758 research outputs found

    Workflow repository for providing configurable workflow in ERP

    Get PDF
    Workflow pada ERP dengan domain fungsi yang besar rentan dengan adanya duplikasi. Membuat workflow repository yang menyimpan berbagai macam workflow dari proses bisnis ERP yang dapat digunakan untuk menyusun workflow baru sesuai kebutuhan tenant baru Metode yang diusulkan: Metode yang diusulkan terdiri dari 2 tahapan, preprocessing dan processing. Tahap preprocessing bertujuan untuk mencari common dan sub variant dari existing workflow variant. Workflow variant yang disimpan oleh pengguna adalah Procure to Pay workflow. Variasi tersebut diseleksi berdasarkan kemiripannya dengan similarity filtering, kemudian dimerge untuk mencari common dan sub variantnya. Common dan sub variant disimpan menggunakan metadata yang dipetakan pada basis data relasional. Deteksi common dan sub variant workflow mencapai tingkat akurasi sebesar 92%. Ccommon workflow terdiri dari 3-common dari 8-variant workflow. Common workflow tersebut memiliki tingkat kompleksitas lebih rendah 10% dari model sebelumnya. Tahapan processing adalah tahapan penyediaan configurable workflow. Pengguna memasukan query model untuk mencari workflow yang diinginkan. Dengan menggunakan metode similarity filtering, didapatkan common dan/atau sub variant yang memungkinkan. Pengguna dapat menggunakan common workflow melalui workflow designer untuk melakukan rekomposisi ulang. Penyediaan configurable workflow oleh ERP mencapai tingkat 100% dimana apapun yang diinginkan pengguna dapat disediakaan workflownya oleh ERP, ataupun sebagai dasar membentuk workflow yang lain. Berdasarkan hasil percobaan, tempat penyimpanan workflow dapat dibangun dengan arsitektur yang diajukan dan mampu menyimpan dan menyediakan workflow. Tempat penyimpanan ERP mampu mendeteksi workflow yang bersifat common dan sub variant. Tempat penyimpanan ERP mampu menyediakan configurable workflow, dimana pengguna dapat memanfaatkan common dan sub variant workflow untuk menjadi dasar mengkomposisi workflow yang lain. =================================================================================================== Workflow in ERP which covered big domain faced duplication issues. Scope of this research was developing workflow from business process ERP which could be used for required workflow as user needs. Proposed approach consisted of 2 stages preprocessing and processing. Preprocessing stages aimed for finding common and variant of sub workflow based on existing workflow variant. The workflow variants that were stored by user were procured to pay workflow. The workflows was filtered by similarity filtering method then merged for identifying the common and variant of sub workflow. The common and sub variant workflow were stored using metadata that mapped into relational database. The common and variant of sub workflow detection achieved 92% accuracy. The common workflow consisted of 3- the common workflow from 8-variant workflow. The common workflow has 10% lesser complexity than its predecessor. Processing was providing configurable workflow. User inputted query model to find required workflow. Utilizing similarity filtering, possible the common and variant of sub workflow was collected. User used the common workflow through workflow designer to recompose. Providing configurable workflow ERP achieved 100%, where any user need would be provided by ERP, as workflow or as based template for creating other. Based on evaluation, repository was built based on proposed architecture and was able to store or provide workflow. Repository detected workflow whether common or variant of sub workflow. Repository ERP was able to provide configurable ERP, where user utilized common and variant of sub workflow as based for creating one of their need

    Using Semantic Web Services for AI-Based Research in Industry 4.0

    Full text link
    The transition to Industry 4.0 requires smart manufacturing systems that are easily configurable and provide a high level of flexibility during manufacturing in order to achieve mass customization or to support cloud manufacturing. To realize this, Cyber-Physical Systems (CPSs) combined with Artificial Intelligence (AI) methods find their way into manufacturing shop floors. For using AI methods in the context of Industry 4.0, semantic web services are indispensable to provide a reasonable abstraction of the underlying manufacturing capabilities. In this paper, we present semantic web services for AI-based research in Industry 4.0. Therefore, we developed more than 300 semantic web services for a physical simulation factory based on Web Ontology Language for Web Services (OWL-S) and Web Service Modeling Ontology (WSMO) and linked them to an already existing domain ontology for intelligent manufacturing control. Suitable for the requirements of CPS environments, our pre- and postconditions are verified in near real-time by invoking other semantic web services in contrast to complex reasoning within the knowledge base. Finally, we evaluate our implementation by executing a cyber-physical workflow composed of semantic web services using a workflow management system.Comment: Submitted to ISWC 202

    What is the innovation beyond the 'state of the art' in e-learning?

    Get PDF
    Original article can be found at: www.herts.ac.uk/blip Copyright University of HertfordshireThe motivation for this discussion paper comes from the recent FP7 framework ICT call for technology-enhanced learning applications for the 21st century that go beyond the current “state of the art” in e-learning. In this paper the question of the innovation be-yond the “state of the art” in e-learning is considered along with identification and dis-cussion of some of its defining characteristics in the context of higher education. A re-view and analysis of innovative learning applications and models is presented, with a specific focus on learning environments, and learning interactions. The University of Hertfordshire is used to provide an example of a “state of the art” University regarding the adoption of e-learning applications and methods in day-to-day learning and teaching practice. It is suggested that innovative and “beyond the state of art” e-learning models, tools and applications will be required to support high degrees of personalization and collaboration.Peer reviewe

    A STUDY ON SUSTAINABLE BUILDING DEVELOPMENT IN THE CONTEXT OF TRANSITION FROM CONSTRUCTION 4.0 TOWARDS 5.0

    Get PDF
    The aim of this study is to to analyse the theoretical framework of Industry 4.0 and Industry 5.0 and their implications for the construction industry, as well as explaining their possible effects, by using an empirical research based on the existing scientific literature. Industry 4.0 is an under-researched area in the construction industry, even though this field has a high benefit for the parties involved. Industry 5.0, on the other hand, stands for direct cooperation between robots or intelligent machines and humans. According to the ideas of the European Commission, Industry 5.0 consists of a triad: human orientation, sustainability and resilience. Since this paper represents an outcome of an early PHD research, the methodology chosen was examining other similar research in the literature of Industry 4.0 and Industry 5.0 in the construction industry, new established concepts (such as Building Information Modeling, Product Lifecycle Management, sustainability)

    Towards planning and control in cognitive factories - A generic model including learning effects and knowledge transfer across system entities

    Get PDF
    Cognitive abilities allow robots to learn and reason from their environment. The gained knowledge can then be incorporated into the robot’s actions which in turn affect the environment. Therefore, a cognitive robot is no longer a static system that performs actions based on a pre-defined set of rules but a complex entity that dynamically adjusts over time. With this, challenges arise for production systems that need to observe and ideally anticipate the cognitive robot’s behavior. Often, digital twins are employed to test and optimize production control systems. This paper presents a generic approach to characterize, model and simulate learning processes and formalized knowledge in hybrid production systems assuming different station types with learning effects. Thereby, quantitative and qualitative learning processes are mapped including knowledge sharing and transfer across entities. A modular and parameterizable design enables the adjustment to different use cases. Eventually, the model is instantiated as a digital twin of a real production system for product disassembly employing cognitive-autonomous robots among human operators and rigidly automated machines. The model shows great potential to be integrated into test beds for planning and control systems of cognitive factories

    Systematic analysis of needs and requirements for the design of smart manufacturing systems in SMEs☆

    Get PDF
    Abstract With the increasing trend of the Fourth Industrial Revolution, also known as Industry 4.0 or smart manufacturing, many companies are now facing the challenge of implementing Industry 4.0 methods and technologies. This is a challenge especially for small and medium-sized enterprises, as they have neither sufficient human nor financial resources to deal with the topic sufficiently. However, since small and medium-sized enterprises form the backbone of the economy, it is particularly important to support these companies in the introduction of Industry 4.0 and to develop appropriate tools. This work is intended to fill this gap and to enhance research on Industry 4.0 for small and medium-sized enterprises by presenting an exploratory study that has been used to systematically analyze and evaluate the needs and translate them into a final list of (functional) requirements and constraints using axiomatic design as scientific approach
    • 

    corecore