <xs:element name="CommonStructure">
 <xs:complexType>
 <xs:sequence>
 <xs:element ref="PointCut" />
 <xs:element ref="Advice" />
 </xs:sequence>
 </xs:complexType>
 </xs:element>
 <xs:element name="PointCut">
 <xs:complexType>
 <xs:sequence>
 <xs:element ref="Name" />
 <xs:element ref="When" />
 <xs:element ref="ReturnType" />
 <xs:element ref="ClassName" />

97

 <xs:element ref="MethodName" />
 <xs:element ref="Parameters" />
 </xs:sequence>
 </xs:complexType>
 </xs:element>
 <xs:element name="Advice">
 <xs:complexType>
 <xs:sequence>
 <xs:element ref="When" />
 <xs:element ref="PointCutName" />
 </xs:sequence>
 </xs:complexType>
 </xs:element>
 <xs:element name="Name">
 <xs:complexType mixed="true" />
 </xs:element>
 <xs:element name="When">
 <xs:complexType mixed="true" />
 </xs:element>
 <xs:element name="ReturnType">
 <xs:complexType mixed="true" />
 </xs:element>
 <xs:element name="ClassName">
 <xs:complexType mixed="true" />
 </xs:element>
 <xs:element name="MethodName">
 <xs:complexType mixed="true" />
 </xs:element>
 <xs:element name="Parameters">
 <xs:complexType mixed="true" />
 </xs:element>
 <xs:element name="PointCutName">
 <xs:complexType>
 <xs:attribute name="ref" type="xs:string" use="required" />
 </xs:complexType>
 </xs:element>

 <!-- Following is the elements in Variations part of AAF definition -->
 <xs:element name="Variation">
 <xs:complexType>
 <xs:sequence>
 <xs:element ref="Capacity" />
 <xs:element ref="ExpireTime" />
 </xs:sequence>
 <xs:attribute name="type" type="xs:string" use="required" />
 </xs:complexType>
 </xs:element>
 <xs:element name="Capacity">
 <xs:complexType mixed="true" />
 </xs:element>
 <xs:element name="ExpireTime">
 <xs:complexType>

98

 <xs:sequence>
 <xs:element ref="CheckPoint" />
 <xs:element ref="MaxIdleTime" />
 </xs:sequence>
 </xs:complexType>
 </xs:element>
 <xs:element name="CheckPoint">
 <xs:complexType mixed="true" />
 </xs:element>
 <xs:element name="MaxIdleTime">
 <xs:complexType mixed="true" />
 </xs:element>
</xs:schema>

Figure 5.4 An example of AAF

5.2.3 Aspect Frames

Each AAF may have many Aspect Frames. As the instances of related

AAFs, AFs are the second abstraction layer in an Aspect definition. AAFs

are parameterized to simplify customization for particular applications.

Compared with its AAF, an AF has the details of a concrete Aspect

populated into it by assigning a value to the parameters. User interaction is

required in the tool to provide necessary information for creating an AF from

an AAF. All information gathered from the tool will be described in (CS, V)

pair. Defined in XML format, AFs are independent from concrete AOP

platforms.

An example of database connection pool Aspect in AF is shown in Figure

5.5. Within the CommonStructure tag, the common information of Aspects is

provided, such as pointcut name (Name tag), when and where the pointcut

happens (When, ReturnType, ClassName, MethodName, and Parameters

tag), and when the advice code will be injected. On the other hand, the

database connection pool Aspect specific variations are provided in related

tags, e.g. Capacity, CheckPoint, and MaxIdleTime tag.

<?xml version="1.0" ?>
<Aspect name="OnlineTestingDBPoolAspect">
 <!-- Common Structure -->
 <CommonStructure>
 <PointCut>
 <Name>connectionOpen</Name>
 <When>call</When>

99

 <ReturnType>java.sql.Connection</ReturnType>
 <ClassName>java.sql.DriverManager</ClassName>
 <MethodName>getConnection</MethodName>
 <Parameters>String url,String username,String password</Parameters>
 </PointCut>
 <Advice>
 <When>around</When>
 <PointCutName ref="connectionOpen" />
 </Advice>
 </CommonStructure>
 <!-- Variations -->
 <Variation type="DBConnectionPoolOpen">
 <Capacity>50</Capacity>
 <ExpireTime>
 <CheckPoint>02:00:00</CheckPoint>
 <MaxIdleTime>86400</MaxIdleTime>
 </ExpireTime>
 </Variation>
</Aspect>

Figure 5.5 An example of AF

5.2.4 Aspect Instances

An AF is not executable until it is mapped onto a concrete AOP platform.

The result of this mapping is a family of Aspect Instances based on various

AOP platforms.

An AInst is executable and specific to a concrete AOP platform, and it

reflects platform variations of an Aspect on different AOP platforms. The

program to generate Aspect Instances from their AF is called Aspect

Generator (section 7.3.2). The generation process is fully automatic.

By default, the AInst is generated in the same programming source

language as the original component used. However, if a user elects to use

an existing AOP platform as target platform such as AspectJ, GAIN also

provides Semantic Interpreters to generate corresponding AInsts in the

target platform.

100

An example of AInst in AspectJ is shown in Figure 5.6. Line 3 declares an

DBPooling Aspect. The pointcut and advice are declared in line 7 and 9

respectively. The variation information such as the capacity of the pool and

the maximum idle time for each connection are transformed from AF defined

in Figure 5.5 to AInst in line 5. The detail of advice code is shown from line

10 to 16.

01 import java.sql.*;
02
03 public aspect DBPoolingAspect_1{
04
05 DBConnectionPool dbcp = new DBConnectionPool(50 ,"02:00:00",86400);
06
07 pointcut connectionOpen(String url, String username, String password) :
execution(java.sql.Connection java.sql.DriverManager.getConnection(String,String,String))
&& args(url, username, password);
08
09 java.sql.Connection around(String url, String username, String password) throws
SQLException : connectionOpen (url, username, password) {
10 Connection connection = dbcp.getConnection(url, username, password);
11
12 if(connection == null) {
13 connection = proceed(url, username, password);
14 dbcp.registerConnection(connection, url, username, password);
15 }
16 return connection;
17 }
18 public boolean isReachMaxCapicity() {
19 return dbcp.isReachMaxCapicity();
20 }
21 }

Figure 5.6 An example of AInst in AspectJ

5.2.5 Validation of new Aspects

The Aspects Repository can be extended by adding new Aspects. There are

various ways to validate the newly added Aspects depending on the abstract

level of each Aspect.

101

Validation of AAF

As the AAF reflects the design of a new Aspect type, one way to valiate the

correctness of the AAF is to review the related documentation such as

adaptation requirements, the functional / non-functional description of the

Aspect. In addition, like the standard software development process, the

testing result of AF/AIns is the other means to validate the correctness of

AAF.

Validation of AF

Since all AFs are XML files, they can be validated against their schemas

defined in AAFs. Also, as an XML document, AF files must be well-formed.

Validation of AInst

As AInsts are generated by the Aspect Generator automatically, the

validation result of Aspect Generator also shows whether the AInsts are

correct. The detailed testing of the tool is given in Section 7.4.

102

Chapter 6 Process Based Aspect Oriented
Component Adaptation

This chapter introduces the process based aspect oriented component

adaptation specification, the Aspect Framework, Aspect generation, and the

Aspect weaving process.

6.1 Introduction

Current AOP platforms focus on applying the AOP idea to various

programming languages, in other words, on the implementations of AOP

languages, e.g. AspectJ for Java, AspectC++ for C/C++, aoPHP for PHP. In

these platforms, the individual Aspects can only be weaved into target

components one by one in sequential order.

However, in Aspect oriented software development, more advanced weaving

process support is desirable. For example, in a software system, a

developer wants to apply database connection pool Aspect to all

components invoking database connection APIs. Moreover, for performance

tuning purposes, the user also wants to log the usage of the database

connection pool to monitor whether the maximum capacity of the pool has

been reached. In this case, different Logging Aspects need to be used in

different circumstances depending on the execution outcome of database

connection pool Aspect. Then based on the logging information, the user

can adjust the parameters of the connection pool to achieve the most

appropriate performance with minimum resource usage. Another example is

authentication in a student record system. As there are different types of

roles in the system, e.g. system administrator, course tutor, and student,

different operations are performed when users login in different roles. Also,

the system needs to log various information when users login successfully or

103

fail to login. In this case, the system needs to log different information

depending on the result of authentication Aspect.

Satisfying the above adaptation requirements often requires performing

complex adaptations to component(s) with a set of generated Aspects

applied to these components under a specially designed adaptation process

containing flexible flow controls. However, implementing conditional

execution of various aspects is not trivial since existing AOP platforms do

not provide explicit language mechanisms for this purpose [117]. Therefore,

Process-based Component Adaptation Specification (PCAS) is designed to

fulfil these complex adaptation requirements.

6.2 Basic Entities of PCAS

Process-based Component Adaptation Specification (PCAS) is developed to

describe the complicated Aspect-oriented adaptation details. Finally

implemented in XML, PCAS is defined with the following tuple.

PCAS = (C, A, P), where

C = Component(s)

A = Aspect(s)

P = Process

 C defines the component(s) which Aspects apply to. One or more

component details are defined in C, e.g. component name, and the

methods in component that will be involved in the Aspect weaving

process.

 A defines the Aspects to be applied in the process, including the

necessary information of the Aspects, such as the Aspect id, and Aspect

type, so the full details of each Aspect can be retrieved from the Aspect

repository when required during the weaving process.

 P defines weaving process control, including execution mode such as

“Switch”, “Case”, and the guard condition(s).

104

6.3 Process-based Component Adaptation Specification
(PCAS)

PCAS was developed to apply a set of Aspects to target component(s)

under the designed advanced adaptation process. The structure of PCAS,

defined in XML schema, is given in Figure 6.1.

<?xml version="1.0" encoding="UTF-8" ?>
<xs:schema xmlns:xs="http://www.w3.org/2001/XMLSchema">
 <xs:element name="AOP-Process">
 <xs:complexType>
 <xs:sequence>
 <xs:element ref="AspectFramework" />
 </xs:sequence>
 <xs:attribute name="name" type="xs:string" use="required" />
 </xs:complexType>
 </xs:element>
 <xs:element name="AspectFramework">
 <xs:complexType>
 <xs:sequence>
 <xs:element ref="Apply-aspect" maxOccurs="unbounded" />
 <xs:element ref="Switch" maxOccurs="unbounded" />
 </xs:sequence>
 <xs:attribute name="name" type="xs:string" use="required" />
 <xs:attribute name="awhen" type="xs:string" use="required" />
 <xs:attribute name="returntype" type="xs:string" use="required" />
 <xs:attribute name="when" type="xs:string" use="required" />
 <xs:attribute name="joinpointcomponent" type="xs:string" use="required" />
 <xs:attribute name="joinpointmethod" type="xs:string" use="required" />
 <xs:attribute name="parameters" type="xs:string" use="required" />
 <xs:attribute name="sourcefile" type="xs:string" use="required" />
 <xs:attribute name="path" type="xs:string" use="required" />
 </xs:complexType>
 </xs:element>
 <xs:element name="Apply-aspect">
 <xs:complexType>
 <xs:attribute name="method" type="xs:string" use="required" />
 <xs:attribute name="class" type="xs:string" use="required" />
 <xs:attribute name="synchronized" type="xs:string" use="required" />
 <xs:attribute name="comment" type="xs:string" use="required" />
 <xs:attribute name="af_name" type="xs:string" use="required" />
 <xs:attribute name="aspect_level" type="xs:string" use="required" />
 <xs:attribute name="af_id" type="xs:string" use="required" />
 <xs:attribute name="aspect_type" type="xs:string" use="required" />
 <xs:attribute name="aspect_id" type="xs:string" use="required" />
 </xs:complexType>
 </xs:element>
 <xs:element name="Switch">
 <xs:complexType>
 <xs:sequence>

105

 <xs:element ref="case" maxOccurs="unbounded" />
 </xs:sequence>
 <xs:attribute name="when" type="xs:string" use="required" />
 <xs:attribute name="expr" type="xs:string" use="required" />
 </xs:complexType>
 </xs:element>
 <xs:element name="case">
 <xs:complexType>
 <xs:sequence>
 <xs:element ref="Apply-aspect" maxOccurs="unbounded" />
 </xs:sequence>
 <xs:attribute name="value" type="xs:string" use="required" />
 </xs:complexType>
 </xs:element>
</xs:schema>

Figure 6.1 XML Schema of PCAS

The tags used in PCAS include:

 AOP-Process. The basic data of the weaving process is given in

AOP-Process, such as the name and the namespace of the weaving

process.

 AspectFramework. As various Aspects are used in the advanced

weaving process, the combination of all Aspects and flow controls can

be regarded as an “Aspect Framework”, which can be reused as a

whole in similar situations. All the Aspects within the

AspectFramework are applied to the same join point. The basic

information of this join point is provided by a set of attributes including

name, awhen, returntype, joinpointcomponent, joinpointmethod,

parameters, sourcefile, and path. The details of “Aspect Framework”

are given in section 6.4.

 Switch and case. Switch and case are used to support the switch

structure in the weaving process. Working like a switch structure in

many programming languages, an expression is needed in switch tag

and depends on the value of this expression, different Aspects are

applied in different case tags.

106

 Apply-aspect. This tag is used to add an individual Aspect to the

weaving process. To perform this task, the following attributes are

needed:

o class and method: provide the basic information of the target

component that will be adapted.

o aspect_level: is used to describe whether an aspect is primitive

Aspect or Aspect Framework.

o aspect_type: is the type of the Aspect, e.g. Logging,

Authentication, and Performance.

o af_id: is the unique ID for AF. The full detail of each AF can be

retrieved from Aspect repository.

o af_name: is the name of each AF.

o comment: is the descriptive text to explain the current Aspect.

With the support of PCAS and PCAS based Aspect Weaver (refer to section

7.3.3), a complex and flexible adaptation process can be achieved and more

adaptation requirements can be fulfilled. As a result, the reusability of target

component based systems is increased. The typical structure of PCAS

definition is given in Figure 6.2 with the data detail omitted, while a full

example of the definition is given in Chapter 8.

<?xml version="1.0"?>
<AOP-Process name="xxx"
 xmlns="http://www.dcs.napier.ac.uk/2005/PCAS">
<AspectFramework name="xxx" …>
<Apply-aspect class="xxx"
 method="xxx"
 aspect_id="xxx"
 aspect_level="xxx"
 aspect_type="xxx"
 af_id="xxx"
 af_name="xxx"
 comment="xxx"/>
<Switch expr=”xxx” when=”xxx”>
<case value="xxx">
 <Apply-aspect …/>
</case>
<case value="xxx">
 <Apply-aspect …/>

107

</case>
</Switch>
</AspectFramework>
</AOP-Process>

Figure 6.2 Process based component adaptation specification

6.4 Aspect Framework

As similar combinations of Aspects are often used in different adaptation

scenarios, Aspect Frameworks are developed in GAIN to improve further

reuse. The reason for supporting Aspect Frameworks is that relatively fixed

combination of various Aspects and the control flow connecting these

Aspects to perform a specific adaptation task can be reused in the similar

adaptation situations. For example, when a developer wants to optimize the

use of database connection techniques from the simple JDBC / ODBC /

OLEDB API invocations to a database connection pool, a set of Aspects is

needed to get a satisfactory performance with minimum resource occupancy

e.g. DBPooling Aspect and logging Aspects, which are organized in PCAS to

perform this task. Therefore, the combination of a DBPooling Aspect,

Logging Aspects, and the flow control can be saved in the Aspect Repository

as an Aspect Framework, and then developers can reuse the same

combination of Aspects in similar situations.

An example of an Aspect Framework is shown in Figure 6.3. The adaptation

process described inside the “AspectFramework” tag can be regarded as an

Aspect Framework, which is the combination of Authentication Aspect,

Logging Aspects and Exit Aspect. Within the AspectFramework tag, the

Authentication Aspect is applied first, then based on the value of expression

“StudentSysAuth.getAuthenticationStatus()” defined in Switch tag in run-time,

different Aspects will be applied. In this case, if the value is true, a Logging

Aspect is applied, otherwise, the other Logging Aspect and an Exit Aspect

are applied because that means the authentication failed. As the situation of

108

applying different Logging Aspects and Exit Aspect according to the result of

Authentication is common, the Aspect Frameworks can be reused in

different application systems.

<AspectFramework name="Auth_loggingOnStudentinfo"
 sourcefile="Student.java"
 path="d:\My_doc\Thesis\GAIN\Gain\Work\"
 joinpointcomponent="Student"
 joinpointmethod="launchApp"
 when="call"
 returntype="*"
 parameters=".."
 awhen="before">
<Apply-aspect class="Student"
 method="launchApp"
 aspect_id="02"
 aspect_level="Primitive"
 aspect_type="Authentication"
 af_id="3"
 af_name="StudentSysAuth"
 synchronized="false"
 comment="check user name and password"/>
<Switch expr="StudentSysAuth.getAuthenticationStatus()" when="before">
<case value="true">
<Apply-aspect class="Student"
 method="launchApp"
 aspect_id="01"
 aspect_level="Primitive"
 aspect_type="Logging"
 af_id="1"
 af_name="StudentSysLogging1"
 synchronized="true"
 comment="Log the access to the system"/>
</case>
<case value="false">
<Apply-aspect
 class="Student"
 method="launchApp"
 aspect_id="01"
 aspect_level="primitive"
 aspect_type="Logging"
 af_id="2"
 af_name="StudentSysLogging2"
 synchronized="true"
 comment="log the rejection of access to the system"/>
<Apply-aspect
 class="Student"
 method="launchApp"
 aspect_id="08"
 aspect_level="Primitive"
 aspect_type="Exit"
 af_id="16"

109

 af_name="StudentSysExit"
 synchronized="false"
 comment="Exit"/>
</case>
</Switch>
</AspectFramework>

Figure 6.3 An example of Aspect Framework

In summary, the use of Aspect Frameworks enhances the incremental

reusability of the GAIN framework. The more usage of combinations of

Aspects is saved in the repository as Aspect Frameworks, the higher

reusability can be achieved.

6.5 Aspect Generation and the Weaving Process

After PCAS is gathered in the Aspect oriented design phase (refer to section

4.3.2), the weaving process is performed. As shown in Figure 6.4, first, the

basic information for each Aspect can be retrieved from PCAS, and then the

details of each Aspect can be accessed from the Aspect Repository. Then,

depending on which target AOP platform is selected, the appropriate

Semantic Interpreters are selected to generate the AOP platform specific

AInsts. By default, the AInsts are generated in the same programming

language as the original component used. However, if a developer specifies

an existing AOP platform as the target platform, as current AOP platforms do

not support advanced weaving process such as switch structure defined in

PCAS, a pre-weaving process is applied to support the advanced weaving

process. In this case, the AInsts are generated in the selected AOP platform

with advanced weaving process support.

110

PCAS, AFs

Use existing AOP
platform?

Weaving in target
AOP platform

Generate AInsts in
original component

code

Weaving

Yes No

Generate AInsts in
target AOP platform
with PCAS Support

Gain

Figure 6.4 The generic weaving process

We define C as original component, A as required individual Aspects in AF

level during the adaptation, CA as the adapted component, W as the weaving

process between {PCAS, C, A} and CA. We define SW as the two states during

the transition. We define AW as the action during the transition. Then the

weaving process is defined as following:

W = <SW, AW>, where

 SW = {{PCAS, C, A}, CA }, where

 PCAS is the process based component adaptation specification,

 C is the component to be adapted,

 A is the required individual Aspects in AF level during the adaptation,

 CA is the adapted component

 AW = {a}, where

 = {<{PCAS, C, A}, CA >},

Hence,

{PCAS, C, A} CA

111

The process of a is described in Figure 6.5:

1. READ PCAS
2. VALIDATE PCAS
3. IF PCAS IS INVALID
4. RETURN Ø
5. END IF
6. READ TARGET AOP PLATFORM FROM USER
7. GET ALL INDIVIDUAL AFs FROM PCAS
8. GENERATE AInsts from AFs IN GAIN
9. IF TARGET AOP PLATFORM IS GAIN
10. GENERATE INJECTION CODE IN GAIN ACCORDING TO PCAS
11. ADD INJECTION CODE INTO ORIGINAL COMPONENT
12. COMPILE ORIGINAL COMPONENT
13. ELSE
14. GENERATE INJECTION CODE IN SELECTED PLATFORM ACCORDING TO

PCAS
15. ADD INJECTION CODE INTO RELATED AInsts
16. WEAVING ASPECTS INTO COMPONENT BY USING EXISTING ASPECT

WEAVER
17. ENDIF

Figure 6.5 The weaving process

PCAS is supported by the GAIN framework directly. Therefore, if the target

AOP platform is not specified, the Aspect Generator generates AInsts in the

same programming language as the original component used. Then the

Aspect Weaver weaves the Aspects to original components directly

according to the adaptation specification in PCAS. All structures and

features supported in PCAS are reflected in the adapted components.

If a user selects an existing AOP platform such as AspectJ which does not

support an advanced weaving process as a target platform, a pre-weaving

technique is developed to support flexible flow control in PCAS during the

weaving process.

112

Figure 6.6 Weaving process in existing AOP platform in the
approach

As shown in Figure 6.6, two steps are needed during the whole weaving

process:

First, a pre-weaving process is developed to support the advanced weaving

process. The pre-weaver takes PCAS as input, and then generate AInsts in

target AOP platform with advanced weaving process support.

Then, as well as platform specific Aspects are generated, the Aspect

Weaver in the existing AOP platform is used to weave these Aspects into the

original components. For example, if AspectJ is selected as target AOP

113

platform, AspectJ weaver can be used to weave Aspects into the original

components. As a result, the original components are adapted.

114

Chapter 7 The CASE Tool

This chapter introduces the system architecture, the tool in aspect oriented

adaptation design/implementation, and the testing of the tool.

7.1 System Architecture

A CASE tool has been developed to facilitate the proposed approach and

help developers performing automatic component adaptation. With this tool,

firstly, component developers use the Component Analyzer to analyze

component information and use the PCAS Editor to define the Aspect

weaving process in a graphical interface. Secondly, they select candidate

Aspects and fill in necessary details of CS and V for each Aspect with

support from the Aspect Manager. Thirdly, the Aspect Generator and

Semantic Interpreters generate AInsts for each Aspect automatically. Finally,

according to the defined PCAS, Aspect Weaver will complete the Aspect

weaving and generate final adapted components.

Figure 7.1 CASE tool in the framework

115

As given in Figure 7.1, the tool includes two parts: the Aspect Oriented

Adaptation Design and the Aspect Oriented Adaptation Implementation

respectively. In the design phase, the aim is to help developers generate a

component adaptation specification – PCAS file. In the implementation

phase, the aim is to perform Aspect generation and weave generated

Aspects into original component. The tool consists of the following parts:

 Component Analyzer, which analyzes component and gets necessary

information such as the class names and method signatures, for

component adaptation.

 PCAS Editor, which provides an edit environment for PCAS both in

graphical interface and at source code level.

 Aspect Manager, which supports the management of reusable Aspects

in the Aspect Repository and the graphical view of different levels of

Aspects.

 Aspect Generator: based on AFs and related Semantic Interpreters,

concrete Aspect Instances are generated by Aspect Generator.

 Semantic Interpreters, which translate AFs to AInsts based on selected

specific AOP platform and the type of Aspect(s).

 Aspect Weaver, which is used to weave Aspects generated by the

Aspect Generator to original component according to the adaptation

definition in PCAS.

7.2 Aspect Oriented Adaptation Design Phase

7.2.1 Component Analyzer

Before performing component adaptation, the required details of original

components such as class name, method signatures must be provided.

Therefore, a Component Analyzer was developed in the framework to

analyze the original component(s) and get necessary information such as

116

the class names and method signatures. All this information is provided to

the PCAS Editor during the creation of PCAS. Text based source code

analysis and regular expressions are used to pick up the required

information from the component source code.

Another thought is to use reflection mechanisms [136] of popular languages

such as in Java [66], and in C# [69] to gather basic information of the

component from its binary format. These techniques are essential while

implementing the tool to support binary code adaptation in the future work

(section 9.3.1).

7.2.2 PCAS Editor

The PCAS Editor provides an edit environment for PCAS both in a graphical

interface and at XML level. In the PCAS Editor, the Aspect weaving process

is defined by selecting various Aspects and putting these Aspects in

sequence or switch structure in a graphical interface.

Figure 7.2 PCAS Editor in graphics view

As shown in Figure 7.2, all selected Aspects and flow controls are organised

to build a PCAS. Software developers can add Aspects one by one into

Aspect Framework. Then flexible control flows can be used to connect these

selected Aspects, e.g. sequence or switch control flow. At the same time, the

corresponding source code of the PCAS is generated automatically in the

right part of the screen, as shown in Figure 7.3.

117

Figure 7.3 Main interface

On the other hand, experienced developers also can start creating PCAS in

the source code view, and the corresponding graphical representation is

also updated automatically.

For example, the PCAS in Figure 7.2 shows a PCAS that uses three

Aspects: one database connection pool Aspect and two logging Aspects.

Based on the status of database connection pool Aspect, one of these two

logging Aspects will be selected.

In addition, as shown in Figure 7.4, the combination of primitive Aspects and

control structures can be saved into the Aspect repository as an Aspect

Framework. As shown in Figure 7.5, the Aspect Framework(s) can be re-

loaded from Aspect repository to support further reuse.

Figure 7.4 Save Aspect Framework to Aspect repository

118

Figure 7.5 Load Aspect Framework from Aspect repository

7.2.3 Aspect Manager

The Aspect Manager supports the management of reusable Aspects in the

Aspect Repository and the graphical view of different levels of Aspects.

Aspects at two different levels, namely AAF, and AF can be created,

removed, and edited in the Aspect Manager, either in the graphical user

interface, or at XML level source code view.

Figure 7.6 Aspect Manager

119

As shown in the top left of Figure 7.6, the hierarchy of various AAF and AF in

Aspect Repository is represented as a tree in Aspect Manager. For example,

there are six AAFs in Figure 7.6, e.g. Logging, Authentication,

DBConnectionPool, PE_NewObj, PE_NoStandardOutput, and Exit. Zero,

one or more AFs are listed in the tree as the XML level instance of each

AAF. For example, in Figure 7.6, there are four AF level instances of

Logging AAF, and two AF level instance of Authentication Aspect.

In the left bottom of Figure 7.6, AAF/AF meta data Edit window is designed

to add new AFF/AF, edit the meta data of AAF/AF, and delete existing

AAF/AF. For example, as shown in Figure 7.7, for each AAF, the description,

the filename, icon, and the create time of AAF can be edited, and for each

AF, the name, description, filename, create time, and type can be edited.

Figure 7.7 AAF/AF meta data definition window

For any AAF/AF, the full definitions are saved in XML schema / XML files,

which can be edited by double-clicking related AAF/AF in the tree in left top

window. The file for each AF is represented both by graphical and source

code view. For example, in Figure 7.6 and Figure 7.8, the

StudentSysLogging2 AF is shown both in graphical view and in source code

view. On the other hand, the file content for each AAF is editable in source

code view.

In both graphical and source code view, two parts are used to support

software product line:

120

 Common Structure (CS): the core concerns of each AAF/AF are

shown in this part.

 Variations (V): the variations of each AAF/AF are shown in this part.

Each AF can be used as a basis to generate a set of AInsts for different

AOP platforms by employing Aspect Generator and appropriate Semantic

Interpreters. The generation process is performed in a new Aspect

generation window.

Figure 7.8 Source view of AF

121

As shown in Figure 7.9, all AOP platforms supported by the framework need

to be selected from a listbox for AInst generating and the generating process

is fully automatic. For example, the AspectJ code for logging Aspect from

StudentSysLogging2 AF is given in Figure 7.9. The resulting AspectJ code

will not be saved into Aspect repository because the AInsts can be re-

generated automatically as required.

Figure 7.9 Aspect generation

7.3 Aspect Oriented Adaptation Implementation Phase

7.3.1 Semantic Interpreters

A set of XSLT (Extensible Stylesheet Language Transformations) [82] based

Semantic Interpreters (SI) is developed to support the automatic code

generation from AF to AInst based on selected specific AOP platform and

the type of the Aspect. Semantic Interpreters allow the GAIN framework to

perform concrete Aspect generation tasks automatically, and in a more

reliable manner than this could be done manually. At the same time,

developers can focus on the creation of platform independent Aspects (in

122

AF) during the adaptation process, rather than the specific syntax in a

selected AOP platform.

XSLT is an XML-based language used for the transformation of XML

documents into other XML, plain text, programming source code, or other

format documents. The original document is not changed and a new

document is created based on the content of the original one by an XSLT

processor. XSLT is most often used to convert data between different XML

schemas or to convert XML data into other format documents. The XSLT

processor builds a source tree from the input XML document. It then starts

by processing the source tree's root node, finding in the stylesheet the best-

matching template for that node, and evaluating the template's contents.

In the GAIN framework, as shown in Figure 7.10, the basic idea of XSLT

based code generation is to fill all content related information in AF and

define processing logic in SI. Then the XSLT processor transforms the AF to

AInst by filling contents in AF to pre-defined templates in SI. The XSLT

processor reads all tags in AF and tries to find a matched template for each

tag in the related SI. If the matched template is found in SI, then the code

associated with that template is transformed to AInst. Having interpreted

AF, SI outputs an AInst with content information declared in AF.

AF SI

XSLT processor

AInst

Figure 7.10 Semantic Interpreters and XSLT processing

123

The SI is called by the Aspect Generator during code generation. If there are

m different supported AOP platforms and n different types of Aspect in the

framework, there will be m × n different interpreters. The tool provides an

interface to manipulate the Semantic Interpreters in the framework, e.g.

viewing, editing, and deleting existing Semantic Interpreters, or adding a

new SI into the framework to support more AOP platforms and Aspect types.

Currently, the Semantic Interpreters are implemented to support Logging,

Authentication, DB Connection pool, Policy enforcement, and Exit Aspects in

AspectJ, Java, and C# respectively.

7.3.2 Aspect Generator

Based on AF and corresponding Semantic Interpreters, executable Aspect

instances will be generated by Aspect Generator. Aspect Generator highly

relies upon Semantic Interpreters to provide the transformations between

AFs and AInsts. The delegation pattern [32] is used to implement the Aspect

Generator. The class diagram is shown in Figure 7.11.

Figure 7.11 The implementation of Aspect Generator

The work flow of Aspect generation process is shown in Figure 7.12 below.

124

Figure 7.12 Flow chart of Aspect generator

After gathering PCAS in PCAS Editor, all related Aspects can be retrieved

from PCAS as candidate Aspects for Aspect generation. Then after selecting

the target AOP platform, AInsts can be generated accordingly.

7.3.3 Aspect Weaver

Aspect weaver is used to support the weaving process and generate final

adapted components to fulfil the adaptation requirements defined in PCAS.

The inputs for Aspect Weaver are PCAS and the original component and the

output is the adapted component.

As discussed in section 6.5, if the target AOP platform is a traditional AOP

platform, a Pre-weaver is also required to implement the advance flow

control defined in PCAS. The input for Pre-weaver is PCAS and the outputs

of Pre-weaver are AInsts with PCAS support enabled.

The Aspect Weaver is implemented by using the following technologies:

125

 Text based source code analysis. As the Aspect Weaver modifies the

original component source code, the first task is to find the method(s)

in the component to be adapted. In the Aspect Weaver, source code

analysis is applied first to find the exact place to insert the AOP

related code.

 Source code adaptation. According to the adaptation specification

defined in PCAS, the source code modifications are performed.

The weaving process is fully automatic in the tool. Only PCAS and target

platform need to be specified prior to starting the weaving process. After the

execution of the weaving process, the selected component in PCAS is

adapted.

7.4 Testing of the tool

To evaluate the correctness of the tool, unit testing, integration testing, and

system testing were conducted respectively. The test result has shown that

as the realization of the approach, the CASE tool is capable of performing

non-functional component adaptation tasks in a semi-automatic manner.

Unit testing

Unit testing was performed to test the functionalities of each individual

module of the tool before the code was added to the version control system

(Microsoft Visual Sourcesafe). Unit testing consists of verifying the

interfaces allow data to properly flow into and out of the object and that the

underlying data structures are proper and sound for storing their intended

data. The details are shown below:

 Component Analyzer was tested on its capability of retrieving basic

information from components.

 PCAS Editor was tested on its capability of building PCAS either in

graphical or in source code view. The saving and loading of Aspect

Frameworks were also tested.

126

 Aspect Manager was tested on its capability of manipulating Aspects

at AAF or AF level.

 Semantic Interpreters was tested with various Aspects such as

Logging, Authentication, Database connection pool, Policy enforcer in

AspectJ.

 Aspect Generator was tested on how it can generate AInst in

AspectJ, standard Java and C#.

 PCAS based Aspect Weaver was tested on its capability of weaving

and pre-weaving in AspectJ, standard Java, and C# respectively.

The detailed sample unit test cases are listed in Appendix E.1. As a

demonstration, a unit test case is shown below:

Test case 1 (Testing getMethodList and getComponentname method of Component
Analyzer)
Description: Test whether Component Analyzer provides basic information of a component.
Input: The file name of a component (ConnOracle.java).
Steps:
(1) Create a new object of ComponentAnalyzer class by passing a component file name
(ConnOracle.java) as parameter to the constructor.
(2) Invoke getComponentName and display the return value.
(3) Invoke getMethodList method and display the return value.
Expected result:
Basic component information, e.g. component name(ConnOracle), method signatures
(ConnOracle, executeQuery, executeUpdate).
Real result:
Classname: ConnOracle
MethodList: ConnOracle
 executeQuery
 executeUpdate
Status: passed.

Integration testing

Following unit testing and prior to the beginning of system testing, groups of

individual modules are fully tested. As the goal of integration testing is to

verify whether the modules can work together correctly and adequately, the

Integration test cases focused on scenarios where one component is being

called from another. In addition, the overall application functionality was also

127

tested to make sure the tool worked when the different components were

brought together.

The detailed sample integration test cases are listed in Appendix E.2. As a

demonstration, a test case is shown below:

Test case 1: Test integration between Aspect Manager and Aspect Generator.

Desired Functionality: The selected AF in Aspect Manager can be passed to Aspect
Generator and based on this, Aspect Generator can generate an AInst from the selected AF.

Steps:
(1) Launch Aspect Manager
(2) Select an AF (“StudentSysLogging1”) by clicking it
(3) Click on “Generate AInst” to launch Aspect Generator
(4) Select “AspectJ” as target AOP platform from the listbox
(5) Click on “Generate !”
(6) The source code of generated AInst should be shown in the textbox

Status: passed.

System testing

System testing was performed by doing three case studies to show the

whole ability of the tool to perform component adaptation from aspect

oriented design to aspect oriented implementation. The goal of system

testing is to verify that the functions are carried out correctly. The sample

test cases are presented in Appendix E.3.

128

Chapter 8 Case Studies

8.1 Introduction

Case studies have been undertaken to illustrate and evaluate the approach,

in terms of its capability of building highly reusable Aspects across various

AOP platforms and providing an advanced flow control of weaving process.

The aim of the case studies is to prove that the proposed approach and tool

can deal with component adaptation in various software development

architectures, such as client-server, browser-server architecture and

Microsoft .NET framework. Various component-oriented platforms and

programming languages are considered, such as JavaBeans, .NET

components, and PHP.

8.2 Case Study 1: Student Record Management System

In this section, a case study has been undertaken to demonstrate that the

approach and its tool are capable of performing Aspect-oriented component

adaptation to desktop applications under client / server (C/S) architecture.

The case study also illustrates how PCAS works and how to generate an

executable Aspect by mapping through the different abstraction views of the

Aspect in the framework.

8.2.1 Background

The approach has been applied to the construction of a student record

system which was a coursework in the School of Software, Harbin Institute

129

of Technology [135] as a case study to test its correctness and capability. In

the case study, a component is found from a previous system providing

access to student information, which is shown in Figure 8.1. The component

user has found the component is potentially suitable for the new application

and wishes to integrate it into the new system. However, the component

user wants to restrict the access to the student information only to the

approved users, and wishes to monitor the access by logging the usage

time.

Figure 8.1 Student record management system

130

8.2.2 Solution

To respond to the above need, the component user plans to add

authentication to this component prior to using it. According to the result of

authentication, the detail of access activity to the component will be

recorded.

An authentication Aspect is applied to this component first, followed by the

application of corresponding logging Aspects depending on the result of

authentication Aspect.

8.2.3 PCAS

The adaptation actions are then described in a PCAS shown in Figure 8.2.

Four Aspects including an Authentication Aspect, two Logging Aspects, and

an Exit Aspect and the flow control are given to provide a solution to the

problem described in section 8.2.1. As the combination of these Aspects are

applied to the same joinpoint, the basic information of the joinpoint and the

component is provided in the attributes of AspectFramework tag. Within

AspectFramework tag, an Authentication Aspect is applied to the joinpoint,

then based on the outcome of the Authentication Aspect, different

combinations of Aspects are applied. If the authentication is successful, a

Logging Aspect is applied. Otherwise, another Logging Aspect and an Exit

Aspect are applied.

<?xml version="1.0"?>
<AOP-Process name="Aspects_on_StudentSys"
 xmlns="http://www.dcs.napier.ac.uk/2005/PCAS">
<AspectFramework name="Auth_loggingOnStudentinfo"
 sourcefile="Student.java"
 path="d:\My_doc\Thesis\GAIN\Gain\Work\"
 joinpointcomponent="Student"
 joinpointmethod="launchApp"
 when="call"

131

 returntype="*"
 parameters=".."
 awhen="before">
<Apply-aspect class="Student"
 method="launchApp"
 aspect_id="02"
 aspect_level="Primitive"
 aspect_type="Authentication"
 af_id="3"
 af_name="StudentSysAuth"
 synchronized="false"
 comment="check user name and password"/>
<Switch expr="StudentSysAuth.getAuthenticationStatus()" when="before">
<case value="true">
<Apply-aspect class="Student"
 method="launchApp"
 aspect_id="01"
 aspect_level="Primitive"
 aspect_type="Logging"
 af_id="1"
 af_name="StudentSysLogging1"
 synchronized="true"
 comment="Log the access to the system"/>
</case>
<case value="false">
<Apply-aspect
 class="Student"
 method="launchApp"
 aspect_id="01"
 aspect_level="Primitive"
 aspect_type="Logging"
 af_id="2"
 af_name="StudentSysLogging2"
 synchronized="true"
 comment="Log the rejection of access to the system"/>
<Apply-aspect class="Student"
 method="launchApp"
 aspect_id="08"
 aspect_level="Primitive"
 aspect_type="Exit"
 af_id="16"
 af_name="StudentSysExit"
 synchronized="false"
 comment="Exit"/>
</case>
</Switch>
</AspectFramework>
</AOP-Process>

Figure 8.2 The PCAS for student record system

132

As shown in Figure 8.3, the specification is created with the PCAS Editor by

finding appropriate AAFs, and putting these AAFs into an adaptation

process. Functional variation of adaptation is implemented through the

composition of various AFs.

Figure 8.3 The PCAS for student record system

8.2.4 Aspects

The specification in PCAS is at an overview level and does not contain the

details of individual Aspects. Developers need to provide parameter values

for each Aspect. Common AFs can be saved into the Aspect Repository for

further reuse. In this example, four AFs will be generated: AF for

authentication, AF for logging if authenticated successfully, AF for logging if

authenticated unsuccessfully, and AF for Exit. Due to the structural similarity

of AFs of different Aspects, only the AF for logging if authenticated

successfully is given in Figure 8.4 as an example. The basic information of

the Logging Aspect such as Name of the pointcut is provided within

“CommonStructure” tag and the specific information about the Logging

Aspect is given within “Variation” tag.

<?xml version="1.0" ?>
<Aspect name="TraceStudentInfo_Successful">
 <!-- Core asset -->
 <CommonStructure>
 <PointCut>
 <Name>StudentSysLogging1</Name>
 <When>call</When>
 <ReturnType>*</ReturnType>
 <ClassName>Student</ClassName>

133

 <MethodName>launchApp</MethodName>
 <Parameters>..</Parameters>
 </PointCut>
 <Advice>
 <When>before</When>
 <PointCutName ref="StudentSysLogging1" />
 </Advice>
 </CommonStructure>

 <!-- Variations -->
 <Variation type="Logging">
 <Device>
 <File>D:\\tmp\\student_info_aop.log</File>
 </Device>
 <Messages>
 <Message>Succeed to get access to Student.launchApp on</Message>
 <Date/>
 <Message>at </Message>
 <Time/>
 </Messages>
 </Variation>
</Aspect>

Figure 8.4 Logging Aspect in AF level in student record system

From AFs, the Aspect Generator generates Aspect instances (AInsts) that

are specific to a selected AOP platform. The generated AInst of the AF in

Figure 8.4 is given in Figure 8.5. The code from line 1 to 9 and line 22 to 26

corresponds to “CommonStructure” part in Figure 8.4. The code from line 10

to line 21 corresponds to “Variation” part in Figure 8.4.

01 import java.io.*;
02 import java.util.*;
03 import org.aspectj.lang.*;
04 public aspect TraceStudentInfo_Successful{
05 pointcut StudentSysLogging1() : call(* Student.launchApp(..));
06 before() : StudentSysLogging1 ()
07 {
08 Calendar cal = Calendar.getInstance();
09 try{
10 FileWriter fw = new FileWriter("D:\\tmp\\student_info_aop.log", true);
11 PrintWriter pw = new PrintWriter(fw);
12 pw.print("Succeed to get access to Student.launchApp on");
13 pw.print(cal.get(Calendar.YEAR) + ".");
14 pw.print(cal.get(Calendar.MONTH) + ".");
15 pw.print(cal.get(Calendar.DAY_OF_MONTH) + ",");
16 pw.print("at ");
17 pw.print(cal.get(Calendar.HOUR) + ":");
18 pw.print(cal.get(Calendar.MINUTE) + ":");

134

19 pw.print(cal.get(Calendar.SECOND) + ":");
20 pw.println();
21 pw.close();
22 }catch(Exception e) {
23 System.out.println("Error occured: " + e);
24 }
25 }
26}

Figure 8.5 AInst for Logging Aspect

The Aspect Weaver weaves the generated AInsts into the original

component according to the PCAS. The final adapted component source

code is invisible to the developer. By deploying the adapted component, the

new application is built and released to the targeted user.

8.2.5 Summary

In conclusion, this case study has shown that the approach and the related

tool are capable of performing Aspect-oriented component adaptation to

desktop applications under a client / server architecture. Also, PCAS has

been used to describe the adaptation requirements and then the adaptation

actions have been taken according to the adaptation specification defined in

PCAS.

8.3 Case Study 2: On-line Testing System

This case study applies the approach to a typical browser / server (B/S)

architecture application – Online-testing system implemented in Java 2

Enterprise Edition (J2EE). The aim of this case study is to illustrate the

ability of the approach to perform Aspect-oriented component adaptation to

B/S applications.

135

8.3.1 Background

Figure 8.6 On-line testing component

The case study deals with an on-line testing component, which was

developed by Oriental Standard [78], a software company. This web-based

testing system is based on J2EE technology. It has four major components:

the testing preparation system, the testing system, the auto-marking system,

and the administration system.

 The testing preparation system is used to manage question storage

and randomly generate testing papers. The question repository

contains test questions, possible answers, the question types such as

single choice or multiple choices, and the topics, etc. The repository is

open to teachers, allowing them to add questions and answers. All

testing papers are generated randomly by the system administrator or

teachers.

136

 As shown in Figure 8.6, the testing system has a web-based testing

interface for students, which include a client side interface and whole

testing control, e.g. time control.

 The auto-marking system is designed to mark the test result

automatically.

 The administration system is used to register students with the

system, and manage login accounts.

The IT department of a university planned to build their browser / client

based online assessment system and bought the component for integration

as part of the system as a core part of the students' performance evaluation

activities. However, they identified that the large student numbers would

impose a heavy access load and make the system performance poor.

8.3.2 Solution

To meet the above reuse requirements, the development team decided that

prior to integration of the online testing component three actions should be

done to adapt the component:

First, a database connection pool is to be introduced to the online testing

system to improve system performance.

Second, logging is used to monitor the usage and status of the connection

pool.

Finally, based on the logging information, the connection pool is tuned to

achieve the best performance with reasonable resource cost such as

memory consumption, by constantly adjusting the parameters, including the

capacity of connection pool and the expire time of each connection instance.

137

8.3.3 PCAS

To implement the above adaptation actions, the following three Aspects are

applied to the component, namely database connection pool, logging if

connection pool reaches its maximum capacity, and logging if connection

pool does not reach its maximum capacity.

These adaptation actions are then described in a PCAS shown in Figure 8.7.

The specification is created with the PCAS Editor by finding appropriate AFs,

i.e., either primitive types or Aspect Frameworks. Finally, these AFs are put

into an adaptation process. Functional variation of adaptation is

implemented through the composition of Aspects in PCAS. Within Figure

8.7, the join point related information is provided by a set of attributes of

AspectFramework tag. Then within AspectFramework tag, a

DBConnectionPool Aspect is applied to improve the performance of target

component. And then different Logging Aspects are applied depending on

whether the maximum capacity of the pool is reached.

<?xml version="1.0"?>
<AOP-Process name="AspectsOnlineTesting"
 xmlns="http://www.dcs.napier.ac.uk/2005/PCAS">
<AspectFramework name="Connection pooling creation and logging"
 sourcefile="ConnOracle.java"
 path="d:\My_doc\Thesis\GAIN\Gain\Work\"
 joinpointcomponent="DriverManager"
 joinpointmethod="getConnection"
 when="call"
 returntype="*"
 parameters=".."
 awhen="around">
<Apply-aspect
 class="java.sql.DriverManager"
 method="getConnection"
 aspect_id="03"
 aspect_level="Primitive"
 aspect_type="DBConnectionPool"
 af_id="9"
 af_name="OnlineTesting_DBPool"
 comment="Add all DB connections into the pool"/>
<Switch expr="OnlineTesting_DBPool.reachedMaxCapicity()" when="around">
<case value="false">
<Apply-aspect

138

 class="java.sql.DriverManager"
 method="getConnection"
 aspect_id="01"
 aspect_level="Primitive"
 aspect_type="Logging"
 af_id="10"
 af_name="OnlineTesting_Logging1"
 comment="Tracing while DB connection pool does not reach its capacity "/>
</case>
<case value="true">
<Apply-aspect
 class="java.sql.DriverManager"
 method="getConnection"
 aspect_id="01"
 aspect_level="Primitive"
 aspect_type="Logging"
 af_id="11"
 af_name="OnlineTesting_Logging2"
 comment=" Tracing while DB connection pool reaches its capacity "/>
</case>
</Switch>
</AspectFramework>
</AOP-Process>

Figure 8.7 The PCAS for On-line Testing system

8.3.4 Aspects

The specification in PCAS is at an overview level and does not contain the

details of individual Aspects. Developers need to provide parameter values

for each Aspect. Common AFs can be saved into Aspect Repository for

further reuse. In this example, three AFs will be generated for each of the

above Aspects accordingly. Due to the structural similarity of AFs of different

Aspects, only the AF for the DB connection pool Aspect is given in Figure

8.8 as an example. Within Figure 8.8, the basic information of pointcut and

advice is given within CommonStructure tag and the DB connection pool

Aspect specific information, such as the capacity, the checkpoint and the

maximum idle time of the pool are given within Variation tag.

<?xml version="1.0" ?>
<Aspect name="OnlineTestingDBPoolAspect">
 <!-- Common Structure -->
 <CommonStructure>
 <PointCut>
 <Name>connection</Name>
 <When>call</When>

139

 <ReturnType>java.sql.Connection</ReturnType>
 <ClassName>java.sql.DriverManager</ClassName>
 <MethodName>getConnection</MethodName>
 <Parameters>String url,String username,String password</Parameters>
 </PointCut>
 <Advice>
 <When>around</When>
 <PointCutName ref="connection" />
 </Advice>
 </CommonStructure>

 <!-- Variations -->
 <Variation type="DBConnectionPool">
 <Capacity>50</Capacity>
 <ExpireTime>
 <CheckPoint>02:00:00</CheckPoint>
 <MaxIdleTime>86400</MaxIdleTime>
 </ExpireTime>
 </Variation>
</Aspect>

Figure 8.8 An AF of DB connection pool

From the above AF in Figure 8.8, Aspect Generator generates an AInst that

is specific to a selected AOP platform. The generated AInst in AspectJ of the

AF in Figure 8.8 is given in Figure 8.9. In Figure 8.9, the AOP platform

specific Aspect instance is generated by putting the parameters giving in

Figure 8.8 into the pre-defined template in Semantic Interpreter. For

example, the capacity, checkpoint, and maxidletime within Variation tag in

Figure 8.8 is transformed to line 3 in Figure 8.9. The basic information of

pointcut and advice giving in CommonStructure tag in Figure 8.8 is

transformed to line 4 to 7 in Figure 8.9.

01 import java.sql.*;
02 public aspect OnlineTestingDBPoolAspect{
03 DBConnectionPool dbcp = new DBConnectionPool(50 ,"02:00:00" ,86400);
04 pointcut connection () : call(java.sql.Connection
05 java.sql.DriverManager.getConnection(String url,String username,String password));
06 java.sql.Connection around(String url,String username,String password) :
07 connection (String url,String username,String password) throws SQLException
08 {
09 Connection connection = dbcp.getConnection(url, username, password);
10 if(connection == null) {
11 connection = proceed(url, username, password);
12 DBConnectionPool.registerConnection(connection, url, username, password);
13 }
14 return connection;

140

15 }
16 }

Figure 8.9 AInst of DB connection pool Aspect

The Aspect Weaver weaves the generated Aspect instances into the original

component according to the PCAS. The final adapted component source

code is invisible to the developer. By deploying the adapted component, the

targeted users’ requirements regarding to system performance is fulfilled.

8.3.5 Summary

In conclusion, this case study has shown that the approach and its tool are

capable of adapting enterprise level applications under B/S architecture.

This case study has also illustrated that the advanced flow control of

weaving process can be carried out and the various abstraction views of

Aspects can be implemented in the proposed framework. In addition, since

AF is platform-independent, based on the other case study, the AF in Figure

8.8 can be used in another AOP platform, such as aoPHP [70], by employing

appropriate Semantic Interpreters.

8.4 Case Study 3: Company Policy Enforcement

This case study applies the approach to various software applications

crossing different programming languages and platforms. The aim of this

case study is to illustrate the ability of the approach to develop highly

reusable platform independent Aspects in AF format, to transform these

Aspects to platform specific Aspects in AInst format automatically, and to

apply them to various platforms and programming languages to respond to

the policy enforcement requirement of a corporation.

8.4.1 Background

“Policy enforcement is a mechanism for ensuring that system components

follow certain programming practices, comply with specified rules, and meet

the assumptions.” [98](p179). For example, in Java, it is highly

141

recommended that Swing components should not be used in EJBs because

EJBs are intended to be business functionality specific server extensions,

not clients with user interfaces [64]. If there is no policy enforcement;

problematic code may not be detected during the development phase and

the error may exist in the deployed system. The other example is the

ubiquitous recommended rules crossing various programming languages.

For example, although not being recommended for use, the “Goto”

statement is supported by most popular programming languages, such as

Java, C#, C, C++, and Visual Basic, etc. Software firms may want to prohibit

the use of “Goto” statements in their software applications.

In summary, software firms may want to develop a set of reusable, general-

purpose policies so that they can carry them to other projects. In addition,

policies also help developers who are new to a technology – working as a

mentor [98]. In the maintenance phase, policy enforcements ensure

developers that the modifications to source code do not violate the existing

policies.

8.4.2 Problem Statement

No programming language is perfect. Each language has its advantages and

disadvantages. However, experienced developers summarise the “best

programming practices”, which give the tips, tricks, do’s and don’ts of a

specific programming language or universal rules to any programming

languages. On the other hand, no software developer is perfect. Junior

developers may lack relevant experience. Even senior developers may not

be able to concentrate on coding for a long time and introduce bugs to the

system.

SuperDev is a software firm providing enterprise management software and

e-Business application solutions. SuperDev is engaged in developing and

selling enterprise management software and e-Business application

software, and middleware of e-Business and e-government platforms for

142

enterprises or government. Based on the code review, bugs reports, and

development reports, SuperDev realizes that a set of common and reusable

polices need to be developed and enforced to all software projects crossing

various platforms and programming languages. As a result, the time of

delivering software projects and the cost will be reduced dramatically.

8.4.3 Solution

To address the above problems, different groups of policies are defined in

different platforms and programming languages as reusable assets, for

example, as shown in Figure 8.10, the policies in C# projects, the policies in

Java-based web projects, and the policies in C++ based desktop projects.

The intersection of these policies is common policies crossing different

platforms and programming languages.

Policies in
C++ based

desktop projects

Policies in
C# projects

Policies in
Java-based

web projects

Common policies
crossing platforms and

programming languages

Figure 8.10 Polices for SuperDev

In the GAIN framework, policies are defined in AF format, and the

appropriate Semantic Interpreters are used to transform these policies to

concrete Aspects in different AOP platforms. If we define P1 as policies in

C# projects, P2 as policies in Java-based web projects, and P3 as policies in

143

C++ based desktop projects, then the available Semantic Interpreters

needed for P1, P2, P3 and their intersections are shown in Table 8.1below:

 SI for C# SI for Java SI for C++

P1 A

P2 A

P3 A

P1 ∩ P2 A A

P1 ∩ P3 A A

P2 ∩ P3 A A

P1 ∩ P2 ∩ P3 A A A

A: Available

Table 8.1 The availability of Semantic Interpreters for policies

In summary, the common policies in P1 ∩ P2, P1 ∩ P3, P2 ∩ P3, and P1 ∩

P2 ∩ P3 are defined repeatedly in P1, P2, and P3. In addition, the common

polices enforcer are implemented repeatedly in C#, Java, and C++ with the

same processing logic embedded, which cost extra money and time.

Therefore, the common policies need to be defined once in an appropriate

format and can be implemented automatically when the programming

language is confirmed. By using the Gain framework, all these common

polices can be defined in an AF format and can be transformed to language

specific policy enforcement code.

8.4.4 PCAS

In this section, as a demonstration, two company development policies are

introduced:

144

 Object creation enforcement (P1). Considering further maintenance,

all objects must be created by using factory pattern [32], rather than

using “new” keyword.

 Using logging mechanisms rather than using standard output (P2). As

using System.out or System.err in Java , or Console.Writeln in C# is a

poor way to perform logging, the company decides to use logging

mechanisms and prohibit using standard output for logging purposes.

To implement the above policies, the following two Aspects are needed:

namely PolicyEnforcement_NoStandardOutput, and

PolicyEnforcement_NewObj. These policies are then described in a PCAS

shown in Figure 8.11. The specification is created with the PCAS Editor by

finding appropriate AFs and putting them into the AspectFramework. These

Aspects are not woven into the original components because as a policy

enforcer, rather than adapting the original component, they only need to give

some suggestions or warning messages. Therefore, the value of most

attributes (such as sourcefile, and path) of the AspectFramework tag and

some attributes (class and method) of Apply-aspect tag are empty because

these attributes are only required for the Aspect weaving process, which is

not needed for policy enforcement.

<?xml version="1.0"?>
<AOP-Process name="PolicyEnforcement"
 xmlns="http://www.dcs.napier.ac.uk/2005/PCAS">
<AspectFramework name="PE_CodeConventionsOOP"
 sourcefile=""
 path=""
 joinpointcomponent=""
 joinpointmethod=""
 when=""
 returntype=""
 parameters=""
 awhen="">
<Apply-aspect class=""
 method=""
 aspect_id="06"
 aspect_level="Primitive"
 aspect_type="PE_NoStandardOutput"
 af_id="14"

145

 af_name="PolicyEnforcement_NoStandardOutput"
 synchronized="false"
 comment="PE_No standard output"/>
<Apply-aspect class=""
 method=""
 aspect_id="05"
 aspect_level="Primitive"
 aspect_type="PE_NewObj"
 af_id="13"
 af_name="PolicyEnforcement_NewObj"
 synchronized="false"
 comment="PE_NewObjectCreation"/>
</AspectFramework>
</AOP-Process>

Figure 8.11 The PCAS for policy enforcement

8.4.5 Aspects

The AF definition for P2 is shown in Figure 8.12. The basic information of an

Aspect is provided within CommonStructure tag and the variations of

PolicyEnforcement_NoStandardOutput Aspect is provided within the

Variation tag. In this example, the AffectedClasses are the variation of

PolicyEnforcement_NoStandardOutput Aspect, which means these classes

will be the target classes that this policy enforces.

<?xml version="1.0" ?>
<Aspect name="PolicyEnforcement_NoStandardOutput">
 <!-- Common Structure -->
 <CommonStructure>
 <PointCut>
 <Name>pe_nso1</Name>
 <When>execution</When>
 <ReturnType>*</ReturnType>
 <ClassName>*</ClassName>
 <MethodName>*</MethodName>
 <Parameters>*</Parameters>
 </PointCut>
 <Advice>
 <When>before</When>
 <PointCutName ref="pe_nso1" />
 </Advice>
 </CommonStructure>

 <!-- Variations -->
 <Variation type="PE_NoStandardOutput">

146

 <AffectedClasses>
 <Class>ShoppingCart</Class>
 <Class>ShoppingCartOperator</Class>
 </AffectedClasses>
 </Variation>
</Aspect>

Figure 8.12 No standard output policy definition in AF

The no standard output policy can be applied to different components

implemented by different programming languages. As shown in Figure 8.13,

the AInst of this policy in the AspectJ platform is generated by a Semantic

Interpreter automatically.

01 public aspect PolicyEnforcement_NoStandardOutput{
02 declare warning : get(* System.out) || get(* System.err)
03 && (within(ShoppingCart) || within(ShoppingCartOperator)):
04 "Consider using logging mechanism instead.";
05 }

Figure 8.13 No standard output policy definition in AInst in AspectJ

While compiling AInst of PolicyEnforcement_NoStandardOutput Aspect

together with the target components, the policy will be enforced. For

example, if the code in target components conflicts with the policy, the

warning message will be provided as shown in Figure 8.14. Therefore, in this

way, the policies can be forced to all classes in the target components.

D:\pe>ajc PolicyEnforcement_NoStandardOutput.java
 ShoppingCart.java ShoppingCartOperator.java
D:\pe\ShoppingCart.java:27 [warning]
 Consider using logging mechanism instead.
System.out.println(msg);
^^^^^^^^^^^^^^^^^^^^^^^^
 field-get(java.io.PrintStream java.lang.System.out)
 see also: D:\pe\PolicyEnforcement_NoStandardOutput.java:12::0
1 warning

Figure 8.14 Warning message while compiling
PolicyEnforcement_NoStandardOutput Aspect with original

component

If the developer wants to apply this policy to C# program, then the

appropriate Semantic Interpreter can be used to generate related AInsts.

147

The corresponding AInst in C# to AF of no standard output policy in Figure

8.12 is shown in Figure 8.15.

01 using System;
02 using System.Text;
03 using System.Xml;
04 namespace gain
05 {
06 public class PolicyEnforcement_NoStandardOutput
07 {
08 public static void Main(string[] args)
09 {
10 PolicyEnforcerNSO pe = new PolicyEnforcerNSO();
11 pe.enforce(ShoppingCart);
12 outputMsg(pe.getEnforcementReport());
13 pe.enforce(ShoppingCartOperator);
14 outputMsg(pe.getEnforcementReport());
15 }
16 public void outputMsg(string msg) {
17 System.Console.WriteLine(msg);
18 }
19 }
20 }

Figure 8.15 No standard output policy definition in AInst in C#

While running AInst of PolicyEnforcement_NoStandardOutput Aspect, the

policy will be enforced. For example, if the code in target components

conflicts with the policy, the warning message will be provided as shown in

Figure 8.16.

 PE_NSO -> D:\tmp\CSharpPEChecker.cs
Error in Line 18 : "System.Console.WriteLine("Usage: CSharpPEChecker PCASName");"
Use log mechnism instead!
PE_NSO -> D:\tmp\CSharpPEChecker.cs
Error in Line 26 : "System.Console.WriteLine(msg);"
Use log mechnism instead!

Figure 8.16 Warning message while running
PolicyEnforcement_NoStandardOutput Aspect

8.4.6 Summary

In this case study, the approach framework defines a group of policies as

reusable assets, and enforces them to various platforms and programming

languages in corresponding to the requirements of the software firm. In

148

conclusion, this case studies shows that the approach framework and the

related tool are capable of defining platform independent Aspects in AFs and

transforming them to platform specific Aspects in AInsts by using Semantic

Interpreters.

149

Chapter 9 Conclusions and Future Work

The main outcome of the research undertaken for this thesis was the

development of a new technique using generative programming, software

product line, component adaptation technology, and aspect oriented

programming to support deep level component adaptation with high

automation.

This chapter discusses three parts of the work that merit further examination

and discussion. Firstly, the evaluation of the approach is carried out by

employing the techniques in chapter 2 (section 2.1.6) and chapter 3 (section

3.3.5). Secondly, the conclusions are reached and the technique

contributions are summarised. Thirdly, the future directions of the research

are discussed.

9.1 Critical Analysis of the Approach

As the approach is the combination of / the improvement to AOP and

component adaptation techniques, it is justified in applying the technique

requirements of component adaptation approaches and AOP approaches

respectively.

In table 9.1, the GAIN approach is compared with other component

adaptation approaches. All these approaches are evaluated on how well

each technique fulfils the specified component adaptation requirements in

section 2.1.6.

150

Adaptation techniques R1 R2 R3 R4 R5 R6 R7 R8
Copy-paste - + - - - - + -

Inheritance - + - - - - + -

Wrapping + - + - - - - +/-

SAGA - + - + - - + -

Superimposition + - + + + - - -

BCA - + - - - - + -

Customizable Components - - + + + + - -

Non-Invasive approach to
WS

+ + + + - +/- + +

Wrapper for WS adaptation + - + - - - - +

GAIN - + + + + +? + +

R1: Black-box

R2: Transparent

R3: Composable

R4: Reusable

R5: Configurable

R6: Automatic

R7: Deep level adaptation

R8: Language independence

+: fulfilled

-: not fulfilled

+/-: fulfilled or not fulfilled depending on the application context

+?: Semi-automatic

Table 9.1 The comparison between GAIN and other component

adaptation techniques

The comparison outcomes are justified as follows:

R1: Black-box

Since currently GAIN is a source code level adaptation technique, the

implementation details of original component must be obtained prior to

performing the adaptation. Therefore, the black-box requirement is not

fulfilled.

151

R2: Transparent

Since the end-user of the adapted component is unaware of the adaptation

between original component and the adapted component, the transparent

requirement is fulfilled.

R3: Composable

Since the adaptation process can be composed with other adaptation

methods, no matter how many adaptations are applied to the original

component, the composable requirement is fulfilled. This process is

repeatable.

R4: Reusable

With the support of the two-dimensional Aspect model, Aspect repository

and related tool, GAIN is capable of providing platform-independent, highly

reusable Aspects to deal with various adaptation circumstances if the

required Aspects are available in the repository. Therefore, the reusable

requirement is fulfilled.

R5: Configurable

With the support of product line based Aspect model, any abstraction level

Aspect has two parts, namely, Common Structure (CS) and Variations (V).

In the Variations part, flexible configurations for each type of Aspect are

supported by providing various parameters to Aspects and combining

different elements within Aspects. Therefore, the configurable requirement is

fulfilled.

R6: Automatic

The approach is semi-automatic in performing component adaptation. The

Aspect oriented component adaptation design still needs human

152

intervention. However, with the support of the CASE tool, the Aspect

oriented component adaptation implementation is fully automatic. As long as

the adaptation requirements are described in PCAS, the component

adaptation can be performed by simply clicking a button. Benefits from AOP

and the automation of the approach, the disadvantages of source code level

adaptation such as maintenance and evolution concerns (refer to section

2.1.5.1) have been eliminated as the adaptation concerns are logically

separated from the original component(s) and the adaptation process is

semi-automatic.

R7: Deep level adaptation

As source code level adaptation is performed in GAIN, the deep level

adaptation are supported in the approach by organizing various Aspects in

PCAS and performing adaptation by parsing and executing the adaptation

process defined in PCAS.

R8: Language independence

With the three abstraction level of Aspects and a set of Semantic

Interpreters, language independence is achieved in GAIN. All Aspects can

be represented as a language independent form as Aspect frames (AF).

On the other hand, considering GAIN as an improvement to Aspect-oriented

programming technology, in table 9.2, GAIN approach is evaluated by

comparing with other popular AOP technologies.

153

AOP approaches T1 T2 T3 T4 T5 T6 T7
Aspectual Component - + - - - - -
JAsCo - + - + - - -
Shared Join Points Model - - - - + - -
Framed Aspects - + + + - + +
GAIN + + +/- + + + +

T1: Short learning curve

T2: Reusable

T3: Light weight

T4: Configurable

T5: Advanced weaving process

T6: Language independence

T7: Generative Aspects

+: fulfilled
-: not fulfilled
+/-: whether fulfil the requirement or not depending on the target

AOP platform
Table 9.2 The comparison between GAIN and other AOP techniques

The outcomes are justified as follows:

T1: Short learning curve

With support from the associated CASE tool, in the Aspect oriented design

stage, end users only need to understand basic concepts in AOP such as

pointcut and advice and fill relative parameters for selected AFs. The PCAS

is generated automatically by the tool. In the Aspect oriented implementation

phase, the job is even easier because the generation of individual Aspects

and the adaptation process are fully automatic. Therefore, compared with

existing AOP platforms, the GAIN framework is easy to use.

T2: Reusable

All Aspects in GAIN are designed following a software product line based

Aspect model. While reflecting different variations in AAF, AF, and AInst, the

154

Aspects are highly reusable. For example, an AF can be reused in various

AOP platforms by employing appropriate Semantic Interpreters. Therefore,

the reusable requirement is fully fulfilled.

T3: Light weight

The GAIN framework could be heavy or light weight, depending on which

target AOP platform is selected and which Semantic Interpreter is selected

to generate AInsts. By default, Aspect Generator generates Aspect in the

same programming language source code as the component being adapted.

In this case, the framework is light weight. On the other hand, when the

target AOP platform is an existing heavy weight AOP platform, the Aspect

Generator generates heavy weight source code in the selected AOP

platform. Therefore, in this case, the GAIN framework is heavy weight.

T4: Configurable

With the support of product line based Aspect models, any abstraction level

Aspect has two parts, namely, Common Structure (CS) and Variations (V).

In the Variations part, flexible configurations for each type of Aspect are

supported by providing various parameters to Aspects and combining

different elements within Aspects. Therefore, the configurable requirement is

fulfilled.

T5: Advanced weaving process support

To meet the complex adaptation requirements, the advanced weaving

process such as switch structure is supported to enhance the weaving in the

join points in the GAIN approach.

T6: AOP programming language independence

With the three abstraction level of Aspects and a set of Semantic

Interpreters, language independence is achieved in GAIN. All Aspects are

155

represented as a language independent form as Aspect frames (AF), and

may be mapped to any AOP language if appropriate Semantic Interpreter is

available. Currently, the supported languages in GAIN include AspectJ,

Java, and C#.

T7: Generative Aspects

The automatic generation of individual Aspects is supported by the Aspect

Generator and Semantic Interpreters in GAIN. Whether the required Aspects

in AInst level can be generated by GAIN depends on the availability of the

Semantic Interpreters.

9.2 Conclusions and Technique Contributions

9.2.1 Conclusions

Despite the success of component-based reuse, the mismatches (section

2.1.4.1) between available pre-qualified components and the specific reuse

context in individual applications continue to be a major factor hindering

component composition and therefore reusability. From a technical

perspective, the reason is largely due to the difficulty of adapting these

components to meet the specific needs of the user. The research during the

study was based on the observation that existing reuse approaches and

tools are weak in providing a mechanism to adapt components at an

adequately deep level and meanwhile with sufficient automation.

The Aspect-oriented nature of the approach makes it particularly suitable for

the improvement of non-functional features of the target component-based

software, such as dependability and performance. However, existing AOP

platforms do not support reusable Aspects and advanced weaving process

effectively. Therefore, the reuse of Aspects and advanced weaving process

support must be considered while applying AOP to component adaptation.

156

The approach applies Aspect-oriented generative adaptation to targeted

components to correct the mismatch problem with eliminating the problems

associated with current component adaptation and AOP approaches, so that

the components can be integrated into the target application easily. The

following work has been undertaken during the study:

A generative aspect-oriented component adaptation approach

Based on the successful points of existing technologies, such as generative

programming, software product line, component adaptation, and AOP, a new

generative aspect-oriented component adaptation approach focusing on

non-functional issues to mismatch problems (section 2.1.4.1) has been

developed. Meanwhile, the approach has provided the solution to the

problems (section 3.1.7 and section 3.3.5) associated with current

component adaptation approaches and AOP platforms.

In the approach, from the component view, there are two main parts for each

Aspect: Common Structure and Variations. The Common Structure is the

mechanism that is reused in several similar Aspects or target aspect

oriented systems. On the other hand, Variations reflects the variations

among different Aspects. Each Aspect shares the same structure in its

Common Structure part and varies in its Variations part. In the abstract view,

three levels are used to support the product family: Abstract Aspect Frame

(AAF), Aspect Frame (AF), and Aspect Instance (AInst).

A framework to support the approach

As the embodiment of the approach, a generative aspect oriented

component adaptation framework has been developed. The framework

consists of two phases: Aspect oriented Component Adaptation Design and

Aspect oriented Component Adaptation Implementation. The aim of Aspect

oriented component adaptation design is to gather the specification for

157

component adaptation and the output of design stage is a PCAS. User

intervention is required in the design stage. On the other hand, Aspect

oriented component adaptation implementation is the automatic process of

performing component adaptation according to the PCAS gathered in the

design stage.

A prototype tool

As the implementation of the framework, a prototype tool (Chapter 7) was

developed to support the component adaptation in the framework and to

demonstrate its scalability. In the design phase, Component Analyzer and

PCAS Editor were built to help developers building PCAS. On the other

hand, Aspect Generator, Semantic Interpreter, and Aspect Weaver were

developed to automate the Aspects generation and weaving process. Also,

the Aspect Manager was developed to manage Aspects in three abstract

levels.

Case studies

Three case studies (Chapter 8) have been undertaken to illustrate and

evaluate the usability and correctness of the approach, in terms of its

capability of building highly reusable and platform independent Aspects

across various AOP platforms and providing an advanced flow control of

weaving process.

In summary, the requirements defined in Section 3.4 have been fulfilled

respectively:

 As a source code level adaptation technique, the approach performs

deep level component adaptation focusing on non-functional issues.

Although the aspect oriented design still needs user intervention, the

aspect oriented implementation is a fully automatic process.

158

 With the two dimensional Aspect model, highly reusable Aspects in

various AOP platforms have been supported in the approach.

 The advanced weaving process with the support of flexible flow

control has been implemented in AspectJ, pure Java, and C#.

Depending on different target platform, PCAS based weaving or pre-

weaving process is supported.

 As the adaptation knowledge is hidden in the Semantic Interpreters,

and in the Aspects, the system users do not need to know too much

details of the complex syntax of AOP languages. Therefore, the

approach has a short learning curve.

9.2.2 Contributions

The GAIN technology enables application developers to adapt the pre-

qualified components to eliminate mismatches to the integration requirement

of specific applications. From a component adaptation point of view, the

original contribution of this thesis is the automation and deep level

adaptation of components, focusing on non-functional issues by introducing

extra process, operations and resources. As the feature inherited from AOP,

all non-functional issues solved by AOP can also be addressed by GAIN,

e.g., Monitoring, Policy enforcement, Persistence, Optimization,

Authentication, Authorization, Transaction Management, and implementing

business rules. From the AOP point of view, the original contribution is the

improved reusability of Aspects and the support of advanced weaving

process. The key technical contributions [41][103] are summarised below:

1) Product line based reusable Aspect model [44][103] (section 4.2). In the

approach, a two dimensional Aspect model was developed, e.g.

component view and abstraction view of Aspect. Within the two

dimensional Aspect model, all Aspects are designed to be reusable in

both dimensions. From the component point of view, each Aspect is split

into common structures (CS) and variations (V), which support software

159

product line based reuse. On the other hand, from the abstraction point of

view, each Aspect has three levels of abstraction: AAF, AF, and AInst.

There are different types of variations in these abstractions, including

functional variations, parameterisation, and platform variations. During the

whole Aspect oriented adaptation process, from the designing of different

Aspects in AAF, to the implementation of AOP platform independent

Aspects in AFs, to the implementation of concrete AOP platform specific

Aspects in AInsts, all Aspects are presented in two parts: CS and V, no

matter which abstract level they are, such as AAF, AF, or AInst.

2) Highly reusable and AOP platform independent adaptation Aspects

[101][103] (section 5.2). With the support from the product line based

Aspect model, the adaptation knowledge is captured in Aspects and is

reusable in various adaptation circumstances. Highly reusable Aspects,

especially in AAF and AF level are achieved. Different types of Aspect are

saved in XML schema as AAF. Platform independent Aspects are

implemented in XML as AFs. With the support of AFs, the learning curve

of AOP becomes shorter because AOP platform specific syntax is hidden

in the related tool, namely the Aspect Generator and Semantic

Interpreters. Platform specific Aspects are automatically generated from

these AFs by selecting corresponding Semantic Interpreters as required.

3) Aspect Repository for Aspect reuse [42][43][44]. As an embodiment of the

product line based reusable Aspect model, an expandable library of

reusable adaptation Aspects at three abstraction levels is used as storage

for various levels of Aspects. With the support of three abstract levels of

Aspects in Aspect repository, the reusability of the framework is increased

incrementally. In addition, the combination of Aspects and control flows

are saved in the Aspect repository as Aspect Frameworks and can be

reused in the similar adaptation situations.

4) Advanced Aspect weaving process [102][103] (section 6.5). In AOP, it is

possible that several Aspects need to be woven at the same join point. In

these cases, these Aspects may have problems such as determining the

exact execution order and dependencies among the Aspects. The

160

enhanced Aspect weaver supports the advanced weaving processes, e.g.

sequence and switch structure in a weaving process. Pre-defined

advanced weaving processes may be also added into the Aspect

repository as Aspect Framework for further reuse.

9.3 Future work

However, the GAIN approach still has its weakness. For example, currently,

the approach does not support binary level component adaptation, which

limits the wider use of the approach. Also, the Aspect oriented adaptation

design still needs human intervention. Ideally, the Aspect oriented

adaptation design and implementation should be fully automatic.

9.3.1 Aspect oriented binary code adaptation

As an Aspect oriented adaptation technique, currently, the work focuses on

source code level adaptation in the weaving process. However, as a

component adaptation technique, it is desirable to deal with both source

code level component(s) and binary code level component(s). In the future,

the research can be enhanced to deal with all types of component

adaptations, and therefore, the approach can be applied to wider adaptation

scenarios.

9.3.2 Classification of mismatch problems and adaptation types

Currently, the approach only works automatically in the Aspect oriented

implementation stage including Aspect generation and Aspect weaving. In

the Aspect oriented design stage, however, user intervention is still required,

which limits the wider use of the approach.

The classification of mismatch problems and the adaptation types can be

used to address this problem. Algorithms have to be developed to check for

the identified component mismatch types during the adaptation design

161

stage. If the adaptation types can be classified corresponding to particular

adaptation requirements, the adaptation patterns can be summarised and

reused in the similar situations in the future. As a result, the Aspect oriented

design can work in a semi-automatic or automatic manner. In addition, the

prototype tool needs to be improved to support short listing potential suitable

Aspects, and the selection of adaptation pattern(s) which can be applied to

solve specific mismatch types.

9.3.3 Intelligent Aspect repository and automatic Aspect
selection

To achieve a fully-fledged engineering approach to component adaptation,

further effort will be required to develop an intelligent Aspect repository that

requires much less human interaction than existing solutions and gives a

larger return to application developers wishing to use them. Ideally,

automatic Aspect selection should be supported corresponding to the

specific adaptation requirements. The proposed intelligent repositories can

only be achieved through the addition of semantics to existing Aspects. The

Aspect ontology can be used to develop such an intelligent repository.

9.3.4 Aspect-oriented web service adaptation

When building service oriented systems, it is often the case that existing web

services do not perfectly match user requirements in target systems. To

achieve seamless integration and high reusability of web services,

mechanisms to support automated evolution of web services are highly in

demand. The GAIN approach can potentially solve the above problem

associated with web services by applying the approach to the underlying

components of web services. However, due to the unique characteristics of

web services, the users of a web service may be distributed globally and are

very diverse in their detailed requirements. Therefore, more research needs

to be carried out to apply the approach to service oriented systems.

162

References

[1] Bachmann, F., Bass, L., Buhman, C., Comella-Dorda, S., Long, F.,

Robert, J., Seacord, R. and Wallnau, K (2000). Component Based
Software Engineering Volume II: Technical Concepts of Component-
based Software Engineering. Technical Report CMU/SEI-2000-TR-
008, Carnegie Mellon Software Engineering Institute.

[2] Baker, T. (2002). Lessons learned integrating COTS into systems.
Proceeding of International Conference on COTS-based Software
Systems, Orlando, FL: Springer-Verlag.

[3] Balk, L. D., and Kedia, A. (2000). PPT: a COTS integration case
study. Proceedings of International Conference on Software
Engineering, Limerick, Ireland: ACM Press.

[4] Basili, V.R. & Boehm, B. (2001), COTS-based system top 10 list,
IEEE Computer, Vol.34, pp.91-93.

[5] Bassett, P. (1997), Framing Software Reuse - Lessons from the Real
World, Prentice Hall, ISBN: 978-0133278590.

[6] Batory, D. (October, 1998). Product-Line Architectures. Invited
Presentation, Smalltalk & Java in Industry and practical Training,
Erfurt, Germany.

[7] Batory, D., Chen, G., Robertson, E., & Wang, T. (May 2000) Design
Wizards and Visual Programming Environments for GenVoca
Generators, IEEE Transactions on Software Engineering, pp. 441-
452.

[8] Batory, D., Johnson, C., MacDonald, B., & Heeder, D. V. (April 2002)
Achieving Extensibility Through Product-Lines and Domain-Specific
Languages: A Case Study, ACM Transactions on Software
Engineering and Methodology (TOSEM), Vol. 11(2), pp. 191-214.

[9] Becker, S. et al. (2006), Towards an Engineering Approach to
Component Adaptation, Architecting Systems, LNCS 3938, pp. 193–
215, Springer-Verlag Berlin Heidelberg.

[10] Becker, S., Overhage, S., and Reussner, R. (2004). Classifying
Software Component Interoperability Errors to Support Component
Adaption. Proceedings of 7th International Symposium on
Component-Based Software Engineering (CBSE 2004), Edinburgh,
UK, May 24-25, 2004. Volume 3054 of Lecture Notes in Computer
Science., Berlin, Heidelberg, Springer pp.68–83.

[11] Berardi, D., Calvanese, D., De Giacomo, G., Lenzerini, M., & Mecella,
M. (2003). Automatic Composition of E-services That Export Their
Behavior. Proceedings of the International Conference on Service
Oriented Computing, 43-58.

163

[12] Biggerstaff, T. (1998). A perspective of generative reuse. Annals of
Software Engineering, Vol 5, pp. 169-226.

[13] Birrer, I., Cechticky, V., Pasetti, A., & Rohlik, O. (2004), Implementing
Adaptability in Embedded Software through Aspect Oriented
Programming. Proceedings of IEEE Mechatronics & Robotics,
Aachen, Germany, pp. 85-90.

[14] Birrer, I., Chevalley, P., Pasetti, A., and Rohlik O.(2004) An Aspect
Weaver for Qualifiable Applications. Proceedings of the DASIA 2004
– Data Systems in Aerospace Conference, pp. 272-280.

[15] Blake, M. B. (September, 2004). A Specification Language and
Service-Oriented Architecture to Support Distributed Data
Management. Software: Practice and Experience , 34, 11, 1091-1117,
John Wiley and Sons.

[16] Bondavalli, A., Chiaradonna, S., Cotroneo, D., & Romano, L. (2004),
Effective fault treatment for improving the dependability of COTS and
legacy-based applications, IEEE Transactions on Dependable and
Secure Computing, 1(4), pp. 223-237.

[17] Brown, A.W., and Wallnau, H.C., The current state of CBSE, IEEE
Software, Vol: 15, Issue: 5, pp. 37-46, Sep-Oct 1998.

[18] Bultan, T., Fu, X., Hull, R., & Su, J. (May, 2003). Conversation
Specification: A New Approach to Design and Analysis of E-Service
Composition. Proceedings of the 12th International World Wide Web
Conference.

[19] Burner, M. (March, 2003). The Deliberate Revolution: Transforming
Integration With XML Web Services. ACM Queue, 1, 1, 28-37.

[20] Cable, S., Galbraith, B., Irani, R., Hendricks, M., Milbury, J., Modi, T.,
Tost, A., Toussaint, A., & Basha J. (2002). Professional Java Web
Service. Peer Information Inc.

[21] Canal, C., Murillo, J.M., and Poizat, P.(2004). Coordination and
Adaptation Techniques for Software Entities. Proceedings of ECOOP
2004 Workshops, Oslo, Norway, June 14-18, 2004, Final Reports.
Volume 3344 of Lecture Notes in Computer Science., Springer
pp.133–147.

[22] Cao, F., Bryant, B.R., Liu, S.H., & Zhao, W. (2005). A Non-Invasive
Approach to Dynamic Web Services Provisioning. Proceedings of the
2005 IEEE International Conference on Web Services (ICWS'05).

[23] Carman, M., Serafini, L., & Traverso, P. (2003). Web Service
Composition as Planning. Proceedings of the 13th International
Conference on Automated Planning & Scheduling.

[24] Casati F., Shan, E., Dayal, U., & Shan, M.C. (October, 2003).
Business-oriented management of Web services. Communications of
the ACM, 46, 10, 55-60.

[25] Cervantes H., & Hall, R. S. (2004). Autonomous Adaptation to
Dynamic Availability Using a Service-Oriented Compoent Model.
Proceedings of the 26th International Conference on Software
Engineering, 614-623.

164

[26] Charfi, A., & Mezini, M. (2004). Aspect-Oriented Web Service
Composition with AO4BEL. Proceedings of the European Conference
on Web Services.

[27] Christian, K., and Störzer, M.(2004), PCDiff: Attacking the Fragile
Pointcut Problem. Proceedings of European Interactive Workshop on
Aspects in Software, Berlin, Germany.

[28] Cibran, M. A. (2004). Modularizing Web Services Management with
AOP. Proceedings of the European Conference on Web Services.

[29] Cleaveland, J. C. (July 1998), Building application generators, IEEE
Software, pp. 5(4):25-33.

[30] Colyer, A., and Clement, A. (2005). Aspect-oriented programming
with AspectJ. IBM Systems, Vol 44(2), pp. 301-308.

[31] Constantinides, C., Skotiniotis, T., and Stoerzer, M.(2004), AOP
considered harmful. Proceedings of 1st European Interactive
Workshop on Aspects in Software EIWAS'04, September, 23-24,
2004, Berlin, Germany.

[32] Cooper J.W. (2000). Java Design Patterns. Addison Wesley. ISBN: 0-
201-48539-7.

[33] Cottenier, T., & Elrad, T. (2004). Validation of Context-Dependent
Aspect-Oriented Adaptations to Components. Proceedings of the 9th
International Workshop on Component-Oriented Programming.

[34] Curbera, F., Khalaf, R., Mukhi, N., Tai, S., & Weerawarana S.
(October, 2003). The next step in Web services. Communications of
the ACM, 46, 10, 29-34.

[35] Diaz-Herrera, J.L., Knauber, P., & Succi, G. (2000), Issues and
Models in Software Product Lines, International Journal on Software
Engineering and Knowledge Engineering, 10(4):527-539.

[36] Doernhoefer, M. (2005), Surfing the Net for Software Engineering
Notes, ACM SIGSOFT Software Engineering Notes, Vol 30(4), pp.10-
18.

[37] Dustdar, S. (2004). Web Services Workflows - Composition, Co-
ordination, and Transactions in Service-oriented Computing.
Concurrent Engineering, 12, 3, 237-245.

[38] Egyed, A., and Gacek, C.(1999). Automatically Detecting Mismatches
during Component-Based and Model-Based Development,
Proceedings of the 14th IEEE International Conference on Automated
Software Engineering, Cocoa Beach, Florida, October 1999, pp. 191-
198.

[39] Elrad, T., Askit, M., et al. (2001). Discussing aspects of AOP.
Communications of ACM, 44, 10, 33-8.

[40] Fayad, M. E. And Schmidt, D. C. (1997). Object-oriented application
frameworks. Communications of ACM. Vol 40(10), pp. 32-38.

[41] Feng, Y., Liu, X., and Kerridge, J., Achieving Smooth Component
Integration with Generative Aspect and Component Adaptation.
Springer-Verlag's LNCS 4039, (9th International Conference on
Software Reuse), Turino, Italy, 2006.

165

[42] Feng, Y., Liu, X., and Kerridge, J. An Aspect-Oriented Component-
Based Approach to Seamless Web Service Composition. System and
Information Sciences Notes, to appear, ISSN 1753-2310, 2007.

[43] Feng, Y., Liu, X., and Kerridge, J., A product line based aspect-
oriented generative unit testing approach to building quality
components. Proceedings of the 1st IEEE International Workshop on
Quality-Oriented Reuse of Software, Beijing, China, pp., 2007.

[44] Feng, Y., Liu, X., and Kerridge, J., Smooth Quality Oriented
Component Integration through Product Line Based Aspect-Oriented
Component Adaptation. Proceedings of International Conference on
Software Engineering and Knowledge Engineering (SEKE'2007),
Boston, USA, pp. 71-76, July 9-11, 2007.

[45] Ferris, C., & Farrell, J. (June, 2003). What are Web services?.
Communications of the ACM. 46, 6, 31.

[46] Fiorano Software, Inc. (2004). Service Oriented Architecture
Implementation Frameworks white paper.

[47] Frakes, W. B., and Kang, K. (2005), Software Reuse Research:
Status and Future, IEEE Transactions on Software Engineering,
Vol:31, No.7, pp. 529-536, July 2005.

[48] Fuchs, M. (2004), Adapting Web Services in a Heterogeneous
Environment. Proceedings of the IEEE International Conference on
Web Services (ICWS’04), pp.656-664, 6-9 July 2004.

[49] Gamma, E, Helm, R., Johnson, R., and Vlissides J. (1994). Design
Patterns: Elements of Reusable Object-Oriented Software. Addison-
Wesley. ISBN: 0-201-63361-2.

[50] Garlan, D., Allen, R., and Ockerbloom, J. (1995). Architectural
Mismatch or Why it’s hard to build systems out of existing parts. IEEE
Software, November, pp. 17-26, 1995.

[51] Gray, J., Bapty, T., Neema, S., Gokhale, A., & Natarajan, B. (2002).
Generating Aspect Code from Models. Proceedings of the Workshop
on Generative Techniques for Model Driven Architecture. Settle, WA.

[52] Griss, M. L. & Wosser, M. (1995), Making reuse work at Hewlett-
Packard. IEEE Software, 12(1), 105-7.

[53] Hanson, J. E., Nandi, P., & Levine, D.W. (2002). Conversation-
enabled Web Services for Agents and e-Business. Proceedings of the
International Conference on Internet Computing, 791-796.

[54] Hanson, J. E., Nandi, P., & Kumaran, S. (September, 2002).
Conversation Support for Business Process Integration. Proceedings
of the 6th International Enterprise Distributed Object Computing.
Ecole Polytechnic, Switzerland.

[55] Heineman, G.T., (1998). A model for designing adaptable software
components, Proceedings of the 22nd International Computer
Software and Applications Conference (COMPSAC), pp. 121-127,
Vienna, Austria, August 1998.

[56] Heineman, G.T., and Ohlenbusch, H. (1998), Towards a theory of
component adaptation, Technical report WPI-CS-TR-98-20,
Worcester Polytechnic Institute.

166

[57] Herrejon, R. E. L., & Don, B (2002), Using AspectJ to Implement
Product-Lines: A Case Study. Technical Report. Department of
Computer Sciences, The University of Texas, Austin, Texas 78712.
September 2002.

[58] Hölzle, U., Integrating Independently-Developed Components in
Object-Oriented Languages, Proceedings of ECOOP’93, pp. 36-56,
1993.

[59] http://aspectwerkz.codehaus.org/
[60] http://eclipse.org/aspectj/
[61] http://en.wikipedia.org
[62] http://www.eclipse.org/projects/listofprojects.php
[63] http://java.sun.com
[64] http://java.sun.com/blueprints/qanda/ejb_tier/restrictions.html
[65] http://java.sun.com/docs/books/tutorial/java/concepts/index.html
[66] http://java.sun.com/docs/books/tutorial/reflect/index.html
[67] https://javacc.dev.java.net/
[68] http://labs.jboss.com/jbossaop/
[69] http://msdn.microsoft.com/en-us/library/ms173183(VS.80).aspx
[70] http://www.aophp.net/
[71] http://www.aspectc.org
[72] http://www.corba.org/
[73] http://www.ibm.com/developerworks/library/specification/ws-bpel/
[74] http://www.jboss.org/
[75] http://www.magicdraw.com/
[76] http://www.microsoft.com/com
[77] http://www.microsoft.com/net/
[78] http://www.oristand.com
[79] http://www.sei.cmu.edu/cbs/
[80] http://www.springframework.org/
[81] http://www.w3.org/2002/ws
[82] http://www.w3.org/TR/xslt20/
[83] http://www-306.ibm.com/software/awdtools/developer/rose/index.html
[84] Hull, R., Benedikt, M., Christophides, V., & Su, J. (June, 2003). E-

Services: A Look behind the Curtain. Proceedings of the 22nd ACM
SIGACT-SIGMOD-SIGART Symposium on Principles of Database
Systems.

[85] Ingham, David B., Shrivastava, Santosh K., & Panzieri, Fabio,
“Constructing dependable Web services”, IEEE Internet Computing,
2000, 4(1), pp. 25-33.

[86] Jacobsen, I., Griss, M., et al. (1997), Software Reuse, Reading, MA:
Addison-Wesley.

[87] Jarzabek, S., Bassett, P., Zhang, H., and Zhang, W. (2003), XVCL:
XML-based Variant Configuration Language, Proceedings of 25th
International Conference on Software Engineering, May 2003, pp.
810-811.

[88] JAsCo cookbook
[89] Jhumka, A., Hiller, M., & Suri, N. (2002), Component-based synthesis

of dependable embedded software, Formal Techniques in Real-Time

167

and Fault-Tolerant Systems. Proceedings of 7th International
Symposium, FTRTFT 2002. Proceedings LNCS, Vol.2469, pp 111-
28.

[90] Keller, R., & Hölzle, U. (1998). Binary Component Adaptation.
Proceedings of the 12th European Conference on Object-Oriented
Programming, July 1998.

[91] Kiczales, G. (December, 2001). Aspect-Oriented Programming: The
Fun Has Just Begun. Proceedings of the Workshop on New Visions
for Software Design and Productivity: Research and Applications.

[92] Kiczales, G., Hilsdale, E., et al. (2001). Getting started with AspectJ.
Communications of ACM. Vol 44(10), pp. 59-65.

[93] Kim, S. M. (May 17-22, 2004). A Survey of Public Web Services.
Proceedings of the 13th international World Wide Web conference on
Alternate track papers & posters, 312-313. New York, USA.

[94] Kleijnen, S., & Raju, S. (March, 2003). An Open Web Services
Architecture. ACM Queue, 1, 1, 38-46.

[95] Kreger, H. (June, 2003). Fulfilling the Web Services Promise.
Communications of the ACM, 46, 6, 29-34.

[96] Kucuk, B., & Alpdemir, M.N. (1998), Customizable adapters for
blackbox components, Proceedings of the 3rd International Workshop
on Component Oriented Programming, pp.53-59.

[97] Kumaran, S., & Nandi, P. (2003). Dynamic e-Business Using
BPEL4WS, WS-Coordination, WS-Transaction, and Conversation
Support for Web Services

[98] Laddad, R. (2003). AspectJ in Action. Greenwich, CT, Manning
Publications Co.

[99] Lieberherr, K., Lorenz, D., & Mezini, M. (March, 1999). Programming
with Aspectual Components, Technical Report, NU-CCS-99-01.

[100] Lim, W.C., Effects of Reuse on Quality, Productivity, and Economics.
IEEE Software, Vol 11, Issue 5, pp.23-30, 1994.

[101] Liu, X., Feng, Y. and Kerridge, J. (2006), Achieving Dependable
Component-Based Systems through Generative Aspect Oriented
Component Adaptation. Proceedings of the 30th IEEE International
Conference on Computer Software and Applications (COMPSAC'06),
Chicago, USA.

[102] Liu, X., Feng, Y. and Kerridge, J. (2006). Automated Responsive Web
Services Evolution through Generative Aspect-Oriented Component
Adaptation. International Journals of Computer Applications in
Technology, to appear, ISSN (Print): 0952-8091.

[103] Liu, X., Feng, Y., & Kerridge, J. "Generative Aspect-Oriented
Component Adaptation", IET Software, accepted.

[104] Liu X., Wang B., & Kerridge J. (2005). Achieving Seamless
Component Composition Through Scenario-Based Deep Adaptation
And Generation. Journal of Science of Computer Programming
(Elsevier), Special Issue on New Software Composition Concepts, 56,
2.

[105] Lohmann, D., Blaschke, G., and Spinczyk, O. (2004), Generic advice:
On the combination of AOP with generative programming in

168

AspectC++, Proceedings of the 3rd Int. Conf. on Generative
Programming and Component Engineering (GPCE ’04), vol 3286 of
LNCS, pp. 55–74. Springer, October 2004.

[106] Loughran, N., & Rashid, A. (2004), Framed Aspects: Supporting
Variability and Configurability for AOP. Proceedings of International
Conference on Software Reuse, 2004.

[107] Loughran, N., Rashid, A., Zhang, W., & Jarzabek, S. (2004),
Supporting Product Line Evolution with Framed Aspects. Proceedings
of Workshop on Aspects, Components and Patterns for Infrastructure
Software (held with AOSD 2004).

[108] Majithia, S., Shields, M., Taylor, I., & Wang, I. (2004). Triana: A
Graphical Web Service Composition and Execution Toolkit.
Proceedings of International Conference on Web Services, 514.

[109] Majithia, S., Walker, D. W., & Gray, W. A. (2004). A Framework for
Automated Service Composition in Service-Oriented Architectures.
Proceedings of the First European Semantic Web Symposium.

[110] McIlroy, M. D. (1968), Mass-produced software components.
Proceedings of NATO Conference on Software Engineering,
Garmisch, Germany, Springer-Verlag.

[111] Mehner, K., & Rashid A. Towards a Generic Model for AOP (GEMA).
Technical Report, No. CSEG/1/03. Computing Department, Lancaster
University, UK.

[112] Mezini, M., Lorenz, D., & Lieberherr, K. Components and Aspect-
Oriented Design/Programming. Lecture Notes.

[113] Mezini, M., Ostermann, K. (2005), A comparison of program
generation with aspect-oriented programming, Lecture Notes in
Computer Science, 3566, pp. 342-354.

[114] Mili, H., Mili, A., Yacoub, S., and Addy, E.(2002), Reuse-Based
Software Engineering, Techniques, Organization, and Controls, Wiley
Inter-Science, ISBN: 0-471-39819-5.

[115] Miller, G. (June, 2003). The Web services debate: .NET vs. J2EE.
Communications of the ACM, 46, 6, 64-67.

[116] Moreira, A., and Araujo, J.(2004), Handling unanticipated
requirements change with aspects, Proceedings of the Software
Engineering and Knowledge Engineering Conference, Banff, Canada.

[117] Nagy, I., Bergmans, L., & Aksit, M(2005), Composing Aspects at
Shared Join Points. Proceedings of International Conference
NetObjectDays, Lecture Notes in Informatics, Vol 69, Erfurt,
Germany.

[118] Pfarr, T. And Reis, J. E. (2002). The integration of COTS/GOTS within
NASA’s HST command and control system. Proceedings of 1st
International Conference on COTS-based Software Systems,
Orlando, FL: Springer-Verlag.

[119] Rada, R. (1995), Software Reuse, ISBN: 1-871516-53-6.
[120] Rao, J., & Su, X. (2004). A Survey of Automated Web Service

Composition Methods. Proceedings of the First International
Workshop on Semantic Web Services and Web Process
Composition.

169

[121] Rempel, M. & Lind, K. (September, 2002). MCAD/MCSD C# (r) .NET
(tm) Certification All-in-One Exam Guide. McGraw-Hill Osborne
Media.

[122] Samentinger, J. (1997). Software Engineering with Reusable
Components. Springer Verlag.

[123] Sarkar, S. (August, 2002). Model Driven Programming Using XSLT:
An Approach to Rapid Development of Domain-Specific Program
Generators. www.XML-JOURNAL.com.

[124] Schmidt, D., Stal, M., Rohnert, H., and Buschmann, F., Pattern-
Oriented Software Architecture – Volume 2 – Patterns for Concurrent
and Networked Objects. Wiley & Sons, New York, NY, USA (2000)

[125] Schult, W., & Polze A. (2002). Aspect-Oriented Programming with C#
and .NET. Proceedings of the Fifth IEEE International Symposium on
Object-Oriented Real-Time Distributed Computing.

[126] Shaparau, D. Approaches to Web Service Composition. Lecture
Notes, University of Trento.

[127] Shukla, D., Fell, S., & Sells, C. (2002). Aspect-Oriented Programming
Enables Better Code Encapsulation and Reuse. MSDN Magazine.

[128] Singh, S., Grundy, J., & Hosking, J. (2004). Developing .NET Web
Service-based Applications with Aspect-Oriented Component
Engineering. Proceedings of the Fifth Australian Workshop on
Software and Systems Architectures.

[129] Sirin, E., Hendler, J., & Parsia, B. (April, 2003). Semi-automatic
composition of web services using semantic descriptions.
Proceedings of the Web Services: Modeling, Architecture and
Infrastructure workshop in ICEIS 2003. Angers, France.

[130] Skogan, D., Gronmo, R., & Solheim, I. (2004). Modeling Web Service
Composition in UML, Proceedings of the 8th IEEE International
Enterprise Distributed Object Computing Conference.

[131] Skogan D., Gronmo, R., & Solheim I. (2004). Web Service
Composition in UML. Proceedings of the 8th IEEE International
Enterprise Distributed Object Computing Conference.

[132] Sommerville, I. (2007). Software Engineering (8th Ed.). Addison-
Wesley, ISBN: 978-0-321-31379-9.

[133] Spinczyk, O., Gal, A., and Schröder-Preikschat, W. (2002),
AspectC++: An aspect oriented extension to C++. Proceedings of the
40th Int. Conf. on Technology of OO Languages and Systems
(TOOLS Pacific ’02), pp. 53–60, Sydney, Australia, February 2002.

[134] Srivastava B., & Koehler, J. Web Service Composition – Current
Solutions and Open Problems.

[135] Student Record System. Java course work for master students of
Harbin Institute of Technology, China, 2007.

[136] Sullivan, G.T. (Oct 2001), Aspect-oriented programming using
reflection and meta object protocols - Providing programmers with the
capability to modify the default behaviour of a programming
language.,Communications of the ACM, 44 (10), pp. 95-97.

[137] Suvee, D., Vanderperren, W., & Jonckers V. (2003). JAsCo: an
Aspect-Oriented approach tailored for component Based Software

170

Development. Proceedings of the 2nd international conference on
Aspect-oriented software development, 21-29. Boston, USA.

[138] Swe, S. M., Zhang, H., and Jarzabek, S. (2002), XVCL: A Tutorial,
Proceedings of the 14th International Conference on Software
Engineering and Knowledge Engineering, Vol: 27, pp.341-349, Ischia,
Italy.

[139] Szyperski, C. (2002), Component Software Beyond Object-Oriented
Programming 2nd Edition. ACM Press, ISBN: 0-201-74572-0.

[140] The OWL Service Coalition. OWL-S: Semantic Markup for Web
Services, 2003.

[141] Thone S., Depke, R., & Engels G. (2002). Process-Oriented, Flexible
Composition of Web Services with UML. Proceedings of the 21st
International Conference on Conceptual Modelling.

[142] Torchiano M. & Morisio M. (2004), Overlooked facts on COTS-based
development, IEEE Software, Vol. 21, pp. 88-93.

[143] Tracz. W. (2001). COTS myths and other lessons learned in
component-based software development. Component-Based
Software Engineering. Boston: Addison-Wesley, pp. 99-112.

[144] Tsai, T.M., Yu, H.K., Shih, H.T., Liao, P.Y., Yang, R.D., & Chou, S. T.
(October, 2003). Ontology-Mediated Integration of Intranet Web
Services. IEEE Computer, 36, 10, 63-71.

[145] Turner, M., Budgen, D., & Brereton, P. (October, 2003). Turning
Software into a Service. IEEE Computer, 36, 10, 38-44.

[146] Vallecillo, A., Hern´andez, J., and Troya, J. M. (2000). Component
interoperability, Technical Report. ITI-2000-37, Departmento de
Lenguajes y Ciencias de la Computaci´on, University of M´alaga, July
2000.

[147] Vanderperren, W. (September, 2001). Applying aspect-oriented
programming ideas in a component based context: Composition
Adapters. Proceedings of NetObjectDays, 201-206. Erfurt, Germany.

[148] Vanderperren, W., Suvée D., & Jonckers, V. (2003). Invasive
Composition Adapters: an aspect-oriented approach for visual
component-based development. Proceedings of the ACP4IS
workshop at AOSD 2003.

[149] Vanderperren, W., Suvée, D., Verheecke, B., Cibrán, M.A., &
Jonckers, V. (March, 2005). Adaptive programming in JAsCo.
Proceedings of the 4th international conference on Aspect-oriented
software development.

[150] Verheecke, B., Cibran, M. A., & Jonckers, V. (2003). AOP for
Dynamic Configuration and Management of Web Services.
Proceedings of the International Conference on Web Services –
Europe.

[151] Viega, J., Voas, J. (Nov-Dec, 2000), Quality time - Can aspect-
oriented programming lead to more reliable software?, IEEE
SOFTWARE, 17(6), pp. 19-21.

[152] Wampler, D., Aspect Programming, Inc. Use Cases as Aspects – An
Approach to Software Composition.
http://www.aspectprogramming.com/papers.html.

171

[153] Wang, B., Liu, X. & Kerridge, J. (September, 2003). A Generative and
Component based Approach to Reuse in Database Applications.
Proceedings of the 5th Generative Programming and Component
Engineering Young Researchers Workshop. Erfurt, Germany.

[154] Wang, B., Liu, X., & Kerridge, J. (November, 2004). Scenario-based
Generative Component Adaptation in .NET Framework. Proceedings
of the IEEE International Conference on Information Reuse and
Integration. Las Vegas, USA.

[155] Wang, G., Hallberg, L.M., Saphier, E., Englander, E. W., and Bosch,
J. (1999). Superimposition: a component adaptation technique.
Information and Software Technology, Vol 41(5), pp. 257-273, 25
March 1999.

[156] Weerawarana, S. (2002). Business Process with BPEL4WS:
Understanding BPEL4WS. IBM developerWorks.

[157] Williams, J. (June, 2003). The Web services debate: J2EE vs. .NET.
Communications of the ACM, 46, 6, 58-63.

[158] Wirfs-Brock, R.J., and Johnson, R.E. (1990). Surveying current
research in object-oriented design. Communications of ACM, Vol
33(9), pp.104-124.

[159] Yakimovich, D., Travassos, G., and Basili, V.(1999). A classification of
software components incompatibilities for COTS integration.
Technical report, Software Engineering Laboratory Workshop,
NASA/Goddard Space Flight Centre, Greenbelt, Maryland.

[160] Yellin, D.M., and Strom, R.E., Protocol Specifications and Component
Adaptors, ACM Transactions on Programming Languages and
Systems, Vol. 19, No. 2, pp. 292-333, 1997

172

Appendix A Abbreviations and Acronyms

All the abbreviations and acronyms used in this thesis are defined below.

Abbreviation/Acronyms Description

AAF

AD

AF

AI

AOP

AOSD

Aspect Framework

AInst

BPEL4WS

CASE

CBSD

CIL

CLR

COM

COM+

CORBA

COTS

CS

DCOM

DSL

EJB

HTTP

IDL

IL

J2EE

JavaCC

MSMQ

Abstract Aspect Frame.

Active Directory.

Aspect Frame

Artificial Intelligence.

Aspect Oriented Programming.

Aspect Oriented Software Development.

Aspect Framework is the combination of various

aspects and control flows to support further reuse.

Aspect Instance.

Business Process Execution Language for Web

Services.

Computer Aided Software Engineering.

Component Based Software Development.

Common Intermediate Language.

Common Language Runtime.

Common Object Model.

Common Object Model Plus.

Common Object Request Broker Architecture.

Commercial Off-The-Shelf.

Common Structure.

Distributed Common Object Model.

Domain Specific Language

Enterprise Java Beans.

Hyper Text Transfer Protocol.

Interface Description Language.

Intermediate Language.

Java 2 Enterprise Edition.

Java Compiler Compiler.

Microsoft Message Queuing.

173

Abbreviation/Acronyms Description

MTS

OLE

OMG

OOP

ORB

QoS

PCAS

SI

SOAP

SPL

UDDI

UML

V

WSDL

XSLT

Microsoft Transaction Server.

Object Linking and Embedding.

Object Management Group.

Object Oriented Programming.

Object Request Broker.

Quality of Service.

Process-based Component Adaptation Specification.

Semantic Interpreter.

Simple Object Access Protocol.

Software Product Line

Universal Description, Discovery and Integration.

Unified Modelling Language.

Variations.

Web Service Description Language.

Extensible Stylesheet Language Transformations

174

Appendix B The screen dumps of the prototype
tool

B.1 Main Interface

Figure B.1 Main interface

175

B.2 Aspect Manager

B.2.1 The manipulation of AFs

Figure B.2 Graphics view of AFs

176

Figure B.3 Source view of AFs

177

Figure B.4 AF meta data edit window

Figure B.5 Creating new AF file

178

Figure B.6 Common structure part of AF

Figure B.7 Variation part of Logging Aspect

179

Figure B.8 Variation part of DBPooling Aspect

B.2.2 The manipulation of AAFs

Figure B.9 AAF meta data edit window

180

Figure B.10 Changing icon of AAF

181

Figure B.11 AAF edit window

182

Figure B.12 Create AAF meta data

Figure B.13 Create AAF file

Figure B.14 AAF file edit window

183

B.2.3 AInsts

Figure B.15 Generated AInst

184

B.3 Component Analyzer

Figure B.16 Component Analyzer

185

B.4 Semantic Interpreter

Figure B.17 Semantic Interpreters

186

B.5 System Preferences

Figure B.18 System preferences

187

B.6 PCAS Editor

Figure B.19 PCAS Editor

188

Figure B.20 Save Aspect Framework

Figure B.21 Load Aspect Framework

189

B.7 Aspect Generation

Figure B.22 Aspect Generation

190

B.8 PCAS Weaver

Figure B.23 PCAS weaving

191

Appendix C The case studies source code

C.1 Student record management system

C.1.1 PCAS

<?xml version="1.0"?>
<AOP-Process name="Aspects_on_StudentSys"
 xmlns="http://www.dcs.napier.ac.uk/2005/PCAS">
<AspectFramework name="Auth_loggingOnStudentinfo"
 sourcefile="Student.java"
 path="d:\My_doc\Thesis\GAIN\Gain\Work\"
 joinpointcomponent="Student"
 joinpointmethod="launchApp"
 when="call"
 returntype="*"
 parameters=".."
 awhen="before">
<Apply-aspect class="Student"
 method="launchApp"
 aspect_id="02"
 aspect_level="Primitive"
 aspect_type="Authentication"
 af_id="3"
 af_name="StudentSysAuth"
 synchronized="false"
 comment="check user name and password"/>
<Switch expr="StudentSysAuth.getAuthenticationStatus()" when="before">
<case value="true">
<Apply-aspect class="Student"
 method="launchApp"
 aspect_id="01"
 aspect_level="primitive"
 aspect_type="Logging"
 af_id="1"
 af_name="StudentSysLogging1"
 synchronized="true"
 comment="Log the access to DB"/>
</case>
<case value="false">
<Apply-aspect
 class="Student"
 method="launchApp"

192

 aspect_id="01"
 aspect_level="primitive"
 aspect_type="Logging"
 af_id="2"
 af_name="StudentSysLogging2"
 synchronized="true"
 comment="log the rejection of access to DB"/>
<Apply-aspect class="Student"
 method="launchApp"
 aspect_id="08"
 aspect_level="Primitive"
 aspect_type="Exit"
 af_id="16"
 af_name="StudentSysExit"
 synchronized="false"
 comment="Exit"/>
</case>
</Switch>
</AspectFramework>
</AOP-Process>

C.1.2 AFs
AF for authentication
<?xml version="1.0" ?>
<Aspect name="Auth_Student">
<!-- Common Structure -->

<CommonStructure>
 <PointCut>
 <Name>StudentSysAuth</Name>
 <When>call</When>
 <ReturnType>*</ReturnType>
 <ClassName>Student</ClassName>
 <MethodName>launchApp</MethodName>
 <Parameters>..</Parameters>
 </PointCut>
 <Advice>
 <When>before</When>
 <PointCutName ref = "StudentSysAuth"/>
 </Advice>
</CommonStructure>

<!-- Variations -->
<Variation type = "Authentication">
 <AuthenticationType>CommandLineBased</AuthenticationType>
 <AuthenticationDB>Account.mdb</AuthenticationDB>
</Variation>
</Aspect>

193

AF for logging
<?xml version="1.0" ?>
<Aspect name="TraceStudentInfo_Successful">
 <!-- Core asset -->
 <CommonStructure>
 <PointCut>
 <Name>StudentSysLogging1</Name>
 <When>call</When>
 <ReturnType>*</ReturnType>
 <ClassName>Student</ClassName>
 <MethodName>launchApp</MethodName>
 <Parameters>..</Parameters>
 </PointCut>
 <Advice>
 <When>before</When>
 <PointCutName ref="StudentSysLogging1" />
 </Advice>
 </CommonStructure>

 <!-- Variations -->
 <Variation type="Logging">
 <Device>
 <File>D:\\tmp\\student_info_aop.log</File>
 </Device>
 <Messages>
 <Message>Succeed to get access to Student.launchApp on</Message>
 <Date/>
 <Message>at </Message>
 <Time/>
 </Messages>
 </Variation>
</Aspect>

C.1.3 AInst

AInsts for authentication in AspectJ

import java.io.*;
import gain.authentication.Authentication;

public aspect Auth_Student{
 private boolean isAuthenticated = false;
 pointcut AuthStudentInfo():execution(* StudentInfo.getStudentInfo(..));
 before() : AuthStudentInfo () {
 String username="";
 String password="";
 try{
 BufferedReader in =
 new BufferedReader(new InputStreamReader(System.in));

194

 System.out.println("Username: ");
 username = in.readLine();
 System.out.println("Password: ");
 password = in.readLine();
 }catch(IOException ie){}
 if(username!=null && password!=null){
 Authentication auth = new Authentication();
 isAuthenticated = auth.authenticate(username, password);
 }
 if(!isAuthenticated) {
 System.out.println("Authentication failure!");
 System.exit(-1);
 }
 }
 public boolean getAuthenticationStatus() {return isAuthenticated;}
}

AInsts for logging in AspectJ

import java.io.*;
import java.util.*;
import org.aspectj.lang.*;

public aspect TraceStudentInfo_Successful{

pointcut traceMethods() : call(* Student.launchApp(..));
before() : traceMethods ()
{
 Calendar cal = Calendar.getInstance();
 try{
 FileWriter fw = new FileWriter("D:\\tmp\\student_info_aop.log", true);
 PrintWriter pw = new PrintWriter(fw);
 pw.print("Succeed to get access to Student.launchApp on");
 pw.print(cal.get(Calendar.YEAR) + ".");
 pw.print(cal.get(Calendar.MONTH) + ".");
 pw.print(cal.get(Calendar.DAY_OF_MONTH) + ",");
 pw.print("at ");
 pw.print(cal.get(Calendar.HOUR) + ":");
 pw.print(cal.get(Calendar.MINUTE) + ":");
 pw.print(cal.get(Calendar.SECOND) + ":");
 pw.println();
 pw.close();
 }catch(Exception e) {
 System.out.println("Error occured: " + e);
 }
}
}

195

C.1.4 Part of the adapted component source code in if selected
target AOP language is Java

Student stu = new Student();
AuthenticationCmdDB StudentSysAuth=
new AuthenticationCmdDB("D:\\My_docs\\Thesis\\GAIN\\Gain\\\db\\Account.mdb");
StudentSysAuth.authenticate();
if(StudentSysAuth.getAuthenticationStatus()==true){
 LoggingToFile gl = new LoggingToFile("D:\\tmp\\student_info_aop.log");
 Calendar cal = Calendar.getInstance();
 gl.log("Succeed to get access to Student.launchApp on");
 gl.log(cal.get(Calendar.YEAR) + "." + cal.get(Calendar.MONTH) + "."
+cal.get(Calendar.DAY_OF_MONTH));
 gl.log("at ");
 gl.log(cal.get(Calendar.HOUR) + "." + cal.get(Calendar.MINUTE) + "."
+cal.get(Calendar.SECOND));
 gl.save();
}
if(StudentSysAuth.getAuthenticationStatus()==false){
 LoggingToFile gl = new LoggingToFile("D:\\tmp\\student_info_aop.log");
 Calendar cal = Calendar.getInstance();
 gl.log("Failed to get access to Student.launchApp on");
 gl.log(cal.get(Calendar.YEAR) + "." + cal.get(Calendar.MONTH) + "."
+cal.get(Calendar.DAY_OF_MONTH));
 gl.log("at ");
 gl.log(cal.get(Calendar.HOUR) + "." + cal.get(Calendar.MINUTE) + "."
+cal.get(Calendar.SECOND));
 gl.save();
 System.exit(-1);
}
stu.launchApp();

C.2 On-line testing system

C.2.1 PCAS

<?xml version="1.0"?>
<AOP-Process name="Aspects_on_StudentSys"
 xmlns="http://www.dcs.napier.ac.uk/2005/PCAS">
<AspectFramework name="Auth_loggingOnStudentinfo"
 sourcefile="Student.java"
 path="d:\My_doc\Thesis\GAIN\Gain\Work\"
 joinpointcomponent="Student"
 joinpointmethod="launchApp"
 when="call"
 returntype="*"
 parameters=".."
 awhen="before">
<Apply-aspect class="Student"
 method="launchApp"

196

 aspect_id="02"
 aspect_level="Primitive"
 aspect_type="Authentication"
 af_id="3"
 af_name="StudentSysAuth"
 synchronized="false"
 comment="check user name and password"/>
<Switch expr="StudentSysAuth.getAuthenticationStatus()" when="before">
<case value="true">
<Apply-aspect class="Student"
 method="launchApp"
 aspect_id="01"
 aspect_level="primitive"
 aspect_type="Logging"
 af_id="1"
 af_name="StudentSysLogging1"
 synchronized="true"
 comment="Log the access to DB"/>
</case>
<case value="false">
<Apply-aspect
 class="Student"
 method="launchApp"
 aspect_id="01"
 aspect_level="primitive"
 aspect_type="Logging"
 af_id="2"
 af_name="StudentSysLogging2"
 synchronized="true"
 comment="log the rejection of access to DB"/>
<Apply-aspect
 class="Student"
 method="launchApp"
 aspect_id="08"
 aspect_level="Primitive"
 aspect_type="Exit"
 af_id="16"
 af_name="StudentSysExit"
 synchronized="false"
 comment="Exit"/>
</case>
</Switch>
</AspectFramework>
</AOP-Process>

C.2.2 AFs

AF for DB connection pool
<?xml version="1.0" ?>
<Aspect name="OnlineTestingDBPoolOpenAspect">

197

 <!-- Common Structure -->
 <CommonStructure>
 <PointCut>
 <Name>connectionOpen</Name>
 <When>call</When>
 <ReturnType>java.sql.Connection</ReturnType>
 <ClassName>java.sql.DriverManager</ClassName>
 <MethodName>getConnection</MethodName>
 <Parameters>String url,String username,String password</Parameters>
 </PointCut>
 <Advice>
 <When>around</When>
 <PointCutName ref="connectionOpen" />
 </Advice>
 </CommonStructure>
 <!-- Variations -->
 <Variation type="DBConnectionPoolOpen">
 <Capacity>50</Capacity>
 <ExpireTime>
 <CheckPoint>02:00:00</CheckPoint>
 <MaxIdleTime>86400</MaxIdleTime>
 </ExpireTime>
 </Variation>
</Aspect>

AF for logging
<?xml version="1.0" ?>
<Aspect name="dbp_logging_1">
 <!-- Common Structure -->
 <CommonStructure>
 <PointCut>
 <Name>Logging_OnlineTesting-1</Name>
 <When>execution</When>
 <ReturnType>*</ReturnType>
 <ClassName>java.sql.DriverManager, java.sql.Connection</ClassName>
 <MethodName>getConnection</MethodName>
 <Parameters>..</Parameters>
 </PointCut>
 <Advice>
 <When>around</When>
 <PointCutName ref="Logging_OnlineTesting-1" />
 </Advice>
 </CommonStructure>
 <!-- Variations -->
 <Variation type="Logging">
 <Device>
 <File>D:\\On-lineTesting\\logs\\dbp.log</File>
 </Device>
 <Messages>
 <Message>Access to DB connection pool without reaching its capacity on
</Message>
 <Date/>

198

 <Message>at </Message>
 <Time/>
 </Messages>
 </Variation>
</Aspect>

C.2.3 Part of the adapted component source code in Java
DBPooling OnlineTesting_DBPoolOpen =
 DBPooling.getDBPool(50,"02:00:00",86400);
connect = OnlineTesting_DBPoolOpen.getConnection(
 sConnStr, "scott", "tiger");
if (OnlineTesting_DBPoolOpen == null) {
 connect = DriverManager.getConnection(sConnStr, "scott", "tiger");

OnlineTesting_DBPoolOpen.registerConnection(
 connect,sConnStr, "scott", "tiger");

}
if(OnlineTesting_DBPoolOpen.reachedMaxCapicity()==false){
 LoggingToFile gl = new LoggingToFile("D:\\On-lineTesting\\logs\\dbp.log");
 Calendar cal = Calendar.getInstance();
 gl.log("Access to DB connection pool without reaching its capacity on ");

gl.log(cal.get(Calendar.YEAR) + "." + cal.get(Calendar.MONTH) + "."
 +cal.get(Calendar.DAY_OF_MONTH));

 gl.log("at ");
gl.log(cal.get(Calendar.HOUR) + "." + cal.get(Calendar.MINUTE) + "."
 +cal.get(Calendar.SECOND));

 gl.save();
}
if(OnlineTesting_DBPoolOpen.reachedMaxCapicity()==true){
 LoggingToFile gl = new LoggingToFile("D:\\On-lineTesting\\logs\\dbp.log");
 Calendar cal = Calendar.getInstance();
 gl.log("Access to DB connection pool with reaching its capacity on ");

gl.log(cal.get(Calendar.YEAR) + "." + cal.get(Calendar.MONTH) + "."
 +cal.get(Calendar.DAY_OF_MONTH));

 gl.log("at ");
gl.log(cal.get(Calendar.HOUR) + "." + cal.get(Calendar.MINUTE) + "."
 +cal.get(Calendar.SECOND));

 gl.save();
}

C.3 Policy enforcement

C.3.1 PCAS
<?xml version="1.0"?>
<AOP-Process name="PolicyEnforcement"
 xmlns="http://www.dcs.napier.ac.uk/2005/PCAS">
<AspectFramework name="PE_CodeConventionsOOP"
 sourcefile=""
 path=""
 joinpointcomponent=""

199

 joinpointmethod=""
 when=""
 returntype=""
 parameters=""
 awhen="">
<Apply-aspect class=""
 method=""
 aspect_id="06"
 aspect_level="Primitive"
 aspect_type="PE_NoStandardOutput"
 af_id="14"
 af_name="PolicyEnforcement_NoStandardOutput"
 synchronized="false"
 comment="PE_No standard output"/>
<Apply-aspect class=""
 method=""
 aspect_id="05"
 aspect_level="Primitive"
 aspect_type="PE_NewObj"
 af_id="13"
 af_name="PolicyEnforcement_NewObj"
 synchronized="false"
 comment="PE_NewObjectCreation"/>
</AspectFramework>
</AOP-Process>

C.3.2 AFs

AF for NoStandardOutput
<?xml version="1.0" ?>
<Aspect name="PolicyEnforcement_NoStandardOutput">
 <!-- Common Structure -->
 <CommonStructure>
 <PointCut>
 <Name>pe_nso1</Name>
 <When>execution</When>
 <ReturnType>*</ReturnType>
 <ClassName>*</ClassName>
 <MethodName>*</MethodName>
 <Parameters>*</Parameters>
 </PointCut>
 <Advice>
 <When>before</When>
 <PointCutName ref="pe_nso1" />
 </Advice>
 </CommonStructure>

 <!-- Variations -->
 <Variation type="PE_NoStandardOutput">
 <AffectedClasses>

200

 <Class>ShoppingCart</Class>
 <Class>ShoppingCartOperator</Class>
 </AffectedClasses>
 <ErrorMessage>Please use logging mechnism instead!</ErrorMessage>
 </Variation>
</Aspect>

AF for NewObj
<?xml version="1.0" ?>
<Aspect name="PolicyEnforcement_NewObj">
 <!-- Common Structure -->
 <CommonStructure>
 <PointCut>
 <Name>pe_newobj</Name>
 <When>execution</When>
 <ReturnType>*</ReturnType>
 <ClassName>*</ClassName>
 <MethodName>*</MethodName>
 <Parameters>*</Parameters>
 </PointCut>
 <Advice>
 <When>before</When>
 <PointCutName ref="pe_newobj" />
 </Advice>
 </CommonStructure>

 <!-- Variations -->
 <Variation type="PE_NewObj">
 <AffectedClasses>
 <Class>C1</Class>
 <Class>C2</Class>
 </AffectedClasses>
 <ErrorMessage>Please use factory method instead!</ErrorMessage>
 </Variation>
</Aspect>
AInsts

C.3.3 AInsts

AInst for NoStandardOutput aspect in AspectJ

public aspect PolicyEnforcement_NoStandardOutput{

declare warning : get(* System.out) || get(* System.err) :
 "Consider using logging mechanism instead.";

}

201

Appendix D The core implementation code of the
system

D.1 XML schema for PCAS

Following code shows the XML schema for PCAS:

<?xml version="1.0" encoding="UTF-8" ?>

<xs:schema xmlns:xs="http://www.w3.org/2001/XMLSchema">
 <xs:element name="AOP-Process">
 <xs:complexType>
 <xs:sequence>
 <xs:element ref="AspectFramework" maxOccurs="unbounded"/>
 </xs:sequence>
 <xs:attribute name="name" type="xs:string" use="required" />
 </xs:complexType>
 </xs:element>

 <xs:element name="Apply-aspect">
 <xs:complexType>
 <xs:attribute name="method" type="xs:string" use="required" />
 <xs:attribute name="class" type="xs:string" use="required" />
 <xs:attribute name="synchronized" type="xs:string" use="required" />
 <xs:attribute name="comment" type="xs:string" use="required" />
 <xs:attribute name="af_name" type="xs:string" use="required" />
 <xs:attribute name="aspect_level" type="xs:string" use="required" />
 <xs:attribute name="af_id" type="xs:string" use="required" />
 <xs:attribute name="aspect_type" type="xs:string" use="required" />
 <xs:attribute name="aspect_id" type="xs:string" use="required" />
 </xs:complexType>
 </xs:element>

 <xs:element name="AspectFramework">
 <xs:complexType>
 <xs:sequence>
 <xs:element ref="Apply-aspect" maxOccurs="unbounded"/>
 <xs:element ref="Switch" maxOccurs="unbounded"/>
 </xs:sequence>
 <xs:attribute name="name" type="xs:string" use="required" />
 <xs:attribute name="awhen" type="xs:string" use="required" />
 <xs:attribute name="returntype" type="xs:string" use="required" />
 <xs:attribute name="when" type="xs:string" use="required" />
 <xs:attribute name="joinpointcomponent" type="xs:string" use="required" />
 <xs:attribute name="joinpointmethod" type="xs:string" use="required" />

202

 <xs:attribute name="parameters" type="xs:string" use="required" />
 <xs:attribute name="sourcefile" type="xs:string" use="required" />
 <xs:attribute name="path" type="xs:string" use="required" />
 </xs:complexType>
 </xs:element>

 <xs:element name="case">
 <xs:complexType>
 <xs:sequence>
 <xs:element ref="Apply-aspect" maxOccurs="unbounded"/>
 </xs:sequence>
 <xs:attribute name="value" type="xs:string" use="required" />
 </xs:complexType>
 </xs:element>

 <xs:element name="Switch">
 <xs:complexType>
 <xs:sequence>
 <xs:element ref="case" maxOccurs="unbounded" />
 </xs:sequence>
 <xs:attribute name="when" type="xs:string" use="required" />
 <xs:attribute name="expr" type="xs:string" use="required" />
 </xs:complexType>
 </xs:element>

</xs:schema>

D.2 XML schema (AAF) for Logging aspect
<?xml version="1.0" encoding="UTF-8" ?>

<xs:schema xmlns:xs="http://www.w3.org/2001/XMLSchema">
 <xs:element name="Advice">
 <xs:complexType>
 <xs:sequence>
 <xs:element ref="When" />
 <xs:element ref="PointCutName" />
 </xs:sequence>
 </xs:complexType>
 </xs:element>

 <xs:element name="Aspect">
 <xs:complexType>
 <xs:sequence>
 <xs:element ref="CommonStructure" />
 <xs:element ref="Variation" />
 </xs:sequence>
 <xs:attribute name="name" type="xs:string" use="required" />
 </xs:complexType>
 </xs:element>

203

 <xs:element name="ClassName">
 <xs:complexType mixed="true" />
 </xs:element>

 <xs:element name="CommonStructure">
 <xs:complexType>
 <xs:sequence>
 <xs:element ref="PointCut" />
 <xs:element ref="Advice" />
 </xs:sequence>
 </xs:complexType>
 </xs:element>

 <xs:element name="Date" type="xs:string" />

 <xs:element name="Device">
 <xs:complexType>
 <xs:sequence>
 <xs:element ref="File" />
 </xs:sequence>
 </xs:complexType>
 </xs:element>

 <xs:element name="File">
 <xs:complexType mixed="true" />
 </xs:element>

 <xs:element name="Message">
 <xs:complexType mixed="true" />
 </xs:element>

 <xs:element name="Messages">
 <xs:complexType>
 <xs:choice>
 <xs:element ref="Date" maxOccurs="unbounded"/>
 <xs:element ref="Message" maxOccurs="unbounded"/>
 <xs:element ref="Time" maxOccurs="unbounded"/>
 </xs:choice>
 </xs:complexType>
 </xs:element>

 <xs:element name="MethodName">
 <xs:complexType mixed="true" />
 </xs:element>

 <xs:element name="Name">
 <xs:complexType mixed="true" />
 </xs:element>

 <xs:element name="Parameters">
 <xs:complexType mixed="true" />
 </xs:element>

204

 <xs:element name="PointCut">
 <xs:complexType>
 <xs:sequence>
 <xs:element ref="Name" />
 <xs:element ref="When" />
 <xs:element ref="ReturnType" />
 <xs:element ref="ClassName" />
 <xs:element ref="MethodName" />
 <xs:element ref="Parameters" />
 </xs:sequence>
 </xs:complexType>
 </xs:element>

 <xs:element name="PointCutName">
 <xs:complexType>
 <xs:attribute name="ref" type="xs:string" use="required" />
 </xs:complexType>
 </xs:element>

 <xs:element name="ReturnType">
 <xs:complexType mixed="true" />
 </xs:element>

 <xs:element name="Time" type="xs:string" />

 <xs:element name="Variation">
 <xs:complexType>
 <xs:sequence>
 <xs:element ref="Device" />
 <xs:element ref="Messages" />
 </xs:sequence>
 <xs:attribute name="type" type="xs:string" use="required" />
 </xs:complexType>
 </xs:element>

 <xs:element name="When">
 <xs:complexType mixed="true" />
 </xs:element>

</xs:schema>

D.3 XML schema (AAF) for DB connection pool aspect
<?xml version="1.0" encoding="UTF-8" ?>

<xs:schema xmlns:xs="http://www.w3.org/2001/XMLSchema">
 <xs:element name="Advice">
 <xs:complexType>
 <xs:sequence>
 <xs:element ref="When" />
 <xs:element ref="PointCutName" />

205

 </xs:sequence>
 </xs:complexType>
 </xs:element>

 <xs:element name="Aspect">
 <xs:complexType>
 <xs:sequence>
 <xs:element ref="CommonStructure" />
 <xs:element ref="Variation" />
 </xs:sequence>
 <xs:attribute name="name" type="xs:string" use="required" />
 </xs:complexType>
 </xs:element>

 <xs:element name="Capacity">
 <xs:complexType mixed="true" />
 </xs:element>

 <xs:element name="CheckPoint">
 <xs:complexType mixed="true" />
 </xs:element>

 <xs:element name="ClassName">
 <xs:complexType mixed="true" />
 </xs:element>

 <xs:element name="CommonStructure">
 <xs:complexType>
 <xs:sequence>
 <xs:element ref="PointCut" />
 <xs:element ref="Advice" />
 </xs:sequence>
 </xs:complexType>
 </xs:element>

 <xs:element name="ExpireTime">
 <xs:complexType>
 <xs:sequence>
 <xs:element ref="CheckPoint" />
 <xs:element ref="MaxIdleTime" />
 </xs:sequence>
 </xs:complexType>
 </xs:element>

 <xs:element name="MaxIdleTime">
 <xs:complexType mixed="true" />
 </xs:element>

 <xs:element name="MethodName">
 <xs:complexType mixed="true" />
 </xs:element>

206

 <xs:element name="Name">
 <xs:complexType mixed="true" />
 </xs:element>

 <xs:element name="Parameters">
 <xs:complexType mixed="true" />
 </xs:element>

 <xs:element name="PointCut">
 <xs:complexType>
 <xs:sequence>
 <xs:element ref="Name" />
 <xs:element ref="When" />
 <xs:element ref="ReturnType" />
 <xs:element ref="ClassName" />
 <xs:element ref="MethodName" />
 <xs:element ref="Parameters" />
 </xs:sequence>
 </xs:complexType>
 </xs:element>

 <xs:element name="PointCutName">
 <xs:complexType>
 <xs:attribute name="ref" type="xs:string" use="required" />
 </xs:complexType>
 </xs:element>

 <xs:element name="ReturnType">
 <xs:complexType mixed="true" />
 </xs:element>

 <xs:element name="Variation">
 <xs:complexType>
 <xs:sequence>
 <xs:element ref="Capacity" />
 <xs:element ref="ExpireTime" />
 </xs:sequence>
 <xs:attribute name="type" type="xs:string" use="required" />
 </xs:complexType>
 </xs:element>

 <xs:element name="When">
 <xs:complexType mixed="true" />
 </xs:element>

</xs:schema>

D.4 Semantic Interpreter

As an example, the Semantic Interpreter of logging Aspect for AspectJ is
shown below:

207

<?xml version="1.0" encoding="UTF-8"?>
<xsl:stylesheet version="1.0" xmlns:aaf="http://dcs.napier.ac.uk/2005/AAF"
 xmlns:xsl="http://www.w3.org/1999/XSL/Transform"
 xmlns:xlink="http://www.w3.org/1999/xlink"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xmlns:ev="http://www.w3.org/2001/xml-events">
<xsl:output method="text"/>
<xsl:template match="/">
import java.io.*;
import java.util.*;
import org.aspectj.lang.*;
<xsl:for-each select="//Aspect">
public aspect <xsl:value-of select="@name" />{
<xsl:apply-templates select="CommonStructure" mode="CAS"/>
}
</xsl:for-each>
</xsl:template>
<xsl:template match="CommonStructure" mode="CAS">
<xsl:apply-templates select="PointCut" mode="PointCut"/>
<xsl:apply-templates select="Advice" mode="Advice"/>{
<xsl:apply-templates select="../Variation" mode="AA"/>
}
</xsl:template>
<xsl:template match="PointCut" mode="PointCut">
pointcut <xsl:value-of select="Name"/>() : <xsl:value-of select="When"/>(<xsl:value-of
select="ReturnType"/><xsl:value-of select="substring(' ',1)"/> <xsl:value-of
select="ClassName"/>.<xsl:value-of select="MethodName"/>(<xsl:value-of
select="Parameters"/>));
</xsl:template>

<xsl:template match="Advice" mode="Advice">
<xsl:value-of select="When"/>() : <xsl:value-of select="PointCutName/@ref"/> ()
</xsl:template>

<xsl:template match="Variation" mode="AA">
 Calendar cal = Calendar.getInstance();
 try{
 FileWriter fw = new FileWriter("<xsl:value-of select="Device/File/."/>", true);
 PrintWriter pw = new PrintWriter(fw);
 <xsl:for-each select="Messages/*">
 <xsl:choose>
 <xsl:when test="self::Message">
 pw.print("<xsl:value-of select="."/>");
 </xsl:when>
 <xsl:when test="self::Date">
 pw.print(cal.get(Calendar.YEAR) + ".");
 pw.print(cal.get(Calendar.MONTH) + ".");
 pw.print(cal.get(Calendar.DAY_OF_MONTH) + ",");
 </xsl:when>
<xsl:when test="self::Time">

208

 pw.print(cal.get(Calendar.HOUR) + ":");
 pw.print(cal.get(Calendar.MINUTE) + ":");
 pw.print(cal.get(Calendar.SECOND) + ":");
</xsl:when>

<xsl:otherwise>
 pw.print("<xsl:value-of select="."/>");
</xsl:otherwise>
</xsl:choose>
 </xsl:for-each>
 pw.println();
 pw.close();
 }catch(Exception e) {
 System.out.println("Error occured: " + e);
 }
</xsl:template>
</xsl:stylesheet>

209

Appendix E The sample test cases of the tool

E. 1 Sample test cases in unit testing

Test case 1: Testing Component Analyzer (getMethodList and

getComponentname method)

Description: Test whether Component Analyzer provides basic information of a component.
Input: A source code level component file name (ConnOracle.java).
Steps:
(1) Create a new object of ComponentAnalyzer class by passing component file name
(ConnOracle.java) as parameter to the constructor.
(2) Invoke getMethodList method and display the return value.
(3) Invoke getComponentName and display the return value.
Expected result:
Basic component information, e.g. component name(ConnOracle), method signatures
(ConnOracle, executeQuery, executeUpdate).
Real result:
Classname: ConnOracle
MethodList: ConnOracle
 executeQuery
 executeUpdate
Status: passed.

Test case 2: Testing Semantic Interpreter for Logging in AspectJ

Description: Test whether Semantic Interpreter can be used to transform Aspect from AF to
AInst
Input: An AF file (StudentSysLogging1.af)
Steps: using testing harness below:

import java.io.*;
import javax.xml.transform.*;
import javax.xml.transform.stream.*;
public class TestSI {
 public static void main(String[] args) throws Exception {
 String docname = " StudentSysLogging1.af ";
 String xslname = "AspectJ_logging.xsl";
 File xmlFile = new File(docname);
 File xslFile = new File(xslname);
 Source xmlsource = new StreamSource(xmlFile);
 Source xslsource = new StreamSource(xslFile);
 File targetFile = new File(" StudentSystLogging1.ainst ");
 PrintWriter out = new PrintWriter(new FileWriter(targetFile));

210

 Result result = new StreamResult(out);
 TransformerFactory transFact = TransformerFactory.newInstance();
 Transformer trans = transFact.newTransformer(xslsource);
 trans.transform(xmlsource, result);
 }
}

Expected result: An AInst file (StudentSystLogging1.ainst)
Real result: StudentSysLogging1.ainst
Status: passed.

Test case 3: Testing Aspect Manager (LoadAF method)

Description: Test whether LoadAF method in Aspect Manager loads all AAFs/AFs into the
tree structure.
Input: None
Steps:
(1) Create a new AspectManagerUI object
(2) Invoke show() method of that object
(3) Invoke loadAF() method of that object
Expected result: All AAFs and Afs in the Aspect Repository are loaded and displayed in the
Aspect tree.
Real result: All AAFs and Afs are loaded and displayed in the Aspect tree.
Status: passed.

Test case 4: Testing PCASAnalyzer (getAF method)

Description: Test whether getAF method returns an AF object.
Input: " 1" as AF_ID
Expected result: The corresponding AF object to AF_ID
Steps:
(1) Create a new PCASAnalyzer object by passing "StudentInfo.pcas" to its constructor.
(2) Invoke getAF() method by passing "1" to this method
(3) Get the returned object, and invoke getters to test whether the returned object is correct.
Real result: The corresponding object to AF_ID ("1")
Status: passed.

Test case 5: Testing XMLOperator class (getCAS_from_AF method)

Description: Test whether getCAS_from_AF method returns the CS part of an AF
Input: An AF file name ("StudentSysLogging1.af")
Expected result: The string of CS part of provided AF
Steps:
(1) Create a new XMLOperator object by passing "StudentSysLogging1" to its constructor
(2) Invoke getCAS_from_AF method and output the return value of this method
Real result: The string of CS part of provided AF as shown below
 <CommonStructure>
 <PointCut>
 <Name>StudentSysLogging1</Name>

211

 <When>call</When>
 <ReturnType>*</ReturnType>
 <ClassName>Student</ClassName>
 <MethodName>launchApp</MethodName>
 <Parameters>..</Parameters>
 </PointCut>

 <Advice>
 <When>before</When>
 <PointCutName ref="StudentSysLogging1" />
 </Advice>
 </CommonStructure>
Status: passed.

E. 2 Sample test cases in integration testing

Test case 1: Test the integration between Aspect Manager and Aspect

Generator.

Desired Functionality: The selected AF in Aspect Manager can be passed to Aspect
Generator and based on this, Aspect Generator can generate an AInst from the selected AF.

Steps:
(1) Launch Aspect Manager
(2) Select an AF (“StudentSysLogging1”) by clicking it
(3) Click on “Generate AInst” to launch Aspect Generator
(4) Select “AspectJ” as target AOP platform from the listbox
(5) Click on “Generate !”
(6) The source code of generated AInst should be shown in the textbox

Status: passed.

Test case 2: Test the integration between PCAS Editor, Aspect

Generator, and PCAS weaver (From a pre-defined PCAS file).

Desired Functionality: The tool should be able to deal with the whole process of
component adaptation from PCAS loading to Aspect generation, to Aspect weaving.

Steps:
(1) Click on “Open” button to open an existing PCAS, select “OnlinTesting.pcas”
(2) Click on “Adaptation” menu
(3) Click on “Aspect Generation” menuitem to launch Aspect generation window
(4) Click on “Get candidate aspects” button
(5) In target platform listbox, select “AspectJ”
(6) Click on “Generate AInst(s)” button
(7) In “Generated aspects” listbox, Click on “OnlineTesting_Logging1.ainst”
(8) Click “View select AInst”, the source code of selected AInst should be shown in the

212

textbox on the right side of the window.
(9) Click on “Adaptation” menu
(10) Click on “Aspect Weaving” to launch Aspect weaving window
(11) Select “AspectJ” in platform listbox
(12) Click on “Pre-weave” button
(13) Click on “View adapted Aspect in AspectJ” button, the adapted Aspect should be
shown in the textbox.
(14) Compile adapted Aspect with original component.
(15) Run target system with adapted component.

Status: passed.

E. 3 Sample test cases in system testing

Test case 1: Test the main functionality of the tool based on student

record system.

Desired Functionality: The tool should be able to deal with the whole process of
component adaptation.

Steps:
(1) Click on “Open” button to open an existing PCAS, select “StudentSys.pcas”
(2) Click on “Adaptation” menu
(3) Click on “Aspect Generation” menuitem to launch Aspect generation window
(4) Click on “Get candidate aspects” button
(5) In target platform listbox, select “AspectJ”
(6) Click on “Generate AInst(s)” button
(7) In “Generated aspects” listbox, Click on “StudentSysAuth.ainst”
(8) Click “View select AInst”, the source code of selected AInst should be shown in the
textbox on the right side of the window.
(9) Click on “Adaptation” menu
(10) Click on “Aspect Weaving” to launch Aspect weaving window
(11) Select “AspectJ” in platform listbox
(12) Click on “Pre-weave” button
(13) Click on “View adapted Aspect in AspectJ” button, the adapted Aspect should be
shown in the textbox.
(14) Compile adapted Aspect with original component.
(15) Run target system with adapted component.
(16) Go back to Aspect weaving window, and select "GAIN-Java" in platform listbox.
(17) Click on "Weave" button
(18) Click on "View adapted component" button, the adapted component should be shown
in the textbox.
(19) Compile adapted component.
(20) Run target system with adapted component.

Status: passed.

