2,248 research outputs found

    Target-adaptive CNN-based pansharpening

    Full text link
    We recently proposed a convolutional neural network (CNN) for remote sensing image pansharpening obtaining a significant performance gain over the state of the art. In this paper, we explore a number of architectural and training variations to this baseline, achieving further performance gains with a lightweight network which trains very fast. Leveraging on this latter property, we propose a target-adaptive usage modality which ensures a very good performance also in the presence of a mismatch w.r.t. the training set, and even across different sensors. The proposed method, published online as an off-the-shelf software tool, allows users to perform fast and high-quality CNN-based pansharpening of their own target images on general-purpose hardware

    Domain Adaptation in remote sensing: increasing the portability of land-cover classifiers

    Get PDF
    Among the types of remote sensing acquisitions, optical images are certainly one of the most widely relied upon data sources for Earth observation. They provide detailed measurements of the electromagnetic radiation reflected or emitted by each pixel in the scene. Through a process termed supervised land-cover classification, this allows to automatically yet accurately distinguish objects at the surface of our planet. In this respect, when producing a land-cover map of the surveyed area, the availability of training examples representative of each thematic class is crucial for the success of the classification procedure. However, in real applications, due to several constraints on the sample collection process, labeled pixels are usually scarce. When analyzing an image for which those key samples are unavailable, a viable solution consists in resorting to the ground truth data of other previously acquired images. This option is attractive but several factors such as atmospheric, ground and acquisition conditions can cause radiometric differences between the images, hindering therefore the transfer of knowledge from one image to another. The goal of this Thesis is to supply remote sensing image analysts with suitable processing techniques to ensure a robust portability of the classification models across different images. The ultimate purpose is to map the land-cover classes over large spatial and temporal extents with minimal ground information. To overcome, or simply quantify, the observed shifts in the statistical distribution of the spectra of the materials, we study four approaches issued from the field of machine learning. First, we propose a strategy to intelligently sample the image of interest to collect the labels only in correspondence of the most useful pixels. This iterative routine is based on a constant evaluation of the pertinence to the new image of the initial training data actually belonging to a different image. Second, an approach to reduce the radiometric differences among the images by projecting the respective pixels in a common new data space is presented. We analyze a kernel-based feature extraction framework suited for such problems, showing that, after this relative normalization, the cross-image generalization abilities of a classifier are highly increased. Third, we test a new data-driven measure of distance between probability distributions to assess the distortions caused by differences in the acquisition geometry affecting series of multi-angle images. Also, we gauge the portability of classification models through the sequences. In both exercises, the efficacy of classic physically- and statistically-based normalization methods is discussed. Finally, we explore a new family of approaches based on sparse representations of the samples to reciprocally convert the data space of two images. The projection function bridging the images allows a synthesis of new pixels with more similar characteristics ultimately facilitating the land-cover mapping across images

    Sparse representation based hyperspectral image compression and classification

    Get PDF
    Abstract This thesis presents a research work on applying sparse representation to lossy hyperspectral image compression and hyperspectral image classification. The proposed lossy hyperspectral image compression framework introduces two types of dictionaries distinguished by the terms sparse representation spectral dictionary (SRSD) and multi-scale spectral dictionary (MSSD), respectively. The former is learnt in the spectral domain to exploit the spectral correlations, and the latter in wavelet multi-scale spectral domain to exploit both spatial and spectral correlations in hyperspectral images. To alleviate the computational demand of dictionary learning, either a base dictionary trained offline or an update of the base dictionary is employed in the compression framework. The proposed compression method is evaluated in terms of different objective metrics, and compared to selected state-of-the-art hyperspectral image compression schemes, including JPEG 2000. The numerical results demonstrate the effectiveness and competitiveness of both SRSD and MSSD approaches. For the proposed hyperspectral image classification method, we utilize the sparse coefficients for training support vector machine (SVM) and k-nearest neighbour (kNN) classifiers. In particular, the discriminative character of the sparse coefficients is enhanced by incorporating contextual information using local mean filters. The classification performance is evaluated and compared to a number of similar or representative methods. The results show that our approach could outperform other approaches based on SVM or sparse representation. This thesis makes the following contributions. It provides a relatively thorough investigation of applying sparse representation to lossy hyperspectral image compression. Specifically, it reveals the effectiveness of sparse representation for the exploitation of spectral correlations in hyperspectral images. In addition, we have shown that the discriminative character of sparse coefficients can lead to superior performance in hyperspectral image classification.EM201

    Recent Progress in Image Deblurring

    Full text link
    This paper comprehensively reviews the recent development of image deblurring, including non-blind/blind, spatially invariant/variant deblurring techniques. Indeed, these techniques share the same objective of inferring a latent sharp image from one or several corresponding blurry images, while the blind deblurring techniques are also required to derive an accurate blur kernel. Considering the critical role of image restoration in modern imaging systems to provide high-quality images under complex environments such as motion, undesirable lighting conditions, and imperfect system components, image deblurring has attracted growing attention in recent years. From the viewpoint of how to handle the ill-posedness which is a crucial issue in deblurring tasks, existing methods can be grouped into five categories: Bayesian inference framework, variational methods, sparse representation-based methods, homography-based modeling, and region-based methods. In spite of achieving a certain level of development, image deblurring, especially the blind case, is limited in its success by complex application conditions which make the blur kernel hard to obtain and be spatially variant. We provide a holistic understanding and deep insight into image deblurring in this review. An analysis of the empirical evidence for representative methods, practical issues, as well as a discussion of promising future directions are also presented.Comment: 53 pages, 17 figure

    Exploiting Cross Domain Relationships for Target Recognition

    Get PDF
    Cross domain recognition extracts knowledge from one domain to recognize samples from another domain of interest. The key to solving problems under this umbrella is to find out the latent connections between different domains. In this dissertation, three different cross domain recognition problems are studied by exploiting the relationships between different domains explicitly according to the specific real problems. First, the problem of cross view action recognition is studied. The same action might seem quite different when observed from different viewpoints. Thus, how to use the training samples from a given camera view and perform recognition in another new view is the key point. In this work, reconstructable paths between different views are built to mirror labeled actions from one source view into one another target view for learning an adaptable classifier. The path learning takes advantage of the joint dictionary learning techniques with exploiting hidden information in the seemingly useless samples, making the recognition performance robust and effective. Second, the problem of person re-identification is studied, which tries to match pedestrian images in non-overlapping camera views based on appearance features. In this work, we propose to learn a random kernel forest to discriminatively assign a specific distance metric to each pair of local patches from the two images in matching. The forest is composed by multiple decision trees, which are designed to partition the overall space of local patch-pairs into substantial subspaces, where a simple but effective local metric kernel can be defined to minimize the distance of true matches. Third, the problem of multi-event detection and recognition in smart grid is studied. The signal of multi-event might not be a straightforward combination of some single-event signals because of the correlation among devices. In this work, a concept of ``root-pattern\u27\u27 is proposed that can be extracted from a collection of single-event signals, but also transferable to analyse the constituent components of multi-cascading-event signals based on an over-complete dictionary, which is designed according to the ``root-patterns\u27\u27 with temporal information subtly embedded. The correctness and effectiveness of the proposed approaches have been evaluated by extensive experiments

    Sparse Coding Based Feature Representation Method for Remote Sensing Images

    Get PDF
    In this dissertation, we study sparse coding based feature representation method for the classification of multispectral and hyperspectral images (HSI). The existing feature representation systems based on the sparse signal model are computationally expensive, requiring to solve a convex optimization problem to learn a dictionary. A sparse coding feature representation framework for the classification of HSI is presented that alleviates the complexity of sparse coding through sub-band construction, dictionary learning, and encoding steps. In the framework, we construct the dictionary based upon the extracted sub-bands from the spectral representation of a pixel. In the encoding step, we utilize a soft threshold function to obtain sparse feature representations for HSI. Experimental results showed that a randomly selected dictionary could be as effective as a dictionary learned from optimization. The new representation usually has a very high dimensionality requiring a lot of computational resources. In addition, the spatial information of the HSI data has not been included in the representation. Thus, we modify the framework by incorporating the spatial information of the HSI pixels and reducing the dimension of the new sparse representations. The enhanced model, called sparse coding based dense feature representation (SC-DFR), is integrated with a linear support vector machine (SVM) and a composite kernels SVM (CKSVM) classifiers to discriminate different types of land cover. We evaluated the proposed algorithm on three well known HSI datasets and compared our method to four recently developed classification methods: SVM, CKSVM, simultaneous orthogonal matching pursuit (SOMP) and image fusion and recursive filtering (IFRF). The results from the experiments showed that the proposed method can achieve better overall and average classification accuracies with a much more compact representation leading to more efficient sparse models for HSI classification. To further verify the power of the new feature representation method, we applied it to a pan-sharpened image to detect seafloor scars in shallow waters. Propeller scars are formed when boat propellers strike and break apart seagrass beds, resulting in habitat loss. We developed a robust identification system by incorporating morphological filters to detect and map the scars. Our results showed that the proposed method can be implemented on a regular basis to monitor changes in habitat characteristics of coastal waters

    A Comprehensive Survey of Deep Learning in Remote Sensing: Theories, Tools and Challenges for the Community

    Full text link
    In recent years, deep learning (DL), a re-branding of neural networks (NNs), has risen to the top in numerous areas, namely computer vision (CV), speech recognition, natural language processing, etc. Whereas remote sensing (RS) possesses a number of unique challenges, primarily related to sensors and applications, inevitably RS draws from many of the same theories as CV; e.g., statistics, fusion, and machine learning, to name a few. This means that the RS community should be aware of, if not at the leading edge of, of advancements like DL. Herein, we provide the most comprehensive survey of state-of-the-art RS DL research. We also review recent new developments in the DL field that can be used in DL for RS. Namely, we focus on theories, tools and challenges for the RS community. Specifically, we focus on unsolved challenges and opportunities as it relates to (i) inadequate data sets, (ii) human-understandable solutions for modelling physical phenomena, (iii) Big Data, (iv) non-traditional heterogeneous data sources, (v) DL architectures and learning algorithms for spectral, spatial and temporal data, (vi) transfer learning, (vii) an improved theoretical understanding of DL systems, (viii) high barriers to entry, and (ix) training and optimizing the DL.Comment: 64 pages, 411 references. To appear in Journal of Applied Remote Sensin

    A proximal iteration for deconvolving Poisson noisy images using sparse representations

    Get PDF
    We propose an image deconvolution algorithm when the data is contaminated by Poisson noise. The image to restore is assumed to be sparsely represented in a dictionary of waveforms such as the wavelet or curvelet transforms. Our key contributions are: First, we handle the Poisson noise properly by using the Anscombe variance stabilizing transform leading to a {\it non-linear} degradation equation with additive Gaussian noise. Second, the deconvolution problem is formulated as the minimization of a convex functional with a data-fidelity term reflecting the noise properties, and a non-smooth sparsity-promoting penalties over the image representation coefficients (e.g. 1\ell_1-norm). Third, a fast iterative backward-forward splitting algorithm is proposed to solve the minimization problem. We derive existence and uniqueness conditions of the solution, and establish convergence of the iterative algorithm. Finally, a GCV-based model selection procedure is proposed to objectively select the regularization parameter. Experimental results are carried out to show the striking benefits gained from taking into account the Poisson statistics of the noise. These results also suggest that using sparse-domain regularization may be tractable in many deconvolution applications with Poisson noise such as astronomy and microscopy
    corecore