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Abstract
This thesis highlights our efforts in energy and route optimization of moving devices.
We have focused on three categories of such devices; industrial robots in a multi-robot
environment, generic vehicles in a vehicle routing problem (VRP) context, automated
guided vehicles (AGVs) in a large-scale flexible manufacturing system (FMS).

In the first category, the aim is to develop a non-intrusive energy optimization
technique, based on a given set of paths and sequences of operations, such that the
original cycle time is not exceeded. We develop an optimization procedure based on a
mathematical programming model that aims to minimize the energy consumption and
peak power. Our technique has several advantages. It is non-intrusive, i.e. it requires
limited changes in the robot program and can be implemented easily. Moreover,
it is model-free, in the sense that no particular, and perhaps secret, parameter or
dynamic model is required. Furthermore, the optimization can be done offline, within
seconds using a generic solver. Through careful experiments, we have shown that it
is possible to reduce energy and peak-power up to about 30% and 50% respectively.

The second category of moving devices comprises of generic vehicles in a VRP
context. We have developed a hybrid optimization approach that integrates a
distributed algorithm based on a gossip protocol with a column generation (CG)
algorithm, which manages to solve the tested problems faster than the CG algorithm
alone. The algorithm is developed for a VRP variation including time windows
(VRPTW), which is meant to model the task of scheduling and routing of caregivers
in the context of home healthcare scheduling and routing problems (HHCSRP).
Moreover, the developed algorithm can easily be parallelized to further increase its
efficiency.

The last category deals with AGVs. The choice of AGVs was not arbitrary; by
design, we decided to transfer our knowledge of energy optimization and routing
algorithms to a class of moving devices in which both techniques are of interest.
Initially, we improve an existing method of conflict-free AGV scheduling and routing,
such that the new algorithm can manage larger problems. A heuristic version of the
algorithm manages to solve the problem instances in a reasonable amount of time.
Later, we develop strategies to reduce the energy consumption. The study is carried
out using an AGV system installed at Volvo Cars. The results are promising; (1)
the algorithm reduces performance measures such as makespan up to 50%, while
reducing the total traveled distance of the vehicles about 14%, leading to an energy
saving of roughly 14%, compared to the results obtained from the original traffic
controller. (2) It is possible to reduce the cruise velocities such that more energy is
saved, up to 20%, while the new makespan remains better than the original one.

Keywords: Energy optimization, routing, scheduling, industrial robots, vehicle
routing problems, automated guided vehicles.
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Part I

Introductory chapters





Chapter 1

Introduction

If you see the red traffic light ahead, you do not keep the allowed speed. Instead,
you reduce the speed hoping that you will avoid to stop. Imagine you are driving
at 40 km/h and suddenly the yellow light ahead of you turns red. Since you are
reasonably away from the junction, you probably decelerate gently, hoping the light
turns green when you reach the junction. If all goes well you will avoid a complete
stand-still, which helps to preserve the momentum and save some fuel. There is no
point in driving fast if you are to be delayed behind the light. It is just bad for the
environment. In the same way, there is no point for industrial moving devices to
move fast when some of them are going to be blocked by others and wait. The fact
is, however, that it is just so simple to program such devices to accelerate quickly to
high speeds, and then to decelerate aggressively when they should stop. In many
industries that are ever more concerned with their carbon dioxide footprint, the
common motto is still keep it simple, make it work, which results in heavy reliance
on such energy inefficient motion profiles.

Aiming for simple solutions that work manifests itself in flexible manufacturing
systems. There, the challenge is assignment and sequencing of activities on resources,
which has a combinatorial nature. The difficulty is intensified when, for example,
mobile resources are also involved, such as automated guided vehicle (AGVs). This
requires conflict-free routing and scheduling. The coordination of AGVs, with good
productivity in mind, is often a cumbersome challenge, requiring much attention and
effort. This leaves little room for more luxurious amenities, such as energy efficiency,
which on the other hand motivates us researchers to strive for improvements in
existing systems.

This thesis highlights our efforts in energy and route optimization of moving
devices. Of particular interest are (1) industrial robots in a multi-robot environment,
(2) generic vehicles in a Vehicle Routing Problem (VRP) context, and (3) Automated
Guided Vehicles (AGVs) in a large-scale Flexible Manufacturing System (FMS). The
motivation of our work is addressing problems that are of industrial need and of
academic research challenge.

3
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1.1 Background

Energy optimization of robots

The author’s work on energy optimization of industrial robots started in the winter
of 2014, within a project funded by the European Union, called Automation and
Robotics for EUropean Sustainable manufacturing (AREUS) [1]. The project’s aim
was to provide solutions to reduce the energy consumption of automotive companies.
This and similar projects indicate the concerns of manufacturing industries as primary
energy consumers about the energy cost of operating industrial robots as well as
their Carbon dioxide footprint.

Among notable examples of earlier efforts are [2], which employed velocity balanc-
ing to reduce energy consumption, and [3] that targeted total energy consumption of
robot systems, which was then followed by [4], which employed dynamic programming
to compute energy efficient trajectories to use in a high-level scheduling scheme.

To get a better picture of the energy consumption of industrial robots, note the
following examples. As reported in [5, 6], in a typical body shop, over 500 robots
assemble roughly 300 to 500 parts using a total of 3500 to 5000 spot welds before
they are dispatched to the paint shop. Furthermore, an average 200 kg payload body
shop robot consumes a yearly 8 MWh [7]. As reported in [8], in production processes,
robots consume approximately 8% of the total electrical energy consumption.

When we were working with the project AREUS, we realized that among the
body of studies, few papers addressed non-intrusive energy optimization of existing
plants, that is, without changing plant’s configuration, or affecting production rate
of the existing robots. This was one of our motivation to contribute to the field in
that sense. As a part of this doctoral thesis, in [9], we provided an effective energy
reduction technique through a simple procedure; acquiring the original trajectories
from a plant, optimizing them with respect to physical and time constraints; feeding
back the optimized trajectory. In that paper the reported energy savings were
estimations based on electric currents, internally measured by the robot. This thesis
encloses [9] as Paper 1.

Later in [10] we refined our procedures further. We employed accurate energy
measurement equipment and provided procedures to have reliable measurements and
replicable experiments, along with a number of new modifications to our optimization
model to target not only the energy consumption, but also the peak-power. One
significance of our work in [10] is that the optimization method has been evaluated
in many single and multi-robot scenarios, and on a variety of robots with different
sizes. The important characteristics of our optimization technique are simplicity of
implementation, preservation of path and cycle time, and the fact that no dynamic
model is required in the optimization. This makes our work or its variations more
likely to be adopted by the industry. In this thesis, our article [10] is enclosed as
Paper 2.
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Home healthcare routing and scheduling

Our research on the vehicle routing problem with application to home healthcare
industry started since mid 2014, and was based on the author’s article on the
application of Benders decomposition and the Gossip algorithm to heterogeneous
vehicle routing problems [11]. The work was put on hold due to the immediate need
to work within the project AREUS, and it was later resumed in the summer of 2017.
The drive for the project stemmed from the fact that the demand for home healthcare
(HHC) services has been increasing due to various reasons such as population aging
and client preferences. In Europe, for example, between 1% and 5% of the total
public health budget is spent on HHC [12].

Creating daily work schedules for caregivers is a challenging task that should
consider many complicating requirements. In many cases this is still done daily by
the staff with minimum usage of support tools. One step towards automation of
this task is developing mathematical models and algorithms. In the literature, the
home healthcare scheduling and routing problem (HHCSRP) is about finding the
best route for each caregiver, while a set of side constraints are satisfied.

It is noteworthy that the HHCSRP was first described in [13]. It can be modeled
as an extension of the classical vehicle routing problem with time windows (VRPTW)
and some extra constraints. In fact, there are many variations of the problem formu-
lation, as highlighted in a survey article [14], where the authors give a comprehensive
overview of the recent models and algorithms developed for the HHCRSP, along with
common constraints that model specifications given by HHC organizations, patients,
and caregivers.

Many of the developed solution methods for HHCSRPs are based on the techniques
for Vehicle Routing Problems (VRPs), which is a huge topic itself. See for, example, a
detailed review of formulations and exact algorithms for VRPTWs in [15]. According
to a survey [16], the best exact algorithms for VRP and VRPTW were based on
column generation (CG) algorithms, for example as in [17]. These algorithms are
based on the famous work of Desrochers et al. [18]. Apart from the exact solution
methods, there exist successful heuristics and metahuristics to handle different
variations of the VRP. In a seminal survey [19], the authors analyzed 64 heuristic
algorithms in detail, and identified concepts and main algorithmic design-principles
prevalent in successful methods as the "winning strategies". Among such strategies
are relaxation, decomposition, matheuristics (the incorporation of mathematical
programming techniques in a metaheuristic framework), presence of randomness in
search moves, and parallelization, to name a few.

As mentioned earlier, we had some experience with application of decomposition
and distributed algorithms for a variation of the VRP [11]. Our goal was to utilize
that experience and contribute to the field by synthesizing an algorithm based on
column generation and gossip algorithms.

In a preliminary publication [20], we used a general purpose MILP solver to
solve the local problems of gossip algorithm, called gossip-CPLEX, in the context
of HHCRSP. In a subsequent iteration [21], we showed the potential of turning the
gossip algorithm into an effective technique for large HHCRSPs by employing a
CG-based local solver.
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Later in [22], we extended the work, and provided extensive numerical experiments
to show the effectiveness of the column generation-based gossip algorithm. For large
problem instances, the algorithm is able to outperform the standard CG. We also
showed that the framework gives the flexibility for parallelism. Furthermore, in [23],
we utilized this and generated a parallelized version of our Gossip-CG algorithm
with promising results. These last two articles are included as Paper 3 and Paper 4.

AGV routing and scheduling

The idea of working on the scheduling and routing of AGVs was conceived as a way
to bridge our earlier works on energy optimization and vehicle routing. The work
started in the spring of 2018, after initial contact with a Swedish AGV manufacture
was made. The company is called AGV Electronics (AGVE). The research was fueled
by the increasing need for more AGV systems in flexible manufacturing systems
(FMSs), as well as the pressure for more sustainable production.

The problem of conflict-free routing and scheduling of AGVs in large-scale man-
ufacturing systems has been an ever-present challenge for many AGV companies.
Although these companies have developed rather efficient control policies and algo-
rithms, retrofitting the existing heuristic to future’s more dense, more complicated,
and more demanding AGV layouts, is not guaranteed to be easy. Furthermore, the
installed system will not necessarily be as efficient as expected. Currently, it is
common to use heuristics to allocate vehicles to orders and route them. There are
also rules of thumbs to avoid collisions and deadlocks.

However, with an increasing demand for high-performance AGV solutions, it
is of interest to employ optimization algorithms that handle the order allocation,
scheduling, and routing in a more efficient way. Other than that, very little attention
has been paid to making the AGV routing and scheduling more energy efficient, not
only in the industry but also in the research community. In this thesis, we aimed to
present an improved method to tackle the above-mentioned issues, with promising
results. We will now give a brief overview of the situation.

One major challenge in energy optimization of FMSs is the sheer size of the real
systems, which renders classical optimization methods ineffective, and leaves little
room for less immediate demands such as energy optimization. In fact, the subject has
been overshadowed by researcher’s heavy focus on developing coordination methods
for AGVs mainly targeting productivity. For example, see [24], for a review on
methods for dispatching, scheduling and routing of AGVs.

Common optimization methodologies for scheduling and routing of AGVs can
be categorized into exact and heuristic mathematical methods, simulation studies,
metaheuristic techniques and artificial intelligence (AI) based approaches, as surveyed
in [25]. From another point of view, the common optimization strategies for AGV
systems can be divided into two groups: centralized methods and decentralized ones.
In centralized methods, a single controller tackles task assignment and routing of
the vehicles, as in [26], whereas in a decentralized strategy these roles are partly
or entirely delegated to the vehicles. For example, the authors in [27] propose a
decentralized method, where first the vehicles assign tasks to themselves such that a
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global objective function is minimized, namely the total completion time. Then the
vehicles move towards their destinations using a decentralized algorithm.

Due to our interest and background in mathematical optimization and constraint
programming, in the development of our methodologies we have been mainly con-
cerned with such methods, particularly, a Benders decomposition method for AGVs
described in [26].

In [26], the authors employed a variation of Benders decomposition [28] to solve
AGV scheduling and routing problems in two stages for rather small problems. Their
approach tackled the task allocation and scheduling using a constraint programming
(CP) model with tardiness as its cost function, and the routing problem was handled
using a Mixed Integer Linear Programming model (MILP), which was basically a
Constraint Satisfaction Problem (CSP). Their proposed CSP model, however, has
difficulty scaling to large systems. Furthermore, the method is limited to AGV
layouts with special design, namely those with equidistant nodes on the tracks.

To contribute to the field, in one publication [29], we introduce several extensions
and improvements to [26] to allow solving larger problems. In [29] we test our
algorithms on a real large-scale AGV layout with hundreds of nodes and arcs, with
promising results.

As mentioned, in the field of AGVs for manufacturing systems, the literature
addressing the energy consumption is scarce, although the energy consumption of
mobile robots in general has received much larger attention, see for instance [30]
and [31]. In one of the few publications addressing the energy optimization of
AGVs [32], the authors formulate the problem as a vehicle routing problem (VRP),
combined with an energy consumption model of the AGV that takes into account
the load. However, results of such analysis cannot be readily used to control the
vehicles, mainly due to lack of regards for time and collision between vehicles.

Our other contribution to the field, regarding the energy consumption of AGVs,
is in [33], where we show that by implementing the effective scheduling and routing
algorithm developed in [29], it is possible to improve system efficiency so much that
it allows for reduction of speed to save energy while still outperforming the original
solution. An important advantage of such energy reduction method is simplicity of
its implementation in the real system, since regulating the vehicle’s speed can be
done conveniently. The method leads to significant improvements in key performance
measures such as makespan, as well as energy optimization. Both of our contributions
have been developed using a real FMS, namely a plant at Volvo Cars, and are enclosed
in this thesis as Paper 5 and Paper 6.

1.2 Research approach
Depending on the problem at hand, we have adopted slightly different research
approaches. First, we start with the commonalities between the methods. A
literature survey is the initial step to identify articles with most relevant and promising
methodologies. At this step, we also assess how easily the potential methodologies
can be extended to capture the nature of our problem.
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The next stage is often developing an optimization model of the problem, which
may be carried out for example through Mathematical Programming or Constraint
Programming, as described in Chapter 2. It is often the case that some features
of the problem are not captured in this stage, either purposefully, to start with
something simpler, or unintentionally, due to lack of enough knowledge of the system
at hand. In the latter case, sometimes this knowledge is obtained in next stages,
which is then added to the model, for example, as a constraint.

The next crucial step is developing algorithms to solve the optimization model.
It is desirable, but not always attainable, to solve the models directly using general-
purpose solver in a reasonable amount of time. If this can be achieved, as in the
case of the robot energy optimization problem in Chapter 3, we may continue with
the next step. Otherwise, we should resort to more specialized approaches, such as
decompositional algorithms.

The next step, depending on the nature of the problem, is to design case studies.
Here, the interpretation of a case study is an analysis performed on a micro level. For
example, it could be a special instance of the problem designed to demonstrate the
performance of the algorithm or the model itself, or a standard benchmark instance.
If the problem involves practical experimentation and measurements, the experiments
are designed at this stage.

The difference between our methods emerges at this level. If the problem
leans towards the theoretical side, as in the case of routing problems in Chapter 4,
extensive numerical experiments are carried out over benchmark problems, to assess
the effectiveness of the algorithms. However, if the aim is to assess the performance
of the methodology for a particular industrial setup, then a few practical tests are
performed, as in the case of the robot energy optimization problem in Chapter 3.
Sometimes, tests may involve simulations and use of energy models, if it is challenging
to perform them on the actual environment, as in the case of the AGV routing and
scheduling problem in Chapter 5.

1.3 Research questions
One way of formulating a research question is by synthesizing an industrial need
together with a academic research challenge. Following this recipe, and given the
industrial needs and research challenges expressed earlier, the following research
questions are defined.

RQ1 : How can robot’s energy consumption be reduced in a non-intrusive way, while
preserving original path and cycle time?

RQ2 : In what ways can energy and peak-power for multi-robot cell be reduced?

RQ3 : In the context of routing of moving devices, how can a known efficient algorithm
be integrated with a metaheuristic to solve larger problems?

RQ4 : How can the performance of the integrated optimization approach developed
in response to RQ3 be improved by better utilization of existing hardware?
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RQ5 : How can conflict-free routing and scheduling of moving devices be addressed
using general-purpose solvers for large-scale problems?

RQ6 : How can the energy saving methodology developed in response to RQ1-RQ2 be
reused in the context of large-scale routing and scheduling of moving devices?

1.4 Main contributions

This thesis contributes by providing answers to the research questions posed earlier.
In particular, Paper 1 addresses RQ1. Furthermore, RQ2 is covered in Paper 2. In
Paper 3 the research question RQ4 is treated, while Paper 4 deals with RQ5. Finally,
RQ6 and RQ7 are dealt with in Paper 5 and Paper 6, respectively.

More specifically, in Paper 1, an optimization model is proposed that aims to
minimize energy consumption of industrial robots with promising results, without
requiring secret robot parameters. Later in Paper 2, we extend and consolidate the
results of the first paper and provide extensive test results to validate our method. We
presented different cost functions to minimize energy consumption and peak-power.
We showed that our method reduced up to 30% of energy consumption and up to
60% of peak-power. One significance of this work was that the optimization method
was evaluated in a wealth of single and multi-robot scenarios, and on a variety of
robots. The important characteristics of our optimization technique are simplicity of
implementation, preservation of path and cycle time, and the fact that no dynamic
model is required in the optimization.

In Paper 3, we combined a well known algorithm for routing problems with a
metaheuristic and showed that it could perform better than the first algorithm alone.
The metaheuristic is suitable for parallelization, and that is what we achieved in
Paper 4.

In Paper 5, we proposed a new heuristic as well as several improvements to
an existing approach based on Benders decomposition for solving the conflict free
scheduling and routing of automated guided vehicles (AGVs), with promising results.
One key feature of our work was that it used data from a real large-scale FMS.

Later in Paper 6, the mathematical model proposed in Paper 5 is extended with
additional side constraints to take into account the requirements of the real FMS
that we studied. Moreover, we provided a low-level energy consumption analysis
of the AGVs and demonstrated that the cruise velocity of the AGVs is the crucial
parameter in energy consumption. We also demonstrated the effectiveness of our
optimization method on the mentioned FMS. By using our optimization method, the
makespan can be reduced up to 40%, while reducing energy consumption by 14%.
Finally, we employed the idea of slowing down the vehicles, and we showed that by
using our method, it is possible to reduce the energy consumption by around 38%,
while key performance indexes such as makespan, lateness, and tardiness remain
better than those obtained from the existing traffic controller developed by the AGV
manufacturer.
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1.5 Outline
This thesis consists of two parts. Part I is a general introduction to the field and
puts the appended papers into context. Part II contains the appended papers. The
first chapters, Chapter 1 and Chapter 2, give the background and preliminaries
required to comprehend the contributions of the thesis. Particularly, mathematical
programming and constraint programming and their mutual relationship are discussed
in Chapter 2. Moreover, the employed optimization algorithms are reviewed, most
notably the decompositional and heuristic methods. In Chapter 3, 4 and 5 the
main three problems addressed in the research and the pertaining algorithms are
presented, namely the energy optimization of robots, vehicle routing and scheduling,
and energy efficient AGV routing and scheduling. Each of these chapters also
includes a description of our proposed methods for tackling each problem. Chapter 6
summarizes the appended papers and links them to the research questions defined
earlier. Finally, the thesis is concluded by our final remarks in Chapter 7, including
some proposals for future work.



Chapter 2

Preliminaries

In this chapter, we give a basic overview of the tools we used to build the models
of the problems tackled in this thesis. In particular, mathematical programming,
constraint programming, and satisfiability modulo theories are presented. First, for
mathematical programming, the special cases of linear programming (LP), mixed
integer linear programming (MILP) and nonlinear programming (NLP) are reviewed.
Then, constraint programming (CP), which is another paradigm for modeling and
solving optimization problems follows. Finally, satisfiability modulo theorem (SMT),
which is a more general framework for modeling and solving satisfiability and
optimization problems, will be reviewed.

2.1 Basic Concepts
This section aims to provide the reader with the theoretical background on some of
the optimization algorithms we have used in this thesis. We begin by introducing
basic concepts in the context of constraint-directed search methods. An example
of this is the Benders decomposition method that will be described in Chapter 4.
Next, nogoods, as a key component of these algorithms are studied. In short, nogood
is a constraint that is generated to forbid the exploration of an already explored
part of the search space in an optimization problem. Inference duality, as a tool
for generating nogood constraints, will also be briefly introduced. However, in this
thesis, we limit ourselves to simple nogoods, which do not rely on inference duality.
It is noteworthy that most of our exposition in this chapter is based on the book by
John N. Hooker [34].

Consider the following minimization problem

min f(x)
S
x ∈ D

(2.1)

where f(x) is a real-valued objective function, S is the set of constraints, x is a tuple
(x1, ..., xn), and the domain of x is D. A solution to the problem is any x ∈ D, and it
is called a feasible solution if it satisfies all constraints in S, otherwise it is infeasible.

11
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The set of all feasible solutions of the problem is called the feasible set. If there is
no feasible solution to a problem, the problem itself is called infeasible. An optimal
solution is denoted by x∗ and is the one for which f(x∗) ≤ f(x) for all feasible x. If
a problem is infeasible, it is the convention to let its optimal value be ∞ (or −∞
for a maximization problem). If none of the feasible values of x can provide a lower
bound for f(x), the problem is unbounded and the optimal value of f(x) is −∞ (or
+∞ for a maximization problem). The problem is pronounced solved either when the
optimal solution is found, or it is proved to be infeasible, or unbounded. To solve an
optimization problem, three processes called search, inference and relaxation work
together, forming the components of the optimization scheme. Next, we will study
these components.

Search When the police is looking for a fugitive, to facilitate the operation,
they normally divide the region into a few sectors by imposing boundaries and setting
up perimeters, and then search each sector for the felon. Likewise, to facilitate solving
an optimization problem, it can be divided into a series of problem restrictions by
adding constraints to the original problem P . Then, search is conducted by solving
each problem restriction denoted by P1, P2, ..., Pm. These restrictions are exhaustive
if the union of their feasible sets is equal to the feasible set of the original problem.
Hence, searching an exhaustive set of restrictions leads to an exhaustive search.
Therefore, to find the global optimal solution, optimal solutions of all restrictions
are recorded and the best one will be picked. In contrast to the exhaustive search
methods, there are incomplete search methods in which the problem restrictions may
not be solved to optimality.

One basic search method is to define problem restrictions by fixing x to the
values in D, and enumerate all possible combinations and check them against the
constraints in S. Since it can be done only for very simple problems, in practice, more
sophisticated methods are employed to define and process the problem restrictions.
Branching and constraint-directed search techniques are among those methods, and
we will discuss the latter shortly.

Inference Inference is a fundamental concept in optimization theory that has
close ties with search. By inference we mean inferring and deducing new constraints
by examining the constraints in each problem restriction, in other words, making
implicit constraints explicit. The new constraints can help speed up the search by
ruling out some parts of the search space yielding no better or infeasible solutions.
Search and inference interact by enumerating solutions and deducing new constraints.
This mutual relationship can be formalized as inference duality. Inference duality
is a general concept that has important special cases such as linear programming
duality, and Lagrangian duality. However, in this thesis, we do not deal with deriving
nogoods using inference duality.

Relaxation When a problem (or problem restriction) is difficult to solve,
relaxation techniques can be used. Relaxation works by removing some of the
complicating constraints or by replacing the objective function with a lower bound.
Dropping the constraints could lead to a larger feasible set, which in turn, may lead to
a better optimal solution. Therefore, relaxing a minimization (maximization) problem
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always leads to a better or unchanged objective function value that is considered as
a lower bound (upper bound) to the main problem (or problem restriction). One
common example is continuous relaxation of integer variables in a mixed-integer
linear programming (MILP) problem, where discrete variable domains are replaced
by continuous ones. Another example could be the nogoods in constraint directed
search methods. This will be further explained in the end of this chapter, and in
Chapter 4, where we will review the Benders decomposition.

2.2 Mathematical programming
In this section we describe the notion of mathematical programming and its different
variations, namely Linear Programming (LP), Mixed Integer Linear Programming
(MILP), and Nonlinear Programming (NLP). LP is a mathematical method that
aims to optimize the outcome of a mathematical model of requirements, expressed
as linear relationships. The usage of the term programming in this context has been
a source of confusion due to its reminiscence of the term computer programming.

In general, mathematical programming is about programming in the sense of
planning, hence it does not have to do with computers [35]. Yet, mathematical
programming models, or mathematical programs, are frequently coded using computer
programming languages and solved by respective algorithms. The solutions give the
so-called plans. There is indeed a historical reason for the nomenclature.

George Dantzig, the developer of the simplex algorithm for solving LPs, dealt with
research problems posed by the United States Defense Department in the post-World
War II era. The problems were about planning activities for future conflicts. Hence,
the term program, which was previously used to describe a plan of activities, became
associated with the certain class of mathematical problems in the operations research
(OR) literature [36].

Linear programming (LP) An LP problem is the one whose constraints
and objective function are linear. An LP minimization problem can be written as

min z =
n∑
j=1

cjxj

s.t.
n∑
j=1

aijxj ≥ bi, i = 1, . . . ,m

xj ≥ 0, j = 1, . . . , n

where cj is objective function coefficient for xj, aij is the constraint coefficient
for variable xj in constraint i, and bi is the right-hand side coefficient in constraint i.
The space defined by the set of constraints is called the feasible region. A solution to
the problem always lies either inside or on a border of the feasible region.

The same problem can also be written in matrix form as
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min z = cTx

s.t. Ax ≥ b

x ≥ 0

where A is the matrix of constraint coefficients for the column vector of variables x,
C is the row vector of objective function coefficients, and b is the column vector of
right-hand side constraint coefficients.

There are efficient algorithms for LP problems, such as the famous simplex algo-
rithm designed by George Dantzig. The simplex algorithm has an exponential-time
worst-case complexity, but in practice, it is usually polynomial-time [37]. Although
many LP problems can be efficiently solved by the simplex algorithm, many practical
problems result in very large models including many variables and constraints, which
become intractable. For some problems with special structure, there exist decom-
position algorithms that solve several smaller easier problems, instead of one large
problems. An example of such algorithms is Dantzig-Wolfe decomposition for LP
problems [38]. An extension of this method is the column generation method [39],
which will be discussed in Chapter 4 as it is used in Paper 3.

Nonlinear programming (NLP) A constrained NLP can be formulated as

min f(x)
s.t. gi(x) ≥ bi, i = 1, . . . ,m

where f(x) and gi(x) are nonlinear functions over the vector of variables x.
There are many algorithms for solving constraint NLPs such as penalty function

(exterior point) and barrier function (interior point) methods. In penalty function
methods, the problem is reformulated as an unconstrained optimization problem.
The reformulation is carried out by integrating a penalty term using the constraint
to the objective function. The role of the penalty term is to measure and penalize
the distance from an infeasible point to the feasible region defined by the constraint
set. This penalty term is called the penalty function. Then, starting from a possibly
infeasible solution, a series of unconstrained optimization problems are solved and
the subsequent infeasible solutions are penalized until the distance from the feasible
region becomes very small. That is, the feasible and optimal point is found. Such a
search algorithm is also called an exterior method.

Alternatively, instead of penalizing infeasible solutions, one may penalize the
deviation from the border of the feasible region. That is, instead of generating a
series of infeasible points that lead to a feasible optimal solution, one may generate
a series of feasible points (interior points) that lead to the optimal solution. Such a
function that makes it more expensive to get close the border of the feasible region
is called a barrier function, and the subsequent search algorithm is a called a barrier
function or interior point method.

One of the most famous software packages that implements the interior point
method is the ipopt solver [40]. We used it to solve our NLP model of the energy
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optimization problem presented in Paper 1 and Paper 2. An important remark about
using this solver is that, supplying the solver with a nontrivial feasible solution can
drastically improve its performance and reduce the solution time. As discussed in
the above-mentioned papers, to solve our robot energy optimization model, we used
the physical solution generated by the robot controller as the initial solution. This
enabled us to solve large and difficult NLPs within seconds.

Mixed integer linear programming (MILP) A general integer linear pro-
gramming (ILP) problem with n variables and m constraints can be formulated
as

min z =
n∑
j=1

cjxj

s.t.
n∑
j=1

aijxj ≤ bi, i = 1, . . . ,m

xj ≥ 0, integer, j = 1, . . . , n

where the objective function and constraints are linear functions. In this case, all
variables are integer-valued. Hence, the problem is a pure integer linear programming
(ILP) problem. However, if some of the variables are real-valued, while the others
are integer-valued, the problem is called a mixed integer linear programming (MILP)
problem.

If the integrality requirement over the integer variables is removed, the model
reduces to an LP model. This new model is called an LP relaxation, for which
efficient algorithms such as simplex exist. An LP relaxation has a solution that is
equally good or better than the solution to the original MILP problem. The solution,
however, is not necessarily integral. Thus, LP relaxation needs to be combined
with a technique called branching. In branching, variables with fractional values are
systematically forced to take either the rounded up or rounded down values that
form different branches that will be solved as new LPs.

For example, if a relaxation leads to the solution x∗1 = 5.2, then two branches
are created. In the first branch, the LP is resolved with a new constraint x1 ≤ 5,
while the second branch is resolved with x1 ≥ 6. Let us denote the best integer
solution found at any point as the incumbent. The mentioned process is repeated
until an integer solution is obtained that is better than the incumbent. It may also
be possible to reason that the current branch will not lead to a better integer solution.
One way to check that is if the LP relaxation in the current branch has a worse
solution than the incumbent solution. In this case, that branch is pruned, i.e. it will
not be explored any further. This combination of relaxation and branching is called
branch and bound.

MILP and ILP models are useful in applications where decisions need to be made.
For example, if sequence of operations or assignment of tasks to machines are to
be determined, such models can capture the intended behavior. Among notable
examples of integer programming problems are traveling salesman problems (TSPs),
and vehicle routing problems (VRPs), which come in many forms and extensions. A
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VRP can be regarded as an extension of a TSP. Next, we will describe a TSP with
an example, and later in Chapter 4, we will explain a VRP model. In this thesis,
Paper 3 and Paper 4 deal with a variation of VRP.

Traveling salesman problem (TSP) TSP is one of the most famous com-
binatorial optimization problems. This problem is easy to express, difficult to solve,
and prominent in theory and application. We begin by a general definition and
formulation of the problem, and then continue with some notes on its complexity
and solution procedures. The problem is stated as follows.

A traveling salesman has to visit n cities. Each city is to be visited exactly once.
The salesman has to determine a tour that starts in his home town, visits all cities,
and returns to the home town. The aim is to minimize the total tour distance.

A TSP can be modeled as a graph. A graph G = (V , E) is defined by a set of
vertices (nodes) V = {v1, v2, v3, ...}, a set of edges (arcs) E = {e1, e2, e3, ...}, and a
relation between them. Now, consider an example with V = {0, 1, 2, 3, 4, 5}, and
E = {e1, e2, e3, e4, e5, e6}. In Figure 2.1 a TSP with the starting node 0 and 5 nodes
to visit, together with two of the possible tours are depicted. The left figure shows
the optimal tour.
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Figure 2.1: An example of a TSP with two possible tours. The left one is the
optimal solution.

In an asymmetric TSP, the cost of going from one node to another is different
in opposite directions. Therefore, between each pair of nodes, two edges and their
corresponding costs are considered. To model an asymmetric TSP, binary variables
are introduced as follow:

yij =
{

1, if the edge between the nodes i and j is selected, i ∈ V , j ∈ V
0, otherwise

Additionally, the cost for edge yij is denoted by cij , where cij does not need to be the
same as cji . For example, in Figure 2.2 (center) the (optimal) solution y∗ij is indicated
by y01 = y12 = y23 = y34 = y45 = y50 = 1, and the rest of the variables are zero. The
optimal solution can alternatively be stated as y05 = y54 = y43 = y32 = y21 = y10 = 1,
where the tour is taken counter-clockwisely. All possible directed edges, the clockwise
tour, and the counter-clockwise tour are shown from left to right in Figure 2.2.

The asymmetric TSP can then be formulated as follows.
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Figure 2.2: From left to right: All possible directed edges, the clockwise, and the
counter clockwise TSP tours

min z =
∑
i∈V

∑
j∈V

cijyij (2.2)

s.t.
∑
j∈V

yij = 1 ∀i ∈ V (2.3)
∑
i∈V

yij = 1 ∀j ∈ V (2.4)∑
i∈S

∑
j /∈S

yij ≥ 1 S ⊂ V , 2 ≤ |S| ≤ |V| − 2 (2.5)

yij ∈ {0, 1} ∀i ∈ V ,∀j ∈ V (2.6)

The objective function (2.2) minimizes the cost of the tour. Constraints (2.3)
and (2.4) are degree constraints. That is, they ensure that every node is left exactly
once, and is entered exactly once respectively. Constraint set (2.5) is called the
sub-tour elimination constraint (SEC), and its role is to forbid sub-tours, i.e. the
tours that only connect a subset of nodes. In other words, SECs eliminate non-
Hamiltonian tours. Figure 2.3 compares a Hamiltonian cycle satisfying all TSP
constraints, with sub-tours that only satisfy constraints (2.3) and (2.4). Finally,
constraint (2.6) impose binary conditions on the variables.
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Figure 2.3: Left: a Hamiltonian cycle. Right: a non-Hamiltonian cycle with two
sub-tours

Let us examine SECs in more detail. SECs can be formulated in a number of
ways, and each formulation has its own interpretation (see more on SECs for TSP
in [41]). The formulation we have used here, i.e. (2.5) means that there must be at
least one edge going out from the subset S to the nodes outside. Consider Figure 2.3
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(right); we will show how SECs will remove the sub-tours. Suppose that for the
node set V = {0, 1, 2, 3, 4, 5} we choose the following subsets: S = {0, 1, 2, 5} and
S̄ = V \ S = {3, 4}. Then, using (2.5), the SECs particular to S will be:

y03 + y04 + y13 + y14 + y23 + y24 + y53 + y54 ≥ 1

This constraint means that there should be at least one edge from S towards S̄, as
shown in Figure 2.4 (left). Suppose that we choose the edge going from node 2 to
node 3 (e23). The existence of such an edge means that in node 2 there is more
than one outgoing edge, i.e. (2.3) is violated, and in node 3 there is more than one
incoming edge, that is (2.4) is violated. To remedy this, e25 and e43 are removed as
in Figure 2.4 (middle), and e23 is added. Now (2.3) is violated in node 4 (no outgoing
edge), and (2.4) is violated in node 5 (no incoming edge). Hence, adding edge e45
will satisfy these constraints and results in a Hamiltonian cycle as in Figure 2.4
(right). One final note about SECs is that sub-tours over one node (and hence over
|V| − 2 nodes) cannot happen, due to the degree constraints, that is (2.3) and (2.4).
Therefore, SECs are only valid for 2 ≤ |S| ≤ |V| − 2.
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Figure 2.4: Removing the sub-tours using the SEC constraints

For a TSP with n nodes (|V| = n), the introduced ILP model includes n(n− 1)
binary variables, 2n degree constraints, and 2n − 2n− 2 SECs. As any other ILP,
one natural solution method seems to be a branch and bound algorithm. However,
due to the large number of SECs, even for a not so large problem, including all
these constraints in a simple branch and bound method quickly becomes intractable.
Hence, some specialized algorithms have been developed that first find a lower bound
by relaxing SECs, and then methodically include those constraints. In addition
to relaxation-based methods that yield exact solutions, for larger problems many
different heuristic methods have been developed. Laporte in [42] provides an extensive
review of exact and heuristic methods for TSP.

2.3 Constraint programming
Constraint programming (CP) framework is a programming paradigm originating
from the computer science and artificial intelligence communities, which aims to
solve combinatorial optimization problems. We mentioned in Section 2.2 that the
term programming in mathematical programming used by the operations research
community has a historical reference to activity planning. However, its usage by the
CP community does indeed refer to computer programming [36].
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CP can be viewed as a two-level architecture that involves two components;
constraints, and programming. The constraint component, also known as constraint
store, includes variables that enables users to construct constraints over them. The
variables represent memory cells in a computer. The second level is about writing
a computer program that manipulates the variables such that the constraints are
satisfied. Therefore, a constraint program is a computer program designed to solve
a problem, and not just a statement of the problem, and constraint programming
is therefore a computer programming technique. This is contrast with what a
mathematical program and mathematical programming represent [36].

A CP framework, as a programming technique, provides a rich declarative
language for stating problems (the constraint component). It is combined with a
programming language (programming component) that allows implementation of
an algorithm to solve the problem in a procedural way. Hence, CP is an alternative
to mathematical programming, and especially to integer programming, for solving
combinatorial problems. These problems may either call for finding a feasible solution,
or the optimal solution. The former can be regarded as a Constraint Satisfaction
Problem (CSP), while the latter is regarded as Constraint Optimization Problem
(COP). Next, we will formally define these problems.

Constraint satisfaction problem Consider a finite set of decision variables
X = {x1, . . . , xn}, together with respective domains D = {D1, . . . , Dn}, where Di

that is the set of possible values of xi. In general, there is no restriction on the type
of the legal values in Di, i.e. the variable can be of type integer, real, etc.

A constraint Ci, from the constraint set C = {C1, . . . , Cj}, is a relation Ri

defined on a subset of variables Si = {xi1 , . . . , xir}, Si ⊆ X. The relation Ri gives
the simultaneous legal value assignment to the corresponding variables, which is a
subset of the Cartesian product Di1×, . . . ,×Dir .

Instantiation of a variable means that it is assigned a value from its domain.
Likewise, an instantiation of Si is a tuple ā = (ai1 , . . . , air). An instantiation or tuple
ā satisfies a constraint Ci, iff ā ∈ Ci. That is, iff the instantiation is defined over all
the variables in Si and the components of ā exist in Ri.

A constraint satisfaction problem (CSP), is therefore defined as a finite set of
variables X with respective domains D, together with a finite set of constraints C,
each of which is defined on a subset of X. Hence, a CSP can be viewed as a triple
(X,D,C). If there exists a tuple ā that satisfies every constraint in C, it is called a
solution to the CSP. In this case the CSP is consistent, which is the equivalent term
for feasible in the operations research community. If no solution exists, the CSP
is deemed inconsistent (infeasible). The definitions given above are mostly based
on [43] and [44].

Solving CSPs Consider a CSP with a set of constraints including x+ y = 3,
where the domain of the variables is the set of natural numbers. One way is to
enumerate all possible value assignments using a backtracking search scheme, until a
solution is found. Backtracking search for CSPs extends a partial instantiation. This
has exponential complexity in the best case. One may also observe that (x, y) = (1, 1)
is an illegal assignment, the domain of both variables can be reduced, leading to a
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smaller search space. This did not even require checking other constraints. Moreover,
one may deduce two additional constraints x ≤ 2, y ≤ 2 from the original one and
propagate this information, therefore removing another part of the search space.
Detecting inconsistent instantiations as early as possible or even during the search
saves a lot of time, if it is done efficiently.

Domain reduction can be achieved by filtering algorithms that aim to detect illegal
value assignments. These algorithms seek to achieve various levels of consistency,
for example arc consistency, or path consistency. Arc consistency means inferring
constraints based on a pair of variables, while path consistency extends the arc
consistency to constraints including three variables. Arc consistency can be full, or
partial, depending on if all illegal assignment to pairs of variables are removed. There
is a trade-off between the effort spent on pre-processing using different consistency
levels and that spend on the resulting search tree. The same is true about the
level of consistency aimed for during search. It is often practice to aim for partial
consistency. Algorithms that achieve a bounded amount of inference are called local
consistency-enforcing, bounded consistency inference, or more commonly, constraint
propagation algorithms [43]. Efficient propagation algorithms have been developed
for certain constraint structures, called global constraints, with recurring patterns in
different problems.

Global constraints A global constraint states the relationship between a non-
fixed number of variables [45, Chapter 7]. Perhaps the most famous global constraint
is alldifferent(x1, . . . , xn), which states that the values assigned to the variables
must be pairwise distinct, i.e.

alldifferent(x1, . . . , xn) = {(d1, . . . , dn)|∀i di ∈ D(xi),∀i 6= j, di 6= dj}.

Although the same relationship can be written using the conjunction of several
simpler constraints, due to several reasons it is recommended to use global constraint
where possible [46, Chapter 1]. One benefit is that global constraints reduce the
burden of modeling and lead to a more readable and compact program which is
easier to debug. This is because the syntax of a global constraint is shorthand
for a frequently recurring pattern. Moreover, global constraints capture certain
substructures in the problem for which efficient filtering algorithms exist. Another
reason is that, in an integrated optimization scheme where CP and OR methods
are used together, global constraints defined over integer variables maybe relaxed to
linear programming formulations, leading to more efficiency [46, Chapter 5].

Constraint optimization problem A Constraint Optimization Problem
(COP) is a CSP together with an objective function that seeks to minimize or
maximize a certain performance measure. The objective function can be defined as
g : D1×, . . . ,×Dn → R, so that at any solution of the CSP, the function g(x1, . . . , xn)
can be evaluated. For a minimization (maximization) problem, the solution(s) with
the smallest (largest) value of the objective function is deemed optimal. The ob-
jective function can be written as the sum of a series of real-valued components,
each involving only subsets of the variables, in which case the objective function is
referred to as global objective function.
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CSP/COP: a small example Consider a CSP (X,D,C) where

X = {x, y, z, u},
D = {x ∈ N , y ∈ N , z ∈ N , u ∈ N},
C = {x3 + y3 + z3 + u3 = 100, x < u, x+ y = z}

with N being the set of natural numbers. The instantiation ā = (1, 2, 3, 4) satisfies
all the constraints and is therefore a solution to the CSP [44]. The solution ā is
also the optimal solution to the COP defined over the same CSP with the objective
function g(x) = x that is to be minimized.

Solving COPs There are several approaches to solve constraint optimization
problems. One can always find a solution to a COP by solving a series of CSPs.
Such a reduction allows for using all constraint processing techniques available to
CSPs. A simple alternative approach is to extend the backtracking search algorithm
such that it does not halt after finding the first solution, but continues discovering
all solutions. This method can be accelerated by utilizing the objective function
to prune parts of the search tree. For instance, given a partial solution to Si of a
minimization problem, the component of the cost function involving Si is evaluated.
If the value is already higher than the incumbent solution, the partial solution should
be discarded and the node is pruned because the global objective function will have a
worse solution. This scheme resembles the depth-first branch and bound search that
is popular in the Operations Research (OR) community, albeit the CP community
has developed its own bounding evaluation functions to accelerate the search [43,
Chapter 13].

2.4 An overview of SAT/SMT
Since we have used the SMT solver Z3 [47], a brief overview of the SAT/SMT
technology is given. There are many similarities between satisfiability and CP,
and we attempt to draw parallels between them. Much of our disposition in this
subsection is based on [48].

In the field of formal verification, the goal is to prove the correctness of a piece
of software with respect to a given formal specification. The concept of correctness
or satisfiability is parallel to the consistency in CP and feasibility is mathematical
programming. In the context of CP, we wish to find a consistent value assignment to
the variables of a CSP, or even the best possible assignment to the variables of a COP.
In the field of satisfiability we wish to prove the correctness of a theory. A theory is
an (in)finite set of formulas, which are characterized by common grammatical rules,
the functions and predicates that are allowed, and a domain of values. Thus, formulas
can be thought of as a parallel to constraints in CP. For example, propositional logic
is a theory, and linear arithmetic based on integers is another theory. Every theory is
defined over a set of symbols. For instance, linear arithmetic is defined over symbols
such as "+" and "≥".
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To illustrate better, a formula (constraint)

(2x1 + 3x2 ≤ 4) ∨ (x1 − 2x2 ≥ 5)

with continues domain variables is an example of a linear arithmetic theory, while
the formula

x1 ∧ (x2 ∨ ¬x3)
with Boolean variables is an example of a propositional logic theory. Note that
problems with linear arithmetic constraints and with logical constraints can be solved
not only by an SMT solver, but also by traditional OR and CP method.

We mentioned that in CP, there are three main ways of solving a problem, either
through propagation, or search, which are sometimes combined together in more
sophisticated solvers. Similarly for SAT problems, there are two approaches for
formal reasoning; proof-theoretic, and model theoretic. The former is about using an
inference system, similar to inference in CP, which deduces new constraints and more
information using the existing ones. The latter is about enumeration of possible
solutions from a finite number of candidates, which is similar to search in CP. As in
CP, these two approaches can be combined. Other concepts such as assignment and
contradiction in SAT problems are parallel with instantiation and inconsistency. In
SAT problems, to check if a formula φ is satisfiable, one can also check if ¬φ is a
contradiction.

Now we define the Conjunctive Normal Form (CNF). The basic building block of
a formula is called its atoms. For example, in propositional logic, Boolean variables
are the atoms. Moreover, a literal is either an atom or its negation. A formula is
expressed in CNF if it is a conjunction of disjunctions of its literals. The importance
of CNF is that every formula with a Boolean structure can be transformed into a
CNF, which is useful for automated theorem proving.

The term Satisfiability Modulo Theories (SMT) refers to satisfiability problems
for an arbitrary theory or a combination of such theories. As mentioned earlier, an
SMT solver can solve both constraint satisfaction problems and linear programming
problems, which makes it a more general framework than either of the two with
a richer constraint language. SMT solvers that are based on SAT offer a richer
language than just propositional logic. It should be noted that, there is no clear
boundary between the fields of logic, mathematical programming and constraint
programming. This is especially true because the communities are inspired by each
other’s algorithms and concepts and implement them. However, there are still clear
distinction between the communities. For example, SMT solvers that are based
on SAT solvers can solve linear programming problems, yet due to the underlying
technology they benefit from formulas with Boolean structure. Furthermore, the
focus of mathematical programming is more on optimization than satisfiability.

2.5 Constraint-directed search methods
As mentioned in the beginning of this chapter, search is conducted through solving
a series of problem restrictions. But the question is, in what order should the
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restrictions be solved? Constraint-directed search methods answer this question
by picking the new restrictions based on the knowledge acquired from solving the
previous ones, or in other words, by learning from their mistakes. This knowledge is
recorded in form of nogood constraints that are added to the nogood set, and will be
used to choose the next restrictions.

Search When a problem restriction is solved, it either has a solution or it is
infeasible. One would like to avoid the same solution, and possibly, similar solutions
with no better objective function value. To do this, one or a set of constraints called
nogoods are generated after solving that particular restriction that will prevent from
the same and perhaps similar solutions. When the next restriction is to be chosen,
the nogoods generated so far must be satisfied.

In practice, the problem restrictions are expressed in terms of x = (x1, ..., xn),
and each specific restriction is determined by fixing x to values from D, where
D = Dx1 × . . .×Dxn . The optimal value of the restriction P (x) is denoted by v(x),
while the overall optimal value of the problem P is v. Suppose that in iteration k,
by solving the nogood set Nk we get the solution x = xk, and the resulting problem
restriction P (xk) has the optimal value of v(xk). Now, a new nogood N is generated
and added to the nogood set to form Nk+1. The new nogood set is then solved, a
new solution x = xk+1 is found, and the next problem restriction to solve will be
P (xk+1). Notice that in the iteration zero the nogood set N0 = ∅. Also note that,
provided that there is a finite number of restrictions, the constraint directed search
is exhaustive.

Two last concepts to introduce are the notions of selection function and processing
the nogoods. A selection function is a criterion by which a feasible solution x is
selected among all the solutions satisfying the nogood set N . In some constraint-
directed search methods, it is important to process the constraints in N to facilitate
solving the nogood set. A generic constraint-directed search algorithm is given in
Algorithm 1.

Let vUB =∞ and N = ∅.
Associate a restriction P (x) of P with each x ∈ D, and let v(x) be the
optimal value of P (x).
while N is feasible do

Select a feasible solution x = s(N ) of N .
Compute the optimal value v(x) of P (x) and let vUB = min{v(x), vUB}.
Define a nogood N that excludes x and possibly other solutions x′ with
v(x′) ≥ v(x).

Add N to N and process N .
end
The optimal value of P is vUB.

Algorithm 1: Generic constraint-directed search algorithm for solving a mini-
mization problem P with variable domain D, where s is the selection function,
N contains the nogoods generated so far [34].
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Relaxation As discussed earlier, the search in a constraint-directed method
is carried out through enumerating a series of problem restrictions. To define the
problem restrictions, a solution x ∈ D that is feasible in the nogood set N is chosen,
and then variables in x = (x1, ..., xn) are fixed to the solution values to form P (x).
Then by using its optimal value v(x) new nogoods are generated and added to
the nogood set for next iterations. So far, for constraint-directed scheme, we have
identified the search component. Moreover, processing the nogoods can be thought
of as inference, which will be discussed in the end of this section. But what about
the relaxation? In fact the nogood set N can be thought of as a relaxation R.

As mentioned earlier, when a problem is relaxed, a lower bound on the optimal
value of its objective function is obtained. To prove that the nogoods can also be
interpreted as relaxations, we need to show how they provide lower bounds on the
optimal value of the objective function.

As stated earlier in this section, in step k of the search, the nogood set Nk is
solved and solution xk is obtained. Next, a problem restriction P (xk) is solved with
optimal value of v(xk). Now a nogood Nk+1 is constructed to exclude solutions worse
than v(xk) in iteration k + 1. Suppose that these unwanted solutions are gathered
in a set T . So, for any x ∈ T , the nogood should be able to remove them if it is
formulated as a nogood bound on the optimal value, as it follows [34]:

v ≥ Bk+1(x)

Bk+1(x) =
{
v(xk), if x ∈ T
−∞, otherwise

(2.7)

The nogood bound states that the undesirable solutions (x ∈ T ) must result in
a restriction P (x) with optimal value at least v(x). In other words, to get better
solutions than v(x), solutions in T must be avoided, and hence −∞ is selected for
x /∈ T . An acceptable solution (v, x) happens when it is feasible in the following
problem (and therefore satisfies the nogood bounds):

min v
v ≥ Bi(x), i = 1, ..., k
x ∈ D

(2.8)

Therefore, we can see that the optimal value of the problem (2.1) is lower bounded
using the nogoods, and that in effect, (2.8) can be thought of as a relaxation Rk

to (2.1).
It is important to point out that there is no need to solve Rk to optimality to get

the best feasible xk to construct a problem restriction. In fact, it is enough that we
find a (vk, xk) such that:

vk < min {v(x1), ..., v(xk−1)}
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Although solving Rk to optimality can be useful, but the fact that it is not
a necessity allows us to implement some constraint-directed methods even more
efficiently.

2.6 Inference
As pointed out earlier, inference seeks to deduce new constraints from the existing
ones to speed up the search.The general idea behind the duality between search and
inference is that an optimization problem can be conceived as an inference problem;
while a minimization problem is meant to minimize the value of the objective function
subject to a constraint set, an inference problem aims to maximize the lower bound
on the objective function, where the bound is inferred from the constraints set. Hence,
in an optimization problem, the search is conducted among the feasible solutions
to determine the minimum value, but in an inference problem, inferring the largest
lower bound on the objective function from the constraints involves generating some
mathematical proof. To summarize, in an optimization problem we find assignments
to variables, while in an inference problem we generate proofs.

If the constraint language is rich enough, for example in LP, it is possible
to formulate the inference dual of the original problem. The dual of an LP in
mathematical programming is a special case of inference duality. In some constraint
directed search methods, it is possible to formulate nogoods using the inference
duality, for instance in Benders decomposition. In this thesis, however, we use simple
nogoods that do not rely on inference duality.

2.7 Summary
In this chapter, we provided an overview of some of the tools we have used in
this thesis, namely, mathematical programming, constraint programming, and SMT
technology. In mathematical programming, we addressed LP, MILP, and NLP, as
they have been used in the thesis. The notion of constraint programming was also
discussed, together with its differences and similarities to mathematical programming.
The concept of global constraints were also discussed. Finally, the important notions
of constraint directed search and inference were reviewed.





Chapter 3

Energy optimization of
multi-robot systems

This chapter gives an overview of our work in Paper 1 and Paper 2, which deal with
energy optimization of industrial robots. While the research in this area had been
ongoing in the Automation research group of Chalmers University of Technology, as
in [2], [3], and [4], the author’s involvement in the topic began with in the winter
of 2014, within a project funded by the European Union, called Automation and
Robotics for EUropean Sustainable manufacturing (AREUS) [1], as mentioned in
Section 1.1.

The project’s aim was to provide solutions to reduce the energy consumption of
automotive companies. This and similar projects indicate the concerns of manufac-
turing industries as primary energy consumers about the energy cost of operating
industrial robots as well as their Carbon dioxide footprint. A few examples of energy
consumption of industrial robots come next. As reported in [5, 6], in a typical body
shop, over 500 robots assemble roughly 300 to 500 parts using a total of 3500 to 5000
spot welds before they are dispatched to the paint shop. Furthermore, an average
200 kg payload body shop robot consumes a yearly 8 MWh [7]. As reported in [8],
in production processes, robots consume approximately 8% of the total electrical
energy consumption.

It is of utility to categorize the existing methodologies that deal with energy
efficiency of production systems. In a survey [49], Paryanto et al. classified the
recent studies in energy efficiency of production systems into production planning,
commissioning process, and process optimization. Production planning is about
coordinating and scheduling the robot operations, as in [4, 50]. It also deals with
using energy-efficient and operation specific solutions [51, 52]. Paryanto et al.
also give examples of possible improvements during the commissioning process,
such as reducing idle time and eliminating waiting times [3, 53]. Furthermore,
process optimization involves modifying the trajectories, as in [54], to reduce energy
consumption.

As mentioned in Section 1.1, during the project AREUS, we realized that few
papers had addressed non-intrusive energy optimization of existing plants, that is,
without changing plant’s configuration, or affecting production rate of the existing

27
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robots. This was one of our motivation to contribute to the field in that sense.
As a part of this doctoral thesis, in [9], we provided an effective energy reduction
technique through a simple procedure; acquiring the original trajectories from a
plant, optimizing them with respect to physical and time constraints; feeding back
the optimized trajectory. In that paper the reported energy savings were estimations
based on electric currents, internally measured by the robot. This thesis encloses [9]
as Paper 1, and aims to answer to RQ1.

Furthermore, in [10] we refined our procedures further. We employed accurate
energy measurement equipment and provided procedures to have reliable measure-
ments and replicable experiments, along with a number of new modifications to
our optimization model to target not only the energy consumption, but also the
peak-power. In this thesis, our article [10] is enclosed as Paper 2, and aims to answer
to RQ2.

We should emphasize that in our two articles we have treated the subject ex-
tensively, with multiple case studies and detailed procedures for data collection,
optimization, and measurement. The purpose of this chapter is to provide supple-
mentary information to Paper 1 and 2. Hence, we avoid repeating information as
much as possible and refer the reader to the articles for full detail.

The organization of the rest of this chapter is as follows. Section 3.1 clarifies and
delimits the challenges in energy optimization of robots that we deal with. Section 3.2
discusses common trajectory generation approaches.

3.1 The challenge
Today’s robot trajectories commonly involve rapid acceleration, constant velocity,
and rapid deceleration, which resembles the famous trapezoidal velocity profile, which
will be explained in this chapter. This is often the case since such a profile results
in fast execution of operations, and it is easy to program. However, this way of
operating the robots is not energy efficient, in-part due to rapid deceleration that
wastes the kinetic energy.

There are other reasons for energy-inefficiency of today’s robot trajectories.
Consider two robots working in the same common work-space, where one needs to
wait for the other before accessing the zone. It is often the case that the robot that
must wait, quickly reaches standstill from high velocity. This is can be compared to a
driver that drives at high speed and then suddenly stops before the red light. Clearly
a lot of kinetic energy is wasted in this way. A more energy-efficient alternative is to
slow down the robots that must wait for other robots.

Another challenge, which mostly concerns us researchers, is the fact that if we
come up with improved robot paths or trajectories, we will have difficulty convincing
the robot users to adopt them. Apart from the obvious technical challenges that
arise when integrating new methodologies into existing systems, it is also a burden
to make sure the new trajectories or paths are collision-free and then to convince the
user of this property. Sometimes, the existing robot trajectories involve processes
that must not be modified, such as spot-welding, which is a further complication.
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Finally, it is important to convince the potential users that the new methodology
does not sacrifice productivity of the plant.

Therefore, for us researches to develop methodologies that are appealing to the
industry, it is highly desirable to (1) use the existing functionalities of the robots
without needing custom software, (2) make sure the cycle time is not violated, (3)
preserve the paths and designated processes, through careful trajectory generation.
Next, we will discuss common ways of trajectory generation, as well as our own
proposed technique.

3.2 Trajectory generation
Consider an environment in which a number of robots interact and perhaps have
access to a number of shared zones, as in [55]. Assume that each robot has a given
fixed path f : [0, 1]→ Rm, where m is the dimensionality of the robot’s joint space.
Each robot position θ(t) along its path f is defined as

θ(t) = f(s(t)), (3.1)

where s : [0, T ]→ [0, 1] is a scalar and normalized path position, such that s(0) = 0,
and s(T ) = 1, i.e. the trajectory starts at t = 0 and ends at t = T .

The trajectory of each robot is determined by its path as a function of time θ(t)
and its higher order derivatives angular velocity ω = θ̇, acceleration α = ω̇ and jerk
ζ = α̇ along the path. The simplest kind of motion is moving from one point to
another, such that at both points velocity is zero. In what follows next we discuss a
number of approaches to generate a trajectory that realizes that motion.

Trapezoidal velocity profile A trapezoidal velocity profile consists of three
segments; constant acceleration with a constant slope, cruise or coasting at constant
velocity, and deceleration with a constant slope, as seen in Figure 3.1.

Now, let us define a straight line in joint space from a start configuration θstart
to an end configuration θend as

θ(s) = θstart + s(θend − θstart), s ∈ [0, 1]. (3.2)

Assume that maximum allowable velocity and acceleration on a joint, i.e. ωmax
and αmax are given. A Trapezoidal velocity profile that maximizes the velocity
in the constant cruise velocity v = ṡ and constant acceleration/deceleration a = s̈
generates the time-optimal straight line motion, provided that it satisfies the following
conditions [56]

|(θend − θstart)v| ≤ ωmax (3.3)

|(θend − θstart)a| ≤ αmax (3.4)

However, the trapezoidal velocity profile has the downside that at θstart and θend and
at transition between phases there are jumps in acceleration, i.e. infinite jerk, as
seen in Figure 3.1. For practical purposes, a modified version of this profile called
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Figure 3.1: Time history of a motion with trapezoidal velocity profile; normalized
position, velocity, and acceleration vs. time.

S-curve is used that has constant jerk values at those critical points [56]. Although a
trapezoidal profile can be described by a series of first and second order polynomials,
in this thesis we reserve the term polynomial for those of higher degrees. A final note
on trapezoidal velocity profile is that, although it has the time optimality property
under the above-mentioned conditions, it does not take energy consumption into
account. However, it is still widely used due to its simplicity.

Polynomial velocity profile As mentioned earlier, trapezoidal velocity profile
does not address energy efficiency, and is not smooth at all points. Hence an
alternative profile that rectifies those issues is of interest. Let us denote torque by
τ . A common performance criterion to minimize heat loss in motor is given in [57],
which takes the following simple form for a rigid body rotating around an axis∫ T

0
τ 2dt (3.5)

Assume that the goal is to move a single joint with moment of inertia J from
θstart to θend, such that the above criterion is minimized, and that at θstart and θend,
velocity and acceleration are zero. Then the solution to the differential equation
τ = Jω has to be a polynomial of degree of at least five [58], as follows

q(t) = a5t5 + a4t4 + a3t3 + a2t2 + a1t1 + a0, (3.6)

where a0, . . . , a5 are the constant coefficients that are determined by solving the
optimization problem described above. Although this motion profile is smooth
and energy efficient, in its current form it does not take into account maximum
allowable joint velocity and acceleration. Note that in terms of a multi-axis robotic
manipulator, the dynamics of the robot can be described as follows [58]
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τ = M(θ)α + C(θ, ω)ω + Fs(θ)sgn(ω) +G(θ), (3.7)

where M(θ) is the mass matrix, and C(θ, ω) is a matrix of Coriolis and centrifugal
effects. Matrix Fs(θ) describes frictional torques, and G(θ) addresses other effects
such as gravity.

Some studies such as [59] incorporate (3.7) in energy optimization, which requires
having access to the robot’s dynamic model and other classified information that
is often restricted. Therefore, the use of simulation tools and system identification
techniques become viable, as in [60] and [61]. As an alternative, in Paper 1 we
propose a non-linear optimization model for multi-robot systems such that the need
to identify robot’s dynamic model is eliminated. The technique generates smooth
energy efficient trajectories, which will be discussed later in this chapter. Next, we
give an overview of our trajectory generation methodology published in Paper 1 and
Paper 2.

Trapenomial velocity profile In Paper 1 , we propose an energy optimiza-
tion procedure that generates smooth energy-efficient trajectories. The trajectories
are obtained by feeding trapezoidal (or any other type) trajectories as initial solutions
into an optimization problem. The non-linear optimization problem seeks to minimize
a performance criterion to reduce energy consumption, and generates trajectories
that look like a hybrid of low-order polynomial trapezoidal and high-order polynomial
velocity profiles. Therefore, we refer to such a trajectory as trapenomial hereafter.

The optimization model does not incorporate a description of robot’s dynam-
ics (3.7). However, it directly constrains angular velocity ω, acceleration α, and
jerk ζ so that the robot’s envelope of operation is not violated. The values depend
on the configuration of the joints at each time instance, which is referred to as pose
or sample of the path.

Consider a set of r robots with paths θk, k = 1, 2, . . . , r. We assume that the
paths are known at N individual time instances tk0, . . . , tkN . The poses, velocities,
accelerations, and jerks for each robot and individual time instance tki are indicated
by θki , ωki , αki , and ζki , i = 0, . . . , N .

In Paper 2, we introduce another cost function called pseudo power. In Solid
Mechanics, the relationship between mechanical power P , angular velocity ω, and
torque τ is expressed as P = τω [62]. In the absence of information about robot’s
mechanical properties necessary to formulate torque, instead we use angular ac-
celeration, which is roughly proportional to torque. Hence, the multiplication of
angular acceleration and velocity at each time instance is regarded as pseudo power,
i.e. ψki := αki ◦ ωki , where ◦ = Hadamard (entry-wise) vector multiplication. The cost
function can now be expressed as

r∑
k=1

N−1∑
i=0

(wkψ,i ◦ ψki )Tψki ∆k
i , (3.8)

where wkψ,i is the corresponding weighting vector for the pseudo power ψki . For the
full optimization model see Paper 1, and for more information about performance
comparison of different objective functions see Paper 2.
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3.3 Understanding the effect of optimization
In this section we explain how our optimization procedure works. In particular, we
explain how it modifies the original trajectory, and how the result compares with
the original one. In the articles, we have already provided real extensive case studies
with somewhat complicated trajectories involving all joints. In this section, however,
we use simulation of a simple robot motion to understand how the optimization
works.

The procedure for minimization of energy consumption of KUKA robots is
illustrated in Figure 3.2. It starts with running the programmed motions, and
at the same time the trajectory is logged via existing functions in KUKA Robot
Language (KRL). As mentioned in Section 3.1, it is desirable to use the existing
robots’ functionalities to design an optimization procedure. The recorded trajectory
will then be used as initial solution to the optimization model described earlier. The
optimization is done off-line, and the results are then post-processed to be able to
run again on the robot. Note that we use the nonlinear solver ipopt [40], for which
we have provided some information in both articles, and in Section 2.2.

Run Record

OptimizeRun Post-

process

Program

Figure 3.2: Optimization procedure for an existing trajectory/robot

Trajectory optimization with preserved path To better explain the con-
cept of optimizing the trajectory while preserving the path, the following analogy
helps. Imagine a car being driven on the road. The car represents the robot, while
the road represents the path. Our aim is not to change the road, but the way the
car is being driven on it, i.e. the trajectory. Now, consider Figure 3.3 (top). The car
starts its motion at time t = 0. In the first two seconds, the speed is relatively low,
but then the car picks up speed, which can be seen as the larger traveled distance
between t = 3 and t = 2, compared to t = 2 and t = 1. At t = 4 the car breaks
and then comes to a standstill at t = 5. Note that, in this scenario, the position is
recorded at a sampling rate of δt = 1 and the travel time is 5 seconds.
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Figure 3.3: The analogy between robot’s path and trajectory, with a car, road,
and driving profile.

Next, the recorded positions position are fed into the optimization model proposed
in Paper 1. With a cost function that minimizes acceleration and a constraint that
restricts the travel time to 5 s, the solution is obtained which is depicted in Figure 3.3
(middle). Note that in the solution, the vehicle is still traveling on the same road,
and it visits exactly the positions recorded in from the original motion. However,
the times at which these positions are recorded have been modified by the optimizer,
and the sampling time is no longer δt = 1 s.

To be more specific, one may note that, in the optimized motion, the vehicle
accelerates faster in the slow phase, i.e. at beginning of the motion. This is seen as
the same traveled distance during t2 = 0.7 s, compared to two seconds in original
motion during . This saves some time for the vehicle, which lets it visit the same
location at the first curve, at t3 = 2, i.e. one second earlier compared to the original
motion, although the vehicle has 1.3 s to travel between samples at t2 and t3, which
means it can accelerate more gently compared to the original solution. Now, the
vehicle has also more time to decelerate more gently in the final phase of the motion.
This is in contrast to the original motion, where the vehicle wasted time in the
early phase of the motion, and then accelerated quickly, and after the cruise phase
decelerated quickly. In other words, the optimization of acceleration leads to a more
balanced motion profile.

As mentioned earlier in Section 3.3, a post-processing phase must be undertaken
to change the sampling time back to original, which is done via interpolation. The
post-processed solution is shown in Figure 3.3 (bottom). Note that, the travel time is
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Figure 3.4: The schematic of the robot model in Simulink.

unchanged, and that the car is still on the same road, however, due to optimization
of acceleration, the velocity is now better balanced during the motion.

Next, we begin by explaining the simulation model used to compare performance
of different trajectories. It is then followed by a description of the baseline trajectory,
and then the simulation results will be discussed.

Simulation model To conduct experiments one needs to use either real robots
or resort to their models. In case of using a model, one might identify robot
parameters using methods given in for example [63, 64]. We have developed a
simulation model in MATLAB/Simulink based on the procedure described in [65].
The modeled robot was a KUKA LBR iiwa 14 R820.

To prepare our simulation model, first, CAD drawings of the robot’s parts were ob-
tained from kuka_experimental package developed within ROS Industrial project [66].
The CAD drawings were then imported to Simscape Moltibody environment [67] for
assembly. The robot’s links were then assembled and suitable mechanical properties
such as moments of inertia were assigned to each joint. The robot’s servo motors were
modeled as permanent magnet synchronous motors (PMSM), as described in [65].
The simulation model accepts reference velocity profiles as input to the model of the
robot structure, which in turn generates torque profiles. The demanded torques and
reference velocities are then fed to their respective servo motor’s model. The servo
motor’s model yields information about stator currents that are used to calculate
energy consumption. The energy consumption of any servo motor is calculated by
integrating its total input power along its trajectory. This can be achieved using the
following formula [65]

E =
∫ T

0
[32Ri

2 + ωm(τ +Bωm + J
d

dt
ωm)]dt (3.9)

where T is cycle time, τ and ωm are in turn mechanical torque and rotor speed, B is
the coefficient of friction, J is the rotor’s inertia. Moreover, the term 3

2Ri
2 models

the copper losses. A schematic of the simulation model is depicted in Figure 3.4.
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Test trajectories Our goal is to get a clear understanding of how different
velocity profiles affect energy consumption. Therefore, we opted for a simple one-
joint sweeping motion as the baseline trajectory, as seen in Figure 3.5. The baseline
trajectory follows a trapezoidal velocity profile, such that each of acceleration and
deceleration phases take up 20% of the 2-second motion time, and the rest of the
time is spent on cruising at constant maximum velocity specified by the robot
manufacturer. An extra stagnation duration of 0.06 s with zero velocity is padded at
the end of the deceleration phase to make sure the higher derivatives of velocity, i.e.
acceleration and jerk, also come to zero. This is necessary to ensure that torque on
the joint gracefully reaches zero.

Figure 3.5: The single-joint sweeping motion.

To generate our trapenomial trajectory, the baseline trapezoid trajectory was
used as input to the optimization problem described in Section 3.2. The bounds
on acceleration, velocity, and jerk were inferred from the baseline trajectory and
enforced in the optimization model. The optimization problem was then solved, and
the solution constituted the trapenomial trajectory. To generate the polynomial
trajectory, the above mentioned optimization problem was solved, however bounds
on velocity and acceleration were relaxed by 20%.

Results and discussion The test trajectories and the resulting torque profiles
are given in Figure 3.6. The trapezoidal velocity profile has distinct acceleration,
cruising, and deceleration phases. Its corresponding torque profile indicates that at
the end of the acceleration phase the demanded torque drops to a small non-zero
value, which is required to maintain the velocity in the cruising phase.

Regarding the trapenomial velocity profile, one observes that during the accelera-
tion phase, the velocity follows a polynomial path whose magnitude goes beyond
that of the trapezoidal, albeit it remains below the maximum velocity limit. In the
corresponding torque plot, it is seen that the trapenomial trajectory’s torque never
violates the maximum torque limits in the acceleration/deceleration phase. In the
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cruising phase, the trapenomial trajectory follows the flat constant-speed profile of
the trapezoidal trajectory, respecting the physical limits of the robot.

When following the polynomial velocity profile, the robot undergoes higher
velocities than the limit by a factor of 4.3%, which is expected, since the velocity
bounds were relaxed by 20% in the trajectory planning phase, as mentioned earlier.
Likewise, as the bounds on acceleration were relaxed, robot demands higher torque
in the acceleration and deceleration phase. Note that, in the deceleration phase, the
negative torque values hint at an opportunity to regenerate power.
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Figure 3.6: Different velocity and torque profiles vs. time.

Table 3.1 gives detailed information about energy consumption, violation of
velocity and torque limits, and the performance criterion

∫
τ 2dt. As seen in the table,

the polynomial trajectory yields the most reduction in the performance criterion∫
τ 2dt, which amounts to less dissipated heat, which enables this trajectory to reduce

energy consumption more than the trapenomial trajectory. However, this comes
at the cost of violating the maximum permissible velocity and torque by 4.3% and
17.8%, which renders this trajectory unrealizable on a real physical robot.

On the other hand, following the trapenomial velocity profile results in a 15.6%
reduction in the performance criterion

∫
τ 2dt, which amounts to 14.3% reduction

in energy consumption, while no velocity or torque limits are violated. This makes
the trapenomial velocity profile a viable energy-efficient alternative to its traditional
trapezoidal counterpart. In terms of ease of implementation of such a trajectory on
existing robots, we have proven in Paper 1 and 2 that this can be easily and success-
fully achieved on KUKA robots using the External Motion Interface (EMIly) built-in
to KUKA System Software (KSS). Moreover, we have recently implemented the
same concept on KUKA robots running KUKA Sunrise operating system using Fast
Research Interface (FRI) library [68]. Our optimization technique not only aims to
minimize energy consumption via more efficient velocity profiles, but takes advantage
of waiting times in real-world trajectories to scale down velocity and acceleration, i.e.
slowing down, which is a proven method to reduce energy consumption.
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Table 3.1: Results of analysis of trapenomial and polynomial velocity profiles
compared to the base-line trapezoidal trajectory; Reduction in energy consumption
Energy ↓ [%], percentage of violation of the joint’s velocity limit Velocity limit ↑
[%], reduction in integral of square of torque for the joint

∫
τ2dt ↓ [%], and

percentage of violation of maximum allowable torque Torque limit ↑ [%].

Velocity profile Energy ↓ [%] Velocity limit ↑ [%]
∫
τ2dt ↓ [%] Torque limit ↑ [%]

Trapezoid - - - -
Trapenomial 14.3 0.0 15.6 0.0
Polynomial 23.2 4.3 17.2 17.8

3.4 Summary
In this chapter we provided supplementary information to our articles Paper 1 and
Paper 2. More specifically, we explained our energy optimization procedure and how
it compares with a traditional trapezoidal trajectory. A simulation with a simple
single-joint motion was used to depict the effect of optimization, as well as an analogy
with cars to further explain the concept.

Answering the research questions In Section 1.3 we formulated two re-
search question, which are revisited, as follows.

RQ1 : How can robot’s energy consumption be reduced in a non-intrusive way, while
preserving original path and cycle time?

RQ2 : In what ways can energy and peak-power for multi-robot cell be reduced?

To answer RQ1, in Paper 1 we proposed a methodology for energy optimization
of robots that preserves the path and cycle time that used the built-in robot func-
tionalities without needing confidential parameters. This was also described earlier
in this chapter.

To answer RQ2, in Paper 2, we refined our procedures further. We employed
accurate energy measurement equipment and provided procedures to have reliable
measurements and replicable experiments, along with a number of new modifications
to our optimization model to target not only the energy consumption, but also the
peak-power. Moreover, in Paper 2, the optimization method has been evaluated in
many single and multi-robot scenarios, and on a variety of robots with different sizes.
One key conclusion of the article is that, in addition to the trajectory optimization
proposed in Paper 1, in multi-robot scenarios, it is possible to save energy even
more. This is done by slowing down the robots that should wait for a resource to be
freed. A detailed case study presented in Paper 2, which was conducted at Daimler,
discussed this result.





Chapter 4

Routing and scheduling problems
and algorithms

In this chapter, we aim to provide the reader with a background of the algorithms
we used for routing and scheduling of moving devices, such as vehicles in a vehicle
routing problem (VRP) context, and AGVs. Particularly, we will explain Benders
decomposition, column generation, and gossip algorithms. We used Benders decom-
position in Paper 5 and Paper 6, while column generation and gossip algorithms were
used in Paper 3 and Paper 4. To this end, we start by a particular formulation of
VRP as a toy example. Then Benders decomposition is discussed, which is followed
by the gossip algorithm. Finally, column generation will be presented.

4.1 Vehicle routing problems
The classical VRP could be stated as the problem of determining an optimal set of
routes for a set of vehicles such that given demands at the customers are satisfied.
Each route starts and ends in a given depot. Each customer should be visited by
one vehicle and each vehicle has a capacity that can not be exceeded. The routes
are to be selected such that the total cost is minimized. This problem resembles the
TSP, which was introduced in Chapter 2.

There are many different variations of the vehicle routing problem. For example,
some variations may include single or multi-depot, heterogeneous capacities, time
windows, sequencing constraints, and multiple objective functions, to name a few.
For more information, the interested reader is referred to [69]. Next, we will present
a particular variation called heterogeneous multi-vehicle routing problem (HMVRP),
which will later be used to demonstrate how Benders decomposition and gossip
algorithms work.

Heterogeneous multi-vehicle routing problem The formulation of HMVRP
was first introduced in [70]. The term heterogeneous indicates that the vehicles are
not alike, in contrast to VRP, where the vehicles all have the same capacity, speed,
etc. In this section, we first present the formulation, and then consider a small
HMVRP instance that will be used throughout the next sections to explain the
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coming concepts. To stay consistent with the context in which Franceschelli et al.
in [70] formulated the problem, the notion of robots and tasks will be used instead
of vehicles and customers. To state this NP-hard problem, we consider the two
following two sets.

• N : The set of n robots

• K : The set of k tasks

The movement speed and tasks execution speed of each robot may be different
from another. Note that the movement speed refers to the speed at which a robot
moves from one task to another, while the task execution speed refers to the speed
at which a robot performs a task at a node that it must visit. Moreover, costs of the
tasks vary depending on robots. To formulate the tours taken by robots we introduce
the following sets:

• V = N ∪K: The set of all nodes, i.e. |V| = n+ k.

• E = (N ∪K)× (N ∪K): The set of all directed edges, i.e. |E| = (n+ k)2.

To formalize a MILP model, two sets of binary variables are required; one for
task assignment and the other for sequence planning, as follows

• X : The set of all task assignment variables xir, where i ∈ V and r ∈ N with
|X | = n× (n+ k). Also, if i ∈ N and xir = 1: Robot Rr starts its tour from
depot (node) i, and if i ∈ K and xir = 1: Task i is executed by robot Rr.

• Y: The set of all sequencing variables yijr, where (i, j) ∈ E and r ∈ N with
|Y| = n × (n + k)2. Notice that yijr = 1 means that robot Rr goes directly
from node i to node j. To prevent from taking self-loops, large costs should be
assigned to edges with i = j.

Additionally, a continuous variable λ is defined to model the makespan. Finally,
the following costs are defined:

• cir: The execution time of task i with the cost ci (i ∈ K) by robot Rr (r ∈ N )
with an execution speed wr, i.e. cir = ci/wr.

• dijr: Represents the time spent by robot Rr to travel the Euclidean distance
along the edge (i, j) ∈ E with speed vr.

Ultimately, the centralized MILP formulation is as follows:
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min λ (4.1)
s.t.

∑
i∈K

xircir +
∑

(i,j)∈E
dijryijr < λ ∀r ∈ N (4.2)

xrr = 1 ∀r ∈ N (4.3)∑
r∈N

xir = 1 ∀i ∈ K (4.4)∑
j∈V

yijr =
∑
j∈V

yjir = xir ∀i ∈ V , ∀r ∈ N (4.5)
∑
i/∈S

∑
j∈S

yijr ≥ xqr ∀S ⊆ K,∀q ∈ S,∀r ∈ N (4.6)

λ ∈ R (4.7)
xir ∈ {0, 1} ∀i ∈ V , ∀r ∈ N (4.8)
yijr ∈ {0, 1} ∀(i, j) ∈ E , ∀r ∈ N (4.9)

The solution to the above problem yields the optimal task assignment [70]. The
constraints in (4.2) along with the objective function (4.1) aim to minimize the
maximum execution time of robots (makespan). The constraints in (4.3) ensure
that each robot is dispatched from its depot. The constraints in (4.4) guarantee the
assignment of each task to just one robot. The constraints in (4.5) mean that exactly
one edge enters and exactly one edge leaves a node (depot or task), when the node
is assigned to a robot. Furthermore, the constraints in (4.6) represent the sub-tour
elimination constraints (see Section 2.2 for more information on SECc). Finally, the
constraints in (4.7), (4.8), and (4.9) define the variables’ domains.

Example: A small HMVRP instance Consider two robots labeled A and
B that are to be assigned to 5 tasks numbered from 1 to 5. The layout of the robots
and tasks is shown in Figure 4.1 (left). The optimal solution to this problem can be
seen in the same figure (right).
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B
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1

5

4

2

A

B

3

1

5

4

2

Solution

Figure 4.1: Left: Problem layout Right: Optimal solution

We can see that the tasks assigned to a particular robot are indicated in the
same color as the robot itself. The arrows show the sequence in which the tasks are
executed. Indicating the optimal makespan of robots A and B by λA and λB, and



42 4.2. Benders decomposition

the optimal makespan by λ∗, the following values are given by the optimal solution:

λA = 13.05, λB = 13.44, λ∗ = 13.44

It means that the total makespan is lower bounded by the makespan of the slowest
robot, namely robot B. Another observation is that for each related set of robot-tasks
(indicated in the same color), the robot simply takes the shortest possible rout. This
is equal to solving a traveling salesman problem (TSP) for each individual robot,
provided that we know which tasks are assigned to it. This observation leads to
utilizing a method that decomposes the HMVRP into a task assignment problem,
and a number of TSPs as sequencing problems. One such method is called Logic
based Benders decomposition that we will explain next.

4.2 Benders decomposition
The Benders decomposition technique is a constraint-directed search method that
was first introduced in the early 60s by Benders [71]. Benders’ original work is today
referred to as the classical Benders decomposition, as opposed to the logic-based
Benders decomposition that first appeared in the mid-90s.

The idea of the Benders decomposition is to take advantage of the problem
structure to facilitate the solution procedure. This is done by partitioning the
problem into easier-to-handle segments. As an example, consider a MILP with a
mixture of continuous (easy) and integer (difficult) variables. To decompose the
MILP, we construct an auxiliary problem by selecting the constraints including only
the difficult variables. This auxiliary problem can be considered a relaxation to the
original MILP, and is formally called the master problem. Next, the solution of
the master problem is used to construct a second auxiliary problem, by fixing the
difficult variables in the MILP to the solution values. This forms another problem
called the slave problem (or sub-problem), which is now easier to solve due to lack
of difficult variables, since it is an LP.

A third notion in Benders context is the concept of cuts. In the classical Benders
method, the solutions of the dual sub-problems is used to generate a special constraint
called the cut. The cut is then added to the master problem. The master problem is
now re-optimized, and this process is repeated. The objective function value of the
slave problem yields an upper bound for the main problem, while solving the master
problem generates a lower bound. The optimality is achieved when the upper and
lower bounds meet.

The classic Benders method is a special case of logic-based Benders decomposition
(LBBD). In LBBD, sub-problems need not to be linear programming and can take
any form. A cut is obtained from each sub-problem by an inference method, and in
particular, by solving an inference dual of the sub-problem. For each category of
sub-problems, a separate analysis should be carried out to determine the cuts. So,
unlike the classic cuts, no general formulation for LBBD cuts is available.

Generic Benders decomposition To understand Benders method, we first
recall from Section 2.5 how a generic constraint-directed search algorithm works. To
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facilitate the search, a series of problem restrictions P (x1), ...P (xm) are solved. A
problem restriction P (xk) is obtained by fixing all or a subset of variables to their
respective solutions, i.e. (xk1, ..., xkn) = (vk1 , ..., vkn), where vki ∈ D. To find the solution
xk, first the set of nogoods Nk (also known as relaxation Rk) must be solved. Next,
problem restriction P (xk+1) = P (xk) is defined and its optimal value is used to
generate nogood Nk+1. Then the nogood set is updated Nk+1 = Nk ∪Nk+1, and the
process is repeated.

In Benders context, a nogood bound is referred to as Benders cut, the set of
nogood bounds Rk is called master problem, and restriction P (x) is called the
subproblem. In each iteration, always the same subset of variables are fixed to their
solution values to create a new subproblem, i.e. when a solution xk to the master
problem is obtained, to form the next subproblem we fix (xk1, ..., xkp) to (vk1 , ..., vkp),
and in every iteration we fix exactly the same variables, however to different values
(notice that {x1, ..., xp} ⊂ {x1, ..., xn}). The key question is that which subset of
variables should be fixed to form subproblems for which efficient algorithms are
known?

To cast light on the importance of correct variable selection, consider a mixed
integer linear programming problem (MILP) with a mixture of continuous (easy)
and integer (difficult) variables as follows:

min cx+ fy

s.t. Ax+By ≥ b

x ∈ Zm

y ∈ Rn

Notice that x ∈ Zn is the vector of complicating variables. To create a restriction
(subproblem) that is easy to solve, one can fix x to some trial value x̄ ∈ Zm. The
resulting subproblem will be a linear programming problem as below, which can be
efficiently solved by the simplex algorithm.

min cx̄+ fy

s.t. By ≥ b− Ax̄
y ∈ Rn

In Benders context, the variables to be fixed are referred to as search variables,
and the rest, as subproblem variables. Hence, the first step in Benders method is
to partition the variables into two vectors; vector of search variables x, and vector
of subproblem variables y. Note that in general, both the search and subproblem
variables can be difficult variables, but partitioning the problem could still lead
to subproblems for which efficient algorithms exists. Having said that, a general
minimization problem P can now be written as

min f(x, y)
S(x, y)
S(x),S(y)
x ∈ Dx, y ∈ Dy

(4.10)
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In problem (4.10), S(x, y) is the constraint set involving both x and y, while S(x)
and S(y) include only constraints involving x and y respectively.

The next step in Benders method is to decompose (4.10) into a master problem,
and one (or more) subproblem(s). The master problem must involve only the search
variables, and subproblems only the subproblem variables.

As a constraint-directed method, in iteration k of Benders, relaxation Rk (the
master problem) should be solved to obtain a solution that will define the next
restriction (subproblem). Recall that in constraint-directed search, the relaxation is
written as in Problem (2.8). The nogood bounds (Benders cuts) must be formulated
using only search variables x. Additionally, any other constraint involving only x is
added to the relaxation. Together, they form the master problem, as follows.

min v
v ≥ Bi(x), i = 1, ..., k
S(x)
x ∈ Dx

(4.11)

Note that the master problem is a relaxation that gives a lower bound on v, since
the restrictions S(x, y) and S(y) are not included.

Now that we have the master problem in step k, we should solve it to obtain the
solution xk. Then, the problem restriction (subproblem) P (xk) becomes as follows:

min f(xk, y)
S(xk, y)
S(y)
y ∈ Dy

(4.12)

It is clear that the search variables are not present in the subproblem (4.12). Observe
that the constraints in S(xk, y) now only involve y, and that is because x variables
have been fixed to their solution values xk.

In a generic constraint-directed method, solving a restriction P (xk) yields the
optimal value pertaining to that restriction, i.e. v(xk). Then a nogood is generated
and added to the nogood set (relaxation). Similarly in Benders, when the subproblem
is solved, a Benders cut is generated and added to the master problem to form the
next master problem. As mentioned earlier, the Benders cuts are formulated using x
(that is v ≥ Bk+1(x)).This is because the master problem was originally formulated
using x to yield a solution xk that defines P (xk).

Benders algorithm closely mimics the generic constraint-directed search (Algo-
rithm 1) and is given below:

The algorithm terminates when the lower bound meets the upper bound, that is
when vLB = vUB.

A Benders decomposition for HMVRP To clarify the Benders method,
we consider its application to the heterogeneous multi-vehicle routing problem
(HMVRP) as a case study, which was already introduced in Section 4.1. Decomposing
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Let vLB = −∞ and vUB =∞.
Initially master problem (4.11) minimizes v subject to x ∈ Dx and possibly
other valid constraints involving x.
Let x̄ be a feasible solution of (4.11).
while vLB < vUB do

Solve the subproblem (4.12) and let v(x̄) be the minimum value of f(x̄, y)
subject to S(x̄, y) and y ∈ Dy.
Let vUB = min{v(x̄), vUB}.
Add a Benders cut v ≥ B(x) to the master problem (4.11).
Solve the master problem (4.11) and obtain its optimal value vLB.

end
The optimal value of P is vUB (v = vUB).

Algorithm 2: Generic Benders algorithm for minimizing f(x, y) subject to
S(x, y), S(x), S(y) and (x, y) ∈ Dx ×Dy [34].

the HMVRP results in a master problem in form of mixed integer linear programming
(MILP), and a cluster of MILP subproblems resembling TSPs.

Master problem: the task assignment The role of the master problem
for HMVRP is to find a solution to the task assignment problem. Hence, the
family of constraints solely composed of xir (constraints (4.3), (4.4) and (4.8) ) are
included there. Other constraints to add are the Benders cuts, and relaxations of
the subproblems, if available. The relaxations are, in effect, constraints that prevent
from getting infeasible subproblmes. The solution of the master problem results in
generating a set of sequencing TSP subproblems. As mentioned earlier, the objective
function in the centralized formulation comprises minimizing the maximum makespan
λ. So, the compatible master problem structure is chosen from [34]. This leads to
the following MILP:

min z (4.13)
s.t. xrr = 1 ∀r ∈ N (4.14)∑

r∈N
xir = 1 ∀i ∈ K (4.15)

xir ∈ {0, 1} ∀i ∈ V , ∀r ∈ N (4.16)
Benders Cuts (4.17)
Optional relaxations (4.18)

Notice that z is an auxiliary continuous variable acting as a substitute for λ, and
its optimal value in each iteration yields a lower bound for the makespan.

Subproblems: the sequencing TSPs To formulate each subproblem, one
robot and the set of its allocated tasks are considered. Note that our HMVRP is
assumed to be collision-free, so any assignment to the master problem leads to a
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number of fully decoupled subproblems. A subproblem corresponding to robot Rr

is denoted by Sr. Suppose that the solution set of the master problem in the lth
iteration is denoted by X l. Then, the following notations for Sr are defined:

• Nr : The single-member set of the depot node of Rr.
• Klr: The set of tasks assigned to robot Rr.
• V lr = Nr ∪ Klr: The set of all nodes.
• E lr = V lr × V lr: The set of directed edges.
• xlir = 1: Solution to the assignment variable xir in the lth iteration, where

(xlir ∈ X l), (i ∈ Klr), (r ∈ Nr); i.e. the task i will be performed by Rr.

Then, the single TSP in Sr can be formulated as:

min λlr (4.19)
s.t.

∑
i∈Kl

r

xlircir +
∑

(i,j)∈El
r

dijryijr < λlr ∀r ∈ Nr (4.20)

∑
j∈Vl

r

yijr =
∑
j∈Vl

r

yjir = xlir ∀i ∈ V lr, ∀r ∈ Nr (4.21)

∑
i/∈S

∑
j∈S

yijr ≥ xlqr ∀S ⊆ Klr, ∀q ∈ S, ∀r ∈ Nr (4.22)

λlr ∈ R (4.23)
yijr ∈ {0, 1} ∀r ∈ Nr, ∀(i, j) ∈ E lr (4.24)

Notice that in constraint (4.20), the first left-hand side term is now a constant, and
the same is true for the right-hand sides of (4.21) and (4.22). The subproblem now
resembles the classic asymmetric TSP for which an extensive body of research exists.

Benders cuts for HMVRP The Benders cuts are arguably the most impor-
tant ingredient of the Benders decomposition algorithm. The cuts are generated
using the solution of the subproblems, and then added to the master problem to
direct the search. Notice that the cuts become available to the master problem after
the first iteration, when the early solutions of the subproblems have been obtained.

Now, a simple Benders cut, which is frequently used in planning and scheduling
problems, is formulated as in [34]. To state the formulation, define Jr as the set of
tasks assigned to robot Rr, and the cut becomes:

z ≥ λ∗r(
∑
i∈Kr

xir − |Jr|+ 1)

where λ∗r is the optimal objective function value of the rth subproblem, and |Jr| is
the number of tasks assigned to robot Rr. It means that if exactly the same set of
tasks are assigned to machine Rr, the makespan of this particular subproblem will
be at least λ∗r. So, in order to obtain a shorter makespan, the solver should avoid
allocating the same set of tasks to robot Rr.
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How the cuts work Consider again the small HMVRP example in Section 4.1.
Assume that in some iteration of the Benders algorithm, the solution to the master
problem assigns tasks 1, 4 and 5 on robot A, and tasks 2 and 3 on robot B, that
is xA1 = xA4 = xA5 = 1 , and xB2 = xB3 = 1, while other assignment variables
become zero. This assignment is depicted in Figure 4.2 (left). Solving the resulting
subproblems gives makespans λA = 13.98, λB = 16.48 for robots A and B respectively.
Since the the total makespan is bound to the makespan of the slowest robot, for
this particular iteration, the overall makespan is 16.48. We also know from previous
iterations that the best makespan so far (incumbent solution) has been λ∗ = 14.84.
It is clear that the current assignment is undesirable, and we need to avoid this
and similar assignments in the future search. To understand what we mean by
similar assignment, notice that adding another task to robot B makes this robot
take a longer trip, indicating an increase in its makespan, which will definitely go
beyond 16.98 units of time, see Figure 4.2 (right). Such an assignment is undesirable
(λ > 16.98 > λ∗ = 14.84) and should be avoided.
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Figure 4.2: (Left) Solution to an iteration of the small example. (Right) A similar
tasks assignment on robot B with more tasks worsens the makespan.

The mechanism behind avoiding bad assignments is as follows: The search
procedure (ex. a search tree) in the master problem records the current best solution
(incumbent solution). Before testing a new assignment, it tries to use knowledge
obtained in previous steps of the search to determine whether the next assignment is
going to yield a solution that is worse than the current incumbent solution. This
knowledge has already been recorded in the master problem in form of the Benders
cuts. If the available cuts contain enough knowledge to flag a potential solution
undesirable, that assignment will be skipped. Otherwise, the current candidate
assignment should be tried to compute its corresponding makespan value(s) from
the subproblem(s).

In this example, to generate cuts that exclude the current and similar assignments
with worse maskespans, one can formulate the following cuts:

λ ≥ 13.98 ∗ (xA1 + xA4 + xA5 − 2)
λ ≥ 16.48(xB2 + xB3 − 1)

Currently, the second cut (pertaining to robot B) is the one that does the job in
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preventing some bad assignments, as follows:

xB2 = xB3 = xB1 = 1,
xB2 = xB3 = xB4 = 1,
xB2 = xB3 = xB5 = 1,
xB2 = xB3 = xB1 = xB4 = 1,
xB2 = xB3 = xB1 = xB5 = 1,
xB2 = xB3 = xB4 = xB5 = 1

To study the cut further, three scenarios can be imagined:

i) The same assignments: In this case the cuts simply yield λ ≥ 13.98, and
λ ≥ 16.48, which is what we expect (recall the general nogood formulation (2.7)
from Section 2.5).

ii) Adding tasks: For instance, having the assignment xB2 = xB3 = xB1 = 1
activates the second cut as λ ≥ 16.48, and this will result in this assignment
to be skipped in the search tree, because the search procedure has flagged
this assignment as something that will yield a worse solution than the current
incumbent, i.e. λ = 16.48 > λ∗ = 14.84.

iii) Removing tasks: taking one or more task from a robot decreases its makespan.
That means in nogood bound (2.7), x 6∈ T , and Bk+1(x)→ −∞. However, it
is not necessary to go to −∞, rather, a small enough lower bound suffices, as
it happens here. For example, when task 2 is removed from robot B, we have
λ ≥ 16.48 ∗ (0 + 1− 1), or simply λ ≥ 0, which is a small enough valid lower
bound.

One important remark is that, sometimes cuts that have been ineffective so far
can become active and effective in the future. For example, the first cut in the
above example (pertaining to robot A) does nothing at the moment, since it can
not guarantee that adding tasks to robot A will increase its makespan up to a value
more than the current incumbent, i.e. all we can say about an assignment like
xA1 = xA4 = xA5 = xA2 = 1 is that λ ≥ 13.98, and this is allowed in the search
procedure, but we do not know whether λ ≥ 14.84. However, in one of the future
iterations, the search procedure in the master problem will find a new incumbent as
λ∗ = 13.44. This will make the first cut prevent these assignments:

xA1 = xA4 = xA5 = xA2 = 1,
xA1 = xA4 = xA5 = xA3 = 1,
xA1 = xA4 = xA5 = xA2 = xA3 = 1

All of the potential assignment above result in the first cut to become λ = 13.98 >
λ∗ = 13.44, and this will flag those assignments as undesirable, so they will be
skipped.
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How the algorithm progresses For the same small example, applying Ben-
ders decomposition results in a master problem and two subproblems, one per each
robot. In each iteration of the master problem, some tasks are assigned to each robot.
Figure 4.3 shows the task assignment for the iteration 7 of the problem. Every time
a subproblem is solved, the tasks in that subproblem are scheduled on the pertaining
robot. This can be seen, for step 7, in Figure 4.4.
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Figure 4.3: Master problem: the task assignment.
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Figure 4.4: Slave problem: the sequencing.

Now we take a look at a few iterations of the algorithm that are summarized in
Table 4.1. (Note that before the branching tree for the master problem is constructed,
CPLEX heuristically finds a few solutions, in this case, the first 4 solutions in the
table, using its pre-solve procedure).

According to the table, the optimal makespan is λ = 13.44, that happens in
iterations 2 and 10. As said before, the first 4 rows of the table were generated using
the pre-solve procedure in CPLEX, and the rest are obtained from the branch and
bound search tree that is generated after the pre-solve. This is why that particular
solution has happened twice.
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Iter. Rr Assignment Sequence makespan
1 R1 T1, T3, T4 T1, T3, T4 11.48

R2 T2, T5 T2, T5 15.71

2 R1 T2, T3, T4 T2, T3, T4 13.05
R2 T1, T5 T1, T5 13.44

3 R1 T1, T2, T4 T1, T2, T4 10.57
R2 T3, T5 T3, T5 13.99

4 R1 T1, T2, T3, T5 T2, T5, T3, T1 19.25
R2 T4 T4 9.71

5 R1 T1, T2, T3, T4 T2, T1, T3, T4 14.84
R2 T5 T5 7.94

6 R1 T2, T4, T5 T4, T5, T2 15.20
R2 T1, T3 T1, T3 13.41

7 R1 T1, T4, T5 T4, T1, T5 13.98
R2 T2, T3 T2, T3 16.48

8 R1 T3, T4, T5 T5, T3, T4 15.09
R2 T1, T2 T2, T1 14.47

9 R1 T2, T5 T2, T5 13.95
R2 T1, T3, T4 T4, T3, T1 15.92

10 R1 T2, T3, T4 T2, T3, T4 13.05
R2 T1, T5 T1, T5 13.44

11 R1 T1, T2, T3 T2, T3, T1 14.05
R2 T4, T5 T4, T5 14.27

12 R1 T1, T3, T5 T1, T3, T5 16.11
R2 T2, T4 T2, T4 12.81

Table 4.1: Results of the different iterations: The tasks assignments, sequences,
and makespans
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4.3 Column generation

The column generation (CG) is another famous decomposition algorithm [39], whose
relationship with Benders decomposition is orthogonal. In each Benders decomposi-
tion, a number of constraints are added to the problem, that is, the problem grows
vertically, as more rows are added to its formulation. In CG, however, the problem
is decomposed in a way that, in each iteration one or several columns (variables)
are added to the problem, hence the name column generation. Thus, the problem
formulation grows horizontally, while the number of rows (constraints) is fixed.

At the core of the CG algorithms there is a decomposition mechanism known as the
Dantzig-Wolfe decomposition (DWD) [38]. The idea behind a decomposition approach
is to take advantage of the problem structure to speed up the solution procedure.
This is achieved by partitioning the problem into smaller and more manageable
subproblems that are solved separately, and by letting them communicate with each
other. DWD is one such method that was first developed for linear programming
(LP) problems with block-angular constraint matrix.

Consider an LP with a combination of easy constraints and complicating (coupling)
ones. In the coupling constraints some variables are coupled together with non-zero
coefficients. After identifying the complicating constraints the problem is reformulated
such that a feasible solution is represented by a convex combination of the extreme
points of the polyhedron defined by the easy constraints. The reformulated problem
is called the master problem (MP), and it has fewer constraints but considerably
more variables. Due to the large number of variables, this new problem is difficult
to construct, and to solve by simplex algorithm. Since in every iteration of simplex
algorithm only a few of the variables are present in the basis, one may choose to
construct and start the master problem based on only a meaningful subset of the
extreme points (variables). This is known as the restricted master problem (RMP).
To improve the objective function value of the RMP, a new variable should enter
the basis. The new variable can be identified by solving one (or more) auxiliary
problem(s) known as the subproblem(s). In other words, any variable in the RMP
corresponds to a solution to one of the subproblems.

A subproblem is defined as the problem of finding a variable that improves the
objective function of the RMP the most, such that the easy constraints are satisfied.
Hence, the objective function value of the subproblem is the reduced cost of a variable
entering the basis. The communication of the RMP with the subproblem is done
through manipulating the objective function of the subproblem by using solution
values of the dual variables corresponding to the RMP. In case of a minimization
problem, if the reduced cost is negative, a new variable (column) is added to the RMP
together with its corresponding coefficients. This process continues until no new
variable can be found. Hence, instead of solving the original problem, a restricted
master problem is solved together with one or more subproblem(s), while these
smaller problems exchange information. It is possible to apply DWD to structured
MILP problems as well, as in [39]. For a more detailed treatment of the topic,
see [39].
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4.4 Gossip algorithm
The gossip algorithm [72], is used in telecommunication and sensor networks to
exchange information and for computations in network of nodes. In the algorithm,
every node in the network communicates with its neighboring node, hence the
computations are done in a decentralized manner.

In a vehicle routing problem context, according to the gossip rule, after initial
task assignment, two vehicles and their corresponding tasks are picked randomly
and a local optimization problem is generated. Either an equal or a better objective
function value can be obtained by solving this problem. This is achieved by retaining
or exchanging the tasks between the vehicles, and the procedure is then repeated.

Now we give an illustrative example. Consider a small instance of an HMVRP
with 3 vehicles and 9 tasks, as shown in Figure 4.5. Each set of vehicle-tasks is shown
in the same color. In the first iteration (upper-left corner), an arbitrary feasible
task assignment leads to (tasks 1, 2, 3 → vehicle A), (tasks 4, 5, 8 → vehicle B),
(tasks 6, 7, 9 → vehicle C). Then, two vehicles and their tasks are chosen randomly.
For example, vehicle A and B, and a local optimization problem is generated. The
solution to the new problem results in task 4 to be passed to vehicle A, as this reduces
the objective function value (distance) of the local problem. Next, the vehicles B
and C are chosen, and task 9 is transferred from C to B. Then, vehicles A and C are
picked, without any improvement, as they are already optimal in the local problem.
The idea behind the algorithm is that it allows to solve smaller problems compared
to a monolithic (centralized) approach.
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Figure 4.5: Some iterations of gossip algorithm for a small instance of HMVRP.

Note that the gossip algorithm has similarities to the POPMUSIC (Partial
Optimization Metaheuristic under Special Intensification Conditions) proposed by
Taillard and Voss [73], but it is different in the way the local problems are formed.
In POPMUSIC, a local problem is created by randomly selecting a seed tour and
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then considering an independent VRP containing only the customers of the r closest
tours of the seed tour, while r is automatically adjusted. In other words, except
for the first tour in the local problem, the other tours that are to be included are
selected using a selection procedure. A selection criterion is for example that the
centroid of all tours should be close to each other. In the gossip framework, however,
all vehicles together with their corresponding tours are chosen randomly to form the
subproblems.

The gossip algorithm is described in Algorithm 3. In this algorithm, after setting
the limit on the iterations, a feasible initial solution must be generated. It determines
the initial size of the pool of the vehicles, tours for each vehicle, and the length
of each tour. In the main loop of the algorithm, a local problem consisting of two
vehicles and their tours is defined and then solved using any solver. The result of
the local optimization is then reported back. If a vehicle has now an empty tour, it
will be removed from the pool of the existing vehicles. If the new tour of the vehicle
is shorter than the old one from the previous iteration, the old tour and its length
are replaced with the new one. The algorithm continues until the maximum number
of iterations (or a time limit) is reached.

Initialize IterLim;
nbV ehicles, tours, tourLengths← InitialSolution();
Set counter to 0;
while counter ≤ IterLim do

Randomly pick two distinct vehicles;
Form a local VRP comprising the two vehicles and their tours;
Optimize the local problem;
for vehicles in the local optimization do

if the tour is empty then
nbV ehicles← nbV ehicles− 1;

end
if the tour is shorter then

Update(tours, tourLengts);
end

end
counter ← counter + 1

end
Report sum(tourLength)

Algorithm 3: Gossip algorithm for a generic vehicle routing problem

Parallel gossip In Paper 3, the gossip algorithm was applied to a variation of
VRP with time windows, with promising results. Later, in Paper 4 we proposed a
parallel version of the gossip algorithm with even better results. In that paper, we
utilized the distributed nature of the gossip algorithm to solve the local problems in
parallel. One feature of the method is that the required effort for parallelization is
minimal, and that the whole framework can be used for different variations of VRP.
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Algorithm 4 describes the multi-threaded version of Algorithm 3. In the first line,
the number of threads and maximum number of iterations are set. Then, a feasible
initial solution must be generated. It determines the initial size of the pool of the
vehicles, tours for each vehicle, and the length of each tour. As noted in line 6 and 7,
each thread will have a local problem consisting of two vehicles and their tours, such
that each vehicle appears in only one thread. In the end of the parallelization phase,
each thread reports back its optimization results. If a vehicle has now an empty
tour, it will be removed from the pool of the existing vehicles. If the new tour of the
vehicle is shorter than the old one from the previous iteration, the old tour and its
length are replaced with the new one. The algorithm continues until the maximum
number of iterations (or a time limit) is reached.

Initialize Threads, IterLim;
nbV ehicles, tours, tourLengths← InitialSolution();
Set counter to 0;
while counter ≤ IterLim do

for thread in Threads do
Randomly pick two distinct vehicles;
Form local VRPs: assign to each thread two vehicles and their tours;

end
Beginning of parallelization ;
for thread in Threads do

Optimize tours of the two vehicles;
end
End of parallelization;
for threads in Threads do

for vehicles in the local optimization do
if the tour is empty then

nbV ehicles← nbV ehicles− 1;
end
if the tour is shorter then

Update(tours, tourLengts);
end

end
end
counter ← counter + 1

end
Report sum(tourLength)

Algorithm 4: Generic multi-threaded gossip algorithm
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4.5 Case study: healthcare routing and schedul-
ing

Home healthcare is about dispatching caregivers to people in need of healthcare
service at home. The task assignment and route generation for caregivers can be
formulated as an extension of the well-known vehicle routing problem with time
windows (VRPTW).

Currently, the most successful exact algorithms for VRPTW are based on CG.
While such methods could be successful for home healthcare routing and scheduling
problems (HHCRSPs) as well, fast approximate algorithms are appealing, especially
for large problems. In our case study, given in Paper 3, we combined CG and the
gossip algorithm, which was called gossip-CG, to generate an algorithm that is more
successful than CG alone. Figure 4.6 illustrates the architecture of the gossip-CG
method, where a local problem consists of two caregivers and their corresponding
nodes, optimized using column generation.
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Figure 4.6: The architecture of the gossip-CG method. A local problem consists of
two caregivers and their corresponding nodes, optimized using column generation
independent of the rest of the problem.

Optimization model and algorithms The full optimization model, which
is a variation of VRP, can be found in Paper 3, where the CG algorithm and its
application to the problem is described in full detail.

The gossip algorithm can be used with a standard MILP solver for the local
problems, for example using CPLEX. Then, the method is called gossip-CPLEX.
Since the performance of a gossip algorithm depends on the performance of the local
solver, the method may become inefficient for large problems. For example, in the
healthcare context, when the service times for patients are relatively short, each
caregiver can visit more patients. In this case, optimizing the tasks assignment and
scheduling the tasks for a pair of caregivers in a local problem may become difficult.
In the paper, we improve the gossip by using a CG-based solver for the local problems
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and show that the resulting algorithm (gossip-CG) outperforms the standard CG for
large problems, and for some problem instances is superior to gossip-CPLEX.

A glimpse into the parallelization results As mentioned earlier, in Pa-
per 4, we proposed a parallel version of the gossip algorithm. In general, we showed
for several problem instances that Algorithm 4 converges faster, compared to Al-
gorithm 3. As an example, this can be seen in Figure 4.7, where the convergence
behavior of Algorithm 4 for different numbers of cores is depicted for a problem
instance called r109. It is seen that both gossip with 2-threads and 4-threads outper-
forms the single-threaded version, which corresponds to Algorithm 3. Although in
the beginning the two-threaded version gives better improvement of the cost function
due to randomness of the search moves, by the end of the time limit of 1800 s the
4-threaded version manages to find a better solution.
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Figure 4.7: Evolution of the objective function for a small instance of VRPTW.

4.6 Summary
In this chapter, we provided the reader with some background on vehicle routing
problems decompositional algorithms used in the thesis. Specifically, we formalized a
Benders decomposition for HMVRPs. Also, using a small example, we demonstrated
how tasks are assigned to robots in the master problem, and how they are scheduled
in the subproblmes. Column generation, as another decompositional algorithm
used in the thesis was also explained, together with its relationship with Benders
decomposition.

Additionally, the framework of the gossip algorithm was explained with an
illustrative example. We then presented the architecture of the gossip-CG algorithm,
which was used in Paper 3. We also mentioned our case study, i.e. the home
healthcare routing and scheduling problem, on which we tested our algorithms.
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Finally, we presented the parallelized version of the gossip algorithm, which was
published in Paper 4. A sample of the performance improvements gained by this
algorithm was also given.

Answering the research questions In Section 1.3, we formulated two re-
search questions regarding moving devices, which are revisited, as follows.

RQ3 : In the context of routing of moving devices, how can a known efficient algorithm
be integrated with a metaheuristic to solve larger problems?

RQ4 : How can the performance of the integrated optimization approach developed
in response to RQ3 be improved by better utilization of existing hardware?

To answer RQ3, in Paper 3, we proposed the gossip-CG algorithm, which was an
integration of the gossip and column generation algorithms. It proved to outperform
CG on the many problem instances we used to test it. Gossip-CG consistently yielded
solutions with higher quality compared to those obtained from pure CG. Moreover,
gossip-CG was able to rapidly improve the initial solution even after only a few
iterations.

To answer RQ4, in Paper 4, we utilized the distributed nature of the gossip
algorithm and proposed its multi-threaded version, which better utilizes a multi-core
CPU. The implementation effort was also proved to be minimal. Hence, our answer
to RQ4 is to use algorithms that can be easily parallelized.





Chapter 5

Energy Efficient Routing and
Scheduling of AGVs

This chapter gives an overview of our work in Paper 5 and Paper 6. Following our
work on energy optimization of industrial robots and vehicle routing problems, we
pursued another research topic that could benefit from those results. Energy efficient
routing and scheduling of AGVs was then chosen, as it seemed like an interesting
bridge between robot energy optimization, and routing/scheduling problems. Our
work started in the spring of 2018 together with a Swedish AGV manufacture called
AGV Electronics (AGVE), which is now owned by a Japanese company called Murata
Machinery. Apart from the interesting research challenges in the area, as mentioned
in Chapter 1, there was an extra incentive to work on this problem due to existing
industrial needs. In fact, there is a growing demand for more AGV systems in both
manufacturing and non-manufacturing environments, as well as the pressure for more
sustainable solutions.

To give a better picture of the competition and demand for AGVs, consider the
following statistics. Currently, there are more than 100 AGV manufacturers in the
world. In terms of sold units, almost 111, 000 logistic systems were sold in 2018,
which compared to 69, 000 units sold in 2017 means that the market has increased
almost 60% in one year. Of those sold units, 7, 700 were AGVs in manufacturing
environments and almost 103,000 in non-manufacturing environments [74]. There
has been a trend in major e-commerce companies to use AGV solutions, which drives
this growing market. Furthermore, another sector that could benefit from AGVs is
the healthcare sector, which could use them in hospitals. Furthermore, the global
automated guided vehicle market size was valued at USD 3.0 billion in 2019 and is
expected to witness a compound annual growth rate (CAGR) of 14.1% from 2020 to
2027 [75]. Of course this figure does not consider the looming global recession due to
the ongoing epidemic Coronavirus.

5.1 Challenges and opportunities
There are several challenges and opportunities in the field of AGV routing and
scheduling. For example, although AGV manufacturers have developed rather
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efficient control policies and algorithms, retrofitting the existing heuristic to future’s
more dense, more complicated, and more demanding AGV layouts, is not guaranteed
to be easy. Currently, it is common to use heuristics to allocate vehicles to orders and
route them. There are also rules of thumbs to avoid collisions and deadlocks, which
are not guaranteed to work all the time, and might even hinder the performance.

It is also noteworthy that, although AGVs are primarily used to increase pro-
ductivity, sometimes the installed systems cannot meet the required performance
metrics, such as throughput, which is set by the AGV customers. To compensate
for that, often the customers use manual forklifts in conjunction with the AGVs.
This underperformance can be improved, for example, by optimizing task assign-
ments, routing, and scheduling. With increasing demand for high-performance AGV
solutions, it is appealing to employ optimization algorithms that handle the order
allocation, scheduling, routing, and deadlock avoidance in a more efficient way.

Furthermore, energy optimization of AGVs is not a well-explored research field,
and it is not the first priority of AGV manufacturers who often struggle with
delivering the required output. However, there are several benefits to reducing energy
consumption of AGVs. Apart from the obvious benefit of reduced energy costs, energy
efficient routing and scheduling cuts down on the frequency of battery charging.
This reduces the down time of vehicles. Additionally, higher energy efficiency could
translate into the smaller required battery capacity, which in turn, leads to cheaper
and more competitive products. In this thesis, we aim to present an improved method
to tackle the above-mentioned issues, with promising results.

5.2 The approach
As mentioned in Chapter 1, the common control strategies for AGV systems can be
divided into two groups: centralized methods and decentralized ones. In centralized
methods, a single controller tackles task assignment and routing of the vehicles, as
in [26], whereas in a decentralized strategy these roles are partly or entirely delegated
to the vehicles. For example, the authors in [27] propose a decentralized method
where first the vehicles assign tasks to themselves such that a global objective function
is minimized, namely the total completion time. Then the vehicles move towards
their destinations using a decentralized algorithm.

In this thesis, we limit our scope to a centralized control approach that handles
tasks assignments and routing. The reason for this choice is twofold. Firstly, the
AGV company that we have worked with utilizes such a control strategy. Hence, to
compare our potential solutions with their technology, and to be able to effectively
utilize their resources, tools, and expertise it was imperative to work on a similar
control strategy. Secondly, it has always been the author’s priority to develop
methods that can be integrated into existing hardware with minimum intrusion and
modifications. This would maximize the chance for the developed solution to be
adopted by the company. Note that, to develop a decentralized method, one major
assumption is that the vehicles should be able to communicate with each other and
be somewhat intelligent.
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For example, vehicles should know where they are in the layout. However, in the
current technology developed by the company, the vehicles communicate only with
the central traffic controller, and are unaware of other vehicles and even their own
location in the system. Thus, switching to a decentralized approach, regardless of its
potential benefits, would require major hardware-related changes in the vehicles, and
the way communication has been implemented. This would diminish the desire for
such a control policy by the company. Therefore, we decided to focus on a centralized
approach.

Moreover, as mentioned in Chapter 1, common optimization methodologies for
scheduling and routing of AGVs can be categorized into exact and heuristic mathemat-
ical methods, simulation studies, metaheuristic techniques and artificial intelligence
(AI) based approaches, as surveyed in [25]. Due to our interest and background
in mathematical optimization and constraint programming, in development of our
methodologies we have been mainly concerned with such methods.

5.3 Case study: Volvo
Our case study is based on an FMS belonging to Sweden’s largest automobile manu-
facturer, Volvo Cars. The layout of the FMS spans over an area of roughly 85000 m2,
which consists of several robot cells and conveyors. AGVs are employed to transport
racks, loaded with raw sheet metal parts, from inbound conveyors to robot cells for
various processes, and then to ship the empty racks back to outbound conveyors.
The current AGV solution has been deployed by AGVE. A movie clip of the AGVs
in the plant can be accessed from https://bit.ly/2KuTaQu. Furthermore, Figure 5.1
shows loaded and empty vehicles at the factory floor.

Figure 5.1: AGVs in the Volvo Cars plant. The left vehicle carries a rack loaded
with sheet metal parts.

The layout The mixed graph of the transport system includes 334 nodes and
412 arcs, out of which 98 are undirected. There are 21 home locations and several
charging stations scattered around the entire layout. The current system consists of
19 AGVs moving on a layout whose graph is depicted in Figure 4.1. In the figure, a
few of the robot stations are annotated with their names, for example ST8110. Most
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of the inbound and outbound conveyors are concentrated on the right side of the
figure. They are prefixed with In and Out respectively.
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Figure 5.2: Graph of the transportation system with 334 nodes and 412 arcs.
Four robot stations and three conveyors are annotated, prefixed with ST for robot
stations, with In for the inbound conveyors, and with Out for the outbound one.
The thin arcs are directed while the thick ones are undirected.

Traffic controller Since the existing traffic controller designed by AGVE is
centralized, it operates based on a few simple principles. (1) a shortest path algorithm
like Dijkstra [76] is used to generate each vehicle’s routes. (2) a vehicle is assigned to
a task only if it is within a prescribed distance to the node corresponding to the pick
subtask, which could either be a station or a conveyor. Therefore, an order could be
waiting in the queue while there is an unassigned vehicle in a remote location of the
layout. (3) If a task is tardy enough, even a far-off AGV can be assigned to it if no
other vehicle is in the vicinity. (4) The traffic controller routinely updates the task
assignments and routes with the latest changes/disruptions. (5) a so-called order
stealing may occur; a vehicle that has just finished its assignment may steal an order
from another vehicle, if the latter is far away.

The optimization model and algorithm The optimization model, is based
on a Benders decomposition method proposed in [26]. For more information on
Benders decomposition, see Section 4.2. In that article, the authors employed a
variation of Benders decomposition to solve the collision-free AGV scheduling and
routing problem in two stages for problems up to 6 AGVs and 13 tasks in a graph
of 30 nodes. Their approach tackled the task allocation and scheduling using a CP
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model with tardiness as its cost function, and the routing problem was handled using
a Mixed MILP, which was basically a CSP. Their proposed CSP model, however,
has difficulty scaling to large systems. Furthermore, the method is limited to AGV
layouts with special design, namely those with equidistant nodes on the tracks. As
our first contribution to the field, in Paper 5, we introduce several extensions and
improvements to [26] to allow solving larger problems, with promising results.

Reducing energy consumption In one of the few publications addressing
the energy optimization of AGVs [32], the authors formulate the problem as VRP,
combined with an energy consumption model of the AGV that takes into account
the load. However, results of such analysis cannot be readily used to control the
vehicles, mainly due to lack of regards for time and collision between vehicles. As
our next contribution to the field, in Paper 6, we show that by implementing an
effective scheduling and routing algorithm developed in Paper 5, it is possible to
improve system efficiency so much that it allows for reduction of speed to save energy
while still outperforming the original solution. An important advantage of such
an energy reduction method is simplicity of its implementation in the real system,
since regulating the vehicle’s speed can be done conveniently. The method leads to
significant improvements in key performance measures such as makespan, as well as
energy optimization. The reader is referred to the two papers for full detail of the
optimization model, experiments, and results.

A glimpse into the results Now we give a glimpse to one of our findings.
From the experiments we observe that our scheduling and routing algorithm improves
the makespan of the system significantly, compared the original traffic controller.
Now, to save some energy, the speed limit of AGVs is reduced. It is then observed
that the improvements in makespan deteriorates, which is expected. Yet, even after
the speed reduction, the makespan remains better than the original solution. This is
further illustrated in Figure 5.3.

This trend continues until the max speed of 0.8 m/s is reached, where the sum
of tardiness is no longer better than that of the original solution. The important
result is that until reaching that speed, reducing the maximum speed implies that
the energy consumption is decreased up to 34%, while outperforming the original
solution in all performance measures.

The important finding is that, for a given makespan (1830 for the original solution,
which amounts to 100% in the figure), our method can reduce the energy consumption
by around 38%, while the makespan remains better than the original solution from
the traffic controller. The data points for the original solution are the overlapping
points in the upper right corner of the figure.

The optimization results clearly show that an effective scheduling and routing
algorithm can be combined with reduction of the top speed of the AGVs as an
effective strategy to improve multiple performance measures such as makespan,
lateness, tardiness, and energy.
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Figure 5.3: Makespan and total energy consumption vs. speed limit for 10 tasks
and four AGVs.

5.4 Final remarks
Now we make a few final remarks, namely on deadlocks, an additional idea that we
explored in the hope of improving the results, and the foreseen future of our AGV
research.

A note on deadlocks A deadlock is a situation involving opposite parties,
where no progress can be achieved due to a fundamental disagreement. In other
words, a deadlock occurs when a process is waiting for an event or action that will
never occur [77]. An event can be, for example, releasing a booked resource, such as
a physical location, a file, etc.

Consider two processes, P1 and P2 and two resources R1 and R, where P1 and
P2 have booked R1 and R2 respectively. Furthermore, P1 is waiting for P2 to release
R1 before it can be completed, and P2 is likewise waiting for P1 to release R1.
Clearly neither of the resources will be released and the situation will not resolve
without external intervention. An effective tool to analyze deadlocks is a resource
allocation graph, which is a directed bipartite graph and can be used to design
deadlock avoidance algorithms, as in [78]. When a resource is booked by a process,
an arrow emanates from the resource to the process. When a process requests a
resource, the arrow is from the process towards the resource. This is depicted in
Figure 5.4, where the deadlock situation of the example above is seen.

In the context of AGVs resources can be physical locations, which can be modeled
by nodes and arcs in a graph representation of an AGV layout. Deadlocks may
occur, for instance, when two AGVs that have booked two nodes or arcs request
from each other the release of a booked resource so they can move. Now, we describe
a deadlock situation in an AGV system.

In Figure 5.5 a partial AGV layout with two forklift AGVs are depicted. In the
layout, there are four lanes that are two by two parallel and in opposite directions.
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Figure 5.4: A deadlock situation shown using resource allocation graph

Hence, the travel in each direction is done in a unique lane. AGV 1 has booked
nodes A and B, while AGV 2 has booked nodes C and D. However, due to physical
proximity of the curves near the junction and the size of the vehicles, when AGV
1 wants to travel on the arc AB, it must also book the arc CD to avoid possible
collision. Similarly, when the second AGV wants to travel on the curve CD it must
also book the arc AB. In the present situation both vehicles are waiting for each
other to release the required resource and are deadlocked. Deadlock situations in
AGV systems can be avoided through several methods.

Deadlocks of this type maybe avoided by zone control in real time. This technique
subdivides the guide paths into disjoint zones that represent intersections of several
paths (like the example above), workstations, etc. Then, the access to each zone is
authorized by a control policy in advance [79] to avoid deadlock and collision. It is
also possible to schedule the movements of the vehicles in advance to avoid deadlocks
and collisions, which has been addressed in [26] and is also the method of choice in
the present work.

Figure 5.5: AGV 1 and AGV2 are deadlocked.

Exploring the idea of abstraction In the field of discrete-event systems,
one common problem is the state-space explosion, which means that the size of the
state-space system grows exponentially with the number of local state variables.
The problem can be coped with using techniques such as abstraction [80], [81].
The idea is to examine the graph (automaton) describing the system, and merge
nodes (states) that are not of immediate importance, hence drastically reducing the
required memory and computational effort. Thus, one idea we experimented with
was reducing the size of the layout’s graph to improve the computational speed.
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In the AGV layout shown in Figure 5.2, we can see long pathways that consist
of nodes with only one input and one output arc. One can combine these nodes
such that a long stretch is replaced by one arc (with adjusted weight) that ends in
one input node with two or more input arcs and one output node with two or more
output arcs, as shown in Figure 5.6.

Figure 5.6: Abstraction; merging nodes with one input and one output arc.

We developed an algorithm to achieve this and applying it to the graph reduced
the number of nodes from 334 to 296, or about 11%. For example, for a case with 10
tasks and 4 AGVs and algorithm heur-Benders-CP, the CPU time reduces from
34.07 s to 24.20 s. It should also be pointed out that in a long unidirectional path
with multiple nodes, more than one AGV can travel simultaneously. Therefore, when
the logical nodes are merged, the capacity of the abstracted nodes should also be
adjusted appropriately to reflect the physical capacity; otherwise the makespan will
deteriorate. For example, if the capacity adjustments are not made, in the same
problem instance, the makespan increases from 1064 s to 1090 s.

5.5 Summary
In this chapter, we provided an overview of the problem of energy efficient routing
and scheduling of AGVs. The challenges and opportunities were reviewed, as well as
our methodology for dealing with the problem. We showcased some of our results
from the papers.

Answering the research questions In Section 1.3, we formulated two re-
search question regarding AGVs, which are revisited, as follows.

RQ5 : How can conflict-free routing and scheduling of moving devices be addressed
using general-purpose solvers for large-scale problems?

RQ6 : How can the energy saving methodology developed in response to RQ1-RQ2 be
reused in the context of large-scale routing and scheduling of moving devices?

To answer RQ5, in Paper 5, we proposed a methodology based on Benders
decomposition, which utilized the power of CP and SMT.



Chapter 5. Energy Efficient Routing and Scheduling of AGVs 67

To answer RQ6, in Paper 6, we first showed that the important contributing
factors in energy consumption of AGVs were traveled distance and velocity, while
acceleration was not as significant as it was for industrial robots. Then, we showed
that in conjunction with the methodology developed above, the vehicles could be
slowed down to save energy, while the performance indexes remained better than
those of the original traffic controller.





Chapter 6

Summary of Included Papers

In this chapter, we provide a brief summary of the articles included in the thesis. All
of the papers can be found in Part II, in the original format of their corresponding
conference or journal.

Paper 1
Sarmad Riazi, Kristofer Bengtsson, Oskar Wigström, Emma Vidarsson, and Bengt
Lennartson. Energy optimization of multi-robot systems. Proceedings of the 11th
IEEE Conference on Automation Science and Engineering (CASE), Gothenburg,
2015, pp. 1345–1350.

Paper 1 introduces a novel optimization procedure to reduce energy consumption
of industrial robots in a multi-robot environment. The procedure includes four steps;
(1) programming/running an arbitrary motion on the robot, (2) logging the motion
via existing software functionalities of the robots (3) optimizing the motion offline,
and (4) running the optimized motion on the robot. The optimization model can be
solved quickly with an open-source nonlinear programming solver. Two important
features of the optimization procedure are that paths are preserved, and the original
cycle time can be retained. A few scenarios have been studied using a real industrial
robot.

Paper 2
Sarmad Riazi, Oskar Wigström, Kristofer Bengtsson, and Bengt Lennartson.
Energy and Peak-power Optimization of Time-bounded Robot Trajectories. IEEE
Transactions on Automation Science and Engineering, 2017, 14(2): 646–657.

This paper builds upon the optimization procedure presented in Paper 1 with
several extensions. Firstly, various case studies are carried out using robots of
different sizes. Multi-robot scenarios are studied in more detail using a real four-
robot station. Furthermore, different surrogate objective functions are employed
to target the energy consumption and peak-power of the robots. It is also shown
that the optimization technique yields results that are superior to the existing
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energy reduction measures built-in to the robots. One extra feature of this study
is the careful energy measurements at a relatively constant temperature during the
experiments. This is to minimize the effect of temperature on energy consumption
and thereby obtaining more reliable results.

Paper 3
Sarmad Riazi, Oskar Wigström, Kristofer Bengtsson, and Bengt Lennartson.
A Column Generation-based Gossip Algorithm for Home Healthcare Routing and
Scheduling Problems. IEEE Transactions on Automation Science and Engineering,
2019, 16(1):127–137.

Paper 3 concerns a integrated/hybrid optimization approach to solve the home
healthcare routing and scheduling problem as a vehicle routing problem. The method
breaks the problem into smaller local problems within the framework of a distributed
algorithm called gossip, and solves the local problem using the column generation
algorithm. It is shown that the integration of the gossip algorithm with column
generation outperforms the standard column generation.

Paper 4
Sarmad Riazi, Oskar Wigström, Kristofer Bengtsson, and Bengt Lennartson.
Parallelization of a gossip algorithm for vehicle routing problems. Proceedings of the
14th IEEE Conference on Automation Science and Engineering (CASE), Munich,
2018, pp. 92–97.

The gossip algorithm, which was applied to the routing problems in Paper 3,
naturally decomposes the problem in local problems that can be solved in parallel.
This paper contributes to the field by proposing a parallelized gossip algorithm that
takes advantage of multi-core processors to speed up the solution process. Benchmark
instances are solved considerably quicker using the proposed method.

Paper 5
Sarmad Riazi, Thomas Diding, Petter Falkman, Kristofer Bengtsson, and Bengt
Lennartson. Scheduling and Routing of AGVs for Large-scale Flexible Manufacturing
Systems. Proceedings of the 15th IEEE Conference on Automation Science and
Engineering (CASE), Vancouver, 2019, pp. 891–896.

In Paper 5, we propose a heuristic to solve the problem of scheduling and routing
of automated guided vehicles in a large-scale manufacturing system, with promising
results. The algorithm is based on an existing integrated method [26], which we
improve such that it becomes capable of handling much larger systems. Additionally,
we study the use of a SAT solver as the main optimization engine, which proves to
be a viable option in absence of commercial CP solvers. Our case study concerns a
real large-scale AGV system installed at Volvo Cars.
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Paper 6
Sarmad Riazi, Kristofer Bengtsson, and Bengt Lennartson. Energy Optimiza-
tion of Large-scale AGV Systems. Conditionally accepted for publication in IEEE
Transactions on Automation Science and Engineering.

Our final paper serves as a bridge between Paper 1-2, which dealt with energy
optimization of robots, and Paper 3-4, which addressed routing and scheduling of
vehicle/caregivers with focus on performance. Paper 6 is based on Paper 5, and has
several contributions; (1) Extension of the mathematical model in Paper 5 to take
into account additional constraints in the FMS at Volvo Cars, (2) low-level energy
consumption analysis of the AGVs, which is used to design an energy saving strategy,
(3) Comparison between the outcome of our scheduling/routing method with the
existing traffic controller used in the AGV system, with promising results in terms
of several performance measures, and (4) detailed analysis of the proposed energy
saving strategy using data from the real system.





Chapter 7

Concluding Remarks

This thesis introduced several methods for energy and route optimization of moving
devices with promising results. We have dealt with energy optimization of robots,
vehicle routing problems, and energy efficient routing and scheduling of AGVs, which
combine the former two problems. As the conclusions are grouped around the
research questions (RQ), we start by the first one.

RQ1 : How can robot’s energy consumption be reduced in a non-intrusive way, while
preserving original path and cycle time?
In Paper 1, we proposed a methodology for energy optimization of robots that
preserve the path and cycle time using the built-in robot functionalities. This
means that no additional change is needed to be made in the robot controller,
which is one measure of being non-intrusive. Moreover, since our methodology
only changes trajectories but not paths, it reduces the concern for possible
collisions. This is another measure of being non-intrusive.
Another feature of the technique is that it does not require confidential robot
parameters, which makes the method even more appealing. An important
advantage of the methodology is its simplicity. The author heard from a
professor at Chalmers University that the best ideas are often the simple ones.
In fact, out methodology is so powerful and straightforward that, in collab-
oration with University West in Sweden, it has also been implemented in a
real-world case study that considers the multi-robot material handling system
of a multi-stage tandem press line, also with promising results in reduction of
energy consumption [82].

RQ2 : In what ways can energy and peak-power for multi-robot cell be reduced?
The short answer is, in addition to the technique developed in Paper 1, one
should slow down the robot motions when it is possible. For example, when
one robot is supposed to wait for another one, it can be programmed in a way
that it moves slower. This way, the cycle time of the robot cell will not be
affected.
To achieve this, in Paper 2 we refined our procedures further. We employed
accurate energy measurement equipment and provided procedures to have
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reliable measurements and replicable experiments. A detailed case study and
its results are presented in Paper 2. The study was conducted at Daimler. In
short, we showed that it was possible to reduce up to 30% of energy consumption
and up to 60% of peak-power.

RQ3 : In the context of routing of moving devices, how can a known efficient algorithm
be integrated with a metaheuristic to solve larger problems?
The author’s answer is that, one way is to integrate the efficient algorithm as a
local solver into a suitable metahuristic framework. For example, this can be
done by decomposing the problem into local problems. This may lead into an
algorithm that is more efficient than the original centralized algorithm.
To implement this idea, in Paper 3, we proposed the gossip-CG algorithm,
which was an integration of the gossip and column generation algorithms. It
proved to outperform CG on the many problem instances we used to test on.
Gossip-CG consistently yielded solutions with higher quality compared to those
obtained from pure CG. Moreover, gossip-CG was able to rapidly improve the
initial solution even after only a few iterations.

RQ4 : How can the performance of the integrated optimization approach developed in
response to RQ3 be improved by better utilization of existing hardware?
Our experience is that, one approach could be parallelization of the integrated
algorithm, or in general, any other optimization algorithm. But parallelization
is not always an option, as not all algorithms is easily adopted for this. Fur-
thermore, the implementation effort can be significant. Thus, a metaheuristic
that allows for parallelization can be a good candidate.
To validate the idea, in Paper 4 we utilized the distributed nature of the gossip
algorithm and proposed its multi-threaded version, which better utilizes a
multi-core CPU. The implementation effort was also proved to be minimal.
Hence, our answer to RQ4 is to use algorithms that can be easily parallelized.

RQ5 : How can conflict-free routing and scheduling of moving devices be addressed
using general-purpose solvers for large-scale problems?
To tackle this question, we focused on an AGV routing and scheduling problem,
as a particular case of moving devices. Our approach has been to generate
schedules that are collision and deadlock-free, rather than a scheduling method
that also has to handle deadlocks on the fly, if they occur. Moreover, according
to our experience, much improvement can be done by better assignments of
tasks to AGVs, in addition to better scheduling.
Since our problem, apart from the deadlock-free routing part, was similar to
a job-shop scheduling problem, we thought about using general-purpose CP
or SMT solvers, that are known to be efficient for this kind of problems [83].
We also had the intuition that a decompositional algorithm could be suitable.
Indeed, both of the ideas were already published [26]. However, that article’s
approach was not flexible enough to handle the AGV layout that we were
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dealing with. Besides, it was not suitable for very large layouts, which was our
case.
Therefore, in Paper 5 we proposed a methodology based on [26], which utilized
the power of CP and SMT in a decomposition framework. We modeled the
problem in a smarter way, which eliminated the shortcomings in [26]. Indeed,
we also proposed a heuristic version of the algorithm, with higher performance.

RQ6 : How can the energy saving methodology developed in response to RQ1-RQ2 be
reused in the context of large-scale routing and scheduling of moving devices?
To answer this question in Paper 6, we first showed that the important con-
tributing factors in energy consumption of AGVs were traveled distance and
velocity, while acceleration was not as significant as it was for industrial robots.
Then, we showed that in conjunction with the methodology developed above,
the vehicles could be slowed down to save energy, while the performance indexes
remained better than those of the original traffic controller.

Future work At the time of writing this thesis, the author has started working
at AGVE as a research engineer. The author is proud to announce that his current
job description includes developing routing and scheduling algorithms for the next
generation of traffic controllers. The outcome should be delivered within a five-year
plan, in collaboration with Murata Machinery. The ongoing plans for the immediate
future are twofold. First, the author is exploring online deadlock and blocking
avoidance techniques, using information from the generated route and nodes that
are to be visited soon. For example, if two vehicles are predicted to end up in a
tight area with risk of getting deadlocked, one will be slowed down, stopped, or
re-routed. The second task is to expand and further improve the algorithms and
methods developed in Paper 5 and Paper 6.

Another idea that will also be explored, is the use of AI for scheduling the AGVs
even better. For example, consider an FMS with two work shifts. In the first work
shift, some areas of the system are more active, while in the second work shift, other
areas are generating transport orders more frequently. When an AGV has delivered
its order, it can be sent to areas where it is expected to see more request, rather
than simply sending the AGV into the nearest home location. Therefore, the activity
pattern of the system can be learned and used as an input into the control system.
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