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ABSTRACT 

SPARSE CODING BASED FEATURE REPRESENTATION METHOD  

FOR REMOTE SENSING IMAGES 

Ender Oguslu 

Old Dominion University, 2016 

Director: Dr. Jiang Li 
 

In this dissertation, we study sparse coding based feature representation method for the 

classification of multispectral and hyperspectral images (HSI). The existing feature 

representation systems based on the sparse signal model are computationally expensive, 

requiring to solve a convex optimization problem to learn a dictionary. A sparse coding feature 

representation framework for the classification of HSI is presented that alleviates the complexity 

of sparse coding through sub-band construction, dictionary learning, and encoding steps. In the 

framework, we construct the dictionary based upon the extracted sub-bands from the spectral 

representation of a pixel. In the encoding step, we utilize a soft threshold function to obtain 

sparse feature representations for HSI. Experimental results showed that a randomly selected 

dictionary could be as effective as a dictionary learned from optimization.  

The new representation usually has a very high dimensionality requiring a lot of 

computational resources. In addition, the spatial information of the HSI data has not been 

included in the representation. Thus, we modify the framework by incorporating the spatial 

information of the HSI pixels and reducing the dimension of the new sparse representations. The 

enhanced model, called sparse coding based dense feature representation (SC-DFR), is integrated 

with a linear support vector machine (SVM) and a composite kernels SVM (CKSVM) classifiers 

to discriminate different types of land cover. We evaluated the proposed algorithm on three well 

known HSI datasets and compared our method to four recently developed classification methods: 
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SVM, CKSVM, simultaneous orthogonal matching pursuit (SOMP) and image fusion and 

recursive filtering (IFRF).  The results from the experiments showed that the proposed method 

can achieve better overall and average classification accuracies with a much more compact 

representation leading to more efficient sparse models for HSI classification.  

To further verify the power of the new feature representation method, we applied it to a pan-

sharpened image to detect seafloor scars in shallow waters. Propeller scars are formed when boat 

propellers strike and break apart seagrass beds, resulting in habitat loss. We developed a robust 

identification system by incorporating morphological filters to detect and map the scars. Our 

results showed that the proposed method can be implemented on a regular basis to monitor 

changes in habitat characteristics of coastal waters. 
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Chapter 1  

 

INTRODUCTION 

 

In remote sensing, the reflectance of an object can be characterized by spectral responses 

over a mixture of wavelengths. The comparability of these responses over distinct wavelengths 

can be applied to identify different materials. Some materials, such as water, can be identified 

using broad wavelength ranges in visible and near-infrared portions of the electromagnetic 

spectrum. On the other hand, more specific classes, such as different vegetation types in a forest, 

can be broken up using a much finer wavelength range. Therefore, different types of remote 

sensing images are required to categorize the objects on the ground.  

Remote sensing images can be categorized into three different types depending on the 

number of spectral bands used in the imaging process. The first one is the panchromatic 

image that consists of a single band. It is captured by a sensor, which has a single channel 

detector sensitive to radiation within a broad wavelength range. The second type is referred to as 

the multispectral image which records energy over several separate wavelengths ranges of 

several spectral resolutions. In multichannel detector, each channel is sensitive to radiation 

within a narrow wavelength band. The resulting multilayer image contains both the brightness 

(spatial) and color (spectral) information from the objects. The third type of remote sensing 

images is the hyperspectral image (HSI) that acquires images in about a hundred or more 

contiguous spectral bands throughout the visible, near-infrared, and mid-infrared portions of the 

electromagnetic spectrum.  
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During the last two decades, significant progress has been made in remote sensing sensors 

with finer resolutions in both the spatial and spectral domains. The development in panchromatic 

systems, such as IKONOS, QuickBird, and WorldView-2, can produce an elaborate and accurate 

mapping of the urban environment with a sub-meter resolution. However, panchromatic images 

have a low spectral resolution, leading to poor visualization and classification performances [1]. 

Contrarily, multispectral images are designed to take advantage of the different spectral 

properties of materials on Earth surface. They have low spatial resolution leading less detail 

information of targets. Therefore, a panchromatic image has been often fused with a 

multispectral image using pan-sharpening methods [2, 3] to obtain high spectral and spatial 

resolution image called pan-sharpened image. 

1.1 PROBLEM STATEMENT 

Different materials can be identified by classifying remote sensing pixels into different 

categories based on statistical characteristics of the pixel values. The spectral bands on 

multispectral and HSI images are essential source of information for the classification of land 

cover materials. A variety of techniques have been employed, including support vector machines 

(SVM) [4-6], neural networks [7], and graph-based methods [8] for the classification of 

multispectral and HSI images. All of these methods have proved to be powerful tools for this 

purpose. However, the performance of the classification methods is heavily dependent on the 

feature representation on which they are applied. For that reason, machine learning algorithms 

are employed to transform a pixel into a new representation that can be effectively exploited in 

classification tasks. In this dissertation, we focus on the feature representation methods for the 

classification of HSI and multispectral images.  
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 Sparse coding is a recently developed machine learning technique. In sparse coding, it is 

assumed that high dimensional natural signals belonging to the same class usually lie in a low-

dimensional subspace. Sparse coding reconstructs each unknown input data as a weighted linear 

combination of a few basis functions of a dictionary learned from the data. The dictionary is 

intentionally made overcomplete so that many of the reconstruction weights (sparse codes) are 

zeros leading to a sparse representation for the input data. Extraction of the reconstruction 

weights and dictionary requires a two-step optimization where alternating minimization is solved 

over the sparse codes and the dictionary while holding the other fixed. To overcome this difficult 

computational problem, approximate solutions are considered and various numbers of 

minimization techniques, such as greedy algorithms or l1 norm convex relaxation, have been 

developed [9]. Sparse coding has been successfully employed in many applications, including 

classification of HSI images. In HSI model, it is usually assumed that high dimensional spectral 

bands of the pixels in the same class lie in a subspace of reduced dimensionality. Therefore, the 

HSI model is consistent with the sparse signal model. Initial studies in this direction usually 

propose different dictionary learning models using sparse coding for the new representation of 

HSI data [10-14]. However, the feature representation systems based on the sparse signal model 

are computationally expensive, requiring to solve a convex optimization problem. We need more 

practical and efficient method to solve this problem. 

Besides the computational complexity problem, another problem of sparse coding algorithm 

is the high dimensionality of the new representation requiring plenty of computational resources. 

In addition, for the specific classification task, some of the new features may be correlated or 

redundant, leading to the overfitting problem. This problem occurs when the number of features 

is larger compared to the number of training samples. Thus, given a classification technique, it is 
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conceivable to select the best set of features satisfying a given “model selection”. One way to 

overcome this problem is to use a feature selection step that may reduce the dimensionality of the 

new pixel representation without performance degradation. 

This dissertation also discusses the detection of seafloor propeller seagrass scars in shallow 

water. The existing techniques usually tend to detect scars based on an object recognition method 

which is a combination of segmentation and classification steps. However, the success of these 

methods depends on a segmentation scale that determines the maximum detectable scar size in 

images. In addition, these methods usually need some manual editing such as field observations 

and injection of the classification rules that make them semi-automatic. 

1.2 CONTRIBUTIONS 

In this dissertation, we address the challenge of feature representation problem for the 

classification of hyperspectral images. We present a sparse coding based dense feature 

representation (SC-DFR) model which consists of sub-band construction, dictionary learning, 

encoding and feature selection steps. We systematically integrated multiple sparse representation 

techniques for accurate HSI image classification. In addition, we experimentally showed that we 

can reduce the size of the final representation of the pixel, which is a natural challenge of sparse 

coding approaches, without performance degradation for HSI classification. We also 

experimentally prove that a randomly selected dictionary could be efficient as a dictionary 

learned from optimization solutions.     

We also introduce a pixel based algorithm to detect and map the seagrass scars. The SC-DFR 

model extracts the new representation of the pan-sharpened multispectral bands obtained from 

multispectral and panchromatic images. The classification of the new features successfully 

detects both bright and dark-toned scars which have very similar pixel values with their 
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neighborhood structures and are difficult to discriminate. The morphological filtering process 

eliminates the false positive pixels to improve the detection results achieved by the classification 

step. The proposed system is fully automatic once the model is trained, requiring no human 

intervention for scar detection. 

1.3 ORGANIZATION OF THE DISSERTATION 

This dissertation is organized as follows. Chapter 2 reviews the related works including 

sparse coding based feature learning techniques, recent sparse coding based HSI feature 

representation and classification approaches. Chapter 3 presents the proposed SC-DFR method 

for the classification of HSI. The experiment results on multiple HSI data are also discussed in 

this part. Chapter 4 introduces the application of the SC-DFR method to the multi-spectral pan-

sharpened bands for the detection of seafloor propeller seagrass scars in shallow water. Chapter 5 

concludes this dissertation.  
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Chapter 2  

 

RELATED WORK 

 

2.1 INTRODUCTION 

The focus of this dissertation is feature representation of pixels for the classification of HSI 

and multispectral images. Before getting involved in details, we outline a few explanatory 

remarks on the classification task and the importance of the feature representation. In machine 

learning aspect, classification is the process of identifying the class of an input sample containing 

specific features, on the basis of a training set of data whose class is known. A classification 

algorithm requires the features which are convenient to process in terms of mathematically and 

computationally. However, in real world, the image pixels may have complex, noisy, redundant 

and high dimensional features which can not be categorized easily. Two different vegetation 

types may have very similar spectral responses, on the other hand, a certain vegetation type may 

have different spectral responses that make them difficult to categorize into appropriate classes. 

Thus, in order to model real-world data, it is significant to find new representations from raw 

data.  

In this chapter, we explain some fundamental concepts and related works studied. In this 

content, sparse coding based feature representation, classification, feature selection and basic 

morphological operation methods are reviewed, respectively.  
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2.2 SPARSE CODING BASED FEATURE REPRESENTATION METHODS 

Recent researches on sparse coding have attracted increased attention in various computer 

vision and pattern recognition applications, including image classification [15-17] and HSI 

classification [10-14, 18, 19]. In sparse coding, a set of basis functions, called as dictionary, is 

first learned from the data. Then it reconstructs each original data point as a linear combination 

of the basis functions. With sparse coding, local patterns embedded in data are extracted and 

composed of sparse vectors in a high-dimensional space, where a linear classifier is sufficient for 

classification. Sparse coding based feature representation methods can be set apart into two parts 

(Figure 1): (1) learning part that creates a set of basis functions, dictionary D, and (2) encoding 

part that extracts the new representation of an input data with the learned dictionary [16]. In the 

following part of this chapter, we first review the dictionary research, then discuss the two steps 

of sparse coding. 

 

 

Figure 1: Feature representation system. 
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2.2.1 REVIEW OF DICTIONARY RESEARCH 

Signal transforms have been studied by many researchers since the linear-time invariant 

operators being introduced. In this regard, the Fast Fourier Transform (FFT) came up as a 

remarkable tool by Cooley and Turkey in 1965 for signal processing. The Fourier basis 

represents a signal in global frequency content and describes a signal in the form of a 

combination of orthogonal waveforms [20]. The K lowest frequency basis functions are used for 

projection of the signal onto the basis functions to analyze or smooth the signal. Fourier 

transform assumes a periodic extension of finite signals, which causes a discontinuity at 

boundaries. Subsequently, the adaptation of anti symmetric extension property to signal 

produced the Discrete Cosine Transform (DCT) [21], which results in continues boundaries. This 

made it more desirable than the FFT in practical applications.  

Signal approximation in turn paved the way for linear approximation. In particular, given a 

set of basis functions, a signal is linearly approximated by projecting it into a fixed subset of 

basis functions where the number of basis functions are smaller than the dimension of the signal. 

The goal of this undercomplete linear transformation is to capture a significant part of the signal 

with only a few coefficients and this capability is called as compaction [22]. In fact, the concept 

of this approximiation is closely linked to sparsity which we will discuss later.  

For the revolution of more efficient representations, the data itself was brought to light 

during the 1970’s and 1980’s. The statistical tools, Karhunen-Loeve Transform (KLT) [23] and 

Principal Component Analysis (PCA) [24], were two main research areas in this field. Basis 

functions in KLT are the first K eigenvectors of the data covariance matrix. KLT is considered to 

be superior to Fourier transform due to its representational efficiency. However, its complexity is 

the major drawback. 
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The robust statistics, which was the powerful approach in statistic research in 1980’s, 

revealed that the sparsity property of data is a promosing tool for data recovery and analysis 

tasks. This discovery led to the search for more sparse representations and subsequently more 

efficient transforms. It was conducted by focusing on the non-linear formulations allowing the 

use of a different set of basis functions to approximate each signal. Due to the achievement of 

more efficient transforms through robust statistics, modern dictionary designs emerged during 

the 1980’s and 1990’s as described as follows [25]. 

It was found that the locally concentrated basis functions can give more flexible 

representations and limit the effects of irregularities. The basis functions based on the local 

signal characteristics become the base for Short Time Fourier Transform (STFT) [26], which is a 

component of the Fourier transform. The STFT describes the signal as a space-frequency 

applying the Fourier Transforms locally. The JPEG image compression algorithm [27] is an 

example of the STFT method named as Gabor transform later. The name was given after Dennis 

Gabor whose work was based on time-frequency decomposition in 1946 [28]. The discrete 

version of  this transform had successful applications in 1990s [29-30]. The contributions in [31, 

32] improved the performance of complex Gabor structures in higher dimensions. This 

improvement motivated researchers to apply the Gabor dictionaries to image processing tasks 

such as in [33] and [34].   

It was discovered in the 1980’s that natural signals and images can be analyzed and described 

through the multi-scale constructions. Laplacian pyramid [35] is one of the most known 

structures introduced by multi-scale instructions. In the Laplacian pyramid, each image can be 

approximated by a series of images in different scales and frequency bands.  
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Wavelet analysis [24, 36, 37] came into the light in the second half of the 1980’s, which is 

based on a signal combination over a series of translated and dilated varieties of an elementary 

function proposed in [38]. The wavelet theory was put forward consequently by Meyer, 

Daubechies, Mallat and others for a complete mathematical framework of continuous and 

discrete domains. Meyer’s work in 1985 [39] revealed that the wavelet framework could produce 

orthogonal design. The concept of wavelet decomposition was established by Mallat and his 

colleagues [40-42], which is a multi-resolution expansion on the basis of a pair of localized 

functions called the scaling function and the mother wavelet. The scaling function is a low 

frequency signal that presents the approximation of the signal with its translations; on the other 

hand the mother wavelet is high frequency signal that reveals the signal details with its various 

scales and translations. Non-linear approximation of the wavelet basis produced optimal 

piecewise-smooth 1-D signals without prior information of the discontiniuty regions; however, it 

loses its optimality in higher dimensions resulting in smooth artifacts near edges.  

In 1990’s, the development of sparsity paved the way in orthogonal bases. The  inadequate of 

sparse representation was due to the small number of basis functions in the dictionary. For 

providing further sparsity, the idea of adapting basis functions to the signal was proposed in [43]. 

In this regard, the wavelet packet transform, which is an extension of wavelet transform, was 

introduced by Coifman, Meyer and Wickerhauser in 1992 [43]. A large number of dyadic time-

frequency basis functions obtained from a pair of scaling function and mother wavelet are 

unified in the wavelet packet dictionary. This process produces an optimized orthogonal sub-

dictionary out of the large dictionary for any given signal.  

In 1992, Simoncelli et al. [44] introduced a dictionary based on the variation of basis 

functions produced by translation, rotation and scaling deformations. In this work, they used 
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overcomplete dictionaries in order to acquire the best result. Simoncelli et al. also introduced the 

steerable wavelet transform focusing on steerable filters and localized 2-D wavelet basis 

functions in various orientations, scales and translations.  

Mallat and Zhang [45] proposed a novel sparse signal expansion scheme in 1993. This 

scheme was based on the selection of a few basis function from an overcomplete dictionary. 

Then, Chen, Donoho and Saunders [46] proposed their sparsity based algorithm, called as basis 

pursuit. These two studies showed that a signal could have more than one description in the 

representation domain and the goal of the task is the determination of the best one. In the study, 

they also split the sparse representation process into two parts: designing the dictionary and 

coding the signal. This categorization made it available to use different algorithms in the content 

of sparse representation. In the first study of sparse representation, the existing transforms such 

as Fourier, STFT, Gabor, and wavelet transforms, were employed as a dictionary [45, 46].  

The dictionaries described above model a signal by a simple mathematical function. In 

particular, the Fourier dictionary is created by a low pass filter and the wavelet dictionary is 

modeled by piecewise-smooth functions. The major advantage of these dictionaries is their 

simplicity, which does not require a multiplication by the dictionary matrix. However, the 

models presented are over-simplistic compared to the complexity of natural signals [25]. In 

1996, Olshausen and Field [34] introduced a training dictionary algorithm detailed in subsection 

2.2.2 for sparse representation model of small image patches selected from the natural images. 

This study produced superior results for the benefit of sparse representation and widely appealed 

in machine learning community. The proposed algorithm in [21] proved that the approach, which 

directly learns from the image itself, can reveal the elementary structures from complex signal 

data. 
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2.2.2 LEARNING A DICTIONARY IN SPARSE CODING 

In learning a dictionary, the goal is to compose a set of basis function that represents each 

member of training samples. The dictionary is a matrix 
K

i

id 1

)( }{ D  that contains K basis 

functions on columns 
K

i

id 1

)( }{  and a given training dataset, 
M

i

ix 1

)( }{ X , can be represented as a 

sparse linear combination of these basis functions. The representation of x can be either 

exact ax D  or ax D  satisfying     
p

ii xaD , where the vector a(i) is the reconstruction 

weight for x(i) using the basis function in D and ||·||p denotes the lp norms for p = 1, 2, and ∞ [9]. 

In sparse coding, the dictionary is intentionally made overcomplete. Thus, the dictionary may 

capture a large number of patterns from the input data and also many of the reconstruction 

weights can be zeros leading to a sparse representation of the original data. In this section, we 

review three types of dictionary learning techniques. 

Spherical K-means 

Spherical K-means is a variety of K-means clustering algorithm and also named as "gain 

shape vector quantization" [47]. To learn the dictionary D, this algorithm minimizes the 

following equation: 

  
i

ii

a
xa

i

2

2

)()(

, )(

min D
D

 (1) 

subject to jd j  ,1
2

2

)(
 and ia i  ,1

0

)(
 

Here 1
0

)( ia constrains each reconstruction weight to have at most a single non-zero 

component. The solution of the Equation (1) can be obtained using alternating iteration over the 

coefficients a and dictionary D while holding the other fixed. In short, this iteration determines 
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which element of a(i) should be non-zero to minimize the Equation (1) and assigns each a(i) to its 

optimal value. The optimal choice of each 
)( jd is computed holding the a(i) fixed.    

Orthogonal Matching Pursuit 

Equation (2) is the generalization of the spherical K-means algorithm that allows multiple 

non-zero components in a(i):  

  
i

ii

a
xa

i

2

2

)()(

, )(

min D
D

 (2) 

subject to jd j  ,1
2

2

)(
and ia i  ,

0

)(
 

where 
0

)(ia is the number of non-zero components in a(i) and T determines the largest 

number of non-zero elements allowed to represent each x(i). This optimization is difficult to solve 

since the constraint is non-convex. However, the reconstruction weight a(i), with at most T non-

zero elements, can be computed approximately using a greedy algorithm called Orthogonal 

Matching Pursuit (OMP) [48]. Given a single training sample x(i), OMP starts with a(i) = 0 and at 

each iteration greedily selects a component of a(i) to be made non-zero to minimize the remaining 

reconstruction error. After each a(i) is updated to minimize Equation (2) over a(i) allowing only 

the selected components to be non-zero.  

Sparse Coding 

In the sparse coding framework [49], for a given training dataset, a dictionary can be learned 

by minimizing the following cost function: 
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 subject to id j  ,1
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where ||·||1 denotes the l1 norm and λ is a trade-off parameter. The l1 norm penalty produces 

the sparse resulting weights a(i) while λ controls the number of zeros. The solution of the 

Equation (3) can be obtained using alternating minimization over the sparse codes a(i) and the 

dictionary D while holding the other fixed [16]. A major drawback of this efficient learning 

system is its complexity and expense. 

Dictionary learning plays an important role in the sparse coding framework, but it is difficult 

and time-consuming. Recent research showed that randomly selected dictionaries can also 

perform well. For example, Jarrett et al. found that features from a one-layer convolution pooling 

architecture with a random dictionary could achieve a sufficient recognition rate for image 

classification [50]. Coates et al. have experimentally proved that the choice of basis functions 

does not affect much on classification performances as long as it is overcomplete [16]. In this 

dissertation, we randomly select the basis functions from the constructed HSI sub-bands as 

described in Chapter 3.  

2.2.3 ENCODING 

Once the dictionary is obtained by solving the optimization problems described above, an 

encoding step is performed to transform the input test data x(i) into the new representation vector. 

For a data sample x(i), the feature representation a(i) is usually obtained by solving the matching 

algorithm employed in dictionary learning with D fixed. However, it is not essential to use the 

matching training algorithm; instead, another encoding algorithm can be employed to encode the 

data samples. In Ref. 16, the learning and encoding algorithms were compared in a crosswise 

style to analyze the contributions of each of them. 

Another existing possibility to compute the new representation is the soft thresholding 

method (Figure 2) [16, 51, 52] such as  
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 ),0max()( )()()( tzzsigna iii                                (4) 

where t is an adjustable threshold and z(i)= DT·x(i). The soft thresholding function, also called 

as shrinkage function, reduces the absolute value of z(i) by a certain amount depends on the 

parameter t. Thus, the soft thresholding function produces new sparse representations by 

transferring relatively small values of z(i) into zero.  

 

 

Figure 2: Representation of soft thresholding. 

 

Coates et al. showed that an efficient and effective image classification system can be 

implemented by combining the random basis function strategy and the soft thresholding method 

[16].  

2.2.4 WHY DOES SPARSE CODING WORK 

Sparse coding is an algorithm to find a sparse representation of input data. For a given input 

data set, it learns a dictionary that contains a set of representative low level features (building 

blocks also named as dictionary) in the data. Using the basis functions in the dictionary, a new 

data point can be reconstructed as a linear combination of a few basis functions. In this part of 
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the dissertation, we list the reasons why sparse coding is appropriate for representation of 

images. First, in sparse coding, it is assumed that natural images usually consists of low level 

features such as edges and lines [53]. Thus, in the application of sparse coding to natural images, 

learned basis functions are formed similarly to the receptive fields of neurons in the visual cortex 

system [53]. Second, the techniques prior to sparse coding such as PCA and wavelet transform 

utilize a set of orthogonal and complete basis functions. Contrarily, sparse coding uses an 

overcomplete dictionary, in which the number of basis functions is larger than the number of 

features of the data. The use of overcomplete dictionary allows more flexibility in adaptation of 

learned features to data. Third, the learned dictionary has similar properties as the human visual 

cortex such that the basis functions are localized, oriented, and band-passed. This property makes 

sparse coding a conceivable model for the human visual cortex system [54]. 

2.3 CLASSIFICATION TECHNIQUES 

Classification is one of the most basic and important research contents of the HSI and 

multispectral image processing. It can be described as an analytical technique of identifying the 

land object into a class. The main task in classification is to assign each pixel of an image into a 

class to generate the thematic map using the features of the interested pixel. There are several 

typical HSI and multispectral image classification methods, including k-nearest neighbor (kNN), 

spectral angle match (SAM) [55], maximal likelihood (ML) [56], SVM [4-6], and composite-

kernel SVM (CKSVM) [57]. In the following subsections, we review kNN, SVM, and CKSVM, 

classification methods in the content of this dissertation. 

2.3.1 kNN CLASSIFIER 

The kNN classifier [58], one of the simplest and most widely used classification method, is 

based on the distance/similarity of training (known) and test (unknown) samples. A nearest 
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neighbor classifier locates the nearest neighbor in the training set and labels the test sample with 

the same class label as that of the training neighbor. More robust model of the nearest neighbor 

classifier is achieved by assigning k neighbors, where k >1, and letting the majority vote decide 

the outcome of the class labeling. The kNN classifier finds the k nearest neighbors of a test 

sample in the training samples and classifies the test sample into the most common class of the k 

nearest neighbors. In distance-weighted knn (WkNN) [59], the closest neighbors in training 

samples have more weighted than the further ones, thus, the classification result of the test 

sample is made by the majority weighted voting. A number of algorithms are proposed to 

determine the weights of the neighbors, including locally linear embedding (LLE) [60], which is 

proposed for dimension reduction. LLE-based kNN first computes the distance from a test 

sample to every other training sample to find a set of the nearest neighbors and then computes a 

set of weights for each test sample that best describes the sample as a linear combination of its 

neighbors. Lastly, an eigenvector-based optimization technique is applied to determine the low-

dimensional embedding of the sample best reconstructed by the weights. 

2.3.2 SVM CLASSIFIER 

SVM [61] is a supervised classification method that finds a function that assigns each test 

sample to its corresponding class for a given set of training samples and their corresponding 

classes. Linear SVM constructs hyperplanes in a higher dimension space for the purpose of 

classification. Obviously, a successful classification is achieved by the hyperplane that 

maximizes margin, which is the distance between the nearest training samples and the separating 

hyperplanes (Figure 3). The ideal SVM should construct a hyperplane that classifies the samples 

into two non-overlapping classes. However, this ideal case may not be possible in most cases. 

Thus, SVM searches for a hyperplane that maximizes the margin and simultaneously minimizes 
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the error of classifier. The strength of SVM is that if the data is linearly separable, there is only 

one global minimum value. 

 

 

 

Mathematically, given a training set of sample-class pairs liyx ii ,...,1),,(  , where n

i Rx   

and  l
y 1,1  , SVM solves the following optimization problem: 
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where w is a the normal to the optimal decision hyperplane, b represents the closest distance 

to the origin of the coordinate system,   is a slack variable for each ix , C is an adjustable 

parameter controlling the trade-off between the slack variable and the margin and the function 

and   maps the training samples ix  into a higher dimensional space. Here it should be noted that 

maximizing the distance of samples to the optimal decision hyperplane (Figure 3) is equivalent 

to minimizing the norm of w . The dimensionality of the vector variable w is usually very high, 

wx+b=1 

wx+b=0 

wx’+b=-1 

optimal hyperplane 

non-optimal hyperplane 

margin 

margin 

Figure 3: Representation of hyperplanes. 
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thus, Equation (5) is usually solved through its Lagrangian dual problem, which consists of 

maximizing 

      
i ji

jijijiid xxyyL
,

.
2

1
  (6) 

 subject to Ci 0  and 0
i

ii y , li ,...,1   

where i are Lagrange multipliers. As noticed in Equation (6), the mappings occur in the 

form of inner products, thus, a kernel function can be defined where )()(),( j

T

iji xxxxK  . In 

linear SVM, j

T

iji xxxxK ),( is used as a kernel function. 

However, the linear separation may not be a good solution for some cases, thus, more 

flexible decision boundary, i.e. non-linear decision boundary, is needed. In non-linear SVM, 

first, the data in the original finite-dimensional space are mapped into a much higher dimensional 

space using a non-linear kernel function, such as polynomial, gaussian, and exponential radial 

basis function (RBF) kernels in Equations (7), (8), and (9), respectively. Then, the linear 

separation is performed in that space efficiently. 
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where d is the polynomial kernel degree,   is the kernel parameter. In recent years, SVM 

has been successfully employed in HSI classification due to its excellent performance in high-

dimensional data [12, 13].  
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2.3.3 COMPOSITE KERNEL SVM (CKSVM) CLASSIFIER 

SVM takes into account only the spectral information of data. Motivated by the fact that 

pixels in an HSI are often surrounded by pixels of the same class, CKSVM method [57] is 

proposed to exploit the spatial information in HSI through composite kernels. CKSVM considers 

spectral, spatial and local cross information in HSI constructing kernels composed from the 

spectral and contextual kernels. In CKSVM, first the mean and standard deviation of HSI pixels 

are extracted to define the spatial information of HSI. Then, kernel matrices are computed from 

the spectral and spatial blocks of HSI (Kws and Ksw) using any suitable Kernel function, such as 

in Equations (7) - (9). SVM classification algorithm is applied to the combination of spectral 

dedicated kernel matrix (Kw), contextual dedicated kernel matrix (Ks) and cross information of 

spectral and spatial features (Kws and Ksw). CKSVM proposes different kernel combination 

approaches to extract the final representation of a HSI pixel as listed below: 

(1) Direct summation kernel:   

),(),(),( w

j

w

iw

s

j

s

isji xxKxxKxxK   

(2) Weighted summation kernel:   
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(3) Cross-information kernel:   
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where w

ix  and s

ix  are the spectral and spatial features of HSI, respectively, and   is the 

parameter  10    to tune the spectral and spatial information. 

In this dissertation, the new representations of HSI pixels are classified with SVM and 

CKSVM classifiers as described in Chapter 3. 
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2.4 FEATURE SELECTION  

The dimensionality of the new features obtained by sparse coding is usually very high that 

may lead to the overfitting problem and require many computational resources in terms of time 

and memory [62]. A feature extraction or feature selection algorithm can be used to reduce the 

dimensionality of the features. Feature extraction algorithms reduce the dimension by creating 

new combinations as features, whereas feature selection algorithms select the most relevant 

features without incurring much loss of information. We propose to use a feature selection 

algorithm due to its efficiency in large dimension. The benefits of the feature selection are: 

reducing the measurement and storage requirements, reducing training, testing and classification 

time, resisting overfitting to improve the classification performance and interpreting data easily. 

In this dissertation, to select effective features for HSI classification, we propose to utilize a 

multi-class logistic regression [63-66] as shown in Equation (10) 

  )()))(exp(1log(min
1 1




rcyw
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where 
il

 is the i'th feature for the l'th class, 
il

w is the weight for 
il

 , 
il

y is the response of 
il

 , 

l
c is the intercept (scalar) for the l'th class,   is the obtained weight, m is the total number of the 

training samples and p is the total number of class. In Equation (10), the first term is the logistic 

loss function, also known as logistic regression, and the second term is a penalty term, also 

known as the regularization term, which is used to address the overfitting problem in the logistic 

regression. The following l1 and l2 regularization terms are commonly used. 
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where   is a regularization parameter, which controls the trade-off between the logistic loss 

function and the size of the weights, ||·||1 denotes the l1 and ||·||2 denotes the l2 norms, which 

enforce the resulting weights to be sparse. Both Equations (11) and (12) are convex and 

separable functions. Directly solving the logistic model (11) is ill-posed and may lead to 

overfitting when a high number of training samples (m >>p) are used. Therefore, in the recent 

years, the l1 norm regularization approach, also known as LASSO [67], has been applied to 

address the overfitting problem. However, solving the l1-regularized logistic regression is more 

challenging than solving the l2-regularized logistic regression, since the regularization term (12) 

is non-differentiable [66]. In addition, the l1-regularized logistic regression may produce too 

sparse weights resulting in a highly unstable feature selection. Thus, many algorithms have been 

interested in extending the l1 regularization to l1/lq regularization due to its success to overcome 

the problems described above [68-71]. l1/lq regularization also facilitates the group effect of 

features with high correlation. Assuming HSI pixels are often surrounded by pixels of the same 

class, in this dissertation, we propose to use l1/lq regularization in Equation (10). 

2.5 MORPHOLOGICAL OPERATIONS  

A morphological operation is a tool for extracting or modifying the structure of objects in an 

image based on the characteristics of a structuring element (SE). An SE is a binary matrix with 

arbitrary shape, size, and orientation. Figure 4 shows linear, square and discrete disk types of 

structural elements. The common usages of morphological filters are edge detection, feature 

detection, counting objects, segmentation and noise reduction. The morphological filters can be 

applied to both gray-level and binary images. In this section, four fundamental morphological 

filters; erosion, dilation, opening, and closing are explained.  
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(a) (b) (c) 

Figure 4: Examples of SE. (a) linear, (b) square, and (c) discrete disk. 

 

2.6.1 EROSION  

An erosion filter decreases the pixel values on object boundaries in an image. This process 

can be formulated as Equation (13): 

 (x  SE)    ),(min,
),,(

njmixji
SEnm




 (13) 

where  represents erosion process. In erosion, the new value of a pixel is the minimum 

pixel value within the neighborhood of the pixel of interest where the neighborhood is chosen 

based on SE. In the binary case, therefore, if there is a zero within the neighborhood then the 

value of the pixel will be zero after erosion operation. Figures 5(a) and 5(b) show erosion 

operations on gray-level and binary images, respectively, where a linear SE is used.  

 

  

(a) (b) 

Figure 5: Examples of erosion operations on (a) grey-level, (b) binary image. 
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2.6.2 DILATION  

A dilation filter increases the pixel values on the boundaries of objects in an image. This 

process can be formulated as Equation (14): 

 (x  SE)    ),(max,
,),(

njmixji
SEnm




 (14) 

where  represents dilation process. In dilation, the new value of a pixel is the maximum 

pixel value within the neighborhood of the pixel of interest in which the neighborhood is chosen 

according to the shape and size of the SE. In the binary case, therefore, if there is one within the 

neighborhood then the value of the pixel will be one after dilation operation. Figures 6(a) and 

6(b) show dilation operations on gray-level and binary images, respectively, where a linear SE is 

used.  

 

  

(a) (b) 

Figure 6: Examples of dilation operations on (a) grey-level, (b) binary image. 

 

2.6.3 OPENING  

An opening operation is the concatenating the two fundamental morphological filters, an 

erosion filter followed by a dilation filter with the same SE. Mathematically, it is formulated as: 

 (x ο SE) (i, j)= ((x  SE)  SE) (i, j) (15) 
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where "ο" represents the opening operation. In the binary case, erosion typically removes 

objects smaller than the SE and the subsequent dilation tends to restore the shape of the objects 

that remain. Figure 7 shows a binary input image and corresponding output images by the 

opening operation with a horizontal (Figure 7(b)) and a vertical (Figure 7(c)) linear SEs. From 

Figure 7(b), it can be seen that the horizontal SE successfully restores the horizontal objects; 

however, the vertical objects are removed from the image since the erosion step completely 

eliminates them. Conversely, the vertical SE restores only the vertical objects as seen in Figure 

7(c).   

 

   
(a) (b) (c) 

Figure 7: Implementation of opening operation. (a) Original image, (b) image opened by a 

horizontal linear SE, and (c) image opened by a vertical linear SE.  

 

2.6.4 CLOSING  

As opening operation, the closing operation is also the concatenating the two fundamental 

morphological filters in which a dilation filter followed by an erosion filter with the same SE. 

Mathematically, it is formulated as: 

 (x • SE) (i, j)= ((x  SE)  SE) (i, j) (16) 

where "•" represents the closing operation. In the binary case, closing smoothes the 

boundaries of foreground objects but, in contradistinction to the opening, it merges narrow gaps 

eliminating small black holes as seen from Figure 8.  
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(a) (b) 

Figure 8: Implementation of closing operation. (a) Original image, (b) image closed with a disk 

SE. 

 

As seen from the explanations above, the opening and closing filters tend to restore the shape 

of the objects that remain. However, the accuracy of this restoration depends on the similarity 

between the shapes of the objects and the SE.  

In this dissertation, we used another morphological filter, named "opening by reconstruction" 

to eliminate the false positives obtained in the classification step of the scar detection algorithm. 

This process is explained in Chapter 4. 
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Chapter 3  

 

PROPOSED METHOD  

 

In this chapter, a new feature representation method based on sparse coding for the 

classification of HSI is presented. First, we introduce the model of hyperspectral imagery and 

existing classification techniques for HSI. Next, a new representation model is proposed using 

spectral information of the HSI. In spectral-based sparse coding model, we extract overlapping 

sub-bands from the spectral representation of a pixel then construct a dictionary based upon these 

sub-bands. Subsequently, we encode each HSI pixel to a new representation for classification. In 

the experiment part, we construct another dictionary by solving Equation (3) to compare the 

effectiveness of random dictionary. We experimentally prove that a randomly selected dictionary 

could be as effective as a dictionary learned from optimization. However, the dimensionality of 

the new representation for HSI is usually very high requiring a lot of computational resources, 

which significantly limit the applicability of sparse coding in HSI classification. In addition, 

spatial information is not considered. Thus, the proposed algorithm is enhanced by including the 

spatial information of the HSI data to improve classification and utilizing the multinomial 

logistic regression technique [63-66] to select the most effective features in the new 

representation. We call the enhanced model as sparse coding based dense feature representation 

(SC-DFR) method. In this chapter, we also evaluate the SC-DFR method on a variety of 

benchmark data and compare it with multiple state-of-the-art HSI classifiers. 
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3.1 HYPERSPECTRAL IMAGERY INTRODUCTION 

In remote sensing, the reflectance of a target can be characterized by spectral responses over 

a variety of wavelengths. The comparison of these responses over distinct wavelengths can be 

used to distinguish different materials. Hyperspectral imagery is an imaging modality that 

represents ground reflectance across hundreds of very narrow spectral bands throughout the 

visible, near-infrared, and mid-infrared portions of the electromagnetic spectrum. This yields fine 

discrimination between different ground targets based on their spectral response in each of the 

narrow bands, making it a useful modality for fine differentiation between ground objects. It also 

has the potential for accurate determination of terrain properties such as, material classification, 

geological feature identification and environmental monitoring [72]. A distinctive structure of 

HSI and a real HSI cube from reflective optics system imaging spectrometer (ROSIS) obtained 

over the center of Pavia are shown in Figure 9 and 10, respectively. Each pixel in hyperspectral 

image (HSI) data consists of hundreds of spectral bands captured in different spectral channels, 

where the pixel xi
BR  is represented by a B-dimensional feature vector and B is the number of 

spectral bands. This feature vector is called the spectrum of the material in the pixel. Different 

materials can be identified by classifying HSI pixels into different categories based on the 

statistical characteristics of the pixel values. A variety of techniques have been used for the 

classification including SVM [4-6], neural networks [7], and graph-based methods [8].  
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Figure 9: A distinctive structure of HSI. 

 

 

 

Figure 10: A real HSI cube obtained over the center of Pavia. 

 

Though the abundant information in each pixel increases the capability of distinguishing 

different materials, it is often difficult to exploit HSI data due to the particular challenges in the 

remote sensing environment such as noise of measurement devices, energy interaction between 

the targeted area and the spectrometer, and spectral mixing, where each pixel is composed of a 
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combination of different materials. All those challenges will jeopardize a precise material 

identification in HSI. In addition, the non-negligible changes of spectral responses within the 

same land-cover class [73] and the limited availability of the ground truth data (labeled pixel) 

make the spatial structures of HSI as critical as spectral structures in data analysis. Therefore, 

many recent techniques have integrated the spatial and spectral information for HSI classification 

such as, the stacking vector approach [57, 74], segmentation-based techniques [75, 76], the 

Markov random field (MRF) method [77-79], context-based techniques [80], and mathematical 

morphology [81-82]. In the stacking vector approaches [57, 74], the spatial features of a pixel are 

built by calculating the average or standard deviation of its neighbors and then concatenated with 

spectral features for classification. In segmentation techniques [75, 76], pixel classification 

results are refined by a postoperation step such as segmentation or majority voting. MRF 

methods combine the spectral and spatial information using the Bayesian framework [77]. 

Context-based techniques use the random set framework [80] or the hierarchical segmentation 

technique [81] to characterize the complex and irregular patterns in the pixel feature space. 

Mathematical morphology based methods [82-86] usually utilize the morphological approaches 

to integrate spatial information in the feature extraction process of the HSI classification task.  

It is often assumed that the measured energy in HSI data is proportional to the covered 

ground and the reflectivity of its environment as described by the following linear mixture model 

[11],  

 X = DA+ N  (17) 

where X is the HSI image consists of M pixels with B bands, MBR X , D is the dictionary 

consists of K basis functions (atoms of materials) with a length of B, D
KBR  , A is the 

coefficient matrix representing the mixture of dictionary functions, A
MKR   and N is additive 



 

 

31 

noise. Due to the high spatial resolution of latest imagery technology, i.e., only a few land cover 

materials may be present in one pixel and thus, each pixel can be approximated by a few basis 

functions, leading to a sparse coefficient matrix A. Therefore, the HSI model in Equation (17) is 

consistent with the sparse signal model in Equation (3). 

Sparse coding has been successfully applied to HSI classification with encouraging results 

[10-13,18,19,87,88] due to its success in discriminative tasks with small training data. For 

example, [10] uses sparse coding minimization formula in Equation (3) to learn spectral 

signatures of material in the dictionary training phase. The extracted features are then classified 

through a linear SVM classifier. A spatial-spectral based HSI classification study [11] learns 

class-specific spectral dictionaries for each class of data using a sparse coding based projected 

gradient iteration. Then, each pixel is assigned to the class whose dictionary have the lowest 

representation error. Another sparse coding based algorithm [12] employs two different methods 

to integrate the spectral and spatial contents of HSI data: laplacian constraint and joint sparsity 

model. The dictionary is learned by a generalized form of OMP algorithm, called simultaneous 

OMP [89], as described in Section 2.2.1. The reconstructed pixel is then labeled as the class 

whose training samples have the largest similarity to that pixel. In [13], a structured dictionary 

based feature representation is proposed incorporating the both spectral and spatial information. 

The pixels of HSI are grouped into a number of spatial neighborhoods, called as contextual 

groups, and reconstructed with a linear combination of a few dictionary elements learned from 

the data. The convex sparse coding minimization technique in Equation (3) is also used in [13]. 

The estimated sparse coefficients are considered new representations to be classified using a 

linear SVM. 
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These algorithms are useful in obtaining the features of HSI for the classification, however, 

HSI classification systems based on the sparse signal model in Equation (3) are computationally 

expensive, requiring the solution of a convex optimization problem. In this dissertation's 

proposed method, sparse representation is achieved by a simple, but efficient approach without 

using convex optimization solution as described in the following subsections.  

3.2 SPECTRAL-BASED SPARSE CODING MODEL 

The proposed spectral-based feature representation method for HSI data classification 

consists of three steps as illustrated in Figure 11 [90]: (1) sub-band construction from HSI data, 

(2) dictionary learning, and (3) encoding. Each step is detailed in the following subsections. 

 

Figure 11: Flowchart of the spectral-based feature representation method. 
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3.2.1 SUB-BAND CONSTRUCTION FROM HSI DATA 

To divide the pixel into sub-bands, a window with a size of b bands was used. The window 

was moved along the spectral direction as shown in Figure 12 with a step size of 1, resulting in 

B-b+1 sub-bands for the total B bands of a pixel, where b is called the receptive field length. 

Note that these sub-bands were overlapped and x(i)ϵ Rb is the vector representing the i'th sub-

band of a HSI pixel. Then the sub-bands were preprocessed as follows. First, each sub-band x(i) 

was normalized as in Equation (18).  
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x  is the normalized sub-band. 

 

 

Figure 12: Extraction of sub-bands. 

 (From a 100-band (B) HSI pixel, 31 sub-bands are extracted with 70 receptive field length (b).) 

 

To provide uncorrelated bands and to distribute more basis functions in the orthogonal 

directions, the zero-phase components analysis (ZCA) whitening process [91] was applied to 

sub-bands. In Ref. 92, this process was identified as a critical step for the quality of the learned 

feature representations. Moreover, according to Ref. 93, the whitened image patches can result in 
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sharper edge features similar to those created by sparse coding and independent component 

analysis (ICA). 

3.2.2 DICTIONARY LEARNING 

The main purpose of dictionary learning is to find a set of basis functions K
i

jd 1
)( }{ 

 that forms 

the building blocks of X. Compared to the dictionary learning methods mentioned in Section 

2.2.1, we employed a very simple method as in Ref. 16. The method for dictionary learning is 

relatively fast and simple, where a portion of preprocessed sub-bands were randomly selected 

from the sub-band set to compose the dictionary D (Figure 13). If k is the total number of 

sampled sub-bands for dictionary learning, we denote it as D={d(1), d(2), …, d(k)}, where d(j) 
bR . 

 

Figure 13: Dictionary learning from random sub-bands. 
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3.2.3 ENCODING 

With the dictionary D, we obtained a new feature representation for an HSI pixel in a 

convolutional manner as follows (Figure 14). 

 

 

Figure 14: Encoding step. 

 

Obtaining sparse representation 

For each normalized sub-band, we obtained a new representation by applying the soft 

threshold function in Equation (4). Then we split the positive and negative components of the 

new representation as two separate features. Note that the dimension of the representation for the 

sub-band is 2 × k. We applied the encoding step to each overlapping sub-band of the pixel; thus, 

we had (B-b+1)-by-(2 × k) matrix for each pixel to be converted into a single feature 

representation in the pooling step. 

 ),0max()( )()()( tzzsigna iii                                (4) 
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Pooling 

In this step, we split all representations from the B-b+1 sub-bands of the pixel into 10 equal-

sized groups and summed them in each group to obtain 10 representations (Figure 15). The final 

representation, w with a dimension of 20 × k for the HSI pixel was achieved by concatenating 

the 10 representations. This step also aimed to reduce the dimensionality of the new feature 

representation and has been widely studied in different applications [94]. It was also noticed that 

the feature representation may not be sparse after this step. 

 

Figure 15: Pooling step. 

 

Once we obtained the final representation vector for each pixel, we used the linear SVM 

classifier with the kernel function j

T

iji xxxxK ),(  as described in Section 2.3.2 to evaluate the 

efficiency of the spectral-based sparse coding feature representation model. In the experiments, 

we constructed another dictionary using sparse coding optimization technique in Equation (3) as 

described in Section 2.2.1 for a comparison. The experimental results of the spectral-based 

proposed feature representation method will be reported in Section 3.4. 
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3.3 SPARSE CODING BASED DENSE FEATURE REPRESENTATION MODEL 

The proposed feature representation method described in Section 3.2 was succesfully 

extracted new features of HSI data and increased the classification accuracy using spectral 

information of the pixels [95]. However, the spatial information of the pixels was not considered 

in the method. In addition, the dimensionality of the feature representation was very high. In this 

section, the general method discussed in Section 3.2 is modified to incorporate the spatial 

information and to reduce the dimension of the new representation.  

Recall from Section 3.2 the spectral based sparse coding model consists of three steps. The 

modified method, SC-DFR, has 4 steps as illustrated in Figure 16 [95, 96]: (1) sub-band 

construction from HSI data, (2) dictionary learning, (3) encoding and (4) feature selection. The 

modification parts of the proposed method are detailed in the following subsections. 

3.3.1 SPATIAL INFORMATION 

Material information at one pixel may spread over its neighbors due to the effect of the point 

spread function (PSF) of imaging devices. Therefore, it is beneficial for characterizing a pixel if 

its spectral and spatial information are simultaneously considered. In the proposed method, we 

computed the average value of the neighbors of each pixel in each spectral band, resulting in 

another B value for the pixel. It should be noted that the steps described in Section 3.2 were 

applied to the spectral and spatial contents to form the spectral information )( w and spatial 

information )( s  separately. Then we balanced the spatial and spectral contents by using 

Equation (19) as 

 sw  )1(    (19) 
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where  is a trade-off )10(    between w  and s ,   is the balanced representation of a 

pixel. 

 

 

Figure 16: Flowchart of the SC-DFR method. 

 

3.3.2 FEATURE SELECTION 

One challenge of the proposed method described in Section 3.2 was that the dimensionality 

of the feature representation was very high. In Section 3.2, we implemented the pooling method 

to reduce the size of the new feature representation. However, after this step, the dimensionality 

of the features is still on the order of thousands, which may be undesirable for real-time systems. 
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For the specific classification task, some of the features may be correlated or redundant, leading 

to the overfitting problem [62]. We propose to utilize the l1/lq regularized multiclass logistic 

regression [63-66]  1q  as shown in Equation (20) to select effective features for HSI 

classification, 

 
q

ll

p

l

m

i
lil

T

lilil cyw
/

1 1 1

)))(exp(1log(min 



 

  (20) 

where 
il

 is the i'th feature for the l'th class, 
il

w is the weight for 
il

 , 
il

y is the response of 
il

 , 

l
c is the intercept (scalar) for the l'th class,   is the obtained weight,   is a regularization 

parameter, m is the total number of the training samples and p is the total number of class. In this 

study, we set lq = l2 and )/(1 mpwil  , to select the most effective features. It should be noted that 

the feature selection step was performed on training data only. The l1/lq regularized regression 

optimization, as described in Section 2.4, is a recently developed method that favors the group 

sparsity in the model [63-66].  

Once we obtained the final representation vector for each pixel, we used two different 

classifiers, SVM and CKSVM described in Sections 2.3.2 and 2.3.3, to evaluate the efficiency of 

the SC-DFR method for HSI classification. In SVM, we used the linear kernel function 

j

T

iji xxxxK ),( . In CKSVM, first, the composite kernels of the spectral and spatial features 

were calculated via the polynomial kernel in Equation (7) and gaussian kernel in Equation (8), 

respectively, then the weighted summation equation described in Section 2.3.3 was used to 

combine them.  

3.4 SPECTRAL-BASED EXPERIMENTS  

In this section, we reported the experiments of the spectral-based sparse coding framework 

proposed in Section 3.2 on a HSI data collected at the Kennedy Space Center (KSC) for land 
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cover classification [90]. In the experiments, we compared two dictionary learning methods: 

random selection and sparse coding solved with the coordinate descent algorithm [97]. Results 

from the proposed framework were also compared to those obtained by a recently proposed 

method; supervised locally linear embedding weighted k-nearest-neighbor (SLLE-WkNN) [98] 

classifier. The experiments of SC-DFR method will be reported in Section 3.5.  

3.4.1 DATA DESCRIPTION 

A hyperspectral data set collected by NASA airborne visible/infrared imaging spectrometer 

(AVIRIS) over Kennedy Space Center [99] in March 1996 was used in this experiment. One 

single band image from this data set is shown in Figure 17. This sensor can acquire 224 bands 

with an 18-m spatial resolution and a 10 nm spectral resolution over the range of 400-2500 nm. 

There are 5,211 out of 314,368 (512 × 614) pixels labeled. Details of the land cover classes are 

given in Table 1. After removing the water absorption and noisy bands, there are 176 bands left 

for this study. 

 

 

Figure 17: A sample band of Kennedy Space Center HSI data. 
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Table 1: Class names and number of labeled KSC data. 

Class 

Number 
Class 

Number/Percentage of 

Labeled Data 

1 Scrub 761 (14.6%) 

2 Willow swamp 243 (4.66%) 

3 Cabbage palm hammock 256 (4.92%) 

4 Cabbage/oak hammock 252 (4.84%) 

5 Slash pine 161 (3.07%) 

6 Oak/broadleaf hammock 229 (4.38%) 

7 Hardwood swamp 105 (2.0%) 

8 Graminoid marsh 431 (8.27%) 

9 Spartina marsh 520 (9.9%) 

10 Cattail marsh 404 (7.76%) 

11 Salt marsh 419 (8.04%) 

12 Mud flats 503 (9.66%) 

13 Water 927 (17.8%) 

 TOTAL 5,211 

 

 

3.4.2 EXPERIMENTAL SETUP 

For a fair comparison, we utilized the same configuration as that in [98] for our experiments. 

In detail, the parameters involved in our algorithm were tuned based on three-fold cross-

validation using 50% of the labeled data. There were two parameters in the proposed method: (1) 

receptive field length, b, and (2) threshold, t, for encoding. After parameter selection, 30% and 

40% of the data are randomly selected for testing and training, respectively. The testing dataset is 

disjoint from the data used for cross-validation. In our experiments, dictionary was learned or 

randomly selected from the training set. 
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In the followings, we first compare the two dictionary learning methods and then the final 

classification results are compared with a recent spectral based algorithm, (SLLE-WkNN) 

classifier [98].  

3.4.3 RESULTS ON KSC DATA 

One of our goals in this experiment is to compare the random selection method and the 

sparse coding technique for dictionary learning in HSI classification. With the best parameters (k 

= 6, b = 120 and t = 0.1) we obtained in cross-validation, we performed 10 replications of 

experiments with different number of basis functions in the dictionary to compare these two 

approaches. It should be noted that 40% of labeled pixels were used for training and 30% of 

labeled pixels were used for testing in each of the experiments. Table 2 shows the overall 

accuracy (OA) results, which measures the ratio of correctly classified pixels to all test pixels, of 

each dictionary methods. As seen from Table 2, the randomly selected dictionaries can achieve 

similar or slightly better results than those obtained by sparse coding. The success of the 

randomly selected dictionaries implies that we can implement a very efficient system for remote 

sensing. 

We also compared our results with those obtained by a recently proposed method for HSI 

classification, SLLE-WkNN classifier, in terms of OA. In SLLE-WkNN classifier, a kernel 

function of locally linear embedding (LLE) algorithm is employed to determine the weights of a 

weighted kNN classifier. In other words, the local structure of the distribution of the manifold is 

learned by employing LLE algorithm in conjunction with the kNN classifier. 
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Table 2: Comparison of dictionary learning algorithms. 

Number of basis functions 

(K) 
50 100 150 200 250 300 

OA of sparse coding (%) 
94.18 

±0.69 

94.64 

±0.51 

94.73 

±0.46 

94.87 

±0.57 

94.85 

±0.59 

94.69 

±0.55 

OA of random functions 

(%) 

94.27 

±0.72 

94.80 

±0.54 

95.09 

±0.52 

95.15 

±0.48 

95.21 

±0.45 

95.12 

±0.49 

 

 

In the comparison, we used the same training and testing datasets for different classifiers. 

The parameters of the proposed algorithm were b = 120 and t = 0.1. The parameters of SLLE-

WkNN were set the same as those reported in [98]. In particular, the dimensionality of the 

manifold were fixed to the number of classes and 35 nearest neighbors took into account in 

SLLE-WkNN. Results from the 10 replications of experiments are shown in Table 3. It is 

observed that the proposed algorithm with random dictionary is significantly better than the 

SLLE-WkNN method and the system with a learned dictionary is also significantly better than 

the SLLE-WkNN method.  The system with a learned dictionary performs similarly to that with a 

randomly selected dictionary. 

 

Table 3: Comparison of proposed algorithm and SLLE-WkNN classifier. 

Classifier 
Classification 

Accuracy (%) 

Standard 

Deviation 

Linear SVM using sparse coding 

for dictionary learning 
94.83 0.59 

Linear SVM with random 

dictionary 
95.21 0.45 

SLLE-WkNN  (k=35) 93.13 0.52 
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3.5 EXPERIMENTAL RESULTS OF SC-DFR METHOD  

In this section, we provide experimental results to validate the effectiveness of the SC-DFR 

model described in Section 3.3 on three well-known HSIs: AVIRIS Indian Pines [100], 

University of Pavia and Center of Pavia [101]. We utilized SVM and CKSVM to perform the 

classification task based on the new representation from the SC-DFR model and compared our 

method with two baseline methods, where SVM and CKSVM were directly applied to HSI 

pixels for classification. We also compared the proposed method with the SOMP [12] method 

and the image fusion and recursive filtering (IFRF) [102] algorithm. 

3.5.1 QUALITY INDEXES 

For the performance evaluation, three quality indexes, overall accuracy (OA), average 

accuracy (AA) and kappa coefficient [103] were adopted. OA measures the ratio of correctly 

classified pixels to all test pixels, AA is the average accuracy for all classes, and kappa 

coefficient estimates the percentage of the correctly classified pixels with respect to the number 

of agreements that are correct by random guess. 

3.5.2 EXPERIMENT SETUP AND PERFORMANCE EVALUATION 

The hyperparameters for SVM and CKSVM (polynomial kernel degree, gaussian kernel 

parameter, regularization parameter, composite kernel weight, and window size) were optimized 

by five-fold cross-validation. The one-against-one strategy was used for multiclass classification 

in SVM and CKSVM. For the experiments with SVM, we used LIBSVM (Ref. 104) codes. For 

the SOMP algorithm, reported parameters (window size and sparsity level) in Ref. [12] were 

used. In IFRF [102], the dimension of the spectral data was reduced first with image fusion; then 
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the recursive filtering [105] was used to combine the spatial information and extract the final 

representation for a pixel. We used five-fold cross-validation to tune the parameters (number of 

features, spatial and range standard deviations of the recursive filter) in IFRF. The MATLAB® 

codes of the SOMP (Ref. 106) and IFRF (Ref. 107) used in the experiments are available online. 

There are three parameters in the proposed method to tune: (1) length of each sub-band 

called the receptive field length, b, (2) threshold for encoding, t, and (3) the trade-off in Equation 

(16) to adjust the mixture of spatial and spectral information, µ. To evaluate different settings of 

the parameters on the classification performance, we created multiple dictionaries from the 

training data samples with 200 basis functions, k. This yielded 4,000 features for each pixel. To 

remove the redundant information, this number was decreased to 600 features in the feature 

selection step. The two parameters, threshold and trade-off, were optimized using cross-

validation. In the following, we compare the proposed method with recently proposed HSI 

classification algorithms described above in terms of classification performance. In the 

experiment part, we also study the impact of these parameters on the classification performances 

of AVIRIS Indian Pines data. The highest classification accuracies are given in bold in Tables 5 

to 10, 12, 13 and 15 for each individual classes and quality indices. 

Experiments with AVIRIS Indian Pines Dataset 

This dataset, one of the bands is shown in Figure 18, was collected by NASA AVIRIS over 

Indian Pine site in June 1992 [100]. The original data consisted of 220 bands with a 20-m spatial 

resolution and a 10-nm spectral resolution over the range of 200 to 2400 nm. After noise 

corrupted bands were removed, there were 200 bands left and those were used in this 

experiment. The ground truth was developed by labeling 10,366 pixels out of 21,025 (145 × 145) 

pixels. These data have 16 classes as shown in Figure 19(a) and Table 4. For each class, we 



 

 

46 

randomly chose 10% of the labeled pixels for training and the remaining labeled pixels for 

testing as shown in Table 4. One each of the training and test sets from one of the multiple runs 

is visually shown in Figure 19(b) and 19(c), respectively. 

 

 

Figure 18: A sample band of Indian Pines HSI data. 

 

Table 5 shows the AA of 10 runs for each class, OA, AA, and kappa obtained by the 

different methods on the test set. One of the obtained classification maps for each method is 

shown in Figure 19(d)-19(i). From Table 5, there are a few observations to be mentioned. First, 

all spectral-spatial algorithms outperformed SVM, a baseline method that was based only on 

spectral characteristics. This emphasizes the importance of the spatial information for HSI 

classification. Second, the proposed feature representation method improved the OA of SVM 

from 83.84 to 98.15% and OA of CKSVM from 94.11 to 98.31%. Third, the two feature 

extraction methods, IFRF and SC-DFR, have significantly higher accuracies for most of the 

classes, including classes 7 and 9, which have very limited samples for training. Fourth, the 

proposed method performed the best in terms of OA, AA, and kappa. 
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Figure 19: Pines image. (a) ground truth, (b) training data, and (c) test data. Classification maps 

obtained by (d) SVM, (e) CKSVM, (f) SOMP, (g) IFRF, (h) SC-DFR with SVM  and (i) SC-

DFR with CKSVM. 

 

 

Table 4: Class names and number of labeled Indian Pines data. 

Class Samples 

No Name Train Test 

1 Alfalfa 6 48 

2 Corn-notill 144 1,290 

3 Corn-mintill 84 750 

4 Corn 24 210 

5 Grass/Pasture 50 447 

6 Grass/Trees 75 672 

7 Grass/Pasture-mowed 3 23 

8 Hay-windrowed 49 440 

9 Oats 2 18 

10 Soybeans-notill 97 871 

11 Soybeans-mintill 247 2,221 

12 Soybeans-clean 62 552 

13 Wheat 22 190 

14 Woods 130 1,164 

15 Building-Grass-Trees-Drives 38 342 

16 Stone-steel towers 10 85 

 Total 1,043 9,323 
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Table 5: Classification accuracies (%) for Indiana Pines HSI. 

Class SVM CKSVM SOMP IFRF 
SC-DFR 

with SVM 

SC-DFR 

with 

CKSVM 

1 70.00 92.09 87.92 99.58 95.21 95.00 

2 80.15 93.36 92.53 96.83 97.81 98.12 

3 72.71 94.40 89.68 98.00 97.45 98.31 

4 72.86 94.92 92.10 94.89 98.95 98.05 

5 94.27 97.86 93.62 99.41 97.56 97.52 

6 95.97 98.53 98.57 98.45 98.75 98.18 

7 65.65 93.00 54.35 100 94.35 94.78 

8 97.91 99.33 99.73 100 99.50 99.80 

9 67.22 85.63 9.44 77.52 88.89 89.44 

10 66.83 92.90 85.72 96.52 96.19 97.05 

11 85.21 96.44 97.19 97.91 98.55 98.80 

12 82.46 94.67 86.92 96.62 97.55 97.07 

13 99.37 99.60 96.84 96.83 99.53 99.21 

14 95.57 98.36 99.36 99.91 99.48 99.30 

15 64.33 92.67 97.75 95.02 97.84 99.18 

16 88.71 93.97 92.00 97.26 96.71 92.82 

OA 
83.84 

±0.79 

95.86 

±0.38 

94.11 

±0.43 

97.74 

±0.39 

98.15 

±0.23 
98.31 

±0.32 

AA 
81.20 

±1.57 

94.88 

±1.30 

85.86 

±1.44 

96.55 

±1.56 
97.14 

±1.77 

97.04 

±1.76 

Kappa 
81.53 

±0.89 

95.28 

±0.43 

93.27 

±0.49 

97.43 

±0.45 

97.89 

±0.26 
98.07 

±0.36 

 

We also conducted experiments using various rates of data for training (from 1 to 50%) to 

observe how the number of training samples will affect the classification performances of the 

proposed method. As shown in Table 6, when we compare these results with the results of SVM, 

CKSVM, SOMP, and IFRF algorithms, it is clear that the proposed algorithm had better 

performance than the other methods in all training data samples. Furthermore, the classification 
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accuracies with a limited number of training samples are significantly higher than all of the 

previous results we have found in literature for the considered HSI data. 

 

Table 6: OA of the proposed algorithm with various training data samples. 

Classifier 
OA (%) 

1% 2% 5% 10% 30% 50% 

SVM 
67.53 

±4.12 

73.75 

±2.82 

82.15 

±1.14 

83.84 

±0.79 

89.55 

±1.21 

90.73 

±0.89 

CKSVM 
71.05 

±3.41 

81.35 

±2.55 

90.35 

±1.56 

95.86 

±0.46 

97.54 

±0.38 

98.55 

±0.32 

SOMP 
70.56 

±2.60 

77.80 

±1.91 

89.05 

±1.62 

94.11 

±0.43 

97.13 

±0.31 

97.32 

±0.28 

IFRF 
82.07 

±3.31 

90.03 

±2.16 

95.88 

±0.61 

97.74 

±0.39 

99.17 

±0.28 

99.59 

±0.11 

SC-DFR with SVM 
85.63 
±1.93 

91.43 
±0.75 

96.11 

±0.56 

98.15 

±0.23 

99.43 

±0.09 

99.68 

±0.07 

SC-DFR with CKSVM 
84.98 

±2.35 

90.89 

±1.13 
96.48 
±0.67 

98.31 
±0.32 

99.53 
±0.13 

99.83 
±0.05 

 

 

Next, we studied the impact of the parameters (receptive field length, threshold value in soft 

thresholding, and trade-off parameter in weighted summation) and feature selection step on the 

classification performances of the AVIRIS Indian Pines data. The length of each sub-band, 

receptive field length, b, can significantly influence the performance of the classification. It is 

notable that a larger receptive field could allow recognizing more bands in the pixel. On the 

other hand, a larger receptive field could extract a fewer number of sub-bands for each input HSI 

pixel, decreasing the discriminating power. The number of overlapped sub-bands that can be 

extracted for each HSI pixel is (B-b+1), where B is the number of bands and b is the receptive 
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field length. Before the encoding step, we had a (B-b+1)-by-b matrix to represent each input 

pixel. Table 7 summarizes the evaluation results with different receptive field lengths (varying 

from 60 to 200). It is observed that longer receptive field lengths (a fewer number of sub-bands) 

give better results compared to shorter lengths until a maximum value is reached. The best 

accuracy could be obtained if the receptive field length was 180. Note that experiments with the 

whole spectral data with a receptive field length of 200 did not need the construction and pooling 

steps to get the final representation. This table was generated based on the average performance 

of 10 randomly selected dictionaries. For the other parameters, we set the trade-off parameter µ = 

0 and the threshold value in encoding t = 0.1 in this evaluation. 

 

Table 7: Effect of receptive field length on performance. 

Receptive field length 

(length of each sub-

band) 

(b) 

60 80 100 120 140 160 180 190 200 

Number of sub-bands 

for each pixel  

(B-b+1) 

141 121 101 81 61 41 21 11 1 

Number of elements to 

represent a pixel 

(B-b+1)-by-b 

8,460 9,680 10,100 9,720 8,540 6,560 3,780 2,090 200 

Overall Accuracy (%) 
95.53 

±0.52 

94.95 

±0.54 

95.97 

±0.35 

96.40 

±0.39 

96.99 

±0.30 

97.08 

±0.39 
98.14 
±0.34 

98.02 

±0.25 

97.02 

±0.26 

 

 

In the encoding step of the proposed algorithm, the soft threshold function was used to mimic 

the sparse coding. This function is also called the shrinkage function since it eliminates the 

insignificant representations of a pixel.  We tested the threshold value t from 0 to 1 with a step 

size of 0.1. Table 8 illustrates the effect of this parameter with the other parameters being set as 



 

 

51 

µ = 0 and b = 180. It is observed that the performance was not sensitive to the threshold if it was 

small and t = 0.1 gave the best accuracy for this dataset.  

 

Table 8: Effect of soft thresholding value, t. 

Threshold for 

encoding  (t) 
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 

Overall 

Accuracy (%) 

97.73 

±0.38 
98.09 
±0.27 

97.79 

±0.42 

97.66 

±0.44 

97.65 

±0.48 

97.49 

±0.52 

97.33 

±0.55 

97.06 

±0.60 

96.85 

±0.64 

96.65 

±0.65 

96.53 

±0.54 

 

 

In the proposed algorithm, we aimed to enhance the classification accuracy by taking into 

account spatial information using Equation (19) as compared to the classical approaches that 

utilized spectral information only. In this experiment, we investigated the effect of the trade-off 

value, µ, in the range of [0, 1] on the classification performance. The spatial information was 

obtained by computing the mean of the neighbors in a window of size 9 × 9 for each pixel in 

each spectral band. As reported in Table 9, the spatial information enhanced the classification 

significantly. Smaller values of   yielded better results compared to larger ones and weighted 

sum of the spectral and spatial features achieved the best overall performance when the weight of 

the spectral features was zero. Nevertheless, this does not mean the spectral content has no 

contribution to the performance. It should be noted that spatial features were aligned along the 

bands of HSI pixel. Thus, there were still spectral relationships among the spatial features of the 

pixel. The parameters were set as b = 180, and t = 0.1 in this experiment. 
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Table 9: Effect of tradeoff value  on OA. 

The trade-off 

value,   
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 

Overall 

Accuracy (%) 
98.07 
±0.27 

97.60 

±0.33 

96.90 

±0.31 

95.50 

±0.30 

93.49 

±0.29 

91.04 

±0.41 

88.29 

±0.44 

85.37 

±0.52 

82.50 

±0.51 

80.23 

±0.52 

77.24 

±0.75 

 

 

After the encoding step, we obtained new representations for HSI pixels. However, the 

dimension of the final representation was usually huge, particularly when a large number of basis 

functions was employed, and most of the data may be redundant. In the study, we proposed the 

l1/lq regularized multiclass logistic regression model to obtain a compact feature representation 

that decreased computational time and memory requirements in the classification step.  

In this experiment, we first analyzed the OA performances of 200 basis functions without 

feature selection. Then we applied the feature selection step to the same features to reduce their 

dimensions down to various sizes ranging from 100 to 1600. OA performances with and without 

feature selection are shown in Table 10. The dictionary sizes and feature representation 

dimensions are shown in the first and the second columns of the table, respectively.  The third 

column shows the OA performance of the algorithm without the feature selection step. The 

remaining columns show the accuracy performances with various selected features. For most 

cases, the size reduced feature representation achieved similar performances, such as the 600 

selected from the original 4000 features obtained almost the same result (98.26 vs. 98.15%). 

From the results, it can be concluded that the l1/lq regularized multiclass logistic regression 

model has the ability to eliminate redundant features. The other parameters were set as b = 180, 

µ = 0 and t = 0.1. 
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Table 10: Effect of feature selection. 

The size 

of the 

dictionary 

(k) 

The size of 

the 

representation 

of the pixels 

(without 

feature 

selection) 

OA 

without 

feature 

selection 

(%) 

OA with feature selection 

(%) 

Number of selected features 

1600 1400 1200 1000 800 700 600 500 400 300 200 100 

200 4,000 
98.14 

±0.39 

98.21 

±0.41 

98.18 

±0.42 

98.17 

±0.40 

98.15 

±0.40 

98.10 

±0.39 

98.09 

±0.39 

98.12 

±0.38 

98.03 

±0.42 

97.93 

±0.44 

97.87 

±0.45 

97.71 

±0.48 

96.85 

±0.53 

 

 

Experiments with ROSIS University of Pavia Dataset 

The University of Pavia dataset, one of the bands is shown in Figure 20, was obtained by 

ROSIS. This sensor generated 115 spectral bands ranging from 430 to 860 nm, and it has 1.3-m 

per pixel spatial resolution. The University of Pavia image consists of 610 × 340 pixels in which 

each pixel has 103 spectral bands after the noisy bands are removed. This dataset contains nine 

ground truth classes of interest as shown in Figure 21(a). We used the same training and testing 

data partition as that in Refs. 28, 12, and 13 where ∼9% of the data were used for training and 

the rest was used for testing. The details of the dataset, the training pixels, and the test pixels are 

shown in Table 11, Figure 21(b) and 21(c), respectively. 

Table 12 reports the classification accuracy for each class: the OA, AA and kappa obtained 

by different methods. The classification results are visually mapped in Figure 21(d)-21(i). The 

parameters of the proposed algorithm were set as b = 60, t = 0.4, and µ = 0.1. We used the 

neighbors of a pixel in a window size of 5 × 5 pixels per spectral band for the spatial information 

since this image contains an urban area with small buildings. 
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Figure 20: A sample band of the University of Pavia HSI data. 

 

Table 11: Class names and number of labeled University of Pavia data. 

Class Samples 

No Name Train Test 

1 Asphalt 548 6,304 

2 Meadows 540 18,146 

3 Gravel 392 1,815 

4 Trees 524 2,912 

5 Metal sheets 265 1,113 

6 Bare soil 532 4,572 

7 Bitumen 375 981 

8 Bricks 514 3,364 

9 Shadows 231 795 

 Total 3,921 40,002 
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Figure 21: University of Pavia image. (a) ground truth, (b) training data, and (c) test data. 

Classification maps obtained by (d) SVM, (e) CKSVM, (f) SOMP, (g) IFRF, (h) SC-DFR with 

SVM  and (i) SC-DFR with CKSVM. 

 

As seen from Table 12, the proposed feature representation method improved the OA of 

SVM from 76.77 to 83.10% and OA of CKSVM from 89.74 to 91.31%. Spectral-based 

algorithm SVM and SOMP provided poor results as compared to the other classifiers. CKSVM, 

IFRF, and SC-DFR integrated with CKSVM performed better due to their capability to reveal 

both spectral and spatial information. Moreover, SC-DFR with CKSVM yielded the best OA, 

AA, and kappa for this dataset. Here, it should be noted that the spatial features were employed 

in both the feature representation learning and CKSVM processes. 
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Table 12: Classification accuracies (%) with fixed samples for University of Pavia HSI. 

Class SVM CKSVM SOMP IFRF 
SC-DFR 

with SVM 

SC-DFR 

with 

CKSVM 

1 79.54 88.02 50.57 93.41 80.26 86.12 

2 66.23 92.19 71.68 98.03 77.55 94.95 

3 73.55 80.66 73.77 66.33 86.93 83.25 

4 93.68 99.46 96.94 71.94 97.76 98.17 

5 99.82 75.31 99.91 90.00 99.97 100.00 

6 91.86 85.12 64.72 99.58 92.24 80.73 

7 85.83 94.62 95.41 91.08 87.10 91.04 

8 82.82 95.47 83.32 64.60 80.98 90.11 

9 84.91 95.47 94.21 98.13 97.84 97.11 

OA 
76.77 89.74 72.29 89.34 83.10 

±1.27 
91.31 

±1.06 

AA 
84.25 89.78 81.17 85.90 88.96 

±0.44 
91.27 

±0.59 

Kappa 
70.64 86.28 65.23 85.66 78.19 

±1.49 
88.32 

±1.33 

 

 

The accuracy results of this dataset were significantly worse than the Indian Pines and Center 

of Pavia datasets as confirmed by other studies [13] by using these fixed training and testing 

samples. It can be clearly observed in Figure 21 that the regions that have false positive pixels do 

not have training samples. For further evaluation, we randomly selected the same number of 

training and testing samples as specified in Table 11 and obtained results with different 

classification methods as illustrated in Table 13. As confirmed in Ref. 13, the performance of the 

random set was significantly better than those shown in Table 12.  
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Table 13: Classification accuracies (%) with random samples for University of Pavia HSI. 

Performance 

Metrics 
CKSVM IFRF 

SC-DFR with 

SVM 

SC-DFR with 

CKSVM 

OA 
98.13 

±0.13 

98.96 

±0.09 

97.85 

±0.13 
99.07 
±0.08 

AA 
97.16 

±0.23 

98.44 

±0.25 

96.92 

±0.29 
98.79 
±0.15 

Kappa 
97.38 

±0.18 

98.64 

±0.12 

97.17 

±0.21 
98.78 
±0.11 

 

 

Experiments with ROSIS Center of Pavia Dataset   

The last HSI data studied in this study is Center of Pavia, which was obtained by ROSIS. 

Figure 22 shows one of the bands of the data. The captured 115 spectral bands were decreased to 

102 spectral bands after removing 13 noisy ones. This HSI consists of 1096 × 492 pixels and 

nine ground truth classes of interest as shown in Figure 23(a). We used the same training and 

testing data partition as that in Refs. 28, 12, and 13, where the training set was ∼5% of all 

labeled pixels and the rest was used for testing. The nine ground truth classes of the dataset, the 

training pixels, and the testing pixels are shown in Table 14, Figure 23(b) and 23(c), 

respectively.  
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Figure 22: A sample band of the Center of Pavia HSI data.  

 

 

Figure 23: Center of Pavia image. (a) ground truth, (b) training data, and (c) test data. 

Classification maps obtained by (d) SVM, (e) CKSVM, (f) SOMP, (g) IFRF, (h) SC-DFR with 

SVM  and (i) SC-DFR with CKSVM. 
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Table 14: Class names and number of labeled Center of Pavia data. 

Class  Samples 

No Name Train Test 

1 Water 745 64,533 

2 Trees 785 5,722 

3 Meadows 797 2,094 

4 Bricks 485 1,667 

5 Soil 820 5,729 

6 Asphalt 678 6,847 

7 Bitumen 808 6,479 

8 Tile 223 2,899 

9 Shadow 195 1,970 

 Total 5,536 97,940 

 

 

The classification results for each class, OA, AA, and kappa obtained with different 

classifiers are summarized in Table 15 and the classification maps are shown in Figure 23(d)-

23(i). The parameters of the proposed algorithm were set as b = 60, t = 0.1, µ = 0.4. The spatial 

information was obtained from the average of the surrounding neighbors of a pixel in a 7 × 7 

pixel window per each spectral band. The proposed feature representation method improved the 

OA of SVM from 95.02 to 98.56% and the OA of CKSVM from 96.11 to 98.70%. The proposed 

algorithm integrated with CKSVM yielded the best OA, AA, and kappa on this dataset. 
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Table 15: Classification accuracies (%) for Center of Pavia HSI. 

Class SVM CKSVM SOMP IFRF 
SC-DFR 

with SVM 

SC-DFR 

with 

CKSVM 

1 97.90 96.96 97.36 99.96 99.64 99.79 

2 86.58 94.51 83.84 98.53 90.01 90.13 

3 96.30 97.15 95.78 87.26 97.61 97.30 

4 67.61 99.04 70.10 94.10 98.30 98.32 

5 91.29 94.47 96.04 98.86 97.27 97.54 

6 82.67 92.24 77.37 91.11 96.50 96.54 

7 94.17 93.09 92.17 95.77 98.83 99.10 

8 99.52 99.72 98.17 98.87 99.99 100.00 

9 97.31 92.18 94.77 100.00 97.25 97.51 

OA 95.02 96.11 94.22 98.44 98.56 

±0.10 
98.70 

±0.09 

AA 90.37 94.65 89.51 96.05 97.27 

±0.10 
97.36 

±0.09 

Kappa 91.07 93.17 89.52 97.17 97.38 

±0.18 
97.64 

±0.17 

 

 

3.6 DISCUSSIONS 

In this chapter, we first proposed a spectral-based sparse coding framework for HSI 

classification and experimentally showed that a randomly selected dictionary can achieve 

slightly better results than the dictionary learned by an optimization problem. Then, we enhanced 

the algorithm considering the spatial-spectral structures of HSI pixels. In SC-DFR, first, sub-

bands were constructed to populate a set of basis functions. Then new representations for pixels 

were obtained by projecting the spatial and spectral data onto the basis functions in a 

convolutional manner. A feature selection model was used to obtain a compact final 

representation for classification. We evaluated the proposed system on three HSI benchmark 
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datasets and compared it with four methods: SVM, CKSVM, SOMP, and IFRF. The proposed 

system outperformed the other methods on three datasets. One unique property of the proposed 

system is that the performance is much better than the others if labeled data is limited. This 

property gives the method special advantages because labeling HSI data pixel by pixel is difficult 

and time-consuming.  

There are four steps in the proposed system: sub-band construction, dictionary learning, 

encoding, and feature selection. To obtain new representations, overlapping sub-bands in HSI 

were utilized. In dictionary learning, we showed that randomly selected dictionaries performed 

very well, which is of particular interest because the computational resources required for the 

random selection are negligible. In the encoding step, soft thresholding, which mimics the sparse 

coding method, was able to extract new features relatively fast. In addition, the feature selection 

step effectively reduced the dimensionality of the new pixel representation without performance 

degradation.  

There are three main parameters in the proposed methods: (1) receptive field length, (2) 

threshold in soft thresholding, and (3) mixing coefficient between spectral and spatial 

information. The receptive field length is the size of the sub-band along the spectral direction in 

HSI data. We observed that for the data we tested, a very small sub-band may not be able to 

capture the global characteristics along the spectral direction and a long sub-band may miss the 

discriminative details. Thus, this parameter should be set by cross-validation. In soft 

thresholding, our experiments showed that the performance of the system is sensitive to the 

threshold value and a small value can usually provide good results. The mixing coefficient 

makes trade-offs between spectral and spatial information. In our experiments, a small mixing 

value (<0.4) usually achieved good results. Moreover, in the Indian Pine dataset, we observed 
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that the best overall performance was achieved when the weight of the spectral features was zero. 

We believe that spatial features also have spectral information since spatial features were aligned 

along the bands of HSI pixels. The spatial information may be more important for the 

discrimination of different materials in HSI data. However, from the classification maps, we also 

observed that misclassified pixels usually occurred at edges of class regions. The main reason of 

this misclassification is that the use of a square window in sparse coding resulted in mixed pixels 

at class boundaries. To correct the misclassified pixels at class boundaries, a neighborhood 

method driven by nearest neighbors to the current pixel can be used to calculate the spatial 

information as proposed in [108]. In addition, from the experiments with various sizes of basis 

functions on KSC data, we found that large dictionaries can usually improve the classification 

performance (Table 2). However, increasing the number of basis functions more than required is 

not necessary for our data since more basis functions will require more computational resources.  

3.7 CONCLUSION 

In summary, we have implemented an efficient sparsity-based feature representation model 

for HSI image classification. The proposed system utilized random dictionaries and then used the 

soft thresholding technique to efficiently obtain a new representation for each pixel in HSI data. 

In addition, a feature selection strategy was employed to further eliminate redundant features in 

the new presentation, achieving an efficient classification model for remote sensing applications. 

We evaluated the system on three HSI benchmark datasets and compared the results with state-

of-the-art performances. The proposed system performed the best on three datasets, making it a 

good candidate for efficient HSI data classification. 
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Chapter 4  

 

DETECTION OF SEAGRASS SCARS USING SPARSE CODING AND 

MORPHOLOGICAL FILTER 

 

In this chapter, we apply the SC-DFR algorithm described in Section 3.3 to multispectral 

pan-sharpened bands to detect seafloor propeller seagrass scars in shallow water. This 

application incorporates multiple image processing methods including pan-sharpening, 

classification, and morphological operations. We first introduce the scar detection problem, the 

proposed method will be followed by experimental results. 

4.1 INTRODUCTION OF SCAR DETECTION PROBLEM  

Seagrasses (marine angiosperms) inhabit the shallow coastal waters of temperate and tropical 

seas throughout the world. They provide a critical habitat and food source for a variety of 

wildlife, improve water quality, stabilize coastal sediments and represent an important reservoir 

of organic carbon (blue carbon) in oceans [109]. However, seagrasses are particularly vulnerable 

to the human impact on coastal environments creating a global crisis in terms of their long-term 

sustainability [110]. Along heavily populated coasts, including the US Gulf of Mexico, 

mechanical damage from propeller scars caused by recreational boats operating in very shallow 

water can have significant impacts on seagrass distributions (Figure 24). It can take years for the 

scars to disappear and they often accelerate more seagrass loss by facilitating erosion at scar 

boundaries. Although remote sensing can provide an excellent tool for imaging propeller scars in 

shallow water, detection and quantification of scars has not been automated to enable rapid and 

reliable assessment of the damage they cause in coastal waters. There are many challenges for 
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accurate scar detection and quantification. Firstly, scars can have different shapes including 

straight lines, smooth curves, circles and ellipses. Secondly, scars can also have various lengths 

and widths that vary with seafloor bathymetry and age. Thirdly, although scars are usually 

defined as bright quasi-linear regions surrounded by dark vegetation, they can sometimes appear 

as dark lines in very shallow water, particularly at low tide when adjacent seagrass leaves fill the 

depressions. Finally, some structural elements on the seabed are as bright as scars. All of these 

variations pose significant challenges for the automatic detection and quantification of scars.  

 

 

Figure 24: Examples of prop scar. 

 

One effective way to track the distribution of seagrass scarring is to use remote sensing 

surveys [111-112]. In [111], aerial photography of Charlotte Harbor, Florida, gathered in 1999 

was used to estimate scar distribution. Delineations of scarred habitat polygons were first 

outlined using ArcGIS 8.3 software. An image analyst then manually rated these scar polygons 

as light, moderate and severe scarring polygons, based on which areas in the generated map 

showed regions of light, moderate and severe scarring. Another similar project was performed in 

the Gulf Coast of Texas with digital images captured with a Leica ADS40 airborne digital 
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camera in 2004 [112]. The project is significant since it is one of the first successful applications 

that utilized automated techniques for benthic habitat mapping. In the project, an object-oriented 

classification scheme, which consists of a combination of field investigations, image 

segmentation software, and classification and regression tree (CART) analysis, was used. A 

recent study used the same classification approach to map the benthic habitat and identify boat 

propeller scars in seagrass habitats [113]. In the study, they compared the use of three digital 

airborne imageries, ADS40-52, DMC, and ULTRACAMD, in which images collected over 

Redfish Bay, Texas, with standard formats in terms of radiometric, spectral, spatial resolutions 

for a fair comparison. To benefit from both the spectral and spatial resolutions, they created pan-

sharpened images using both panchromatic and multispectral images of the region. It was 

concluded that prop scar maps produced by the ADS40-52 sensor were the best among the three 

devices compared. 

The studies described above successfully identified prop scars based on an object recognition 

method in which a segmentation process and a classification step were usually combined to 

detect the scars. However, the success of these methods depends on a segmentation scale that 

determines the maximum detectable scar size in images [114]. A large value for the scale may 

make some large non-scar objects being detected while a small value may miss true scars in 

images. In addition, the methods are not fully automatic, and usually need some manual editing 

such as field observations and injection of the classification rules, requiring human in the loop to 

obtain final detection results.  

In this section, we develop an automatic system to detect both bright and dark prop scars in 

pan-sharpened images. Firstly, a set of features of scar and non-scar pixels are extracted using 

the SC-DFR method proposed in Section 3.3 and then a classifier categorizes each pixel in the 
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image as either scar or non-scar and generates an initial prop scar map. Secondly, morphological 

directional filters [115-117] are applied to the detected scar pixels to eliminate false positives. 

Directional filters process an image in a defined direction to remove objects according to their 

orientations. We applied the proposed algorithm to a pan-sharpened image obtained from the 

fusion of panchromatic and multispectral images collected by WorldView-2. Our results showed 

that the proposed method successfully mapped prop scars, resulting in an efficient scar detection 

system.  

The contribution of this chapter consists of three parts: 1) we successfully detected both 

bright and dark-toned scars, the later have very similar pixel values with their neighborhood 

structures and are difficult to discriminate, 2) we developed a morphological filtering process to 

improve the detection results achieved by sparse coding, making the system very effective and 3) 

the proposed system is fully automatic once the model is trained, requiring no human 

intervention for scar detection. 

4.2 REMOTE SENSING DATA 

In this dissertation, we used panchromatic and multispectral images captured in May 2010 

near Deckle Beach, Florida, USA by WorldView-2, an orbiting multispectral imaging system 

operated by DigitalGlobe, LLC. WorldView-2 is a remote-sensing satellite used to capture high-

resolution images of the Earth. The WorldView-2 panchromatic band covers the range from 450 

to 800 nm with 0.46-m spatial resolution and it has 8 multispectral bands ranging from 400 to 

1050 nm with 1.84-m spatial resolution. The availability of a WorldView-2 panchromatic band, 

in conjunction with the multispectral bands, provides the opportunity to create a multispectral 

pan-sharpened image by fusing these images.  
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From the multispectral image, we observed propeller seagrass scars on the 3rd to 6th bands 

(green, yellow, red, red edge bands). To create a pan-sharpened data set for our analysis, the 

panchromatic image was fused with these 4 multispectral bands by using the principal 

component analysis (PCA)-based pan-sharpening method [118] as described in Section 4.3.1. 

Figure 25 shows the area near Hagen's Cove Park, FL we used to evaluate our proposed method. 

Each of the bands contains 720 by 820 pixels. As seen in Figure 25, our data set presents some 

challenges for accurate scar detection. 1) Although scars are usually represented by relatively 

brighter pixels, some parts of the scars consist of dark-toned pixels. 2) Brighter pixels do not 

indicate scar pixels only, but also some structural elements in the sea. 3) Scars have different 

shapes ranging from straight lines to smooth curves with various widths. To overcome these 

challenges, we propose a three-step algorithm in the following section. 

 

 

Figure 25: Panchromatic image obtained over shallow vegetated area near Hagen's Cove Park. 

 

4.3 METHOD 

Figure 26 shows the flowchart of the proposed method for scar detection. The proposed 

method consists of three main steps: 1) pan-sharpening of multispectral and panchromatic 
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images based on the PCA method, 2) classification of new representations of original pixels 

created by sparse coding into scar and non-scar categories and 3) derivation of local orientation 

(LO) of each scar pixel to eliminate false positives and to produce a final scar map. Each step is 

detailed in the following subsections. 

 

Figure 26: Flowchart of the proposed algorithm. 

 

4.3.1 PCA based pan-sharpening method 

A high spectral resolution of a multispectral image results in a low spatial resolution, and 

conversely, a high spatial resolution of a panchromatic image results in a low spectral resolution. 

To benefit from both the spectral and spatial resolutions, we fused 4 multispectral bands with the 
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panchromatic image using the PCA-based pan-sharpening method [118]. We first up-sampled 

the low spatial resolution multispectral bands to match the resolution of the panchromatic image, 

then we converted high correlated multispectral bands into a new set of uncorrelated components 

using the PCA method. We assumed that the first PC image with the largest variance contains 

the most significant information from the multispectral image and replaced it with the histogram-

matched panchromatic image. We kept the remaining PCs considering they have spectral 

information. The pan-sharpened bands were obtained by performing inverse PCA on the 

modified panchromatic image and the remaining PCs. Figure 27 shows the original (Figure 

27(a)-27(d)) and pan-sharpened multispectral bands (Figure 27(e)-27(h)). 

 

    
(a) (b) (c) (d) 

    
(e) (f) (g) (h) 

Figure 27: (a) Green, (b) yellow, (c) red, (d) red edge bands of the multispectral image, and (e)-

(h) pan-sharpened multispectral bands after fusion. 

 

4.3.2 Classification of pixels using the sparse coding technique 

We modified the SC-DFR method, described in Section 3.3, to get the new represenation of 

pan-sharpened image pixels. In this section, we describe the modified method shortly.   
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Patch construction 

Figure 28 illustrates the construction of patches. To create our training data, first we created 

overlapped scar and non-scar blocks manually from the pan-sharpened image. Each block was 

assigned to a scar-class if the middle point (pixel) of the block represented a scar. Figure 29(a) 

and 29(b) show samples of scar and non-scar blocks, respectively. Each block has a dimension of 

w × w and has 4 bands. Then, we extracted non-overlapped patches with a dimension of b × b 

from the input blocks, where b is called "receptive field size." After that, we transformed each 

patch into a vector of dimension B = b × b × 4. Note that x(i)ϵ RB is the vector representing the i'th 

patch of a block. We chose w = 36 and b = 6 in this study. Then the patches were preprocessed 

as follows. First, each patch x(i) was normalized as in Equation (17). Then, the zero-phase 

components analysis (ZCA) whitening process was applied to patches to provide uncorrelated 

patches and to distribute more basis functions in the orthogonal directions. 



 

 

71 

 

Figure 28: Construction of patches. 

 

  
(a) (b) 

Figure 29: Samples of (a) scar and (b) non-scar blocks. 

 

Dictionary learning from image patches  

Dictionary D is randomly selected from the extracted patches of the training set. If k is the 

total number of sampled patches for dictionary learning, we denote it as D={d(1), d(2), …, d(k)}, 

where d(j) 
BR . 

Encoding and pooling 

With the dictionary D, we obtained a new representation for a pixel as follows,  

Patch construction. For a given test block of w × w pixels (with 4 bands), we constructed and 

preprocessed test patches in the same style as described patch construction part.  
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Encoding. For each patch, we obtained a new representation by applying the soft thresholding 

technique as described in Section 3.2.2. Then, we split the positive and negative components of 

the new representation into two separate features. Note that the dimension of the representation 

for the patch is 2 × k. We applied the encoding step to each patch of the block, thus, we had (w ̸ 

b)2-by-(2 × k) matrix for each pixel to be converted into a single feature representation in the 

pooling step. 

Pooling. We split all representations from the (w ̸ b)2-by-(2 × k) features of the block into 6 

equal-sized groups and summed them in each group to obtain 6 representations. The final 

representation,  , with a dimension of 12 × k, for the pixel was achieved by concatenating the 6 

representations.  

Feature selection and classification 

After the encoding and pooling steps described above, the dimensionality of the new feature 

representation, 12 × k, may be undesirable. We utilized the l1/lq regularized multi-class logistic 

regression [63-66]  1q  as shown in Equation (20) to select effective features for classification. 

It should be noted that the feature selection step was performed on training data only. The 

regularization parameters of the logistic regression were determined by cross-validation. Once 

we obtained the final representation vector for each pixel, we applied a weighted knn classifier 

[98] to sort the pixels into scar and non-scar classes.  

4.3.3 Derivation of local orientation of scar pixel for false positive reduction 

After the classification step, some unwanted objects (false positives) were also classified as 

scars. To remove the false positives, we computed local orientations of candidate scar pixels 

using directional filters that define the morphological directional profile (MDP) for a pixel as 

described in the following subsections. 
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Morphological filters 

Morphological filters process image objects based on the characteristics of a structuring 

element (SE). A SE is a binary matrix with arbitrary shape, size and orientation. Figure 30 shows 

four linear types of structural elements in size 5 at various orientations. Two fundamental 

morphological filters are dilation and erosion. A dilation filter adds pixels to the boundaries of 

objects in an image while an erosion filter removes pixels on object boundaries. The size and 

shape of the SE determines the number of pixels being added or removed. By concatenating the 

two fundamental morphological filters in different number and order, many complicated 

morphological filters can be implanted such as opening and closing. For simplicity, we only 

discuss opening filter in this section. The opening operation is an erosion filter followed by a 

dilation filter with the same SE. In the opening operation, erosion typically removes objects 

smaller than the SE and the subsequent dilation tends to restore the shape of the objects that 

remain. However, the accuracy of this restoration depends on the similarity between the shapes 

of the objects and the SE. On the other hand, "opening by reconstruction filter" [115, 119] can 

restore the original shapes of the objects as described in the following part.  

 

 

(a) (b) (c) (d) 

Figure 30: Linear type of structural elements in size 5 and various orientations (a) 0°, (b) 45°, (c) 

90°, (d) 135°. 

 

MDP and local orientation 
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In the "opening by reconstruction" operation, first erosion filter removes or shrinks objects 

according to the characteristics of the SE and then reconstruction filter restores the shrunk 

objects as their original sizes. Thus, all the bright objects in an image smaller than the SE are 

removed. In morphological operations, directional filters, such as "opening by reconstruction" 

with a linear SE, can process an image in a defined direction. Thus, it is possible to preserve or 

remove objects with different orientations. Figure 31 shows an example of implementing 

"opening by reconstruction" filter with a linear SE and different orientations on a part of our 

binary classification map. When the orientations of the scars fit the orientation of the SE, the 

scars are preserved, otherwise removed from the image. This property yields to compute MDP 

and the LO of a pixel. The MDP of a pixel is the composition of the outputs of the directional 

filter with a varying orientation parameter Φ ranging from 0° to 180° [119, 120] (Figure 32). For 

a given pixel x, the local orientation LO(x) is defined as the difference between the maximum 

value and the minimum value of the MDP of a pixel [115]: 

      xMDPxMDPxLO


 minmax)(  (19) 

Here, it should be noted that LO of a pixel in a binary image can have either 1 or 0.    

 

    
(a) (b) (c) (d) 

Figure 31: Implementation of "opening by reconstruction" filter on (a) initial map with 

orientation (b) 30°, (c) 60° and (d) 110°.  
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In our algorithm, to remove false positives observed on the binary map of the classification 

step, we composed the MDP of the candidate scar pixels using "opening by reconstruction" filter. 

In the filter, we used a linear SE in size of 35 and orientation ranging from 0° to180° with a step 

size of 5. We observed that the oriented objects (usually scars) restored with at least one of the 

orientations in the range from 0° to 180°, thus the LO of the pixels that belong to these objects 

were computed as 1. Figure 32 shows a sample MDP of a scar pixel restored when the SE was in 

orientations of 15°, 20° and 25°. Conversely, the LO of the pixels that belong to a non-oriented 

object (usually false positives) were computed as 0 since the filter did not restore a non-oriented 

object in any orientation. Thus, the final scar map was obtained from 1's (oriented objects) 

eliminating false positives (0's) from the initial classification map.  

 

Figure 32: MDP of a scar pixel. 

 

4.4 RESULTS 

4.3.1 EXPERIMENTAL SETUP AND PERFORMANCE EVALUATION  

The scars can be identified by their increased brightness over seagrass. However, sand 

patches, rocks or other structural elements can be also identified as bright pixels. On the 

contrary, scars may be identified as gray or black pixels when they are covered by seagrass 
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leaves. For our experiments, we created two training and test sets manually. In the first set, we 

labeled 1,956 bright pixels as scar pixels and 3,055 bright and dark pixels as non-scar pixels. In 

the second set, we added 1,308 gray and black scar pixels to the first set to investigate the effect 

of dark scar pixels on classification performance. The ground truth data of the first and second 

sets are shown in Figure 33(a) and 33(b), respectively. It should be noted we did not label all scar 

pixels appearing in Figure 25. 

  
(a) (b) 

Figure 33: The ground truth data of the (a) first and (b) second sets. 

 

We conducted experiments using various amounts of data for training (from 10 to 75% of the 

available ground truth data) to study how the number of training samples affected the 

classification performance of the proposed method. We repeated the experiments ten times and 

computed the average performance of all ten runs. For performance metrics, we utilized 

classification accuracies of scar and non-scar pixels and overall accuracy (OA). OA measures the 

ratio of correctly classified pixels to all test pixels. There were five parameters in the proposed 

method: (1) number of basis functions, k, (2) size of each patch, also named receptive field size, 

b, (3) threshold for encoding, t, in the coding step, (4) number of neighbors in the weighted 
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classification algorithm, n, and (5) size of the linear SE. In this dissertation, we conducted the 

experiments many times and optimized those parameters. With those optimized parameters, we 

repeated the experiments and reported the results in the next section. 

4.3.2 INITIAL PIXEL CLASSIFICATION RESULTS  

Table 16 and 17 show the testing classification results of the first and second sets, 

respectively. In the experiment, the parameters of the proposed algorithm were set k = 250, b = 6, 

t = 0.1 and n = 15. Before the feature selection step, there were about 3,000 (12 × k) features and 

the feature selection algorithm retained 500 of them.  

 

Table 16: Classification results of the first data set using different amounts of data for training.  

 
Rate (%) of data for training 

10% 25% 50% 75% 

Accuracy of 

non-scar pixels 

91.45 

±1.27 

94.98 

±0.48 

97.35 

±0.50 

98.37 

±0.37 

Accuracy 

of bright scar pixels 

85.80 

±1.80 

94.78 

±0.90 

97.97 

±0.83 

98.99 

±0.55 

Overall Accuracy 
89.28 

±0.87 

94.90 

±0.38 

97.66 

±0.42 

98.60 

±0.40 

 

Table 17: Classification results of the second data set using different amounts of data for 

training.  

 

 
Rate (%) of data for training 

10% 25% 50% 75% 

Accuracy of 

non-scar pixels 

86.94 

±1.37 

91.96 

±0.74 

95.46 

±0.72 

96.66 

±0.73 

Accuracy 

of bright and dark scar pixels 

87.54 

±1.66 

94.03 

±0.85 

97.47 

±0.68 

98.54 

±0.55 

Overall Accuracy 
87.23 

±0.54 

92.96 

±0.50 

96.43 

±0.51 

97.57 

±0.42 
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From the tables, it is clear that the proposed algorithm can achieve greater than 90% accuracy 

with the first and second sets, when a sufficient amount of training pixels (≥25%) were used. 

However, there were still some misclassified pixels, especially when we added the dark scar 

pixels to the data set. This issue will be discussed in subsection 4.4. 

4.3.3 VISUALIZATION FOR THE INITIAL CLASSIFICATION  

In this section, a qualitative analysis of the classification results over the whole image is 

presented. The goal of this analysis is to test and visualize the whole image (contains 720 by 820 

pixels) after training various amounts of the ground truth data. Figure 34 and 35 show the 

classification maps from the second step of the proposed algorithm on the first and the second 

data sets, respectively.  
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Figure 34: Classification maps of test image after the classification step. The maps were obtained 

with training (a) 10%, (b) 25%, (c) 50% and (d) 75% of the first ground truth set. 

 

It is observed from Figure 34 that most of the scar pixels were identified correctly, especially 

when we used more than 25% of the data for training. There are some false positives (bright non-

scar pixels) such as rocks or other structural elements in the sea that appear bright in the image. 

Notice that false positives were reduced when more data were used for training. For the second 

data set, Figure 35 shows the same trend except that the inclusion of dark scar pixels resulted in 

more false positives. 
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Figure 35: Classification maps of test image after the classification step. The maps were obtained 

with training (a) 10%, (b) 25%, (c) 50% and (d) 75% of the second ground truth set. 

 

4.3.4 FALSE POSITIVE REDUCTION BASED ON PIXEL’S LOCAL ORIENTATION 

To remove the unwanted objects, local orientations of scar pixel candidates were computed 

using the "opening by reconstruction" filter. The filter was tested with different SE sizes and the 

size of 35 was chosen in this dissertation. Figure 36 and 37 show the final scar maps obtained for 

the first and second sets, respectively, with various amounts of data used for training.  
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Figure 36: Final scar maps of test image after the local orientation step. The maps were obtained 

with training (a) 10%, (b) 25%, (c) 50% and (d) 75% of the first ground truth set. 

 

It is observed from Figure 36 that most of the scar pixels were identified correctly, however, 

not all false positives were removed when a small amount of training pixels (10% and 25%) was 

used. Notice that all false positives were removed when more data were used for training. For the 

second data set, Figure 37 shows that training pixels at 25% of the data set is sufficient to 

remove almost all false positives. This amount also retains all of the scars, except for a small 

portion of the scar marked in red in Figure 37(b). We also observed that some small scars, which 
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were not trained in the classification step, were also detected as scars (marked in green in Figure 

37).  

In this study, we also calculated the numbers and the region occupied by the scars detected in 

the final scar map. From Table 18, when more data were used for training, we detected more 

scars. We ignored the results of 10% training data, since it contains too many false positives. 

 
Figure 37: Final scar maps of test image after the local orientation step. The maps were obtained 

with training (a) 10%, (b) 25%, (c) 50% and (d) 75% of the second ground truth data set. 
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Table 18: Detected scars using different amounts of data for training (%). 

 

Rate (%) of data for 

training 

25% 50% 75% 

The numbers of detected scars 15 16 19 

Area occupied by the detected scars in 

pixels 
14,383 16,286 16,551 

Area occupied by the detected scars in 

m2 

(1 pixel = 0.25 m2) 

3,595 4,071 4,138 

 

4.4 Discussion and conclusion 

Accurate detection of propeller scars on seagrass beds is challenging as described in Section 

4.1. We proposed a three-step algorithm to address these challenges in this dissertation. The 

detection of the scars in the classification step depends on the number of basis functions, the size 

of patches, threshold value and number of neighbors in the weighted knn classification 

algorithm. We conducted experiments on two data sets to optimize these parameters and used 

various amounts of data samples for training. Experimental results showed that inclusion of dark-

toned scar pixels (the second data set) will degrade the detection performance of the proposed 

system. For example, if 25% of the ground truth sets were used for training, the overall 

classification accuracy decreased from 94.90% (first set) to 92.96% (second set). This can also 

be confirmed in the classification maps (Figure 34-35). We believe the reason for this difference 

is that by adding the dark-toned scar pixels to the training set, there is a false detection of some 

non-scar regions as scar pixels. Another reason of for the presence false positive scar pixels in 

the initial scar map is caused by structural elements in the sea being represented by bright pixels.  

From the experiments, we also observed that the accuracy of classification scar pixels with 

multispectral pan-sharpened bands is higher than that obtained by the original multispectral data. 
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In our previous study [121], we experimented the proposed algorithm on the panchromatic image 

of the same region to detect the scars. In that experiment, we obtained 91.80% overall accuracy 

by training 2073 samples. The experiment on the multispectral pan-sharpened bands achieved an 

overall accuracy of 94.90% with 1580 samples.      

We utilized morphological directional profiles to eliminate false positives and generate the 

final scar detection map. The size of linear SE is an important parameter for the formation of the 

morphological directional profiles. We analyzed the effect of SE size on the classification map in 

our previous study [121]. Relatively small size of SE can still produce false results. Conversely, 

large sizes of SE cause some thin scars to be eliminated on the final scar detection map. For 

example, although thin and discontinuous parts of upper scar were detected as scars in 

classification step (Figure 35(b)), they were not mapped in final scar map (Figure 37(b)) since 

they were too short for the size of SE optimized in this paper. The SE size in the algorithm could 

be reduced to detect this part; however, this would lead more non-scar regions being mapped as 

scar regions. The size of the SE, therefore, depends on the purpose of the detection; a greater size 

will detect longer scars and miss some short scars, whereas a smaller size will detect most of the 

scars but also non-scars. Aside from this aspect, the local orientation step can successfully 

distinguish the scars from false positives. The optimized size of SE can retain the scars while 

eliminating unwanted small objects, especially with the training rate of more than 25%. 

It is also interesting to note the results of the two sets. As seen from Table 16-17 and Figure 

34-35, the amount of false positives in the experiment of the first set is much more than that of 

the second set before the local orientation step. However, the local orientation step can 

successfully eliminate false positives, thus, it is more reasonable to include dark-toned scar 
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pixels into the training set. This illustration also shows that local orientation is a very powerful 

tool to eliminate false positives from scar pixels.    

We conclude that this promising algorithm could be implemented on a regular basis to 

monitor changes in habitat characteristics in coastal waters. It represents an important new 

capability for coastal management. 



 

 

86 

Chapter 5  

 

CONCLUSION AND FUTURE WORK 

 

This dissertation studied methods for feature representation of hyperspectral and 

multispectral images based on the sparse coding algorithm. Specifically, the dissertation 

addressed two challenge problems in sparse coding framework: the complex optimization 

problem and very high dimensional feature representation. A spectral based sparse coding 

framework was introduced for the representation of the features. We proved that a set of random 

sub-bands as a dictionary and the soft-thresholding function as an encoder are sufficient to obtain 

high performance on the classification of HSI data we tested instead of solving the optimization 

problems. For further improvement on the classification performance with a compact 

representation, we proposed two different ways: to incorporate the spatial information and to 

reduce the dimension of the new representation before the classification step. The enhanced 

framework, SC-DFR, was applied to three well known HSI data and was compared against the 

standard and recently developed methods. Experiments on real HSI data confirmed the 

effectiveness of the proposed model for HSI classification. From the classification experiments, 

the proposed method showed improvement over the other representation methods. It is also 

worth to note that the performance of our method is much better than the others in scenarios with 

a relatively low number of labeled training data. This property was very important since labeling 

HSI data is time-consuming and difficult. 

In this dissertation, we also addressed the detection of seagrass scars in shallow waters. For 

this purpose, the SC-DFR method was modified for a pan-sharpening image and systematically 
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integrated with different image processing applications: pan-sharpening and morphological 

operations. Experiments showed that the proposed system can detect the scars that even have 

very similar pixel values as their surrounding structures. We believe that this fully automatic 

model provides valuable baseline information for assessment of scar recovery. 

A number of directions for the remaining work are possible. The work completed has been 

performed using just the mean per spectral band of HSI pixel as the spatial information. Another 

spatial feature, such as standard deviation, or a smarter algorithm that makes excessive use of 

both spectral and spatial features of HSI would be appealing for more powerful representation 

systems. Another future research option may be the use of more smooth and differentiable 

functions, such as "double tanh" function [122] for thresholding. This function could 

discriminate very similar structures while creating sparse codes.   
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