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Abstract

Cross domain recognition extracts knowledge from one domain to recognize samples

from another domain of interest. The key to solving problems under this umbrella is to

find out the latent connections between different domains. In this dissertation, three

different cross domain recognition problems are studied by exploiting the relationships

between different domains explicitly according to the specific real problems.

First, the problem of cross view action recognition is studied. The same action

might seem quite different when observed from different viewpoints. Thus, how to use

the training samples from a given camera view and perform recognition in another

new view is the key point. In this work, reconstructable paths between different views

are built to mirror labeled actions from one source view into one another target view

for learning an adaptable classifier. The path learning takes advantage of the joint

dictionary learning techniques with exploiting hidden information in the seemingly

useless samples, making the recognition performance robust and effective.

Second, the problem of person re-identification is studied, which tries to match

pedestrian images in non-overlapping camera views based on appearance features.

In this work, we propose to learn a random kernel forest to discriminatively assign a

specific distance metric to each pair of local patches from the two images in matching.

The forest is composed by multiple decision trees, which are designed to partition

the overall space of local patch-pairs into substantial subspaces, where a simple but

effective local metric kernel can be defined to minimize the distance of true matches.
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Third, the problem of multi-event detection and recognition in smart grid is

studied. The signal of multi-event might not be a straightforward combination of

some single-event signals because of the correlation among devices. In this work,

a concept of “root-pattern” is proposed that can be extracted from a collection of

single-event signals, but also transferable to analyse the constituent components of

multi-cascading-event signals based on an over-complete dictionary, which is designed

according to the “root-patterns” with temporal information subtly embedded.

The correctness and effectiveness of the proposed approaches have been evaluated

by extensive experiments.
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Chapter 1

Introduction

1.1 Cross Domain Recognition

Massive data is generated from various areas in this data-centric era. For example,

the users of Facebook, Twitter, Youtube, etc, contribute incredible amount of data

every data; the cameras for city security surveillance also generate a huge volume of

monitoring video sequences every minute; research in both science and engineering

also collect a large amount of observational or synthetic data. Therefore, it is essential

to analyse data from multiple sources collaboratively to extract information and make

new discovery. Meanwhile, the analysis of the multi-source data also poses a great

challenge as the data maybe generated with non-identical attributes or distribution.

Machine learning has been thoroughly investigated for decades and widely applied

to many areas, such as data mining (Witten et al., 2011), computer vision (Bishop,

2007). Traditional machine learning usually assumes the data property is relatively

stable across the learning and recognition phases, where the data property refers to

the samples feature vector or the data distribution, such that the classification model

learned from training data can be used for recognition of the testing data. However,

this assumption is usually violated in many real world problems where either the
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attributes of the data instances or the structure of data distribution varies across the

training and testing data.

Formally, suppose (x, y)train and (x, y)test are samples drawn from certain training

distribution Dtrain and testing distribution Dtest, respectively, where x denotes the

instance feature vector and y denotes the class label. Traditional machine learning

usually assumes the feature representations x share a common feature space, i.e.,

the same attributes of the features, meanwhile, Ptrain(y|x) = Ptest(y|x), meaning the

training data and testing data are under the same distribution, i.e., Dtrain = Dtest.

However, if we permit either assumption being relaxed, i.e., allow the attributes of

instance features or the data distribution vary across the training and testing data, the

performance of traditional machine learning and recognition approaches will degrade a

lot. In other words, these approaches are not able to adjust themselves in recognition

of the testing samples with inconsistent data property, since the prediction from the

classification models based on these approaches become uncertain.

Traditional machine learning usually requires access of sufficient labeled training

data to learn robust models or classifiers for the purpose of better prediction on the

unseen testing data (Vapnik, 1998; Hastie et al., 2009). However, if the testing data is

not from an identical or similar domain of the training data Dtrain, it usually requires

large human effort to obtain labeled training data under the same data distribution

Dtest. From the perspective of human psychology, the model learned in Dtrain is still

useful if we can find certain latent connection between Dtrain and Dtest, and then the

models can be modified to effectively recognize testing data. Therefore, how to make

use of the knowledge extracted from training data via the latent connection between

different domains presents a challenging problem.

In recent decades, cross domain recognition becomes a growing research area with

a wide range of applications. For example, the video concept detection (Duan et al.,

2011). It extracts semantic concepts, such as “person”, “animal”, “building” and so

on, as classification models from video data in some source domain, then uses these

models to detect the concepts in other domains. Here, a domain is a TV channel, such

2



as CCTV, CBS, CNN, and NBC. For instance, the TRECVID dataset (Smeaton and

Over, 2003) is a typical multi-domain video collection which has news videos from

different TV channels. As a result, even for the same concept, the data distribution

of CCTV is usually different from that of CNN. Another example is for web-page

categorization (Zhuang et al., 2010). One typical application is using classification

model to retrieve course main pages from all the web-pages in an university website.

We may create training data by manually labeling a collection of main course pages

from the university website with a lot of human efforts, but an alternative way is to use

some already labeled main course pages from other universities as the training data.

However, different universities have different templates for course pages, where the

terms used also may be different. As part of human nature, we prefer to investigate

information gained from previous efforts, instead of restart a new endeaver, to solve

the similar tasks. Therefore, we desire to transfer the knowledge from one domain into

another one via certain guidelines, e.g., the semantic concept from CCTV to CNN,

or the course page style from one university to another, such that we do not need to

learn models for each individual data domain while targeting one common recognition

purpose. Except for the aforementioned real-world applications, there are also many

other applications involving the same cross domain recognition issue, such as image

classification (Liu et al., 2011b; Shekhar et al., 2013; Fernando et al., 2013), image

clustering (Yang et al., 2009; Gopalan, 2013), natural language processing (Blitzer

et al., 2006; Arnold et al., 2007; Wu et al., 2009), wireless sensor networks (Pan et al.,

2008, 2011; Yin et al., 2008), sentiment classification (Li et al., 2009a; Remus, 2012),

and so on.

1.2 Motivations

In order to remove the constraint of same-data-distribution in traditional machine

learning approaches, knowledge transfer has been proposed by allowing the training

and testing data to be from different yet implicitly correlated domains. The formal
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Figure 1.1: A comparison between traditional machine learning and learning with
knowledge transfer.

definition of knowledge transfer is to apply previous knowledge extracted from one or

multiple existing domains/tasks to improve the learning in the new domains/tasks of

interest. Nowadays, knowledge transfer serves as a general term of machine learning

that covers a variety of approaches including multi-task learning (Harpale and Yang,

2010), domain adaptation (Jhuo et al., 2012), sample selection bias (Pan and Yang,

2010), covariate shift (Bruzzone and Marconcini, 2013), etc. Figure 1.1 provides an

intuitive illustration describing the difference between traditional machine learning

and cross domain knowledge transfer. From the illustration, we can observe that the

key to address real-world cross domain recognition problems that previously hard to

solve is how to exploit the latent relationships between the different data domains.

Therefore, the main purpose of this dissertation is to tackle the problems under the

umbrella that the training data and testing data are in different domains. Specifically,

we exploit different latent relationships across data domains to solve several real-world

cross domain target recognition problems:

First, action recognition across camera views: action recognition is essential

to many real world applications, such as visual surveillance, video retrieval, human-

computer interaction, etc. The spatio-temporal features are popularly used as action
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representation in typical action recognition settings. However, these features are

view-dependent. Although they are powerful in discriminating actions observed from

similar viewpoints, the same action may look quite different if viewed from different

camera viewpoints. Due to the poor generalization of these view-dependent features

across different camera views, the performance of these features degrades significantly

when the observing viewpoint changes. This also can be verified by the fact that the

magnitude of inter-class variation of action characteristics, which distinguishes one

action from the others in the same view, may be even smaller than the intra-class

variation caused by the change of viewpoints. In this problem, we assume to be

given pairwise learning samples from two cameras that recorded a group of actions

performed by different subjects, while the labeled training data for classification model

only exist in one source data domain. The objective is to enable the actions observed

in a target view to be recognizable by a classifier trained by labeled samples observed

in a source view. Thus, how to exploit the latent relationship for actions in different

views is the key for solving this problem.

Second, person re-identification across non-overlapping cameras: person

re-identification is to discover correct matches of pedestrian images observed in non-

overlapping camera views by visual features. It is able to save human effort by avoid

exhausting search of an interested person from large amount of video sequences, and

has attracted considerable attentions, particularly in the surveillance community for

its importance in pedestrian retrieval, event detection, and multi-camera tracking.

After years of research, this problem is still extremely challenging, and its difficulty

mainly attributes to the significant disjoint of the non-overlapping cameras. A person

observed in different camera views often suffers from changes in viewpoints, poses,

illuminations, complex backgrounds and occlusions. Meanwhile, different people also

might share similar appearance. All the factors make two images of the same person

look different while images of different people look similar. Therefore, direct matching

of the visual features of person images from different cameras is not reliable for the

challenges. In this problem, we also assume to be given training samples in pair from
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two cameras that recorded a group of individual persons, while the objective is to

identify for a query image recorded in one camera from a large number of candidates

in the gallery of another camera. Thus, how to exploit the latent relationship between

the two cameras is the key for solving this problem.

Third, multi-event detection and recognition in smart grid: Event analysis

has been an important component in any situational awareness systems, i.e., smart

power grid system. When an event occurs in a smart grid, the imbalance between

generation and load consumption causes sudden frequency changes within the system

that can also be used as an indicator for event disturbance. Although successful, the

state-of-the-art techniques can only handle disturbances caused by a single event. If

multiple cascading events are involved, existing techniques can only detect frequency

disturbances caused by the initial one, and the frequency disturbances from successive

events might be overshadowed by the continued frequency fluctuation from the initial

event. Thus, how to determine the number of events that occurred and identify the

types of events that involved with precise estimation of occurring time using simply

the observed 1-D signal is a very challenging problem. In this problem, we are given

enough instances of signal observed in single event disturbances, while the objective

is to analyse the signal observed in event of multiple cascading disturbances. Thus,

how to exploit the physical latent relationship between the given single event signals

and the multi-event signals is the key for solving this problem.

1.3 Contributions

In this dissertation, approaches related to how to learn the implicit latent relationships

between different data domains are proposed for the aforementioned challenges. In

summary, our contributions include:

� For the cross view action recognition problem, a reconstructable path learned

from view dependent action representations (RP-VDR) from both cameras is
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proposed. The RP-VDR allows labelled training samples from a source domain

to be reconstructed into the target domain, such that we are able to train a

classifier in the target domain with these mirrored samples from source domain.

If multiple source views are available, the mirrored samples from different source

domains can also be used together for learning a stronger classifier.

� To exploit the hidden information existing in some of the seemingly useless

action samples in each camera view, we also proposed RP-VDRh to facilitate

the learning of the reconstructable path, such that the path can achieve better

prediction with much less restricted learning samples. Alternate dictionary

learning technique is used to realize the path learning, such that the structure

information of each view domain can be fully exploited and the discrimination

among action categories can be well preserved after reconstruction.

� For the problem of person re-identification across cameras, unlike other existing

works to learn a fixed distance metric for the pedestrian images matching, we

proposed to learn a random kernel forest that is able to discriminatively assign

the optimal local metric kernel to each local region of the query image, such

that the distance between images of the same individual captured in different

cameras can be better minimized. The metric kernel forest is optimized based

on aligned local image patch-pairs. Its behind gist is to decompose the complex

inter-camera transformation into a lot of simple local transforms, thus the

space of the local patch-pairs is partitioned into many subspaces based on the

criteria of consistency patch-to-patch transform via feature split in a decision

tree. Multiple trees compose a forest to prevent over-fitting and generate good

prediction.

� For the multi-event analysis problem, physical analysis reveals that when the

multi-event occurs in a cascading fashion, the measurement taken at sensors

would more than likely be a “mixture” of several constituent component signals.

We therefore proposed to learn a group of “root-patterns”, which are modeled
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as latent common patterns for both the domains of single event and multi-event,

to represent these constituent component signals in a dictionary. Consider that

each constituent event may occur at different time, temporal stamps are also

subtly embedded in each column of the dictionary for temporal awareness. By

decompose the signal of multi-event according to the constructed dictionary

with sparsity and non-negativity constraints, we are able to detect, recognize

each constituent event and also identify their occurring times simultaneously in

one step with high accuracy.

1.4 Dissertation Organization

The dissertation is organized as follows: Chapter 2 presents a literature review on our

studied problems. Chapter 3 studies the problem of action recognition across camera

views, as well as the experimental results. Chapter 4 studies the problem of person re-

identification in non-overlapped camera networks, as well as the experimental results.

In Chapter 5, we study the problem of multi-event detection and recognition in smart

grid system, and evaluate experimental results on both synthetic data and real world

cases. Finally, conclusion and future research are discussed in Chapter 6.
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Chapter 2

Literature Review

2.1 Background

Training on data from task domain might be the most straightforward solution for

cross domain recognition problems, since the training data would be drawn from the

identical distribution as the data ultimately test on. However, the drawback with this

solution is that it usually requires a large amount of labeled data, which are often not

available in the task domain. From the perspective of human psychology, the better

solution for cross domain recognition is to investigate how to transfer the knowledge

learned from previous domain to the new task domain that shares certain kinds of

latent statistical connections (Thorndike and Woodworth, 1901; Elli, 1965).

Generally, the most popular approach for solving this kind of problems is learning

with knowledge transfer. Under the umbrella of cross domain recognition, there are

several sub-problems. The transfer problem is called as “domain adaptation” (Daume

and Marcu, 2006) if only the data being analysed is allowed to vary; while the transfer

problem is called as “multi-task learning” (Caruana, 1997) if the task being learned

is allowed to vary. Both of them are typical transfer learning problems that require

an effective way to manipulate the classifier learned in source domain to adapt to the

unique property of task domain. For example, the adaptive SVM (Yang et al., 2007)
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uses its incremental learning ability to adjust the classifiers Cold learned from source

domain to classify testing samples, thus there is no necessity for re-training the entire

model using training data from source domain again.

In previous works, different research has made different assumptions about the

relationship across data domains. In supervised setting, the comparison of both the

marginal and conditional data distributions among different domains is permitted

to look for patterns with strong generalizability across data domains (Romero and

McCree, 2014; Li et al., 2014a; Ma et al., 2015), or to examine the common structure

of correlated problems (Arnold et al., 2008; Chen et al., 2014; Zhang and Mahoor,

2014). Unsupervised (Ni et al., 2013; Baktashmotlagh et al., 2013) and semi-

supervised (Cheng and Pan, 2014; Xiao and Guo, 2015) settings are also investigated

to quantify these inter-domain relationships. In this dissertation, the study mainly

focus on the supervised settings, and the implicit relationships between different data

domains are explicitly exploited and modeled. It is also worth mentioning that some

researches also use metric learning to bridge the correlation between different domains

by mining the commonly shared information (Kulis et al., 2011; Luo et al., 2014b;

Ding et al., 2015). Metric learning is to learn a distance metric from a given set of

paired samples of similar/dissimilar that preserves the distance relationship in both of

the training and testing data. We also investigated this approach in this dissertation.

2.2 Cross View Action Recognition

The purpose of this part of work is to recognize human actions across changes in the

observers viewpoint. Opportunities for the use of action analysis are in areas such

as surveillance, video indexing/retrieval, and human-computer interaction, etc. To

handle this cross-view recognition problem, there generally have been two categories of

research directions. One direction relies on extracting effective view-invariant action

features (Juneio et al., 2008; Rao et al., 2002). Another emerging family of approaches

is based on transfer learning that encourages the actions recorded from different views
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to be represented by certain commonly shared representations (Farhadi and Tabrizi,

2008; Liu et al., 2011a) to achieve cross view invariance.

2.2.1 View Invariant Action Features

In the first category of research line, which mainly relies on view invariant features

extraction, a lot of approaches were proposed. In (Juneio et al., 2008), actions were

represented by view stable temporal self-similarity matrices. Alternatively, view-

independent can also be achieved by 3D models. For example, (Weinland et al.,

2007) described actions by 3D examplars and performed recognition via matching in

projected 2D space. In (Li et al., 2007), 3D shapes and poses were directly estimated

from multiple-view inputs for action recognition. Multiple-camera systems were also

investigated (Luo et al., 2013a). (Yilmaz and Shah, 2005) proposed to exploit dynamic

epipolar geometry by imposing temporal fundamental matrix and (Paramesmaran

and Chellappa, 2006) exploited projective invariants of coplanar landmark points for

view-invariant feature extraction. Inferable classifiers were also proposed in (Weinland

et al., 2010; Wu and Jia, 2012), where the former handled view changes by learning

a classifier based on examples taken from various views and the latter proposed to

learn a kernelized structural SVM which regards the view label of action as a latent

variable and implicitly infer it during both learning and inference. Nevertheless, the

biggest limitation for these techniques is the relatively complicated reasoning of view

alignment.

2.2.2 Cross View Knowledge Transfer

Transfer learning applies knowledge learned in one task to novel tasks or new domains

sharing some commonality. It has been explored in many applications, such as image

classification and super-resolution, visual domain adaptation (Quattoni et al., 2008;

Wang et al., 2012; Jhuo et al., 2012; Wang and Zheng, 2012). Also as an attractive

method to address action recognition across camera views, the existing approaches
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try to establish certain form of connection between the source and target views and

use a commonly shared representation for both views when representing an action,

then the trained classifier based on this shared representations can be adaptable for

any instances represented in this shared form. For example, (Farhadi and Tabrizi,

2008; Farhadi et al., 2009) proposed to learn view-consistent split-based features from

different views based on Maximum Margin Clustering. (Liu et al., 2011a; Li et al.,

2012) advocated to construct a bilingual codebook as the shared representation from

two view-dependent vocabularies using bipartite graph and (Zheng et al., 2012) tried

to use transferable dictionary pairs to encourage the same action from different views

to have similar sparse representations. Other emerging approaches include (Li and

Zickler, 2012; Zhang et al., 2013) and (Huang et al., 2012). The former two exploited

Grassmannian manifold and took the sampled points or the integral kernel between

two views on the manifold as the shared representations, while the latter derived a

correlated subspace where the shared representation for the same action from different

views can be extracted. Although successful, these techniques still suffer from some

drawbacks, e.g., extracting the view-consistent features is computational intensive, or

the commonly shared representations are not accurate enough to guarantee the cross-

view consistency. The Grassmannian manifold based approaches nicely characterized

changes between source and target data, but did not explicitly exploit the statistical

properties of the observed data.

2.2.3 Dictionary Learning Review

We used dictionary learning to investigate the statistical connection between different

camera views, we thus also simply review the dictionary learning in this subsection.

Dictionary learning, as a particular sparse model, is to find effective representation of

data as a combination of a few typical patterns (atoms) learned from the data itself.

The optimized dictionary is usually over-determined and composed by a relatively
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Figure 2.1: A graphic illustration of dictionary learning. Left, dictionary atoms are
used for description of the data space structure; Right, feature samples are represented
as sparse coefficient vectors.

large number of atoms, which effectively depict the structure of the data space similar

to the landmarks on certain surface, as shown in the left of Figure 2.1.

Mathematically, given data samples Y = [y1, ...,yN ] ∈ Rf×N , find a dictionary D

= [d1,d2, ...,dK ] with columns number K � N , such that yi is a sparse combination

of a few columns in D, as shown in the right of Figure 2.1.

arg min
D,A

=
N∑
n=1

||yn −Dan||2 + λ|an|1, s.t., ||dk||2 ≤ 1,∀k = 1, 2, ..., K (2.1)

Eq. 2.1 indicates dictionary learning involves deriving the sparse codes a, which is a

high-dimensional vector with just a few elements being nonzero, and optimizing the

dictionary D, which always yields the sparse representations for the training data.

An iterative optimization approach was proposed in (Lee et al., 2007; Mairal et al.,

2009) for solving Eq. 2.1 with two main steps in each iteration. First, calculate the

sparse coefficients in A by fixing dictionary D. A bunch of methods were proposed,

including OMP (Chen et al., 1998), l1 minimization (Lee et al., 2007), shrinkage

thresholding (Tibshirani, 1996; Beck and Teboulle, 2009), etc. Then, updating the

dictionary D by fixing A, it becomes a typical convex optimization problem can be

solved by e.g., gradient decent (Aharon et al., 2006; Mairal et al., 2009).

In the past decade, the dictionary learning technique has been applied in a wide

range of applications in computer vision area, such as image classification (Yang et al.,

2010b; Jiang et al., 2013), face recognition (Wright et al., 2009; Li et al., 2013a),
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saliency detection (Li et al., 2009b; Seo et al., 2014), objects visual tracking (Xue

and Ling, 2009; Taalimi et al., 2015b), abnormal event detection (Cong et al., 2011;

Tang et al., 2013), human action recognition (Luo et al., 2013b, 2014a; Wang et al.,

2013d), biometric recognition (Taalimi et al., 2015a; Khorsandi et al., 2015), system

monitoring (Wang et al., 2013b, 2014a), etc, as well as the cross domain recognition

problems (Mehrotra et al., 2012; Qiu et al., 2012; Ni et al., 2013). For example, (Zhu

and Shao, 2014) introduced a weakly-supervised cross domain dictionary learning

approach that learns a reconstructive, discriminative and domain adaptive dictionary

pair to bring the data from the original target domain and source domain into the

same feature space.

2.3 Cross View Person Re-Identification

The purpose of person re-identification in a non-overlapping camera networks is to

match pedestrian images observed in different camera views with visual features. It

has important applications in video based surveillance, such as cross-camera tracking,

multi-camera event detection, etc. The existing person re-identification approaches

can be generally grouped into two categories: robust view-invariant feature extraction

and supervised distance metric learning.

2.3.1 View Invariant Feature Design

The existing works on feature design and selection also can be further divided into

unsupervised and supervised versions. Unsupervised approaches search for cross view

invariant features via perceptual symmetry or certain prior assumptions (Cheng et al.,

2011; Ma et al., 2012a; Liu et al., 2012a; Bazzani et al., 2012). For example, Farenzena

et al (Farenzena et al., 2010) proposed the symmetry-driven accumulation of local

features by exploiting the symmetry property. Zhao et al (Zhao et al., 2013b,a)

used a salience model for patch matching such that the reliable and discriminative
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matched patches can be picked for better performance. Liao et al (Liao et al., 2015)

proposed to maximize the occurrence of each local pattern among all horizontal sub-

windows to tackle viewpoint changes. Supervised approaches select the most effective

features by certain criteria (Gray and Tao, 2008; Ma et al., 2012b). For example,

Prosser et al (Prosser et al., 2010) formulated the person re-identification as a ranking

problem, and extracted global feature weights based on an ensemble of RankSVM.

Paisitkriangkrai et al (Paisitkriangkrai et al., 2015) improved the feature ensemble

performance by learning the weights based on CMC curves. Recently, Wu et al (Wu

et al., 2015) proposed an appearance model integrating camera viewpoint and human

pose information novelly.

2.3.2 Distance Metric Learning

The basic idea behind metric learning is to learn a better similarity measure between

the features from the same individual. In contrast, approaches that focus on metric

learning usually extract features in a more straightforward way, e.g., color or texture

histograms from predefined image regions. A lot of metric learning algorithms have

been proposed recently (Zheng et al., 2011; Kostinger et al., 2012; Ma et al., 2014;

Xiong et al., 2014; Li et al., 2015b). For example, Mahalanobis distance learning has

been applied for the re-identification problem (Hirzer et al., 2012; Mignon and Jurie,

2012), as M-distance can implicitly model the transition in feature space between

camera views. Besides, Pedagadi et al (Pedagadi et al., 2013) applied FDA together

with PCA and LPP to derive a low dimensional yet discriminant subspace. Li et

al (Li et al., 2013b) developed a locally-adaptive decision function (LADF) that jointly

models a distance metric and a locally adaptive thresholding rule to achieved good

performance. Dictionary learning techniques (Liu et al., 2014; Jing et al., 2015) are

also proposed to bridge the appearance across two camera views with the assumption

that the manifold of the local patches in spaces of two cameras are similar. Recently,

Chen et al (Chen et al., 2015a) proposed an explicit polynomial kernel approach that
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learns a similarity function to maximize the difference between the similarity score of

the true and false image pairs.

Other than the two aforementioned main research branches, some other interesting

and novel approaches also have been proposed for the person re-identification problem.

For example, the deep learning framework was applied to exploit the information of

the cross-input difference features by multiple layers of the neural network (Li et al.,

2014b; Yi et al., 2014; Ahmed et al., 2015). The midd-level features, e.g., filters and

semantic attributes were also investigated (Layne et al., 2012; Liu et al., 2012b). Zhao

et al (Zhao et al., 2014) proposed to learn mid-level filters by mining the cross-view

invariance in subsets of local patch features. Shi et al (Shi et al., 2015) proposed a

novel approach for learning a semantic attribute model from existing fashion datasets,

and adapting the resultant model to facilitate person re-identification.

2.3.3 Random Forest Review

We used random forest to learn adaptive local metrics for the person re-identification

problem, we thus also simply review the random forest technique in this subsection.

Random forest is an ensemble of decision trees for classification, regression and other

tasks. It is operated by constructing a multitude of decision trees at training time

and outputting as that is the mode of the classes (classification) or mean prediction

(regression) of each individual tree (Trevor et al., 2008). The parameters vector Θk of

each tree are learned using selection of different random subsets of training samples,

random subset of features and a random split at each internal tree node. Although

each decision tree sometimes prone to over-fitting to the training samples, however,

with the combination of multiple trees in the forest with random learning, the over-

fitting problem can be effectively relieved (Breiman, 2001).

Each decision tree in forest is a collection of internal nodes (split) and terminal

nodes (leaf) in a hierarchical and binary structure, as shown in the left of Figure 2.2.

Given a data sample as a feature vector v = (x1, x2, ..., xd) ∈ Rd, the tree applies the

16



terminal (leaf) node

internal 
(split) node

root node0

1 2

3 4 5 6

7 8 9 10 11 12 13 14

A general tree structure

Robustness of RF Classifier

Figure 2.2: Left: structure of a decision tree. Right: an example case of non-linear
classification based on random forest. The figures are from (Criminisi et al., 2011).

split function on the features x at each split node from the root recursively to the

bottom leaf, where a predictor (e.g., classifier or regressor) generates a corresponding

output for the input sample v. In off-line training, given a set of training samples S0 =

{v1,v2, ...,vn}, the parameters Θ in the tree split functions are optimized to minimize

a predefined energy or index function, such as purity or entropy, depending on the

specific tasks (Criminisi et al., 2011). The trees in forest are randomly different one

from another, leading to a de-correlation effect and strong generalization capability,

therefore, random forest demonstrates strong prediction in both of classification and

regression problems. An example case for non-linear classification problem is shown

in the right of Figure 2.2. From the result, we can see the classifier is quite strong for

this difficult classification on toy data.

Due to the strong generalization capability, random forest and its variations have

been applied in a wide range of applications in computer vision area, such as image

classification (Ristin et al., 2014, 2015), object detection (Schulter et al., 2013, 2014),

object visual tracking (Tan and Ilic, 2014; Taixe et al., 2014), image denoise (Fanello

et al., 2014), edge detection (Hallman and Fowlkes, 2015; Dollar and Zitnick, 2013),

semantic segmentation (Bulo and Kontschieder, 2014; Shotton et al., 2008), human

pose estimation (Dantone et al., 2013; Krupka et al., 2014). However, up to our best

knowledge, random forest has not been investigated in cross domain recognition tasks.
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2.4 Multi-Event Detection in Smart Grid

2.4.1 Smart Grid System

It has become essential that the wide-area situational awareness (WASA) systems can

enable the monitoring of bulk power grid systems and provide critical information for

understanding and responding to system disturbances and cascading blackouts. Event

detection researches first began in 1980s on closely synchronized measurements that

would allow direct measurement of the voltage phase angle at transmission level. As

a result, Phasor Measurement Units (PMU) (Phadke and Thorp, 2008; Chow et al.,

2009) have been gradually installed in substations that measure phasor at high voltage

levels. As a member of the PMU family, the Frequency Disturbance Recorder (FDR)

collects the instantaneous voltage phasor and frequency measurements at low-voltage

distribution level using ordinary 120-V wall outlets. Based on these low-cost FDRs, a

US-wide Frequency Monitoring Network (FNET) has thus been implemented (Zhong

et al., 2005; Liu, 2006; Gardener and Liu, 2007). FNET now serves the entire North

American power grid through advanced situational awareness techniques including,

real-time event alert, accurate event spatial localization, animated event visualization,

post event analysis and so on (Zhang et al., 2010).

2.4.2 Disturbance Event Analysis

There have been some research works reported so far conducting event analysis using

real data collected from the FNET (Zhang et al., 2010; Li et al., 2010; Zhao et al.,

2008; Xia et al., 2007; Gardner et al., 2006; Kook and Liu, 2011). In (Zhang et al.,

2010; Li et al., 2010; Zhao et al., 2008), event detection was triggered if the rate of

frequency change over a period of time exceeds an empirical threshold. Then, based

on different event triggering times detected at multiple FDRs, event localization can

be performed using approaches such as the geometrical triangulation (Xia et al.,

2007) or the least-squares method (Gardner et al., 2006). (Kook and Liu, 2011) also
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took advantage of the “order” of event detection from different FDRs and spatially

localized events by finding the best matching between the actual detection order and

that from simulations. Since the frequency signals collected from FDRs are usually

corrupted by both white noise and impulsive noise, denoising becomes an important

preprocessing step to guarantee the subsequent performance of event detection and

localization. Representative works include adaptive median filter (Li et al., 2010),

model fitting using adaptive Kalman filter (Zhao et al., 2008) or curve fitting (Wang

et al., 2013c). Although successful, these state-of-the-art techniques can only handle

disturbances caused by a single event. As far as we know, there are very few works

reported for analysis of multi-event occurred in a cascading fashion, e.g., (Zhu and

Giannakis, 2012) developed a algorithm for identifying multiple line outages by solving

a sparse signal reconstruction problem via either greedy steps or coordinate descent

iterations. The system disturbance reports from North American Electric Reliability

Corporation (NERC) (NERC, 2010) have made it obvious that major disturbances

typically involve a number of unlikely, unplanned events. Therefore, how to determine

the number of events and identify the types of events with precise estimation of their

occurring time becomes a very challenging problem.

We observe that when multiple events occur in smart grid system, the electrome-

chanical waves generated will interfere with each other, and the measurement taken

at a FDR sensor would more than likely be a “mixture” of multiple constituent event

signals. Mixed measurements are frequently encountered in real-world applications,

due to the resolution associated with discrete sampling and the effect of unknown

sources, the measurements can rarely be pure. The existence of mixed measurements

has brought the decomposition or unmixing technique to a wide array of applications.

For example, in remote sensing area, due to the large footprint, a single pixel usually

covers more than one type of ground constituent. Hence, the measured spectrum at

a single pixel is a mixture of several ground cover spectra, where the pixel unmixing

technique has been widely applied to sub-pixel object quantification (Wang and Qi,

2013; Guo et al., 2015), mineral elemental concentration estimation (Wang et al.,
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2013a, 2014b), anomaly detection (Wang et al., 2015; Li et al., 2015a; Dong et al.,

2009; Wang et al., 2009), etc. In other areas, including object detection (Luo and Qi,

2010), facial feature extraction (Guo and Qi, 2015), material modelling (Luo et al.,

2012), system monitoring (Song et al., 2015), speech processing (Naqvi et al., 2012),

biological microscopy (Hiraoka et al., 2002), etc. However, the signal of multi-event

might not be a straightforward combination of some single-event signals because of the

strong correlation among physical devices. Our work for multi-event signal analysis

extracts some root patterns that are commonly shared in both of the single event

domain and the multi-event domain, and compacts these root-patterns to a temporal

awareable over-complete dictionary subtly. Then, the detection and recognition of the

constituent events can be realized via non-negativity and sparsity constrained signal

decomposition. Up to our best knowledge, this is the first realization for analysis of

multi-event disturbances with high accuracy by making use of the information across

different types of events.
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Chapter 3

Human Action Recognition Across

Camera Views

The same action may look quite different if viewed by different cameras from different

angles. Therefore, it poses a great challenge for recognition tasks across different

camera views. This chapter presents a novel approach to solving the problem of

action recognition across camera views. Each action is represented based on a bag-

of-visual-words model extracted from spatio-temporal features. Although the action

representations are sensitive to view changes, our approach uses a reconstructable

path to effectively bridge the high level semantic correspondences between actions

in different views, such that the labelled training samples in any source view can be

translated along the path into the target view for learning a view-adaptable classifier.

In learning of the paths, a dictionary is assigned and optimized for each camera

view to convert action representations into a sparsely represented space, and a linear

mapping function is simultaneously optimized to bridge the gap between the source

and the target spaces, such that each domain structure could be fully exploited and the

discrimination among action categories can be well preserved after the translation.

In addition, there might exist some samples cannot be directly used for the path

learning - we also propose a scheme to investigate the hidden information embedded

21



in these seemingly useless samples, thus the stringency of the learning samples can

also be relieved. The proposed approach is verified on the IXMAS action dataset

under two working modes. The experimental results demonstrate that our approach

achieves superior performance to the state-of-the-art with less strict requirements on

the learning samples.

3.1 Introduction

Human action recognition is an essential task to many real world applications, such

as visual surveillance, video retrieval, human-computer interaction, etc. Although the

variability in human appearance, shape, posture and characteristic style in performing

some motions makes the consistent description of a given action difficult, with the

design of some discriminative features (Tran and Trivedi, 2008; Lin et al., 2009;

Dollar et al., 2005; Luo and Qi, 2012; Luo et al., 2013b), many approaches have

achieved very good recognition performance. However, the assumption in these works

that all the actions captured for training and testing are from the same camera

view is often violated because of the possible change of camera viewpoints. In

practical scenarios, the same action may look quite different from a different angle,

and hence difficult to be recognized because the magnitude of variations of action

characteristics, which distinguishes one action from the others, may be even smaller

than the variation caused by the change of viewpoints. Therefore, the recognition

performance of the approaches only using these conventional action features tends to

decrease dramatically.

Because of the lack of labelled training data, it is impractical to train individual

classifiers for each camera view. We assume the labelled samples are only available

in one or several source views while the testing actions in the target view might not

be seen in advance. Under this assumption, most of the existing view-fixed action

recognition approaches cannot be easily extended to recognize actions captured in a

new target view. To handle this challenging cross-view action recognition problem,

22



there have been several kinds of approaches proposed, such as the view-invariant

features (Juneio et al., 2008; Lewandowski et al., 2010), 3D model based features

(Weinland et al., 2007; Li et al., 2007) and view inferable classifiers (Weinland et al.,

2010; Wu and Jia, 2012). In addition, another emerging family of approaches is based

on transfer learning, which encourages the actions recorded from different views to

be represented by commonly shared representations (Farhadi and Tabrizi, 2008; Liu

et al., 2011a) to achieve cross view invariance.

To enable the actions observed in target view to be directly recognized by a

classifier trained by the set of labelled training actions merely from the source view,

a straightforward idea is to translate those labelled training samples. Inspired by

the photo-sketch synthesis research in (Wang et al., 2012), we propose an intuitive

approach under transfer learning that it directly reconstructs the training samples

from the source view into the target view for training a view-adaptable classifier. As

illustrated in Figure 3.1, the same action from two different views are represented by

their view-dependent vocabularies via the Bag of Visual Words (BoVW) model (Li

and Perona, 2005). Then, along the indicated processing flow, which is referred to

as the reconstructable path, any action representation from the source view is firstly

converted to its sparse coding space, then mapped into the space of the target view,

and finally reconstructed via the target dictionary as a mirrored instance in target

view. In this way, if there are multi-source views available, the mirrored samples from

different sources could be pooled together for learning a strong classifier in the target

view. We refer to this cross view action recognition approach as the Reconstructable

Path between individual View Dependent Representations (RP-VDR).

Under the framework of RP-VDR, two working modes are studied. The first one is

correspondence mode. Similar to the work in (Liu et al., 2011a), where the unlabelled

action samples are observed simultaneously in both of the source and target views,

producing corresponding pairs, which can be used in learning of the reconstructable

paths. Instead of requiring access to simultaneous multi-view observations of the same

action instances, our approach can also work in the second mode, i.e., partially labelled

23



Action 
Translation

x

di, (i=1,…,)

Cam V1

Cam V2

dk, (k=1,…,)

: dictionary atoms dk, (k=1,…,)

: learning samples xi, (i=1,…,n)

0 5 10 15 20 25

0

2

4

6

8

10

12

0 5 10 15 20 25

0

2

4

6

8

10

12

0 5 10 15 20 25

0

5

10

15

20

25

Target 
View

Xt=

Linear M
apping

0 5 10 15 20 25 30
-0.5

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

Dictionary in Target View Reconstruction

Sparse CodesDictionary in Source View

Source 
View

Xs=

0 5 10 15 20 25 30
-0.5

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

Reconstructable Path
1 2 3 4 5 6 7 8 9 10

0

1

2

3

4

5

6

7

8

9

10

11

1 2 3 4 5 6 7 8 9
0

1

2

3

4

5

6

7

8

9

10

11

Figure 3.1: Top: illustration of how to correlate two camera view domains. Bottom:
the process of one action reconstructed from the source view into the target view along
a reconstructable path (marked as the dashed red line).
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mode (Li and Zickler, 2012), that leverages weak supervision. Under this mode, the

target view provides a few labelled samples while matched or corresponded instances

within the source view are no longer exist.

In summary, the main contribution of this work is three-fold. First, the proposed

RP-VDR directly reconstructs (or mirrors) action representations of the training

samples from the source view into the target view, such that the statistical connection

between the source and the target views can be exploited via the straightforward

action-to-action correspondence. Second, the reconstructable path between any two

views employs a dictionary for each view domain and an intermediate mapping

function to bridge the semantic gap between them. In learning of the paths, our

approach uses learning samples from both of the two different views to optimize the

three terms alternately, such that the dictionaries are able to exploit the structure of

each view domain thoroughly, resulting in better recognition for the mirrored actions

with less discrimination. Third, RP-VDR also facilitates further exploitation of the

hidden information embedded in the seemingly useless and isolated samples. For

example, the unpaired samples in either the target or the source view under the first

working mode, and the unlabelled samples in the target view under the second working

mode. Usually, the number of paired instances or labelled samples in the target view

is limited, and thus not sufficient for learning a strongly inferable reconstructable

path. Therefore, how to make use of the hidden information is the key to improve

the reconstruction capability in path learning, especially if only a small number of

qualified learning samples are available. We also propose a companion approach, RP-

VDRh, where the hidden information is also exploited to achieve comparable or even

better recognition performance with much less strict path learning instances.

Methodologically, the most relevant works to our proposed work are (Zheng et al.,

2012; Zheng and Jiang, 2013), which proposed to use transferable dictionary pairs

to encourage the same actions from the source and the target views to have similar

sparse representations (SpsRep). However, this approach still suffers from several

limitations. First, the coupled learned dictionaries tend to over-fit the concatenated
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action representations (ActRep) from two different views in learning phase, causing

the two SpsReps derived from each single view separately in testing phase not being

optimally close, although similar. In contrast, the mapping matrix between the view

dependent dictionaries is able to well bridge this gap between the SpsReps. Second,

although the SpsReps from different views of one action performed by the same person

can be similar, due to the noise sensitive and unstable nature of the SpsRep, the same

action performed by different people with small intra-class variations might result in

quite large difference in the SpsReps. In contrast, we circumvent this disadvantage

by reconstructing the actions from the source view into the target view directly, with

guaranteed precision by the in-between mapping. Third, (Zheng et al., 2012; Zheng

and Jiang, 2013) did not exploit the hidden information in the whole data set and

demanded the availability of sufficient learning samples to assure good performance.

In contrast, our approach can greatly reduce this stringent requirement on the path

learning samples by making use of the seemingly useless and isolated samples to mine

the hidden information.

3.2 Action Representation Reconstruction

Our work reconstructs view-dependent ActReps of the labelled training samples from

the source view into the target view, and trains a classifier C based on these mirrored

training samples for action recognition in the target view. As mentioned before, the

ActRep reconstruction can be realized based on the optimized reconstructable path.

To obtain such a path, different settings are assumed in the two working modes.

In correspondence mode, we are given pairwise action instances (Xp
s,X

p
t ) = {xpsi ,x

pt
i }

i=1:n, and also unpaired samples Xq
s = {xqsi }i=1:ns in source view and Xq

t = {xqti }i=1:nt

in target view. In the other partially labeled mode, the two sets of learning samples

from the source and target views are not paired. Instead, besides the labelled samples

in source view Xl
s = {xlsi }i=1:ns , we are also given a few labelled samples from target

view Xl
t = {xlti }i=1:nt , but nt � ns. To be clear, the ns, nt in the first mode denote the
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number of unpaired samples while in the second mode denote the number of labelled

samples in each view. The core of our approach is the learning of the path under

both modes. We will first introduce how to optimize the path with paired instances

(Xp
s, Xp

t ) in the Sec. 3.2.2; and then introduce how to exploit the hidden information

with unpaired Xq
s, Xq

t in Sec. 3.2.3; finally, we introduce how to adapt the learning

samples Xl
s, Xl

t given in the other partially labelled mode to the same framework of

path learning in Sec. 3.2.4.

3.2.1 Single View Dictionary Learning

Given a data matrix, X = [x1, ...,xn] ∈ Rm×n, composed by n data points sampled

in an m-dimensional feature space, the goal of dictionary learning is to learn the

D = [d1, ...,dk] ∈ Rm×k, and the corresponding sparse codes A = [a1, ..., an] ∈ Rk×n,

thus the dataset X can be well approximated by X ≈ DA. The problem can be

described as minimizing the objective function Fn(D):

min
D,a∈Rk×n

1

n

n∑
i=1

(
1

2
||xi −Dai||22 + λ||ai||1 + η||ai||22) (3.1)

where λ is a regularization parameter to trade off the sparsity of coefficients and the

approximation of the input data, and η is a regularization parameter to encourage

a group of correlated columns in D to have stable coefficients instead of just several

ones. Though the objective function in Eq. (3.1) is not convex in both variables, it

can be conveniently solved by alternately optimizing one variable while fix the other

one via the algorithm in (Mairal et al., 2009).

In fact, dictionary learning for unsupervised clustering has also been exploited

in (Ramirez et al., 2010; Sprechmann and Sapiro, 2010a), which showed that it

can effectively investigate discrimination among categories by removing outliers and

recover corrupted entries in feature vectors. In practical image or action recognition

scenarios, the objects that are partially occluded or corrupted will not be easily
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recognized (Wright et al., 2009). With an optimized dictionary D, any action xi can

be represented as:

xi = Dai + ei = x′i + ei (3.2)

where the nonzero entries in ei capture the corrupted part or noise information in xi.

Thus, the x′i can be treated as a denoised representation of xi for better recognition

performance, which will also be verified in Sec. 3.3.2 for evaluation of the single view

action recognition performance and be taken as the baseline.

3.2.2 Learning the Reconstructable Path

As illustrated in Figure 3.1, the reconstructable path between any two camera views

includes a dictionary for each view domain and a mapping function to relate the

source and target views. There are two options to learn this path. First, we can learn

each dictionary individually, such that Ds is derived by the set Xs = {xsi}i=1:ns , while

Dt is derived by the set Xt = {xti}i=1:nt , separately, where ns, nt denote the number of

all the samples in source and target views, respectively. Then, the in-between linear

mapping function Ms2t can be derived as:

Xs = DsAs + Es, Xt = DtAt + Et →

Ms2t = At ·A+
s = AtA

T
s (AsA

T
s + εI)−1

(3.3)

where A+
s is the pseudo-inverse of As, ε is a trivial value, and this learning mode is

referred to as separate learning.

Second, the dictionaries Ds,Dt and the linear mapping term Ms2t can be learned

simultaneously in an alternate fashion. Therefore, the objective function is composed

of three parts, the dictionaries Ds,Dt, the coefficients As,At and the linear mapping

function Ms2t, respectively.

min
Ds,Dt,Ms2t,As,At

{Fn(Ds) + δ||At −Ms2tAs||2F + Fn(Dt)} (3.4)
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Then, Eq. (3.4) can be fully expressed as:

min
Ds,t,Ms2t,As,t

{1

2
||Xs −DsAs||2F + λs||As||1 + ηs||As||2F}+ {δ

||At −Ms2tAs||2F}+ {1

2
||Xt −DtAt||2F + λt||At||1 + ηt||At||2F}

(3.5)

where δ is the parameter to balance the linear mapping term. Although the objective

function in Eq. (3.5) is not convex if optimize the three parts of variables jointly, each

of them can be optimized alternately within a convex form by making the other two

parts fixed.

The initial estimate of Ds, Dt and Ms2t can be gained using the separate learning.

With Ds, Dt and Ms2t being fixed, As and At can be solved individually as follows.

Notice that Mt2s is the inverse of Ms2t.

min
As

1

2
||Xs −DsAs||2F + δ||At −Ms2tAs||2F + λs||As||1 + ηs||As||2F (3.6)

min
At

1

2
||Xt −DtAt||2F + δ||As −Mt2sAt||2F + λt||At||1 + ηt||At||2F (3.7)

Eqs. (3.6) (3.7) are both the multiple tasks sparse coding problems, thus As, At can

be both estimated efficiently and individually as the Lasso problem (Friedman et al.,

2010; Mairal et al., 2009). Subsequently, Ds and Dt can be updated individually by

fixing the other terms. Each of them forms a convex optimization problem:

min
Ds

||Xs −DsAs||22, min
Dt

||Xt −DtAt||22 (3.8)

The block-coordinated decent is used (Mairal et al., 2009) to update the Ds,Dt. For

example, to solve Ds in Eq.(3.8), atoms in Ds are updated one by one. Let dk be the

k-th aton in Ds. When updating atom dk, all the other atoms in Ds are fixed, and

the first derivative of Eq.(3.8) over dk can be derived as:

f(dk) = ||Xs −DsAs||2F = ||Xs − (Qs + [0, · · · ,dk, · · · , 0])As||2F
→ ∇(f(dk)) = (−2Xs + 2QsAs + 2dkα(k))α

>
(k)

(3.9)
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where α(k) is the k-th row in the matrix As, and it is corresponding to the coefficients

contributed by the atom dk. Matrix Qs is of the same size as Ds and is the matrix

after replacing the k-th column with zeros in Ds. Therefore, the updated atom dk

can be calculated by setting ∇(f(dk)) to zero, which is:

dk = (Xs −QsAs)α
>
(k)/||α(k)||22

→ dk = dk/||dk||2
(3.10)

Then, using the As,At solved from Eqs. (3.6)(3.7), the linear mapping term Ms2t

can be again updated by Eq. (3.3). Iterations are used to best optimize these variables.

This learning method is referred to as alternate learning, and a pseudo-code of the

alternate learning is provided as below.

Algorithm 1 Pseudo-code of Path Learning via RP-VDR

Input: (Xp
s,X

p
t ) = {xpsi ,x

pt
i }i=1:n: paired action samples from two camera views.

K: the number of iterations in optimization.
Output: Ds: space description of source view. Dt: space description of target view.

Ms2t: inter-between linear mapping term.
1: Initialization: Ds,Dt,Ms2t based on Eq. (3.3)
2: while k ≤ K do
3: Optimize As,At via Eqs. (3.6)(3.7), which can be transformed as:

minAs

1
2

∥∥∥∥[ Xs√
δAt

]
−
[

Ds√
δMs2t

]
As

∥∥∥∥2

F

+ λs||As||1 + ηs||As||2F
4: Optimize Ds,Dt via Eq. (3.8). Atoms in Ds (or Dt) are updated one by one.

Let dk be the k-th atom in Ds. When updating atom dk, all the other atoms in
Ds are fixed, and the first derivative over dk can be derived as: ||Xs−DsAs||2F =
||Xs−(Qs+[0, ...,dk,0, ...])As||2F → ∇(f(dk)) = (−2Xs+2QsAs+2dkα(k))α

>
(k)

where α(k) is the k-th row in the matrix As, corresponding to the coefficients
contributed by the atom dk.
Matrix Qs is of the same size as Ds and is the matrix after replacing the k-th
column with zeros in Ds. Therefore, the updated atom dk can be calculated
by setting ∇(f(dk)) to 0. As, dk = (Xs −QsAs)α

>
(k)/||α(k)||22, dk = dk/||dk||2.

5: end while
6: Optimize Ms2t term via Eq. (3.3).
7: End for
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Figure 3.2: Multiple sources mixed-training of an action classifier in one target view.

Based on a reconstructable path, the dictionaries and the linear mapping function

work together to correlate the source and target views efficiently. For a given labelled

action sample xs from the source view, it can be reconstructed as:

xs = Dsas + e, at = Ms2t(as), → xt = Dtat (3.11)

Here, the reconstruction xt is sufficient if the path is learned using separate learning.

However, it puts more weight on Ds if the path is learned using the alternate learning,

since only the fidelity of xs = Dsas+e is considered. To balance the reconstruction in

the latter learning mode, we can take the preliminary reconstructed xt as a prototype,

which will be paired with xs into Eqs. (3.6)(3.7) again for an alternate optimization

for as and −→at . Then, the further optimized −→at can be used to produce a more precise

mirror of xs as −→xt = Dt
−→at . If multiple-source camera views are available to recognize

unknown actions from one target camera view, as shown in Figure 3.2, we can simply

reconstruct these labelled training samples from each source view into the one common

target view, and all the reconstructed training samples will be used together to train

a unified classifier.

3.2.3 Exploitation of Hidden Information

Learning of the reconstructable paths usually requires sufficient number of paired

samples to gain enough capacity for ActRep inference. However, in real applications
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we may be only given a small number of paired samples for the path learning while

the other samples existing in different views are not recorded simultaneously. As

shown in Sec. 3.3, the performance of cross view action recognition will degrade if the

reconstructable paths are learned with only a small number of paired samples. To

make the path learning be less contingent on the number of paired samples, we propose

a companion approach, RP-VDRh, to exploit the hidden information embedded in

the seemingly useless and isolated samples based on the prior that any action sample

should belong to a specific action category and any two of the samples belong to the

same action category from two different views could be matched as a pair to assist

the path learning.

Given paired learning samples (Xp
s,X

p
t ) = {xpsi ,x

pt
i }i=1:n, unpaired (or called as

isolated) samples Xq
s = {xqsi }i=1:ns in source view, and Xq

t = {xqti }i=1:nt in target view,

we expect to learn the paths via the objective function in Eq. (3.12). Compared to the

objective function in Eq. (3.5), the additional term here is W ∈ Rnt×ns , which is used

to manipulate the isolated samples in set Xq
t to be matched with the isolated samples

in set Xq
s. Each column in W is a vector with only one element being non-zero.

min
Ds,Dt,Ms2t,As,At

{δ||Ap
t −Ms2tA

p
s||2F}+ {1

2
||Xp

s −DsA
p
s||2F + λs||Ap

s||1 + ηs||Ap
s||2F}

+ {1

2
||Xp

t −DtA
p
t ||2F + λt||Ap

t ||1 + ηt||Ap
t ||2F}

+ {δ||Aq
t −Ms2tA

q
s||2F}+ {1

2
||Xq

s −DsA
q
s||2F + λs||Aq

s||1 + ηs||Aq
s||2F}

+ {1

2
||Xq

tW−DtA
q
t ||2F + λt||Aq

t ||1 + ηt||Aq
t ||2F}

(3.12)

RP-VDRh first performs the path learning based on Eq. (3.5) by using the paired

samples in (Xp
s,X

p
t ) only. With the preliminary learnt Ds, Dt, the unpaired samples

from both the source and the target views can be transformed into the sparse code

domain. Then, among these unpaired and isolated samples: Xq
s, Xq

t , the similarity

between any pair of them can be measured, and the ones that either performed by

the same person or with very small intra-class variation will be selected. Therefore,
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in the first correspondence mode, these isolated and unpaired samples in Xq
s and Xq

t

can be matched into pairs via W. A transitionary matrix W ∈ Rnt×ns is calculated

with the value of each element being the pairwise similarity measure:

Wi,j =
ai × (Ms2t · aj)
||ai|| ||(Ms2t · aj)||

, i ∈ [1, nt], j ∈ [1, ns]

Wi,j =

 1 if wi,j < wk 6=i,j

0 else
s.t.
∑
i

Wi,j = 1

(3.13)

where ai, aj are the sparse codes transformed from xqti , xqsj . Then, the dictionaries

Ds,Dt can be further optimized via Eq. (3.12) with additional knowledge from the

matched samples through the matching matrix W. Similarly, Eq. (3.12) can be

solved as Eq. (3.5) once these seemingly useless samples Xq
s and Xq

t from two views

are matched into pairs. In addition, this pair matching process will be repeated

several times to explore the information from these isolated samples thoroughly, thus

the learned dictionaries can be refined gradually. A pseudo-code of the RP-VDRh is

also provided as below.

Algorithm 2 Pseudo-code of Path Learning via RP-VDRh

Input: (Xp
s,X

p
t ) = {xpsi ,x

pt
i }i=1:n: paired action learning samples.

Xq
s = {xqsi }i=1:ns , Xq

t = {xqti }i=1:nt : isolated action samples.
K: the number of iterations.

Output: Ds,Dt,Ms2t: descriptions of the views and the intermediate term.
1: Initialization:

Preliminary learning of Ds,Dt,Ms2t based on (Xp
s,X

p
t ) only via pseudo-code (1)

2: while k ≤ K do
3: Solve Aq

s,A
q
t via the preliminarily learned dictionaries Ds,Dt.

4: Pairwise matching of samples in set Xq
s, Xq

t via W and Eq. (3.13).
5: Optimize terms Ds,Dt,Ms2t via Eq. (3.12).
6: end while
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Action Label 
Consistency

Figure 3.3: Pairwise combination process via action label-consistency between
different camera views, the white icons are unlabelled and colored icons are labelled.

3.2.4 Using Partially Labelled Target Samples

Under the partially labelled working mode, we are given two sets of labelled learning

samples Xl
s = {xlsi }i=1:ns and Xl

t = {xlti }i=1:nt , from the source and the target views,

respectively. However, they are not in pair, even any personal-correspondence is not

exist, meaning the persons appeared in source view will not appear in target view.

Only a few (nt � ns) samples (Xl
t) from target view are provided with labels, which is

the key to exploring the cross view connection. We propose an effective approach that

adopts a pairwise combination process. Given the labelled samples from target view,

we can pair each sample in the source view with every possible sample in the target

view of the same action category, just as shown in Figure 3.3. This idea is feasible

since ideally any action representation of the same category should be identical. We

thus can pair any two actions of the same category from two different views without

personal correspondence, but just the action label’s consistency. This prior enables

the seemingly coarse pairwise combination process to produce a quite comprehensive

set of paired instances for learning of the reconstructable paths via RP-VDR. In

addition, to exploit the information embedded in the other unlabelled samples Xu
t in

target view for better path learning, we match these unlabelled target samples with

some of the source samples via RP-VDRh. Similarly, in learning of the classifier, these
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labelled training samples will be reconstructed from source view into target view via

the reconstructable path, such that they can also be pooled together with the given

few labelled target samples to learn a stronger classifier for better action recognition.

3.3 Experiments

3.3.1 Experimental Setup and Rules

Dataset: We test our approach based on the popular IXMAS multiple views action

dataset (Weinland et al., 2007), which contains 11 categories of daily actions. Each

action is performed 3 times by 12 actors taken from 5 different views including 4

side views and 1 top view. Therefore, there are totally 396 action videos under each

camera view. From the example actions, “kick” and “punch”, shown in Figure 3.4, we

can find two challenges that: first, under the same camera view, e.g., the 1st column,

the same action performed by different actors has certain intra-class variations, as the

different actor may perform the same action with some different orientations; second,

across the different camera views, e.g., the 1st row, the same action performed by the

same actor looks quite different from different viewpoints.

Learning Parameters and Classification Setup: In learning of the recon-

structable paths, the parameter δ is set as 2, and the λt, λs, ηt, ηs are all set as 0.01

and the number of atoms in Ds, Dt are set as 300. These parameters are insensitive

and defined empirically, therefore, a little bit change of these values would not affect

the performance much. In the phase of action recognition across cameras, we use

a 6-fold cross-validation for the evaluation, thus six multi-class SVM classifiers are

trained based on the labelled samples from the source view and utilized to recognize

actions from target view. The 6-fold cross-validation also guarantees that the actors

whose actions will be tested in the target view are all excluded in the training of the

SVM classifier, so as to avoid any unfair recognition. The SVM with the histogram

intersection kernel (Maji et al., 2008) is used as our classifier.
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Figure 3.4: Two example actions ‘kick’ and ‘punch’ taken from five (each row)
different camera viewpoints (0∼4), performed by 3 (each column) different actors.

36



Action Features for Representation: For fair comparison purpose, we adopt

the same action descriptors as used in the literature (Liu et al., 2011a; Wu and Jia,

2012; Li and Zickler, 2012; Huang et al., 2012; Zheng et al., 2012; Zhang et al., 2013).

Specifically, the actions are represented by a concatenation of a spatio-temporal local

interest points feature (Dollar et al., 2005) and a global shape-flow feature (Tran and

Sorokin, 2008), based on the bag-of-visual-words model (Li and Perona, 2005). The

two types of features serve as complementary descriptions to characterize actions.

The local motion features of each action are extracted from some interest points,

which are detected as the local maximal response by a 2D Gaussian filter followed

by a 1D-Gabor filter. We use the same parameter settings as in (Dollar et al., 2005)

for the two filters as σ = 2 and τ = 1.5, respectively, and at most 200 interest points

will be extracted from each action video. Then, the spatio-temporal volumes around

these points are extracted and described by the gradient-based descriptor. PCA is

applied to reduce the dimension of the volume descriptors to be 100. The volume

descriptors from all training actions are quantized into 1000 visual-words by K-means

clustering and thus each action is represented as a histogram of 1000 visual-words.

The global shape-flow features of each action are extracted in each frame. Three-

channel features are extracted including horizontal optical-flow, vertical optical-flow

and silhouette (Tran and Sorokin, 2008). PCA is also applied to reduce the dimension

of each feature. The temporal information is also taken into account by concatenating

the features from neighboring frames into description of the current frame. Similarly,

the feature descriptors from all training action videos are quantized into 500 visual-

words, and then each action is represented as a histogram of the 500 visual-words.

Finally, by concatenating the local and global features, we obtain the final form of

action representation as a histogram of 1500 dimension.

Design of Experiments: We first evaluate the denoised action representation

DnBoVW, as illustrated in Sec. 3.2.1, in the same view. Since our approach mirrors

the labeled action samples from source view into target view for training a classifier,

the recognition performance by the classifier trained by samples from the same view
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can be taken as the Baseline, and our objective is to make the recognition accuracies

across camera views be as close to that under the same view as possible. Second , we

evaluate the cross view action recognition under the correspondence mode, including

optimization by separate learning and alternate learning, the robustness of RP-VDRh

if the number of the pairwise learning instances decreases, as well as comparison to the

other existing works. Third , we evaluate the action recognition performance under

the partially labelled mode, including the robustness to the different proportions of

available labelled target samples, and also the comparison to the other existing works.

Fourth , we evaluate the recognition performance if multi-source views are available

under the aforementioned two working modes.

Furthermore, we use the leave-one-action-class-out scheme (Liu et al., 2011a; Li

and Zickler, 2012; Zhang et al., 2013) in evaluation. The scheme means that we only

consider one action category in test of each round, where we call the left-out action

as the “orphan action”. All the videos in the “orphan action” category are excluded

in learning of the view-dependent visual words and also the reconstructable paths,

such that this scheme is able to test the generalization capability of the dictionaries

for a new unseen action.

3.3.2 Single View Action Recognition

Since the recognition of actions in the same view of training can be taken as a baseline

for the performance of cross view recognition, we firstly look into the effectiveness of

the denoised BoVW action representation (DnBoVW) as introduced in Eq. (3.2). We

take 300 (5/6) non-orphan actions to learn the dictionary under each view individually

in each round, and the averaged recognition accuracies of tests on each orphan action

are shown in the diagonal entries of Table 3.1. Compared to the original BoVW, we

can find that the DnBoVW performs better since it is able to recover the corrupted

motion information from the action samples.
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Table 3.1: Diagonal entries: action recognition in the same view, top: BoVW,
bottom: DnBoVW. Non-diagonal entries: cross view action recognition via BoVW,
reconstructable Paths with SL and AL on IXMAS. (Row: source; Column: target)

B./%
S./A.

Cam0 Cam1 Cam2 Cam3 Cam4

Cam0
88.5,
93.4,

8.03,
42.7, 95.5

9.09,
38.4, 90.4

12.9,
45.5, 87.1

12.4,
48.7, 90.2

Cam1
10.2,
44.4, 93.0

85.2,
96.8,

10.3,
47.8, 89.4

11.8,
43.2, 82.8

10.9,
53.5, 89.4

Cam2
9.76,
44.7, 87.9

10.6,
54.8, 90.4

90.8,
93.9,

8.48,
47.5, 88.6

9.15,
55.6, 91.2

Cam3
10.1,
44.7, 87.6

8.48,
44.4, 83.9

10.0,
36.2, 92.9

88.7,
94.8,

9.09,
48.3, 83.6

Cam4
9.76,
59.6, 81.6

8.10,
60.4, 87.9

11.3,
60.4, 89.4

11.8,
52.8, 77.5

85.3,
92.7,

Ave.
9.94,
48.4,87.8

8.52,
50.6,89.4

10.1,
45.6,90.5

11.3,
47.2,84.1

10.4,
51.5,88.6

3.3.3 Pairwise Cross View Recognition

Correspondence Mode: We then look into the performance of action recognition

across pairwise camera views in the correspondence mode. We still follow the popular

data separation scheme leave-one-action-class-out for a fair comparison. Similarly,

all videos of the “orphan action” are excluded in learning.

We start with the performance comparison between using the BoVW representa-

tion, the results of RP-VDR learned by separate learning (SL) and alternate learning

(AL). 300 (5/6) non-orphan actions are used in each round for path learning, and

the averaged testing results are shown in Table 3.1. It is not surprising that the

performance of BoVW is much worse than the other two since there is no connection

established between the source and target views. In learning of the reconstructable

paths, since the AL considers both the fidelity of dictionary terms and the fidelity of

linear mapping term simultaneously in each iteration, it can balance the relationship

between the three terms and perform much better than the SL, which puts much less

weight on the fidelity of the linear mapping term than on the other two. Although the

recognition accuracy across cameras via the reconstructable paths is still a bit lower
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Figure 3.5: Comparison between RP-VDR and RP-VDRh: averaged recognition
accuracies cross pairwise views with different number of paired instances when each
view is taken as a target view.

compared to that under the same view using DnBoVW, the result is quite promising

that it already achieves or exceeds the level of using the BoVW only for recognition

under the same single view.

We then vary the number of paired action instances in learning of the paths to

investigate the effect of changing this parameter. The number of randomly selected

action instances in path learning decreases sequentially from 300 (5/6 of the non-

orphan samples) to 240(4/6), 180(3/6), 120(2/6), 60(1/6). The averaged recognition

performance across pairwise views for different target views are shown in Figure 3.5,

from which we can observe that the accuracies drop accordingly if the number of

paired instances decreases. In contrast, the accuracies can be well kept at the similar

level when RP-VDRh is utilized in path learning for mining the hidden information,

demonstrating the robustness of RP-VDRh to the number of paired learning instances.

We also observe that, with RP-VDRh, using only about 30% paired learning instances

performs even better than using more paired instances. This might attribute to the

matching process in RP-VDRh permitting two samples performed by different actors

to be matched, leading to even stronger generalization for the reconstructable path.

However, if the number of paired instances decreases further, the recognition accuracy
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Table 3.2: Performance of different approaches for cross view action recognition on
IXMAS dataset with paired instances (correspondence mode). The accuracy values
in each tuple are from approaches in (Farhadi et al., 2009), (Zheng et al., 2012), (Liu
et al., 2011a), (Li and Zickler, 2012), (Zhang et al., 2013) and ours, respectively.

% Cam0 Cam1 Cam2 Cam3 Cam4

Cam0
79.0, 94.3, 79.9
81.8, 86.3,94.5

79.0, 61.5, 76.8
88.1, 93.1, 91.4

68.0, 83.8, 76.8
87.5, 91.5, 87.9

76.0, 69.8, 74.8
81.4, 85.4,89.7

Cam1
72.0, 92.9, 81.2
87.5, 90.5,93.4

74.0, 71.5, 75.8
82.0, 87.8,89.2

70.0, 69.2, 78.0
92.3, 91.3, 82.6

66.0, 59.4, 70.4
74.2, 83.4,91.7

Cam2
71.0, 67.1, 79.6
85.3, 90.4, 89.2

82.0, 79.2, 76.6
82.6, 84.4,92.7

76.0, 88.1, 79.8
82.6, 87.1,90.4

72.0, 68.9, 72.8
76.5, 81.6,91.4

Cam3
75.0, 82.7, 73.0
82.1, 86.3,91.4

75.0, 63.8, 74.1
81.5, 85.2,87.9

79.0, 78.3, 74.4
80.2, 85.3,92.9

76.0, 58.9, 71.2
70.0, 77.2,90.7

Cam4
80.0, 74.6, 82.0
78.8, 85.9, 82.6

73.0, 53.8, 68.3
73.8, 76.2,88.9

73.0, 80.3, 74.0
77.7, 84.5,91.4

79.0, 66.7, 71.1
78.7, 83.1, 81.6

Ave.
74.5, 79.3, 79.0
83.4, 88.3,89.2

77.3, 72.8, 74.7
79.9, 83.0,91.0

76.3, 72.9, 75.2
82.0, 87.7,91.2

73.2, 77.0, 76.4
85.3, 88.3, 85.6

72.5, 64.3, 71.2
75.5, 81.9,90.8

will drop dramatically, since the paths will not be informative enough for inference

with so few instances in the preliminary learning.

Finally, our approach is compared to other existing works. For fair comparison,

all the actions are represented by similar local/global spatio-temporal features, and

all of the recognition tests are under the 6-fold cross-validation manner with SVM

classifiers. The cross-validation guarantees that any instance in test will not be used

in the classifier’s training. With about 30% paired instances for the path learning, the

averaged recognition accuracies for each pairwise cross source-target views on each of

the orphan actions are shown in Table 3.2. We can observe that our approach achieves

improvement over the state-of-the-art on most of the cross view pairs (14/20), except

when camera 3 is involved as a target view. Meanwhile, it is most desirable that our

approach also achieves very good recognition accuracies when camera 4 is involved

as either source or target view. As shown in Figure 3.4, camera 4 captures totally

different action appearance from the top viewpoint, so its recognition accuracy is

more meaningful for evaluating an approach for cross view recognition. Benefited

from the optimization scheme for learning of the reconstructable paths, the structure
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Figure 3.6: Averaged recognition accuracies across pairwise views when different
proportion of samples are labeled in target view. Each line represents the averaged
accuracies if one view is taken as the target view.

information in both the source view and the target view can be thoroughly exploited,

such that the discrimination among actions can be well preserved after the action

representation reconstruction. Also note that our performance is based on the most

basic SVM with a histogram intersection kernel instead of the more advanced MKL-

SVM (Li and Zickler, 2012).

Partially Labelled Mode: We also follow (Li and Zickler, 2012; Zhang et al.,

2013) to consider a semi-supervised scenario, where a small proportion of labelled

action samples in target view will also be provided. Note that all the corresponding

samples of the labelled target samples in the source view are all excluded to strictly

enforce that there are no instances in correspondence. In learning of the paths, we

only consider the alternate learning, which provides superior action representation

inference. After all the labelled actions from the source view be reconstructed into the

target view, 6 SVM classifiers under the 6-fold cross validation are used for recognition

performance evaluation.

To study the robustness to the number of partially labelled samples given from

target view, we also vary the fraction of the randomly selected labelled target samples

in increment of 5% to 30%. The averaged recognition accuracies using RP-VDPh

across pairwise views for each target view are shown in Figure 3.6. From the results,
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Figure 3.7: Averaged recognition accuracies across pairwise views with different
proportion of labelled samples from target view. Comparisons are with the MIXSVM
(Bergamo and Torres, 2010), Virtual View(Li and Zickler, 2012; Zhang et al., 2013).

we can observe that the performance of our approach under partially labelled mode

is consistently high even with a small proportion of labelled target samples (10%).

The performance of our approach is also compared to other existing works under

the same recognition framework. For all the approaches, up to 30% action samples in

target view are randomly selected and labelled for learning. As shown in Figure 3.7,

the results indicate that our approach achieves quite notable improvement. We also

show quantitative comparison in Table 3.3. The experimental results show that our

approach significantly outperforms the existing works in all the pairwise cross view

tests when 30% labelled action samples are provided from the target view, with about

11.6% improvement to the state-of-the-art performance. Even with just 10% labelled

action samples in the target view, the performance of our approach is still constantly

superior to the others with 30% labelled target view samples in most of the pairwise

cross view tests (16/20). Once again, the results clearly show the effectiveness of our

approach on the partially labelled mode.

3.3.4 Multi-Source View Recognition

The benefits gained from multi-source views are investigated in this subsection. Each

camera view is selected as the target view and the rest 4 serve as multi-source views.
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Table 3.3: Performance comparison for cross view action recognition on IXMAS
dataset if only a few labeled actions available in target view with no correspondence
(partially labeled mode). The accuracies in each tuple are from (Bergamo and Torres,
2010), (Li and Zickler, 2012), (Zhang et al., 2013) with 30% labeled samples and our
proposed with 5%, 10% and 30% labeled samples, respectively.

% Cam0 Cam1 Cam2 Cam3 Cam4

Cam0
36.8, 63.6, 71.5
60.9 77.0,81.8

46.8, 60.6, 68.9
51.5 71.5,81.6

42.7, 61.2, 67.3
59.6 73.5,84.9

36.7, 52.6, 64.2
45.2 64.2,75.0

Cam1
39.4, 61.0, 70.5
58.3 80.1, 79.6

51.8, 62.1, 69.8
57.1 77.0,80.0

45.8, 65.1, 74.2
63.4 77.8,81.8

40.2, 54.2, 62.3
45.7 67.4,76.8

Cam2
49.1, 63.2, 67.8
65.7 73.5,81.1

49.4, 62.4, 71.8
60.6 78.3,80.3

45.0, 71.7, 79.2
62.1 76.8,84.1

46.9, 58.2, 66.5
51.3 70.0,74.5

Cam3
39.3, 64.2, 68.7
60.1 75.3,83.1

42.5, 71.0, 80.0
60.4 78.0,81.6

51.2, 64.3, 70.4
58.8 72.5,81.6

38.9, 56.6, 63.8
48.2 63.6,80.6

Cam4
40.3, 50.0, 55.4
62.1 74.8,78.0

42.5, 59.7, 67.3
65.4 77.3,81.6

40.4, 60.7, 72.6
58.3 72.0,81.1

40.7, 61.1, 68.0
65.7 78.3,84.3

Ave.
42.6, 59.6, 65.6
61.6 75.9,80.4

42.8, 64.2, 72.7
61.8 77.7,81.3

47.5, 61.9, 70.4
56.4 73.2,80.9

43.5, 64.8, 72.2
62.7 76.6,83.8

40.7, 55.4, 64.2
47.6 66.3,76.7

The SVM classifiers are trained based on the reconstructed training samples from all

the four source views into the common target view, and the SVM classifiers are still

trained within the 6-fold cross-validation. The averaged accuracies of our approach in

correspondence mode and partially labeled mode are compared to other existing works

in Table 3.4 and Table 3.5. If compare Tables 3.4 and 3.5 to Tables 3.2 and 3.3, we

can observe that a notable accuracy improvement can be gained by fusing multiple

source views under both modes. If compare our results to the other works under

the correspondence mode, our approach achieves about 8% accuracy improvement on

average. Especially under the partially labelled mode, our approach performs better

(≈ 5% improvement) even with just 10% labelled action samples given in the target

view, while the other existing works used 30% labelled target samples. We also study

the effect caused by the number of paired instances or labeled target samples in these

two modes. As shown in Figure 3.8, we can find that our approach is very robust to

the number of action samples involved in paths learning for the two working modes.

We further plot the recognition accuracy of each action category in the aforemen-

tioned two working modes in Figure 3.9. From results of the correspondence mode,
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Table 3.4: Recognition accuracy with multiple source views in correspondence mode,
at least 30% learning action pairs are used in the other existing works in comparison.

% Cam0 Cam1 Cam2 Cam3 Cam4 Ave.
Ours (30.0%) 96.0 96.5 96.0 92.9 94.7 95.2

Avg. PairWise 89.2 91.0 91.2 85.6 90.8 89.6
Ours (16.7%) 88.9 82.3 93.2 94.0 93.2 90.3

(Zhang et al., 2013) 2013 89.2 85.6 88.0 90.7 83.6 87.4
(Wu and Jia, 2012) 2012 92.4 95.4 93.2 87.1 62.9 86.2
(Liu et al., 2011a) 2011 86.6 81.1 80.1 83.6 82.8 82.8

(Li and Zickler, 2012) 2012 85.1 82.1 82.2 85.7 77.6 82.6

Table 3.5: Recognition accuracy with multi-source views in partially labeled mode
given 10%, 20%, 30% labeled samples in target view, while the other works used 30%.

% Cam0 Cam1 Cam2 Cam3 Cam4 Ave.
Ours 30% 86.4 84.9 83.6 85.4 78.8 83.8
Ours 20% 83.3 83.1 81.1 85.1 77.3 81.8

Avg. PairWise 80.4 81.3 80.9 83.8 76.7 80.6
Ours 10% 78.5 80.6 72.0 77.0 68.2 75.3

(Zhang et al., 2013) 2013 66.4 73.5 71.0 75.4 66.4 70.5
(Li and Zickler, 2012) 2012 62.0 65.5 64.5 69.5 57.9 63.9

(Bergamo and Torres, 2010) 2010 46.4 44.2 52.3 47.7 44.7 47.1
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Figure 3.8: Averaged cross view action recognition accuracies with different number
of samples used in learning when multiple source views available. Left, corresponding
mode; Right, partially labeled mode
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we can observe that most of the actions under each target view are classified correctly,

except for the action ‘walk’ when ‘Cam3’ serves as the target view. This is mainly due

to the mis-recognition of the action ‘walk’ as the action ‘turn around’ under this view

because these two actions share very similar motion pattern. If we look into the action

videos, we can find the action ‘walk’ is just ‘turn a big round’. From the results of the

partially labelled mode, we however observe that the recognition accuracies of all the

arm related actions are not satisfactory, mainly due to the challenges caused by the

similar motion patterns in these actions. In addition, it is also worth looking into the

confusion matrices when camera 4 serves as the target view, which generally performs

worse than the other cameras as the target view in previous works. The results in

Figure 3.10 indicate that most of the actions are recognized with high accuracy except

for the action ‘wave’ in the correspondence mode, which are partially mis-recognized

as ‘check watch’. This may be because that camera 4 records actions from the top

viewpoint, where actions involving the arms, e.g., ‘wave’ and ‘check watch’, tend to

have quite similar features. Again, the arm related actions are also tend to be mis-

recognized in the partially labelled mode from the top camera view, e.g., ‘scratch’,

‘wave’ and ‘check watch’.

3.3.5 Orientation Recognition and Processing Speed

Given a testing action sample x in real applications, we may not know which view it

can best adapt to. With the dictionaries learned for each camera view, we may further

estimate the action’s orientation, then take the most suitable view as the target view

for action recognition. In this way, we may realize a kind of relaxed version of view-

invariant action recognition. Suppose we have J views, we can define a new matrix

D = [D1, ...,DJ ] as the concatenation of the J dictionaries from J views. Then, the x

can be represented as: x = Dψ+e, where ψ = [aT
1 , ..., a

T
J ]T. Using only the coefficients

associated with the i-th view, we can approximate the given action x by Dj · aj. We
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Figure 3.9: Recognition accuracy on each action category for target view if multi-
source views available. Top: correspondence mode; Bottom: partially labeled mode.
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Figure 3.10: Confusion matrices if camera 4 (from top viewpoint) serves the target
view under correspondence mode (left) and partially labeled mode (right), respectively.
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Figure 3.11: Actions orientation recognition. Left: coefficients (top) and residual
(bottom) of an example action from camera 0; Right: confusion matrix of actions
orientation recognition from 5 camera views.

then estimate the orientation of x based on these approximations by assigning it to

the best adaptable view that minimizes the residual rj(x) = ||x−Dj · aj||2.

For example, we compute the coefficients and residuals of an action from camera

view 0 as shown in the left of Figure 3.11, from which we can see that the coefficients

mainly appear in the range of camera 0 and the minimal residual also appears in

camera 0. For evaluation, we perform orientation recognition for all the 396×5 actions

from five camera views under the leave-one-action-class-out scheme, the confusion

matrix of recognition is shown in the right of Figure 3.11, from which we can find

that the recognition of action orientation is quite accurate.

We also measure the processing speed for recognizing an action in target view on

an ordinary laptop with I7 core, 4G memory in Matlab environment. It is true that

the path learning will cost a bit long time, about 27.79 seconds for learning one path.

However, both the path learning and the classifier training are all set up before test,

we can recognize an action very fast in the test phase. The main portion of time cost

in test phase is the action’s feature extraction and representation, which cost about

0.832 second, while recognizing an action in a target view with trained classifier only

costs 0.014 and 0.018 second with 1 or 4 source views, respectively. Thus, the total

time consumption of our approach to recognize an action in a target view is about

0.85 second.
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3.4 Summary

This work presented a novel approach for action recognition across camera views.

Different from previous works searching for view-independent or commonly shared

representations across camera views, our approach effectively exploited high-level se-

mantic (label) correspondence among actions via action representation reconstruction.

With a dictionary assigned to each camera view to fully exploit domain structural

information, and a simultaneously optimized linear mapping function for bridging

the semantic gap between the camera views, a reconstructable path was established

between any two camera views. Through the path, the labelled action samples from

any source view can be reconstructed (mirrored) into target view for training a strong

SVM classifier in the target domain. In addition, the proposed RP-VDRh approach

is able to exploit the hidden information from the unpaired samples or unlabelled

samples, therefore the stringency of the path learning samples can be greatly relieved.

Extensive experiments on the multiple view IXMAS dataset confirmed the use of our

approach for improved performance of cross view action recognition upon the state-

of-the-art.
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Chapter 4

Person Re-Identification Across

Camera Views

In this chapter, we propose a new approach for the person re-identification problem,

discovering the correct matches for a query pedestrian image from a set of gallery

images. It is well motivated by our observation that the overall complex inter-camera

transformation, caused by the change of camera viewpoints, person poses and view

illuminations, can be effectively modelled by a combination of many simple local

transforms, which guides us to learn a set of more specific local metrics other than a

fixed metric working on the feature vector of a whole image. Given training images

in pair, we first align the local patches using spatially constrained dense matching.

Then, we use a decision tree structure to partition the space of the aligned local patch-

pairs into different configurations according to the similarity of the local cross-view

transforms. Finally, a local metric kernel is learned for each configuration at the tree

leaf nodes in a linear regression manner. The pairwise distance between a query image

and a gallery image is summarized based on all the pairwise distance of local patches

measured by different local metric kernels. Multiple decision trees form the proposed

random kernel forest, which always discriminatively assign the optimal local metric

kernel to the local image patches in re-identification. Experimental results over the
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0o 45o 0o 90o 0o 135o 0o 180o 45o 90o

Figure 4.1: Samples of pedestrian images observed in different camera views in
person re-identification. Each pedestrian has a different pose variation in the four
examples between two cameras.

public benchmarks demonstrate the effectiveness of our approach for achieving very

competitive performances with a relatively simple learning scheme.

4.1 Introduction

Person re-identification is to recognize the same person across a network of cameras

with non-overlapping views. It is important for video surveillance by saving a lot

of human effort on exhaustively searching for a person from large amounts of video

sequences, e.g., the large scale pedestrian retrieval Loy and Tang (2009) and the wide

scale multi-camera tracking Wang (2013). However, this is also a fairly challenging

problem since the appearance of the same person may vary greatly in different camera

views, due to the significant variations in camera viewpoints, illuminations, person

poses, occlusions and backgrounds, etc. In addition, a surveillance camera usually

observes hundreds of people in one day, many of which have similar appearances,

therefore generating a lot of false alarms for the query image. See Figure 4.1 for some

typical difficult examples.
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Since the camera views are significantly disjoint making the temporal transition

between cameras very large, the appearance is exploited solely in most existing works.

In literature, two lines of approaches have been proposed to tackle this problem. The

first line concentrated on the development of viewpoint quasi-invariant local features,

e.g., color Gray and Tao (2008), texture Xiong et al. (2014) or gradient Zhao et al.

(2013b), as well as robust feature ensembles. However, these feature based methods

still suffer from illumination changes, human shape deformations and difficulty of

multi-feature ensembles. The second line is to learn a parametric distance metric

to enforce features from the same individual to be closer than that from different

individuals Zheng et al. (2013); Li et al. (2013b); Pedagadi et al. (2013); Xiong et al.

(2014), also known as the metric learning (ML). However, ML usually deals with

feature vectors of a complete image in learning of the metric. Although effective, this

distance metric may not be the optimal to work well on certain local parts of each

person image.

In the re-identification problem, image regions typically undergo both geometric

transformation due to camera viewpoint changes and photometric transformation due

to illumination variations. However, different regions suffer differently to these two

transformations, e.g., the smooth pure color regions suffer less while the texture or

high gradient patches suffer more. In addition, the pose changes from one camera

to another one vary for different people, there is no fixed pattern, i.e., 45◦ → 90◦ or

0◦ → 45◦, to describe the diverse pose changes, shown as in Figure 4.1. Therefore,

the configuration of person images are multi-modal even if the people are observed

in the same camera view. To fully formulate the overall inter-camera transformation

F , it must be a sophisticated non-linear function with a large number of unknown

parameters. Obviously, single transform or uni-modal metric function might not be

the optimal to tackle the problem. Thus some of the recent works used kernel tricks

to do ML in a non-linear kernel space Xiong et al. (2014); Chen et al. (2015a) or

adopted nested formulations as in deep learning framework Li et al. (2014b); Ahmed

et al. (2015), which is usually time-consuming in model training.
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Our work is mainly motivated by the above observations. Suppose a specific

local metric can be learned from a small group of local image patch-pairs that share

a consistent cross-view transform, not only the metric learning task becomes much

easier, the combination of these specific metrics is also more effective to further ensure

the pairwise distances of images from the same individual can be better minimized.

Comparing to the deep learning architecture Li et al. (2014b); Ahmed et al. (2015),

which approximates the overall transformation F as a series of nested functions with

the distance metric defined as D(x,y) = dK (...d2 (d1(x,y))), where x,y are the

representations of two images from two different camera views, respectively, we try

to partition out all the local transforms and decompose the overall transformation

F into many independent sub-functions fk, then our new distance metric is defined

as D(x,y) =
∑

x,y{d1(x, y) + d2(x, y) + ... + dK(x, y)}, where x, y are features of

local patches from the image pair x,y, respectively, i.e., some segments of the feature

vectors of x,y. However, each dk only works on a specific kind of the local patches

from each image.

The main purpose of this work is to learn specific metric kernels for different local

image patches in measure of the pairwise distance. We propose a novel random kernel

forest (RKF) based on the consistent patch-to-patch transform criteria for person re-

identification. Our main contribution is the use of a highly efficient decision forest

that is trained to discriminatively predict which kernel should be applied to measure

the pairwise distance of any two given image patches. As shown in Figure 4.2, the

tree structure jointly partitions the space of local patch-pairs from all the training

image pairs into a set of sub-spaces at each tree leaf, where the transform of the local

patches between cameras is simplified and consistent. Furthermore, a simple linear

kernel can be learned at each leaf to describe the specific transform fk,k=1,...,K, such

that the distance between any true patch-pair will be minimized in dk. Combining

with multiple decision trees in the forest, the model also effectively avoids over-fitting

during training. Finally, since the decision tree recursively and jointly partitions

the patch-pair space solely based on the thresholds on features, it is very fast in
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learning and prediction. Extensive experimental results demonstrate the effectiveness

of our approach for achieving very competitive performance while adopting a relatively

simple learning scheme.

4.2 Method

Random forests Criminisi and Shotton (2013) is a well-known tree based classifier

ensemble. It has been widely used in many computer vision problems. In our work,

the random forest has been strategically designed to decompose the multi-modal

inter-camera transformation into simple and independent uni-modal transforms.

4.2.1 Transformation Model

Traditional machine learning problems try to learn a category specific probability

distribution or a decision boundary to answer which category a given sample belongs

to. In contrast, the person re-identification problem deals with image pairs and

tries to determine whether a pair of samples are from the same category or not.

Formally, for a pair of image samples represented by x,y ∈ Rd, respectively, each of

which corresponds to a class label C(x) and C(y), we need to decide whether they

are from the same category, i.e., C(x) = C(y), or not. The ability of dealing with

unseen categories is the key for person re-identification, since most of the testing

samples are from unseen persons which do not exist in the training set. The proposed

approach still follows the distance metric learning framework. Given a set of N

training pedestrian image pairs X = {x1,x2, ...,xN}, Y = {y1,y2, ...,yN}, which are

observed by two disjoint camera X (camX ) and camera Y (camY), our goal is to

learn a distance metric D(xi,yi) that any pair of two samples from the same person

generates the smallest distance.

Mathematically, the gist of metric learning is to learn a projection P and find

a common subspace to measure the pairwise distance, e.g., ||Px − Py||2 = (x −
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Figure 4.2: Illustration of the main idea. Top: learning phase, the aligned patch
pairs of the same person from different cameras are separated in a tree structure
based on the consistent patch-to-patch transform criteria. At each tree leaf, a simple
but effective kernel is learned to describe the simplified transform. Bottom: testing
phase, given a probe image, a suitable kernel will be selected based on the decision
tree for each of its local image patch. With the optimal local kernel, the distance
between the true patch pairs will be well minimized.
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y)>P> ·P(x−y) = (x−y)>W(x−y), where W = P> ·P is a semi-definite matrix.

However, as explained in Sec. 4.1, the complex transformation between camX and

camY is multi-modal, hence it cannot be well learned with a single fixed metric W.

In our work, we learn a more comprehensive overall mapping function FM : X → Y

which is parameterized by M = {m1,m2, ...,mK}, where each mk represents a simple

local transform that learned from a small set of automatically selected local patch-

pairs in group Gk = {(xi, yi)ni=1,2,...}, from the training set of image pairs {X,Y},

where i is the subscript of each local patch in group Gk,k=1,2,...,K and n denotes which

image it comes from. Hereinafter, each independent local transform fk parameterized

by kernel mk is denoted as fmk
. Learning such a kernel mk is generally formulated

using the empirical risk minimization:

m∗k = arg min
mk

1

|Gk|
∑
i∈Gk

L(yi, fmk
(xi)) (4.1)

Please note that each small group Gk is discovered automatically, we will illustrate

how to partition the space of aligned local patch-pairs into different sub-spaces and get

the resultant groups Gk in the next subsection via the decision tree structure. In this

work, each fmk
is defined as a linear mapping function describing the decomposed

uni-modal local transform. The loss function L is simply defined as (yi − mkxi),

and mk is just a linear mapping kernel that can be efficiently solved in closed form

as ŷx̂>(x̂x̂> + λI)−1, where λ is a regularizing parameter being a small value, and

x̂ = [x1, x2, ..., xi, ..]xi∈Gk
and ŷ = [y1, y2, ..., yi, ..]yi∈Gk

. Finally, the overall inter-

camera transformation from X to Y can be formulated as FM =
∑K

1 fmk
, with each

of the fmk
representing one uni-modal transform that works on certain specific kind

of image local patches.

Finally, our local distance metric is defined as dk(xi, yj) = ||yj − fmk
(xi)||2, where

the optimal kernel mk for each image patch xi is automatically and discirminatively
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assigned by the tree structure. Then, the overall distance metric is defined as:

D(x,y) = ||y −F(x)||2

=
∑

r,c ||y[r,c] − 1
Q

∑
q f

q
mk

(x[r′,c′])||2
(4.2)

where the subscript [r, c] denotes the coordinates of each local patch in images x,y.

We use a greedy distance measure, which will be detailed in Sec. 4.2.3, to compute

the pairwise patches distance, thus the [r, c] in y and [r′, c′] in x do not have to be

identical. As to be introduced in Sec. 4.2.2, we formulate the uni-modal transform

fmk
(x) Q times in Q decision trees to avoid over-fitting, the final output thus is a

mean value of the Q predictions.

4.2.2 Random Kernel Forest

A forest is an ensemble of Q decision trees Tq Criminisi and Shotton (2013). Given

a sample x, the prediction of Tq(x) from each tree is combined using an ensemble

model, e.g., an average value, into a single output. Each decision tree consists of

non-terminal (split) and terminal (leaf) nodes. A tree Tq classifies a sample x ∈ X by

recursively branching left or right child node down the tree structure until reaching

a leaf node. Each non-terminal node z in the tree is associated with a binary split

function h with parameters θz:

h(φ(x), θz) =

0 for φ(x) < τz

1 for φ(x) ≥ τz
(4.3)

Then, sample x will be sent to left if h(φ(x), θz) = 0, otherwise, right. The split

function h(φ(x), θz) can be arbitrarily complex, but a typical choice is just a threshold

that a single entry on the feature vector x is compared to, e.g., θz = (kz, τz), then

h(φ(x), θz) = [x(kz) < τz], where [·] is an indicator function, and x(kz) is the kz-th

entry on the feature vector x. The function φ(x) also can be of other forms, for

example, we use the “pairwise” difference of two entries on the feature vector x, i.e.,
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φ(x) = x(k1)− x(k2). Both the two entries k1, k2 are randomly selected from feature

vector x.

Suppose the training set, i.e., the aligned local patch-pairs S = {(xi, yi)n=1,...,N
i=1,... },

are extracted from the training image pairs X = {x1,x2, ...,xN} and Y = {y1,y2,

...,yN}. Training of the decision tree for joint spaces partition involves searching for

the parameter θz of each split function h(φ(x), θz), which can well split the training

data to maximize an objective function, i.e., information gain.

Iz = I(Sz,SLz ,SRz ) = E(Sz)−
∑
v∈L,R

|Svz |
|Sz|

E(Svz ) (4.4)

where SLz = {(x, y) ∈ Sz|h(φ(x), θz) = 0}, SRz = Sz \ SLz , and the term E is an index

function. Then, learning of the parameter θz is guided as to maximize Iz. The same

learning will be executed on each non-terminal nodes recursively until it reaches a

leaf node or the gain falls below a threshold.

For typical classification problems, the term E is defined as the Shannon entropy

E(S) = −
∑

c sc log(sc), where sc is the fraction of elements in S with label c Criminisi

and Shotton (2013); Dollar and Zitnick (2013). In contrast, the index function E

of our task is defined as the regression error ||ŷz − mzx̂z||2. Therefore, training

for classification tasks partitions training samples into successive homogeneous sub-

clusters, while tree training for our task partitions the local patch-pairs from two

spaces jointly into successive sub-spaces where their inter-camera transforms become

consistent and easier to formulate, layer by layer in the tree structure. Finally, we

are able to define our local metric at each leaf node with a specific kernel, and

the combination of those local kernels can approximate any complicated multi-modal

inter-camera transformations. Some local kernels and their examplar local patches in

the pair of subspaces are shown in Figure 4.3.
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Figure 4.3: Some examplar local kernels and their learning patches from a pair of
two subspaces (camS & camT) in the tree structure: top, node 224 at depth 8, middle,
node 297 at depth 9, bottom, node 473 at depth 11. It is obvious that different local
regions indicate different local metric kernels.
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4.2.3 Patch Features and Alignment

Features of local patches: features of local patches on an overlapping dense grid are

extracted, as shown in Figure 4.2. The features used for patch representation include:

10-bin color histogram extracted from each of the 3 channels of HSV color space and

each of the 3 channels of LAB color space, 9-bin gradient histogram extracted from

the intensity space, and 59-bin LBP features also extracted from the intensity space.

The 8 channels of features are finally concatenated to form a final 128-dimensional

feature vector for each local patch.

Constrained patches alignment: in each image xn, the appearance of human

body is segmented into several horizontal stripes Pedagadi et al. (2013); Zhao et al.

(2013b) to incorporate certain spatial constraint in patches matching and alignment.

The feature of a local patch is denoted as {xnr,c}, indicating it’s from the r-th row and

c-th column on the dense grid. Since the two images from camX and camY might

be taken with different viewpoints, as shown in Figure 4.1, we need to roughly align

the local patches in measure of the distance between two images x and y. Therefore,

when a local patch {xnr,c} is matched to a corresponding one in the image yu : {yur,c},

its search is constrained to the set {yu[r−1,r+1],c=1,...,C}. With the searching in a small

range [r − 1, r + 1], we can relieve the neg-effect in patches matching caused by the

vertical misalignment. We perform the patch matching in a greedy way, in both the

extraction of training patch-pairs and the testing of images re-identification. Each

patch xnr,c is matched to its nearest neighbor in its searching set {yu[r−1,r+1],c=1,...,C},

then the corresponding pair in the set will be removed in next iteration, as illustrated

in Figure 4.4. Finally, each local patch in image xn is aligned to a unique one in image

yu. Then, the distance between the two images is the summation of all the pairwise

distance of each two local patches from xn, yu, as in Eq. 4.2. The retrieved image in

gallery for the query image is the one gives the smallest distance value D(xn,yu).

60



patch P_Y1 P_Y2 P_Y3 P_Y4 P_Y5 P_Y6

P_X1 0.81 0.28 0.96 0.79 0.68 0.71

P_X2 0.91 0.55 0.49 0.96 0.76 0.03

P_X3 0.13 0.96 0.80 0.66 0.74 0.28

P_X4 0.91 0.97 0.14 0.02 0.39 0.05

P_X5 0.63 0.16 0.42 0.85 0.65 0.09

P_X6 0.08 0.97 0.92 0.03 0.17 0.77

P_X4~ P_Y4

P_X2 ~ P_Y6

P_X3 ~ P_Y1

…
 …

Aligned Patches

Figure 4.4: Illustration of the greedy local patches matching via pairwise distance.
Suppose 6×2 patches are doing matching from two vertical strips of x,y, the sequence
of the matched patches in this example are denoted as in color yellow, orange and
green ... .

4.2.4 Discussion and Implementation

If viewed from the perspective of motivation, our work is most close to the LAFT

approach Li and Wang (2013), which jointly partitions the image spaces of two

camera views into different subspaces according to the similarity of inter-camera

transforms. However, the main difference between our works are that: (i) LAFT

partitions the image space of each camera view instead of the more fine local patches

space, where the problem of local regions suffering from different transforms can be

better tackled; (ii) LAFT uses a gating network to softly assign the given image

pair to a configuration type and requires feature selection with sparsity and log-

determinant divergence regularization. In contrast, we assign the optimal kernel to

the given local patch much more efficiently in the tree structure and do not require

post feature selection. Viewed from the perspective of methodology, our work is also

close to Liu et al. (2014); Zhao et al. (2014) as we all play with local patches. However,

the assumption in the dictionary learning based approach Liu et al. (2014) that the

local patches in different camera views have similar manifold structure is obvious not

solid enough as the configuration are multi-modal. Two similar patches in one camera

might correspond to two totally different patches in another camera. Zhao Zhao et al.

(2014) partitioned the local patches space into sub-clusters based on patch features
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from one single camera view. Therefore, the cross-view transform in each sub-cluster

is still multi-modal, the mid-filters learned in these sub-clusters might not be able to

respond to the cross-view invariant features thoroughly.

Training details: training of the decision tree plays the main role in learning

of the overall inter-camera transformation F . Random forest prevents over-fitting

by training multiple de-correlated trees and combining their outputs. To achieve

sufficient diversity of trees, we trained 20 trees in the forest. To learn the parameter

θz at each non-terminal node z in training of each tree, we randomly sub-sample 1024

patch-pairs, 20 pairs of the entry on the feature vector and take 10 random guesses

for the threshold τz. The decision tree terminates split and creates a leaf once the

number of patch pairs is less than 128.

Processing Flow: the pseudo-code of the overall flow for learning the random

kernel forest and testing for a query are also shown as in Algorithm 3.

4.3 Experiments

4.3.1 Datasets and Protocols

We conduct experiments on three most frequently used datasets: the “viewpoint

invariant pedestrian recognition dataset” (VIPeR) Gray and Tao (2008), the “QMUL

underround re-identification dataset” (GRID) Loy and Tang (2009) and the “CUHK

person re-identification dataset” (CUHK01) Cheng et al. (2011). All three datasets

are very challenging for re-id problems due to the significant variations in viewpoints,

poses, illuminations, and also their low image resolutions with occlusions and different

backgrounds.

VIPeR: it contains 632 pedestrian image pairs that captured by two hand-carried

cameras in outdoor environment. All the images are scaled to the same size of 128×48

for evaluation. Each pair contains two images of the same person observed from
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Algorithm 3 Processing flow of kernel forest learning and testing

Training Phase:

Input: X = {x1,x2, ...,xN}: training images in camX .
Y = {y1,y2, ...,yN}: training images in camY .
υ: number of samples allowed for split.
ρ: maximum levels of the tree.

Output: A random kernel forest of Q decision trees Tq.
1: Extract a set of local patch pairs Sz=0{(xi, yi)i=1,2,...} based on the constrained

greedy patches matching from X,Y.
2: while q ≤ Q do
3: Train each decision tree Tq independently.
4: while |Sz| ≥ υ do
5: node parameter learning : select parameter θz that maximize Iz in Eq. 4.4.
6: data split : send x to left if h(φ(x), θz) = 0,

otherwise, right, as in Eq. 4.3.
7: end while
8: Create leaf node with a local linear kernel mk.
9: end while

Testing Phase:

Input: query image x from camX .
a set of gallery images Yg = {y1,y2, ...,yN}.

Output: y∗n: the same person as in x.
1: dense sample local patches (xi)i=1,...,r∗c in image x.
2: while q ≤ Q do
3: while i ≤ r ∗ c do
4: Input patch xi into tree Tq, and reach leaf node z.
5: Calculate the mapping fmk

(xi) with the local kernel mk associated on the
leaf node z.

6: end while
7: end while
8: Calculate the averaged mapping of each local patch xi as 1

Q

∑
q f

q
mk

(xi).
9: Calculate the distance between two images x and yn as in Eq. 4.2, and choose

the image y∗n.
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two camera views with pose changes (mostly > 90o degree) and different lighting

conditions.

GRID: it contains 250 pedestrian image pairs that captured from 8 disjoint

camera views installed in a busy underground station. All the images are scaled

to the same size of 300 × 100 for evaluation. Each pair contains two images of the

same individual seen from different camera views. Except for the common challenges

(pose changes, etc), the gallery set also contains 775 distracting images which do not

match any person in the probe set, bringing much more difficulty in re-identification

for a probe (query) image.

CUHK01: this is a multi-shot dataset containing 971 pedestrians captured from

two disjoint camera views, with 2 images per person in each view. All the images are

scaled to the same size of 160× 60. As it contains much more instances, it has been

used for evaluation of deep learning approaches.

Protocals: The pedestrians in each dataset are separated into the training set

and the testing set, such that each person appears only once in either the training

set or the testing set. The testing set is also partitioned into two sets: the probe

set and the gallery set. For the VIPeR dataset, the images in camera A are used as

probe images, and the images in camera B are used as gallery images. The GRID

dataset already defined the probe set and the gallery set, with 775 distracting images

added in the gallery set. For the CUHK01 dataset, the first 2 images of each person

are used as probe images and the latter 2 images from another view are stored in

the gallery set. According to the existing works in literature, the performances are

reported quantitatively as the standard Cumulated Matching Characteristics (CMC)

curves, and the performance is the averaged results of ten trials. In CMC curves,

the Rank-κ matching rate is the rate of correct match at rank κ, and the cumulated

values of recognition rate at all ranks is recorded as the CMC curve. The parameters

in learning of the random kernel forest are illustrated in Sec. 4.2.4. For dense local

patches sampling of the images in each dataset, 15 × 5, 24 × 8, 19 × 6 overlapping

local patches are extracted in VIPeR, GRID, CUHK01, respectively.
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Probe Set Gallery SetVIPeR

Probe Set Gallery SetGRID
Distracting Images

Probe Set Gallery SetCUHK01

Figure 4.5: Examplar image pairs in probe set and gallery set from datasets of
VIPeR (top), GRID, CUHK01(bottom), respectively.
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Figure 4.6: Left-4: similarity distribution of local regions in matching. Right-2:
spatial distribution of 127 local kernels in an example image.
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4.3.2 Empirical Analysis

We investigate how some of the terms in our random kernel forest influence the final

re-identification performance. All the analysis and evaluations in this sub-section are

based on the VIPeR dataset.

Effect of local kernels: The distance between the query image and each gallery

image is the summation of all the pairwise distances of local patches. To tell which

local regions contribute the most to discriminate the correct match in the gallery set,

we show the similarity distribution of one example image pair in left of Figure 4.6,

from which we can find that these discriminative regions mostly focus on human body

parts. In addition, we also show the spatial distributions of the local kernels on one

example image in right of Figure 4.6, which also demonstrates our hypothesis that

the inter-camera transforms at different local regions indeed vary accordingly.

Forest diversity: The diversity of trees in the kernel forest is crucial in traditional

random forest classifiers. In fact, the accuracy of each single tree is sacrificed in favor

of a highly diverse ensemble. Therefore, we vary the number of trees Q in the forest

and check their influence on the final re-id performance. As shown by the results in

Figure 4.7 (a), a larger number of trees produced higher re-id performance. However,

once the number of trees is large enough, the performance becomes stable. Based

on the empirical study, we choose the number of trees in our forest as 20, which is

relatively small while producing good performance.

Partition of image space and patch space: As mentioned in Sec. 4.2.4, based

on similar motivation that finding a subspace where the cross-view data pair inside

have consistent transform, the LAFT Li and Wang (2013) partitions the image space

while ours partition the more fine local patch space. We thus conduct two tests

for evaluation based on the VIPeR dataset, one uses 316 persons in training set (316

gallery images in test) and the other uses only 100 persons in training, resulting in 532

gallery images in test. The performance comparison between the two approaches are

shown in Figure 4.7 (b). We can observe that in the first test, our approach performs
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better in the range of a small κ (rank 2-15), while in the second more challenging test

with much less training samples and a larger gallery set, our performance is obviously

much better than the LAFT approach.

4.3.3 Quantitative Evaluation

In this subsection, we compare our approach to the other existing works on several

standard datasets for evaluation.

VIPeR: two protocals were defined for evaluation on this dataset: the first one

randomly selects 316 persons to form the training set and results in 316 persons in

testing set; the other one randomly selects 100 persons to form the training set and

results in 532 persons in test. Our approach is compared to the other existing works

including: SDALF Farenzena et al. (2010), LF Pedagadi et al. (2013), SSCDL Liu

et al. (2014), SalMat Zhao et al. (2013b), IRS Lisanti et al. (2015), RPLM Hirzer

et al. (2012), mFilter Zhao et al. (2014), QALF Zheng et al. (2015), LADF Li et al.

(2013b), PCCA Mignon and Jurie (2012), MtMCML Ma et al. (2014), MFA Xiong

et al. (2014), LAFT Li and Wang (2013), kLFDA Xiong et al. (2014), ReML Chen

et al. (2015b). The performance comparison is shown in Figure 4.7 (c) and (d) by

CMC curves. From these results, we can find that our approach gives the second

best performance in the first test and the best performance in the second test. We

also summarize the performance comparison in Tables 4.1&4.2 to show the matching

rate values more straightforwardly. It is clear that our approach achieves 29.1% and

16.0% rank-1 matching rate in the two tests, which is very competitive compared to

the other results in literature. The rank-20 matching rate for our approach is 83.8%

and 67.4% in the two tests, which also outperform most of the other methods.

GRID: experiments on this dataset were conducted according to the 10 data

partitions provided along with the dataset. In each partition, the image pairs from

125 randomly selected individuals are used for training, and the rest 125 persons

together with the 775 irrelevant distracting images form the gallery set in test. Our

67



(a) Number of Trees
0 5 10 15 20 25

M
at

ch
in

g 
R

at
e 

(%
)

-20

0

20

40

60

80

100

Rank-1

Rank-5

Rank-10

Rank-20

Rank-50

(b) Rank [RKF vs LAFT]
0 5 10 15 20 25 30

M
at

ch
in

g 
R

at
e

0

0.2

0.4

0.6

0.8

29.60% LAFT: gallery-316
12.90% LAFT: gallery-532
29.11% RKF-: gallery-316
15.98% RKF-: gallery-532

(c) Rank [VIPeR 316]
0 5 10 15 20 25

M
at

ch
in

g 
R

at
e

0

0.2

0.4

0.6

0.8

19.9% SDALF
24.1% LF
25.6% SSCDL
26.7% SaiMatch
27.0% IRS
27.3% RPLM
29.11% mFilter
30.17% QALF
30.5% LADF
29.11% Ours

(d) Rank [VIPeR 532]
0 5 10 15 20 25

M
at

ch
in

g 
R

at
e

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

9.300% PCCA
10.90% RPLM
12.33% MtMCML
12.44% MFA
12.90% LAFT
13.09% kLFDA
17.56% ReML
15.98% Ours

(e) Rank [GRID]
0 5 10 15 20 25

M
at

ch
in

g 
R

at
e

0

0.1

0.2

0.3

0.4

0.5

0.6

9.700% PRDC
10.20% RankSVM
11.10% MrankPRDC
12.20% MrankSVM
10.68% LCRML
10.48% XQDA
12.48% Ours

(f) Rank [CUHK01]
0 10 20 30 40 50

M
at

ch
in

g 
R

at
e

0

0.2

0.4

0.6

0.8

1

9.900% SDALF
20.61% Rank
22.83% eSDC
26.45% LDM
27.87% FPNN(DL*)
29.40% KISSME
44.00% Ours

Figure 4.7: Evaluations: (a) Performance comparison of different numbers of trees
in random kernel forest. (b) Comparison between RKF and LAFT via CMC curves.
(c) CMC curves on VIPeR dataset with 316 gallery images. (d) CMC curves on
VIPeR dataset with 532 gallery images. (e) CMC curves on GRID dataset with 900
gallery images. (f) CMC curves on CUHK01 dataset with 100 gallery images.
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Table 4.1: Top ranked matching rates (%) on VIPeR dataset with 316 gallery images.

Method κ = 1 κ = 5 κ = 10 κ = 20 ref

PRDC 15.7 38.4 53.9 70.1 CVPR11 Zheng et al. (2011)
PCCA 19.3 51.2 64.9 77.5 CVPR12 Mignon and Jurie (2012)
KISSME 19.6 48.2 62.2 76.9 CVPR12 Kostinger et al. (2012)
SDALF 19.9 38.9 49.4 65.7 CVPR10 Farenzena et al. (2010)
eLDFA 22.3 47.0 60.0 71.0 ECCV12 Ma et al. (2012b)
LF 24.1 51.2 67.1 82.0 CVPR13 Pedagadi et al. (2013)
SSCDL 25.6 53.7 68.1 83.6 CVPR14 Liu et al. (2014)
SalMat 26.7 50.7 62.4 76.4 CVPR13 Zhao et al. (2013b)
IRS 27.0 49.4 61.1 72.8 PAMI15 Lisanti et al. (2015)
RPLM 27.3 54.5 68.8 82.4 ECCV12 Hirzer et al. (2012)
mFilter 29.1 52.3 66.0 79.9 CVPR14 Zhao et al. (2014)
QALF 30.2 51.6 62.4 73.8 CVPR15 Zheng et al. (2015)
LADF 30.5 61.2 76.2 88.2 CVPR13 Li et al. (2013b)
Ours 29.1 59.2 74.4 83.8 1st, 2nd, 3rd

approach is compared to some recently published results: PRDC Zheng et al. (2011),

RankSVM Prosser et al. (2010), MrankPRDC Loy et al. (2013), MrankSVM Loy et al.

(2013), LCRML J. Chen and Wang (2014), XQDA Liao et al. (2015) in Figure 4.7 (e)

and Table 4.3. The CMC curves and top rank matching rates show our approach

achieves very competitive results on this benchmark.

CUHK01: this is a multi-shot dataset containing 971 persons. 100 persons are

randomly selected in test, and the rest 871 persons are used for training. This protocol

was designed for deep learning in FPNN Li et al. (2014b). Figure 4.7 (f) and Table 4.4

compared the performance of our approach to the other existing works including

FPNN, eSDC Zhao et al. (2013b), KISSME Kostinger et al. (2012), LDM Guillaumin

et al. (2009), etc. The results show that our approach outperforms the other existing

works by a wide margin (> 15% than FPNN), with the rank-1 matching rate being

44%. This might attribute to the fact that deep leaning approaches usually requires a

large amount of training data, otherwise the network tend to over-fitting. In summary,

all the above results also show that our approach is able to achieve very competitive

performance without the strict requirements on training data as in deep learning.
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Table 4.2: Top ranked matching rates (%) on VIPeR dataset with 532 gallery images.

Method κ = 1 κ = 5 κ = 10 κ = 20 ref

PCCA 9.3 24.9 37.4 52.9 CVPR12 Mignon and Jurie (2012)
RPLM 10.9 26.7 37.7 51.6 ECCV12 Hirzer et al. (2012)
MtMCML 12.3 31.6 45.1 61.1 TIP14 Ma et al. (2014)
MFA 12.4 33.3 47.2 63.5 ECCV14 Xiong et al. (2014)
LAFT 12.9 30.3 42.7 58.0 CVPR13 Li and Wang (2013)
kLFDA 13.1 35.2 49.4 65.0 ECCV14 Xiong et al. (2014)
ReML 17.5 37.9 51.8 66.0 TIP15 Chen et al. (2015b)
Ours 16.0 39.5 53.3 67.4 1st, 2nd, 3rd

Table 4.3: Top ranked matching rates (%) on GRID dataset with 900 gallery images.

Method κ = 1 κ = 5 κ = 10 κ = 20 ref

PRDC 9.7 22.0 33.0 44.3 CVPR11 Zheng et al. (2011)
RankSVM 10.2 24.6 33.3 43.7 BMVC10 Prosser et al. (2010)
MrankPRDC 11.1 26.1 35.8 46.6 ICIP13 Loy et al. (2013)
MrankSVM 12.2 27.8 36.3 46.6 ICIP13 Loy et al. (2013)
LCRML 10.7 25.8 35.0 46.5 ICPR14 J. Chen and Wang (2014)
XQDA 10.5 28.1 38.6 52.6 CVPR15 Liao et al. (2015)
Ours 12.5 29.2 38.3 50.3 1st, 2nd, 3rd

Table 4.4: Top ranked matching rates (%) on CUHK01 with 100 gallery images.

Method κ = 1 κ = 5 κ = 10 κ = 20 ref

SDALF 9.9 41.5 54.7 66.0 CVPR10 Farenzena et al. (2010)
Rank 20.6 47.6 61.6 76.5 ICML10 Mcfee and Lanckriet (2010)
eSDC 22.8 43.0 55.3 69.7 CVPR13 Zhao et al. (2013b)
LDM 26.5 57.6 72.6 85.5 ICCV09 Guillaumin et al. (2009)
FPNN 27.9 59.7 73.4 87.3 CVPR14 Li et al. (2014b)
KISSME 29.4 59.8 74.5 86.6 CVPR12 Kostinger et al. (2012)
Ours 44.0 78.5 86.7 94.0 1st, 2nd, 3rd
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4.4 Summary

This work presented a novel approach based on the random kernel forest for person re-

identification across disjoint camera views with complicated appearance variations.

The complex inter-camera transformation is modelled by a combination of many

local functions, which formulate each local transform in a much simpler but effective

manner. Both the decomposition of the overall inter-camera transformation and the

local metric kernels for re-identification are discovered automatically by the aligned

local training patch-pairs using the random forest framework. Any local patch in a

query image is assigned a specific kernel in the tree structure, then the local metric

is able to generate a minimized distance between the true patch-pairs. Extensive

experimental results showed that the proposed random kernel forest achieved very

competitive re-identification performance as compared to the existing works.
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Chapter 5

Multi-Event Detection and

Recognition in Smart Grid

Event analysis has been an important component in any situational awareness system.

However, most state-of-the-art techniques can only handle single event analysis. This

chapter tackles the challenging problem of multi-event detection and recognition in

smart grid system. We propose a novel conceptual framework, referred to as event

unmixing, where we consider real-world disturbances are mixtures of more than one

constituent root events, which are also transferable across the data domains of single

event and multi-event. This concept is a key enabler for analysis of multi-event to go

beyond what are immediately detectable in a signal, providing high-resolution data

understanding at a much finer scale. We interpret the event formation process from

a linear mixing perspective and propose an innovative nonnegative and sparse event

unmixing (NSEU) approach for multiple event separation and temporal identification.

Experimental results demonstrate that the framework is quite reliable to detect and

recognize multiple constituent cascading events as well as identify their occurring time

with high accuracy.
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5.1 Introduction

The US electric power system provides vital links that achieve essential continuity of

service from generating plants to end users. However, the ever-increasing complexity

in sensing and actuation, compounded by limited knowledge of the accurate system

status have resulted in major system failures, such as the massive power blackout of

Aug. 2003 and the most recent Arizona/California blackout of Sep.2011. Therefore, it

becomes essential that the wide-area situational awareness (WASA) systems enables

monitoring of bulk power systems and provide critical information for understanding

and responding to power system disturbances and cascading blackouts.

The frequency disturbance recorder (FDR) sensor is able to collect instantaneous

information of voltage phasor and frequency at a low-voltage distribution level using

ordinary 120-V wall outlets. An US-wide Frequency Monitoring Network (FNET) has

thus been implemented (Zhong et al., 2005; Liu, 2006; Gardener and Liu, 2007) based

on these low-cost sensors and serves the entire north American power grid through

advanced situational awareness techniques. When an event occurs in a power grid, the

imbalance between power generation and load consumption causes sudden frequency

changes within the system that can be used as a good indicator for event analysis. A

couple of works have been reported for conducting event analysis using data collected

from the FNET (Zhang et al., 2010; Li et al., 2010; Zhao et al., 2008; Xia et al., 2007;

Gardner et al., 2006; Kook and Liu, 2011). Although successful, these state-of-the-

art techniques only handle disturbances caused by single event. If multiple cascading

events are involved, existing techniques can only detect frequency disturbances caused

by the initial event, and the frequency disturbances from successive events might be

overshadowed by the continued frequency fluctuation from the initial event. We also

observe that when multiple events occur in cascading fashion, the electromechanical

waves generated will interfere with each other, and the measurement taken at a FDR

sensor would more than likely be a “mixture” of multiple constituent event signals.

Therefore, how to determine the number of constituent events that occurred and the
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categories of the events with precise estimation of the occurring time using simply

the observed frequency signal presents a very challenging problem.

In this chapter, we study the problem of multi-event detection and recognition

with an assumption that we are given a database with a set of signal recordings from

single event. However, because of the correlation between electrical devices in a smart

grid system, the signal of multi-event will generate specific correlation characteristics,

resulting in variations to simple combination of the single events. Moreover, learning

samples of multi-event signal with ground truth for doing regression requires a large

number of multi-event signals, which is hard to obtain. Thus, how to make use of the

knowledge that extracted from the collection of single event signals poses challenge

for this cross domain analysis. In this work, the main contributions are three-fold:

1) the formulation of the multi-event analysis problem using a linear mixing model

based on commonly shared root-patterns across data domains, 2) the construction of

the signature dictionary that incorporates temporal information subtly to reflect the

event dynamics in power grid, and 3) the validation of the proposed approaches using

extensive simulations and real case studies.

5.1.1 Problem Formulation

Similar to the ubiquitous existence of mixed measurements, events might not occur in

a pure and isolated fashion, especially in power grid. Taking the major U.S. western

blackout in 1996 as an example, at the very beginning of the blackout, two parallel

lines were tripped due to a fault and mis-operation of the protective equipments,

and consequently some generation was tripped as a correct special protection system

(SPS) response. Then, the third line was disconnected due to bad connectors in a

distance relay. After more than 20 seconds of these disturbances, the last straw of the

collapse occurred when the Mill Creek - Antelope line tripped due to an undesired

operation of a protective relay. After this line trip, the system collapsed within three
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Figure 5.1: Four types typical root events: generator trip, load shedding, line trips,
oscillation.

seconds. Therefore, to be able to provide high-resolution understanding of the power

system dynamics, it is essential to perform multi-event analysis.

Typical disturbances in smart grid system fall into one of four categories, including

generator trip (GT), load shedding (LS), line trip (LT), and oscillation (OS), which

we refer to as the “root events” or “pure events”. Figure 5.1 displays the frequency

variation patterns when each of these root events occurs. Denote the frequency signal

collected at a FDR as x (also referred to as the measured signal) and the frequency

variation pattern of each root event as s (also referred to as the source signal). We

propose a new conceptual framework for the study of multi-event analysis, where we

consider the disturbances sensed at each FDR, x, as a linear mixture of a limited

number of root events s. The formulation can thus be expressed as below:

x = Sα + ε (5.1)

where x ∈ Rl is the observation and l is the number of measurements corresponding

to the time over which an event is measured. S ∈ Rl×c is the root event signature
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dictionary whose columns, {sj}cj=1 ∈ Rl, correspond to the different pattern profiles of

the root events, and α is the mixing coefficient vector. The possible error and noises

are taken into account by the l-dimensional column vector ε. This concept is the key

to accurate event analysis that goes beyond immediately detectable information in an

observation and uncovers the true cause(s) of the multi-cascading-event. To realize

this framework, however, we have to answer the following questions:

1. Is it valid to use a linear mixing model to formulate the mixture observation

sensed at a FDR?

2. How can one obtain the profiles of root events given the complexity and dynamic

nature of the power grid system?

3. How can one incorporate the different starting times of cascading root events

in the construction of S?

4. How can one solve α for event detection and recognition purposes in an on-line

fashion?

We defer the discussions of the first issue to Sec. 5.2.1 and the second issue to

Sec. 5.2.2. To resolve the other two issues, we construct an over-determined signature

dictionary to incorporate pattern profiles of various types of root events as well as

temporal information on how the events cascade. In this way we can simultaneously

detect events type and events starting time in one unmixing procedure. In addition,

since the number of events is much less than the number of pattern profiles in the

dictionary, the “sparsity” enforced on the coefficient vector α becomes an appropriate

constraint that not only reduces the solution space, making the problem well-posed,

but it also helps in identification of event type and precise starting time. The sparse

representation of the measured mixture is achieved through solving an `1-regularized

least squares problem, which can be done efficiently through as a Lasso problem.

To further improve the robustness, we also enforce the “nonnegativity” constraint

onto the coefficient vector α. There are two reasons for adding this constraint: first,

from the energy perspective, physical laws govern the power flow in a grid system
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where the mixture of electromechanical waves generated by multiple disturbances

should be only an additive combination of the constituent components; second, since

generator trips generally cause a decrease in frequency while load sheddings generally

cause an increase in frequency, the nonnegativity constraint on α is especially helpful

to eliminate error cases where a load shedding event is mistakenly recognized as a

generator trip in the reverse way.

Based on the aforementioned discussion, we mathematically formulate the event

unmixing problem as below:

min ‖α‖0 s.t. ‖x− Sα‖2
2 ≤ ε, α ≥ 0 (5.2)

where ‖α‖0 represents `0-norm, which is defined as the number of non-zero entries in

vector α. The proposed cost function consists of two components with one measuring

approximation fidelity of the linear mixing model (i.e., ‖x − Sα‖2
2) and the other

measuring sparsity of the coefficient vector, α. We refer to the proposed approach as

nonnegative sparse event unmixing (NSEU) for detection, recognition, and temporal

localization of multiple cascading events in power grid. In the following sections, we

will discuss solutions to the four questions raised in this section.

5.2 Methodology

5.2.1 Linear Mixing Model

A power grid disturbance, in many ways, exhibits characteristics of electromechanical

wave propagation phenomenon. When electromechanical waves from different sources

interfere with each other, the standard wave equation is nonlinear (Thorp et al., 1998),

which is difficult for explicit calculation; however, it is much more simple to analyse

the power variation in a grid system if it is expressed as a frequency signal, as the
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generation/load loss is proportional to the frequency variation (Dong et al., 2007):

∆P = β∆f (5.3)

where β is a frequency sensitive constant (Bykhovsky and Chow, 2003). Based on

Eq. 5.3, it will be reliable to approximate the mixture of frequency signals as a linear

addition of frequency signals caused by several root constituent events.

5.2.2 Signature Dictionary Construction

Both the second and the third questions raised in Sec. 5.1.1 regarding the formulation

of event unmixing are related to construction of the root event signature dictionary S.

In our work, we hypothesis the root event patterns are transferable between the data

domains of single event and multi-event, thus these commonly shared patterns can

be extracted from the collection of single event. The dictionary construction involves

two steps. First, the root event patterns are learned from the training data previously

collected from FDRs recording disturbances experienced during single events. Second,

the temporal information (i.e., event starting time) is embedded into dictionary S by

augmentation and padding operations with the learned root event patterns.

Learning Root Event Patterns: As mentioned in Sec. 5.1.1, typical power

system disturbances (events) fall into one of four categories, including generator trip

(GT), load shedding (LS, or load drop), line trip (LT), oscillation (OS). As described

in (Zhao et al., 2008; Qi et al., 2011; Markham and Liu, 2011), events of the same

category generally share similar characteristics. For example, a generation trip always

starts with a rapid frequency drop and a load shedding always starts with a frequency

increase. Meanwhile, events of the same category also might contain certain degree

of differences because of the different setups of intrinsic parameters, including power

flow output, consumption, etc. It is impractical to include every single event pattern

in the dictionary which would affect the performance of online processing, especially

for large-scale systems, i.e., the power grid. Meanwhile, these patterns are attached to
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each unique devices thus not flexible enough to be taken as latent root patterns. We,

instead, resort to machine learning to find a set of representative root event patterns

for each category. Hereinafter, we refer to these root event patterns as “root-patterns”.

Various methods can be adopted for extracting the root-patterns, including, for

example, K-means clustering and dictionary learning (Sprechmann and Sapiro, 2010b;

Ophir et al., 2011). The K-means clustering is chosen to perform the root-pattern

extraction task. Given a set of single event observations (v1,v2, . . . ,vn) of the same

event category collected from either the recordings of a real system (e.g., FNET) or

simulation, K-means clustering aims to partition the n observations into K subsets,

so as to minimize the within-cluster sum-of-squares error:

argmin
ΦE

K∑
i=1

∑
vj∈Ei

‖vj − ei‖2 (5.4)

where ΦE = {e1, e2, . . . , eK} refers to the set of extracted root-patterns and ei is

the centroid of each cluster Ei. Notice that before performing K-means clustering

on (v1,v2, . . . ,vn), each vector should be normalized to have unit `2-norm, such that

the scale ambiguity (Yang et al., 2010a; Ji et al., 2009) in learning root-patterns can

be eliminated. In addition, when performing K-means clustering, instead of directly

using the mean vectors as cluster centroids, we use the nearest observation vi as the

centroid for the ith cluster in the final loop. In this way, the learned root-patterns

are also closer to real data.

In this chapter, we expect to detect and recognize three different types of events,

i.e., GT, LS, and LT. We set K=6 for K-means clustering, then the number of root-

patterns is 3× 6 = 18.

Incorporating the Temporal Information: After learning the set of root-

patterns from each category, the next step is to incorporate the temporal information

into construction of the root event signature dictionary, S. We refer to each column

of S that already embeds temporal information as the “temporal root-pattern”. The

reason for doing this is that any event, being single or consisting of cascading events,
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Figure 5.2: Shifting and padding one root-pattern to be “temporal root-patterns”,
bottom-left: one root-pattern, top: temporal root-patterns of different starting time,
bottom-right: a group of temporal root-patterns to be incorporated in dictionary S.

can start at any time and also can last for a different period of time. To make sure

that the unmixing algorithm always captures the entire duration of the root event

for better recognition performance, the dictionary needs to contain the root-patterns

starting at all possible times. Another reason for doing this is such that we obtain an

overcomplete dictionary and the sparsity constraint would enable extraction of only

a few large valued non-zero coefficients in vector α, reducing the false-alarm rate. In

the following, we detail the construction process of the temporal root-patterns.

Suppose the root-patterns last for at most ts seconds and the sampling frequency

is ω, then each root-pattern would have ts × ω samples. For an observation vector x

acquired from a FDR that lasts for tc seconds, it can have tc×ω samples starting from

the pre-event steady state, like 60 Hz, to the post-event steady state. The dimension

of tc × ω is always larger than or equal to that of ts × ω since tc ≥ ts is always true,

i.e., a multi-event observation always consists of at least one root event.

From the temporal perspective, each root-pattern can start at all possible sample

points from the first one to the (tc − ts) × ωth during the time period tc. To obtain
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such temporal root-patterns, we construct (tc − ts) × ω number of profiles for each

root-pattern by shifting it from the first sample to the (tc − ts) × ωth sample. For

instance, denote a root-pattern as R(k), k = 1, . . . , ts × ω. If we want to construct

one temporal root-pattern T (k), k = 1, . . . , tc × ω occurring at the ith sample point

for R(k), then T (k) can be calculated as:

T (k) =

R(k)⊗ δ(k − i) for 1 ≤ k < i+ ts × ω

R(ts × ω) for i+ ts × ω ≤ k ≤ tc × ω
(5.5)

where δ(k − i), k = 1, . . . , tc × ω is the Dirac δ function and ⊗ denotes convolution

process. Since we only analyse frequency fluctuation of the signal for event unmixing

purpose, the starting value of R(k) is 0Hz (by removing the base frequency 60Hz).

Therefore, the function in Eq. (5.5) actually pads the samples before the selected

ith point with zeros and the samples beyond ts × ω + i with the tail stable value of

R(k) to form a temporal root-pattern. The whole formation of a group of temporal

root-patterns derived from one root-pattern is illustrated in Figure 5.2.

5.2.3 Dictionary Augmentation

We denote all the “root-patterns” extracted from four event categories by T and all

the “temporal root-patterns” via shifting and padding of T by T̂, then the over-

determined dictionary S = T̂. Ideally, the frequency signal of a multi-event that

mixed by cascading constituent events can be precisely unmixed by the root-patterns

in T̂, producing correct number, type and occurring time of the constituent events.

However, due to the strong correlation among devices in multi-event disturbance, the

constituent event signals from the same device are not identical in different cases of

multi-event. In addition, the transferable root-patterns are also not exactly the same

as the constituent event signals of each device in multi-event. Therefore, due to this

pattern variations, the unmixing result from Eq. (5.2) might pull in other temporal

root-patterns that actually dose not happen to minimize the reconstruction error.
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To solve this problem, we treat the pattern of each constituent event as a degraded

version of the corresponding root-pattern in T̂, and handle the distortion using a set of

unit vectors, referred as “trivial-patterns” (Wright et al., 2009). Each trivial-pattern

gj has only one non-zero entry, 1, at jth position, j = 1, 2, . . . . The trivial-patterns

can be arranged in order to form an identity matrix I = [g1,g2, . . . ,gl=tc×ω] ∈ Rl×l.

Then, in the unmixing step, the reconstruction fidelity and the sparsity constraints

can still pick the correct root-patterns in T̂ by activating some of the trivial-patterns

for making up the error caused by the pattern variations, at the same time prevent

the introduction of incorrect temporal root-patterns. In this way, the event detection,

recognition and occurring time identification of each constituent event can still be

accurate. In addition, we enforce nonnegativity constraint on the coefficients in α. To

enable the trivial-patterns also make up negative reconstruction error, the “negative

trivial-patterns” are also included. Consequently, the densely constructed dictionary

S is now rewritten as below, and the corresponding unmixed coefficient vector α is

composed by as in Eq. (5.6).

S = [T̂, I, −I], α = [αEq.(5.2), h
+, h−] (5.6)

5.2.4 Nonnegative Sparse Linear Unmixing

Once the over-determined dictionary S is constructed, we can apply it to estimate

the coefficient vector α, which will be used for event detection – coefficients of non-

zero value indicate that the corresponding temporal root-pattern in the dictionary

should be used to reconstruct the observation mixture, x. Since the temporal root-

pattern indicates event’s pattern occurred at a certain time, by deriving α, we can

detect existence of multiple cascading events as well as their temporal locations (or

starting time). Given the overcomplete dictionary, traditional methods for coefficient

estimation such as fully constrained least squares (FCLS) (Heinz and Chein-I-Chang,

2001) or nonnegatively constrained least squares (NCLS) (Du et al., 2000) would
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not work, as the estimated coefficient by FCLS and NCLS may have non-zero values

on each root-pattern which would not serve as suitable ways for detection purposes.

Recall that the number of constituent events in a multi-event is generally small.

Recent developments on sparse coding technique (Tibshirani, 1996; Candes and

Tao, 2006; Lee et al., 2007) provides good solutions to the proposed NSEU algorithm

in Eq. (5.2). The sparse coefficient vector produced by sparse coding has only a few

entries being non-zero, indicating that only a few temporal root-patterns utilized to

reconstruct the original signal x. In the application of event detection, it is equivalent

to say that only a few constituent events occurred. Although the sparse optimization

problem in Eq. (5.2) is NP-hard in general, Donoho (Donoho and L., 2006) suggested

that as long as the desired coefficient vector α is sufficiently sparse, it can be efficiently

recovered by minimizing the `1-norm, and finally expressed as Eq. (5.8)

min ‖α‖1 s.t. ‖Sα− x‖2
2 ≤ ε, α ≥ 0 (5.7)

α = arg min
α
‖x− Sα‖2

2 + λ‖α‖1, α ≥ 0 (5.8)

where λ balances the sparsity of the solution and the fidelity of the approximation to

x. The `1 norm is to enforce the sparsity on α. Eq. (5.8) is convex in α with S being

fixed. The “feature-sign search algorithm” in (Lee et al., 2007) is revised to solve this

sparse coding problem with the nonnegativity constraint added.

Event detection is mainly based on studying the non-zero coefficients in the sparse

coefficient vector, α, as each coefficient corresponds to the weight of each atom (or the

column in dictionary) in forming the observation vector x. The larger the coefficient,

the more contribution the root pattern has in making the mixture. An empirically

determined threshold is applied on α, where coefficients above the threshold would

correspond to the temporal root-patterns actually occurred at a certain time.
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5.3 Experiments

5.3.1 Evaluation with Simulated Data

We conduct a series of experiments to demonstrate the effectiveness of the proposed

NSEU approach using simulated data in this subsection. The simulations are done

based on a small synthetic power grid model “savnw” using the software “Power

System Simulator for Engineering (PSS/E) ∗”. The grid model “savnw” is an example

bench case supplied with PSS/E with configuration shown in Figure 5.3. The model

includes 6 generators, 17 branch lines, 7 loads, and 21 buses. Each type of single event

causes the system to arrive at a new steady state within 30 seconds. We thus use 30-

second frequency fluctuation of single event for learning the root-patterns. Because

this power grid model is quite small, we simply select 4 generator trips (GT) and 1

load shedding (LS) as root-patterns. As for the line trips (LT), we apply the K-means

method to extract 5 root-patterns using the training data collected from 17 lines.

Since we do not have oscillation data, we just omit the oscillation event for simplicity.

The dictionary S is thus built based on the 10 extracted root-patterns. Suppose a

multi-event case would last for 40 seconds and the sampling rate is set to 60Hz, the

dictionary will then include (40 − 30) × 60Hz × 10 = 6, 000 temporal root-patterns.

We can improve the on-line performance by decreasing the number of temporal root-

patterns in S by shifting at every two or more samples, at the sacrifice of losing certain

temporal localization accuracy. In each test, the regularization parameter of NSEU

is selected as λ = 0.1 and the threshold is selected as 0.034.

Detection Results

Single Event Detection and Recognition

We start with the detection of single event on some simulated cases. An example

case of generator trip is discussed in this part. This single event was simulated for a

∗PSSE, a power system simulation software provided by Siemens
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Figure 5.3: Configuration of the synthetic power grid model, “savnw”, in PSS/E.
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Figure 5.4: Simulated single event of GT101 at 1s, left: unmixed sparse coefficients
α with event starting time, top-right: original and reconstructed signal, bottom-right:
event type classification and ground truth marked with a black square.

duration of 40-sec and the trip occurred at the 1st second. The frequency recording

from a randomly selected bus is used to simulate data collected from a FDR. The

unmixing result using the proposed NSEU are shown in Figure 5.4. The left sub-figure

illustrates the estimated coefficient vector α, which is a sparse vector with only one

non-zero coefficient, and the time index associated with this coefficient (i.e., the event

starting time) is 1.02s, which is consistent with the ground truth that starts at the

1st second. The top-right sub-figure demonstrates that the reconstructed frequency

signal by Sα resembles the observed frequency signal, x, from the simulated FDR.

In the bottom-right sub-figure, all the coefficients belonging to the same root-pattern

are summed up for recognition purpose, in order to identify what type of event has

occurred. The indices for root-pattern 1 ∼ 4, 5 ∼ 9, 10 represent generator trip, line

trip, and load shedding, respectively, and the index with a black square is the ground

truth. This detection result indicates it is a generator trip of root-pattern 1, which

agrees with the ground truth.

Multiple Event Detection and Recognition

Next, we show three example cases of simulated multi-event. Again, a randomly

selected bus is used to extract the frequency signal representing data collected from

a FDR. The first example consists of two cascading events: LT 201-202 and GT 3018

occurring at the 1st and the 10th second, respectively, recording frequency variations
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for duration of 40s. The NSEU detection result is shown in Figure 5.5. The left sub-

figure shows that there are several non-zero coefficients stay in two obvious compact

clusters at time around 1.03s and 10.14s, based on which we can conclude that there

are two events occurred around the 1st and the 10th second. The top-right sub-figure

shows that the reconstructed signal is very close to the observed signal. In the bottom-

right sub-figure, the approach determines that the two events are from root-patterns

7 and 4, which is consistent with the ground truth.

The second example also contains two cascading events: GT 101 and GT 3011

occurred at the 1st and the 10th second, respectively, recording frequency variations

for a duration of 40s. Detection results shown in Figure 5.6 indicate that the approach

detects two events from root-patterns 1 and 3 starting at 1.06s and 11s, respectively.

It is a little bit imprecise for detection result of the second event GT 3011 occurring

at 10th second from root-pattern 4. This might due to the fact that 3011 is a swing

generator with flexible power output to make the whole system to be resilient. GT

3011 happened after GT 101, thus its outputted power will increase a bit to make

up the power lose in system after GT 101, therefore its frequency pattern will vary

correspondingly, resulting in an inaccurate recognition result as from root-pattern 3

(but still GT). As for the 1s delay of the identified occurring time of GT 3011, we

consider it is acceptable in heuristic. In addition, this error would not cause significant

side-effect as the reason for deriving occurring time is to estimate the location of event

where only the difference between the starting time sensed at different FDR sensors

will be used for estimation. Fortunately, the number of swing generators in real power

systems is very small and most of the generators are with fixed power output.

Finally, we show a simulated example of three cascading events: LT 154-3008, LT

151-201, and GT 3018 occurring at the 1st, 8th, and 15th second, respectively, with a

recording length of 50s. The detection result is shown in Figure 5.7. The reconstructed

signal resembles the original input signal with just very small deviation. From the left

sub-figure, we clearly see that there are three events above the detection threshold
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Figure 5.5: Simulated multi-event case of LT201-202 at 1s and GT3018 at 10s, left:
unmixed sparse coefficients vector α with events starting time, top-right: original and
reconstructed signal, bottom-right: event type classification indicates two events are
from root-patterns 7&4, and ground truth is marked with black squares.

0 500 1000 1500 2000 2500
0

0.1

0.2

0.3

0.4

1 2 3 4 5

sparse coefficient 

index in dictionary

time:1.066s
time:11.05s

V
al

ue
 o

f C
oe

ffi
ci

en
t

0 1000 2000 3000 4000 5000
−0.02

0

0.02

0.04

Time

F
re

qu
en

cy
 p

at
te

rn Reconstruction comparison, FDR−ID=13, MSE=1.394e−05

 

 

original signal
reconstructed signal

2 4 6 8 10
0

0.5

1
Which event (root−pattern) happened

Blue (1−4): GT, Red (5−9): LT, Green (10): LS

In
te

ns
ity

Figure 5.6: Simulated multi-event case of GT101 at 1s and GT3011 at 10s, left:
unmixed sparse coefficients vector α with events starting time, top-right: original
and reconstructed signal, bottom-right: event type classification indicates two events
are from root-patterns 1&3, and ground truth is marked with black squares.
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Figure 5.7: Simulated multi-event case of LT154-3008 at 1s, LT151-201 at 8s and
GT3018 at 15s, left: coefficients vector α with events starting time, top-right: original
and reconstructed signal, bottom-right: event type classification indicates three events
are from root-patterns 8&6&4, and ground truth is marked with black squares.
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Table 5.1: Quantitative evaluation on simulated event cases

Detection FalseAlarm R-P Recog OT-Deviation
S1C 100% 0% 100% 0.0579s
M2C 100% 5% 90% 0.1331s
M3C 100% 6.67% 86.7% 0.1056s

occurred around the 1.03s, 8.04s, and 15s, respectively. Combined with the bottom-

right sub-figure, we can conclude that the first two events are line trips and the third

is a generator trip, which are exactly what happened according to the ground truth.

Summary of Unmixing Performance

The above results suggest that the constraints in NSEU effectively confine the solution

space, leading to accurate multiple events detection and recognition. We conducted

experiments on 8 single event cases (S1C), 10 multi-event cases with two constituent

components (M2C), 5 multi-event cases with three constituent components (M3C) in

total. We use four metrics to measure performance, including detection accuracy, false

alarm rate, root-pattern recognition rate (R-P Recog), and occurrence time deviation

from the ground truth (OT-Deviation), as shown in Table 5.1.

Both detection accuracy and false alarm rate are used to evaluate the detection

performance of NSEU approach. The detection accuracy calculates the ratio between

the number of correctly detected and that of the total constituent events. The false

alarm rate calculates the ratio between the number of detected but not really happen

and that of the true constituent events according to the ground truth. As indicated

in Table 5.1, we can find that the proposed NSEU approach detects all constituent

events with 100% accuracy while with very low rate of false alarms.

The root-pattern recognition rate (R-P Recog) is used to evaluate the recognition

performance. It calculates the ratio between the number of correctly identified events

(i.e., events with correct type of root-pattern) and that of correctly detected events.

Results in Table 5.1 indicate the averaged root-pattern recognition rates are pretty
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Figure 5.8: Frequency signals of three real event example cases, top, case 1: single
event of a GT (10 FDR signals); middle, case 2: multi-events of one GT with one LT
(18 FDR signals); bottom, case 3: multi-events of two GTs and two or three LTs (18
FDR signals).

high. The deviation between the identified occurring time (OT-Deviation) and the

ground truth is used to evaluate the precision of temporal localization. As shown in

Table 5.1, all the averaged OT-Deviation values are quite small, indicating the high

accuracy of temporal localization.

5.3.2 Evaluation with Real Event Data

For evaluation with real event cases, we conducted similar experiments on real data.

However, the root-patterns are learned from real data collected from both US-wide

FNET (generator trip and load shedding events) and PSS/E (the line trip events).

Event Data and Preprocessing

Three real event cases are used for evaluation.

Case 1 : A single event case (generator trip) happened at a power plant on May

30, 2006, as shown in Figure 5.8 (top). The first 50-second data (which is sampled at

every 0.1s with a total of 500 samples) is used, and signals from 10 FDRs at different

locations are used for checking the detection repeatability.
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Figure 5.9: Applying the adaptive median filter on a signal collected from the FDR
14 of case 3. The filter successfully removed white noise and spikes, especially the
large spike around the 32th second.

Case 2 : A multiple-event case (a generator trip followed by a line trip) happened

at Surry, VA on February 2, 2011, as shown in Figure 5.8 (middle). We use the first

50-second data, and signals from 18 FDRs are used for checking the repeatability.

Case 3 : A multiple-event case happened on August 4, 2007, comprised of multiple

single-line-to-ground faults on a 765-kV line and generator trips at two locations. The

Eastern Interconnection frequency thus dropped from 60 to 59.864 Hz, as shown in

Figure 5.8 (bottom). The first 60-second data is used as most events occurred in this

period (from stable 60Hz to the next stable 59.864Hz). Again, signals from 18 FDRs

at different locations are used for checking the repeatability.

It is necessary to eliminate noises in the frequency data before applying the NSEU

approach for event detection. In general, two kinds of noises contained in frequency

signals, including white noise and impulsive noise. An adaptive median filter by (Li

et al., 2010) is used for denoise. Figure 5.9 shows an example of the filtering effect.

The filter successfully removed white noise and spikes in the original frequency signal,

preventing possible detection error caused by undesired noises.

Root-Pattern Learning

Frequency data from individual generation trip and load shedding events are retrieved

from FNET database (FnetDatabase, 2010). Since FNET does not detect line trips

91



Table 5.2: Breakdown of training event cases from Eastern (EI), Western (WECC)
and Texas (ERCOT) interconnections.

EI WECC ERCOT EI
Generation Trip 547 415 189 Line Trip 257
Load Shedding 160 346 0
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Figure 5.10: K-means clustering results for root-pattern learning (all the patterns
above are normalized after remove their mean value).

currently, there is no entries or corresponding data for this event type. PSS/E was

instead used to perform simulations of line trips. A 16, 000-bus model of the Eastern

Interconnection was used for the simulations. About 75 buses corresponding to actual

FDRs were selected as measurement points, and lines adjacent to these buses were

tripped one at a time. A 20-second simulation was performed in each case, with

measurement points being saved at 0.1-second intervals to match the rate of FDRs.

Finally, all the data selected from different sources for training is shown in Table 5.2.

K-means: K-means clustering is used for root-pattern learning. We set K = 6

and 6 root-patterns are learned for each of the three event categories. As shown in

Figure 5.10, we confirm that the learned root-patterns of each category indeed share

similar characteristics with certain degree of difference, as explained in Sec. 5.2.2.

Detection Results

The root-patterns learned by K-means are used to construct temporal root-patterns,

which form the dictionary S. The detection threshold is set as 0.04.
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Table 5.3: Event detection results for case 1, one generator trip actually happened
in this real event, and all the FDRs successfully detected the generator trip.

FDR 1 2 3 4 5
GenTrip1 8.4s 8.4s 8.8s 8.4s 8.6s

FDR 6 7 8 9 10
GenTrip1 9.0s 7.8s 7.2s 8.4s 7.8s

Table 5.4: Event detection results for case 2, where one generator trip and one line
trip actually happened in this real event. All the FDRs successfully detected one
generator trip (root-pattern 6) and one line trip (root-pattern 8 or 12).

FDR 1 2 3 4 5 6 7 8 9
GenTrip6 12.4s 14.8s 12.6s 13.6s 12.2s 12.4s 12.4s 11.6s 12.2s
LineTrip8 14.2s 15.2s 14.2s 14.2s 13.6s
LineTrip12 13.8s 14.2s 13.8s 15.2s

FDR 10 11 12 13 14 15 16 17 18
GenTrip6 12.4s 14.6s 14.2s 12.6s 14.2s 11.8s 13.6s 12.2s 12.4s
LineTrip8 15.2s 15.6s 15.8s
LineTrip12 14.2s 13.4s 13.8s 13.8s 15.6s 13.8s

Case 1: case 1 is a single event case. The detection results, as shown in Table 5.3,

indicate that the NSEU approach successfully detected a single generator trip of root-

pattern 1 from each signal of 10 FDRs at different locations without any false alarm.

An example of the detected temporal root-patterns and the reconstructed signal from

FDR 2 are shown in Figure 5.11. We can find from the top-right sub-figure that the

reconstructed signal closely resembles the original signal. In the left sub-figure, there

are several large coefficients appear overlapped in the first root-pattern area. These

lines in fact belong to the same event, as they are quite temporally close, indicating

one generator trip as the only major event at 8.4s. The other coefficients smaller than

threshold are only useful to minimize the reconstruction error.

Case 2: case 2 is a multi-event case with one generator trip followed by one line

trip. The detection results are shown in Table 5.4. All the signals from 18 FDRs are

successfully detected one generator trip from root-pattern 6 and one line trip, though

the detected line trip may be from either root-pattern 8 or 12. This may because the

line trip’s root-patterns learned based on PSS/E simulations can not reflect very well
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Figure 5.11: Case 1 detection result using data from FDR 2, one generator trip is
detected at 8.4s. Left: coefficients of the detected root-pattern; Top-right: original
event signal and reconstructed signal; Bottom-right: the detected event is a GT from
the first root-pattern out of 18.
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Figure 5.12: Case 2 detection result using data from FDR 6, one generator trip and
one line trip are detected at 12.4s and 14.2s, respectively. Left: coefficients of the
detected root-patterns; Bottom-right: two detected events including one GT and one
LT from the sixth and the eighth root-patterns.
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Figure 5.13: Case 3 detection result using data from FDR 14, two generator trips are
detected at 5.6s and 7.0s, and two line trips are detected at 7.4s and 8.0s, respectively.
Bottom-right: four detected events include two GTs and two LTs from the third, sixth,
eighth and twelfth root-pattern, respectively.
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Table 5.5: Event detection results for case 3, two generator trips and multiple line
trips might have occurred in this real event. Most FDR signals detected two generator
trips (root-patterns 3&6 ) and two line trips (root-patterns 8&12 ), but the generator
trip root-pattern 3 was not detected by FDR 2&16 and the line trip root-pattern 12
was not detected by FDR 3.

FDR 1 2 3 4 5 6 7 8 9
GenTrip3 5.4s 4.0s 7.0s 5.2s 4.6s 4.4s 4.0s 4.6s
GenTrip6 6.2s 4.2s 3.2s 7.6s 4.6s 4.2s 6.4s 3.8s 6.8s
LineTrip8 9.2s 7.2s 7.8s 7.6s 9.0s 6.2s 6.8s 5.6s 8.6s
LineTrip12 7.2s 6.2s 5.6s 6.4s 7.4s 7.2s 5.8s 7.2s

FDR 10 11 12 13 14 15 16 17 18
GenTrip3 4.2s 4.0s 4.2s 5.0s 5.6s 4.2s 3.6s 4.4s
GenTrip6 4.0s 6.0s 5.4s 4.2s 7.0s 3.8s 4.4s 3.2s 7.8s
LineTrip8 6.0s 6.6s 8.6s 9.0s 7.4s 6.8s 7.6s 7.8s 6.2s
LineTrip12 6.0s 6.6s 7.2s 7.0s 8.0s 7.2s 7.4s 5.8s 6.4s

the behavior of real line trip event. An example of the detected temporal root-pattern

and the reconstruct signal from FDR 6 are shown in Figure 5.12. The top-right sub-

figure shows that the reconstructed signal is quite close to the original signal. In the

left sub-figure, the unmixed sparse coefficients are closely clustered in root-patterns 6

and 8, indicating the NSEU is able to correctly unmix this multi-event as a generator

trip followed by a line trip.

Case 3: case 3 is another multi-event case with two generator trips and possibly

two or three line trips involved, thus it is more complicated than the cases 1 and 2.

The detection results are shown in Table 5.5, which demonstrate the NSEU approach

successfully detected two generator trips from 16 out of 18 FDRs and two line trips

from 17 FDRs without false alarm. An example of the detected root-patterns from

FDR 14 is shown in Figure 5.13. From the left sub-figure of the sparse coefficients, it

is clear that the approach detects two generator trips and two line trips correctly. The

reconstructed signal in top-right sub-figure is also very close to the observed signal.

This results further confirm the effectiveness of NSEU approach, however, line trips

in this case are not completely detected as one line trip is missed. This might due to

the too trivial frequency change brought by the miss-detected line trip.
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Table 5.6: Quantitative evaluation on real event cases (FA: false alarm ratio).

FDR Num GT Det GT FA LT Det LT FA
Case1 10 100% 0%
Case2 18 100% 0% 100% 0%
Case3 18 94.4% 0% 64.8% 0%
Mean 98.15% 0% 82.4% 0%

Summary of Unmixing Performance

The three experiments with real event cases analysed frequency signals from 46 FDRs

in total. As shown in Table 5.6, the proposed NSEU approach detects constituent

events with 98.15% averaged accuracy for generator trip and 82.4% averaged accuracy

for line trip without false alarm. Due to the lack of ground truth, we cannot evaluate

performance of recognition or temporal localization.

The experimental results demonstrate advantages of the proposed NSEU approach

over the other existing event detection techniques. In Figure 5.8, we can observe that

there is no immediately perceivable difference between frequency signals of the multi-

event case and that of the single-event case, because the mixing process will occlude

or degrade most of the features from different root-patterns. Most existing techniques

based on immediately detectable information can only detect the starting time of the

initial event involved in multi-cascading-event. In contrast, the NSEU approach is

able to uncover the constituent root events with high detection accuracy. In addition,

the difficulty for line trips detection can be attributed to 3 aspects: First, the root-

patterns of line trip are learned via simulations, which may not reflect the dynamics

of line trips that occurred in real world. Second, the frequency change caused by line

trips is generally smaller than that of generator trips, probably causing the unmixed

coefficients on line trips to be much smaller than that on generator trips. Therefore,

line trips may not be detected if using the same detection threshold for GTs and LSs.

Third, the power imbalance caused by some line trips is quite tiny that can be easily

adjusted by system’s self-resilience and thus not perceivable.
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5.4 Summary

This chapter presented a novel interpretation of systematics of the frequency signal

formation of the multi-events in smart power grid. Through analysis of the connection

between frequency disturbance caused by multi-events and that by single-events, we

extracted a set of transferable root-patterns and developed an effective and promising

constrained “event unmixing” approach, NSEU, based on a linear mixture model for

constituent events detection, recognition, and temporal localization in disturbance of

a multi-cascading-event. The experimental results with both simulated and real event

data demonstrated the effectiveness of the proposed approach.

Benefited by the frequency data recorded by FNET, this work provides a new and

feasible way to obtain high-resolution situational awareness for smart grid system.

The findings in this work would also benefit other real applications, particularly for

example, microgrids remote monitoring, multiple events localization, and smart grid

coordination.
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Chapter 6

Conclusion and Future Work

This chapter summarizes the study observations and discusses possible improvements

for future research.

6.1 Summary

Traditional machine learning approaches assumes the training and testing samples

are from the same domain, thus the model learned from the training samples can be

adapted to the testing samples directly. However, most of the practical applications

cannot guarantee this assumption. Due to various factors in data collection, such as

different recording viewpoints, various time of data sampling, diverse environments,

the data collected for model learning dose not always have the same distribution

as that in testing. To precisely and robustly recognize targets across different data

domains is a fairly challenging problem, the key issue for the solution is to find out

the latent relationship between the different data domains, and build an effective

connection to facilitate the real world recognition problems. In this dissertation, how

to exploit the latent relationships across different data domains was studied. We

focused on three typical but inner related cross domain recognition problems, from

3-D video to 1-D signal, i.e., (1) action recognition across camera views, (2) person
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re-identification across camera views, (3) multi-event detection and recognition in

smart grid system.

First, to solve the problem of action recognition across camera views, we make

use of learning samples from different camera domains to learn a reconstructable path

between any two camera views. The reconstructable path is able to exploit structure

information in each view domain and well preserve the category discrimination. In

addition, the seemingly useless samples are also made use of to improve the learning

performance. Extensive experimental results show that our approach achieves very

competitive performance compared to the state-of-the-art approaches. Second, to

solve the problem of person re-identification in non-overlapped camera networks, we

make use of the paired training samples from two camera domains to learn locally

constrained adaptive distance metrics based on a random kernel forest. Our approach

discriminatively assign each local patch of a query image to the optimal local kernel

for distance measure, therefore the distance between images from the same individual

can be well minimized than that from two different people. Again, experiments show

the effectiveness of our approach compared to the state-of-the-art. Finally, to solve

the problem of multi-event detection and recognition in smart grid, we supposed the

root patterns that embedded in the single events domain and multi-events domain

are similar and thus can be transferable used. Based on this assumption, we proposed

the NSEU algorithm to achieve the simultaneous detection and recognition of each

constituent component event using frequency signals. Up to our best knowledge, this

is the first realization of multi-event analysis with high accuracy in smart grid.

6.2 Future Research

Our future research lies in two main aspects.

• First, our approach for action recognition still requires learning samples, either

unlabelled or semi-labelled data, from both of the two cameras for extracting
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relationships between the two view domains. In the future work, we will try to

find the third party resources for building the inter-between connections, e.g.,

3D skeleton data, which can be adapted to any camera view. Furthermore, the

latent structure of the action motion information should be view-invariant, how

to extract the motion structure is also promising to realize the practical view-

invariant action recognition problem. Deep learning is demonstrated the best

tool for feature extraction and widely applied in various computer vision tasks.

However, how to make use of deep learning to extract the temporal structure

of motion information that is unique for video based action recognition still has

not been touched much. Recently, recurrent neural network (RNN) is designed

to mine the temporal information in video analysis, we will follow this cutting-

edge technique and put our effort on applying RNN onto our cross view action

recognition task.

• Second, our approach for person re-identification learned a random kernel forest

that is able to assign different local region a specific but also optimal local metric

kernel, which enables the images from the same individual to have the minimal

distance. However, our local distance metrics only consider how to minimize

the pairwise distance between true image pairs recorded from disjoint cameras.

The re-identification performance can surely be improved by mining the hard

negatives, i.e., how to magnify the distance between false image pairs. To learn

such a more discriminative local distance metric, we also propose to find a local

projection pk within each local transform that maximize the objective function:

p∗k = arg max
pk

∑
i∈Gk
||pkxi − pky

−
i ||2∑

i∈Gk
||pkxi − pky

+
i ||2

(6.1)

Now each entry in the group of learning samples for each local kernel becomes a

triplet {(xi, y+
i , y

−
i )ni=1,...}i,n∈Gk

. This objective function has similar formulation

as the linear discriminative analysis, we can also use Lagrange to convert it into

a constrained optimization problem similarly.
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