1,351 research outputs found

    A Redesigned Benders Decomposition Approach for Large-Scale In-Transit Freight Consolidation Operations

    Full text link
    The growth in online shopping and third party logistics has caused a revival of interest in finding optimal solutions to the large scale in-transit freight consolidation problem. Given the shipment date, size, origin, destination, and due dates of multiple shipments distributed over space and time, the problem requires determining when to consolidate some of these shipments into one shipment at an intermediate consolidation point so as to minimize shipping costs while satisfying the due date constraints. In this paper, we develop a mixed-integer programming formulation for a multi-period freight consolidation problem that involves multiple products, suppliers, and potential consolidation points. Benders decomposition is then used to replace a large number of integer freight-consolidation variables by a small number of continuous variables that reduces the size of the problem without impacting optimality. Our results show that Benders decomposition provides a significant scale-up in the performance of the solver. We demonstrate our approach using a large-scale case with more than 27.5 million variables and 9.2 million constraints

    A linear programming based heuristic framework for min-max regret combinatorial optimization problems with interval costs

    Full text link
    This work deals with a class of problems under interval data uncertainty, namely interval robust-hard problems, composed of interval data min-max regret generalizations of classical NP-hard combinatorial problems modeled as 0-1 integer linear programming problems. These problems are more challenging than other interval data min-max regret problems, as solely computing the cost of any feasible solution requires solving an instance of an NP-hard problem. The state-of-the-art exact algorithms in the literature are based on the generation of a possibly exponential number of cuts. As each cut separation involves the resolution of an NP-hard classical optimization problem, the size of the instances that can be solved efficiently is relatively small. To smooth this issue, we present a modeling technique for interval robust-hard problems in the context of a heuristic framework. The heuristic obtains feasible solutions by exploring dual information of a linearly relaxed model associated with the classical optimization problem counterpart. Computational experiments for interval data min-max regret versions of the restricted shortest path problem and the set covering problem show that our heuristic is able to find optimal or near-optimal solutions and also improves the primal bounds obtained by a state-of-the-art exact algorithm and a 2-approximation procedure for interval data min-max regret problems

    Energy and Route Optimization of Moving Devices

    Get PDF
    This thesis highlights our efforts in energy and route optimization of moving devices. We have focused on three categories of such devices; industrial robots in a multi-robot environment, generic vehicles in a vehicle routing problem (VRP) context, automatedguided vehicles (AGVs) in a large-scale flexible manufacturing system (FMS). In the first category, the aim is to develop a non-intrusive energy optimization technique, based on a given set of paths and sequences of operations, such that the original cycle time is not exceeded. We develop an optimization procedure based on a mathematical programming model that aims to minimize the energy consumption and peak power. Our technique has several advantages. It is non-intrusive, i.e. it requires limited changes in the robot program and can be implemented easily. Moreover,it is model-free, in the sense that no particular, and perhaps secret, parameter or dynamic model is required. Furthermore, the optimization can be done offline, within seconds using a generic solver. Through careful experiments, we have shown that it is possible to reduce energy and peak-power up to about 30% and 50% respectively. The second category of moving devices comprises of generic vehicles in a VRP context. We have developed a hybrid optimization approach that integrates a distributed algorithm based on a gossip protocol with a column generation (CG) algorithm, which manages to solve the tested problems faster than the CG algorithm alone. The algorithm is developed for a VRP variation including time windows (VRPTW), which is meant to model the task of scheduling and routing of caregivers in the context of home healthcare routing and scheduling problems (HHRSPs). Moreover,the developed algorithm can easily be parallelized to further increase its efficiency. The last category deals with AGVs. The choice of AGVs was not arbitrary; by design, we decided to transfer our knowledge of energy optimization and routing algorithms to a class of moving devices in which both techniques are of interest. Initially, we improve an existing method of conflict-free AGV scheduling and routing, such that the new algorithm can manage larger problems. A heuristic version of the algorithm manages to solve the problem instances in a reasonable amount of time. Later, we develop strategies to reduce the energy consumption. The study is carried out using an AGV system installed at Volvo Cars. The results are promising; (1)the algorithm reduces performance measures such as makespan up to 50%, while reducing the total travelled distance of the vehicles about 14%, leading to an energy saving of roughly 14%, compared to the results obtained from the original traffic controller. (2) It is possible to reduce the cruise velocities such that more energy is saved, up to 20%, while the new makespan remains better than the original one

    Analysis of a Parallel Machine Scheduling Problem with Sequence Dependent Setup Times and Job Availability Intervals

    Get PDF
    In this study, we propose constraint programming (CP) model and logic-based Benders algorithms in order to make the best decisions for scheduling non-identical jobs with availability intervals and sequence dependent setup times on unrelated parallel machines in a fixed planning horizon. In this problem, each job has a profit, cost and must be assigned to at most one machine in such a way that total profit is maximized. In addition, the total cost has to be less than or equal to a budget level. Computational tests are performed on a real-life case study prepared in collaboration with the U.S. Army Corps of Engineers (USACE). Our initial investigations show that the pure CP model is very efficient in obtaining good quality feasible solutions but, fails to report the optimal solution for the majority of the problem instances. On the other hand, the two logic-based Benders decomposition algorithms are able to obtain near optimal solutions for 86 instances out of 90 examinees. For the remaining instances, they provide a feasible solution. Further investigations show the high quality of the solutions obtained by the pure CP model

    Finite domain constraint programming systems

    Get PDF
    Tutorial at CP'2002, Principles and Practice of Constraint Programming. Powerpoint slides.</p

    Attributes of Big Data Analytics for Data-Driven Decision Making in Cyber-Physical Power Systems

    Get PDF
    Big data analytics is a virtually new term in power system terminology. This concept delves into the way a massive volume of data is acquired, processed, analyzed to extract insight from available data. In particular, big data analytics alludes to applications of artificial intelligence, machine learning techniques, data mining techniques, time-series forecasting methods. Decision-makers in power systems have been long plagued by incapability and weakness of classical methods in dealing with large-scale real practical cases due to the existence of thousands or millions of variables, being time-consuming, the requirement of a high computation burden, divergence of results, unjustifiable errors, and poor accuracy of the model. Big data analytics is an ongoing topic, which pinpoints how to extract insights from these large data sets. The extant article has enumerated the applications of big data analytics in future power systems through several layers from grid-scale to local-scale. Big data analytics has many applications in the areas of smart grid implementation, electricity markets, execution of collaborative operation schemes, enhancement of microgrid operation autonomy, management of electric vehicle operations in smart grids, active distribution network control, district hub system management, multi-agent energy systems, electricity theft detection, stability and security assessment by PMUs, and better exploitation of renewable energy sources. The employment of big data analytics entails some prerequisites, such as the proliferation of IoT-enabled devices, easily-accessible cloud space, blockchain, etc. This paper has comprehensively conducted an extensive review of the applications of big data analytics along with the prevailing challenges and solutions
    • …
    corecore