2,202 research outputs found

    A framework for accessible m-government implementation

    Get PDF
    The great popularity and rapid diffusion of mobile technologies at worldwide level has also been recognised by the public sector, leading to the creation of m-government. A major challenge for m-government is accessibility – the provision of an equal service to all citizens irrespective of their psychical, mental or technical capabilities. This paper sketches the profiles of six citizen groups: Visually Impaired, Hearing Impaired, Motor Impaired, Speech Impaired, Cognitive Impaired and Elderly. M-government examples that target the aforementioned groups are discussed and a framework for accessible m-government implementation with reference to the W3C Mobile Web Best Practices is proposed

    MapSnapper: Engineering an Efficient Algorithm for Matching Images of Maps from Mobile Phones

    No full text
    The MapSnapper project aimed to develop a system for robust matching of low-quality images of a paper map taken from a mobile phone against a high quality digital raster representation of the same map. The paper presents a novel methodology for performing content-based image retrieval and object recognition from query images that have been degraded by noise and subjected to transformations through the imaging system. In addition the paper also provides an insight into the evaluation-driven development process that was used to incrementally improve the matching performance until the design specifications were met

    Convection forced by a descending dry layer and low-level moist convergence

    Get PDF
    This is the post-print version of the Article - Copyright @ 2009 Wiley-BlackwellA narrow line of convective showers was observed over southern England on 18 July 2005 during the Convective Storm Initiation Project (CSIP). The showers formed behind a cold front (CF), beneath two apparently descending dry layers (i.e. sloping so that they descended relative to the instruments observing them). The lowermost dry layer was associated with a tropopause fold from a depression, which formed 2 d earlier from a breaking Rossby wave, located northwest of the UK. The uppermost dry layer had fragmented from the original streamer due to rotation around the depression (This rotation was also responsible for the observations of apparent descent—ascent would otherwise be seen behind a CF). The lowermost dry layer descended over the UK and overran higher θw air beneath it, resulting in potential instability. Combined with a surface convergence line (which triggered the convection but had less impact on the convective available potential energy than the potential instability), convection was forced up to 5.5 km where the uppermost dry layer capped it. The period when convection was possible was very short, thus explaining the narrowness of the shower band. Convective Storm Initiation Project observations and model data are presented to illustrate the unique processes in this case.This work is partly funded by the Natural Environment Research Council (NERC)

    Features for matching people in different views

    No full text
    There have been significant advances in the computer vision field during the last decade. During this period, many methods have been developed that have been successful in solving challenging problems including Face Detection, Object Recognition and 3D Scene Reconstruction. The solutions developed by computer vision researchers have been widely adopted and used in many real-life applications such as those faced in the medical and security industry. Among the different branches of computer vision, Object Recognition has been an area that has advanced rapidly in recent years. The successful introduction of approaches such as feature extraction and description has been an important factor in the growth of this area. In recent years, researchers have attempted to use these approaches and apply them to other problems such as Content Based Image Retrieval and Tracking. In this work, we present a novel system that finds correspondences between people seen in different images. Unlike other approaches that rely on a video stream to track the movement of people between images, here we present a feature-based approach where we locate a target’s new location in an image, based only on its visual appearance. Our proposed system comprises three steps. In the first step, a set of features is extracted from the target’s appearance. A novel algorithm is developed that allows extraction of features from a target that is particularly suitable to the modelling task. In the second step, each feature is characterised using a combined colour and texture descriptor. Inclusion of information relating to both colour and texture of a feature add to the descriptor’s distinctiveness. Finally, the target’s appearance and pose is modelled as a collection of such features and descriptors. This collection is then used as a template that allows us to search for a similar combination of features in other images that correspond to the target’s new location. We have demonstrated the effectiveness of our system in locating a target’s new position in an image, despite differences in viewpoint, scale or elapsed time between the images. The characterisation of a target as a collection of features also allows our system to robustly deal with the partial occlusion of the target

    Physics-based satellite-derived bathymetry for nearshore coastal waters in North America

    Get PDF
    Accurate bathymetric information is fundamental to safe maritime navigation and infrastructure development in the coastal zone, but is expensive to acquire with traditional methods. Satellite-derived bathymetry (SDB) has the potential to produce bathymetric maps at dramatically reduced cost per unit area and physics-based radiative transfer model inversion methods have been developed for this purpose. This thesis demonstrates the potential of physics-based SDB in North American coastal waters. First the utility of Landsat-8 data for SDB in Canadian waters was demonstrated. Given the need for precise atmospheric correction (AC) for deriving robust ocean color products such as bathymetry, the performances of different AC algorithms were then evaluated to determine the most appropriate AC algorithm for deriving ocean colour products such as bathymetry. Subsequently, an approach to minimize AC error was demonstrated for SDB in a coastal environment in Florida Keys, USA. Finally, an ensemble approach based on multiple images, with acquisitions ranging from optimal to sub-optimal conditions, was demonstrated. Based on the findings of this thesis, it was concluded that: (1) Landsat-8 data hold great promise for physics-based SDB in coastal environments, (2) the problem posed by imprecise AC can be minimized by assessing and quantifying bias as a function of environmental factors, and then removing that bias in the atmospherically corrected images, from which bathymetry is estimated, and (3) an ensemble approach to SDB can produce results that are very similar to those obtained with the best individual image, but can be used to reduce time spent on pre-screening and filtering of scenes

    Image retrieval by hypertext links

    Get PDF
    This paper presents a model for retrieval of images from a large World Wide Web based collection. Rather than considering complex visual recognition algorithms, the model presented is based on combining evidence of the text content and hypertext structure of the Web. The paper shows that certain types of query are amply served by this form of representation. It also presents a novel means of gathering relevance judgements

    Enhancing RGB-D SLAM Using Deep Learning

    Get PDF

    Understanding egocentric human actions with temporal decision forests

    Get PDF
    Understanding human actions is a fundamental task in computer vision with a wide range of applications including pervasive health-care, robotics and game control. This thesis focuses on the problem of egocentric action recognition from RGB-D data, wherein the world is viewed through the eyes of the actor whose hands describe the actions. The main contributions of this work are its findings regarding egocentric actions as described by hands in two application scenarios and a proposal of a new technique that is based on temporal decision forests. The thesis first introduces a novel framework to recognise fingertip writing in mid-air in the context of human-computer interaction. This framework detects whether the user is writing and tracks the fingertip over time to generate spatio-temporal trajectories that are recognised by using a Hough forest variant that encourages temporal consistency in prediction. A problem with using such forest approach for action recognition is that the learning of temporal dynamics is limited to hand-crafted temporal features and temporal regression, which may break the temporal continuity and lead to inconsistent predictions. To overcome this limitation, the thesis proposes transition forests. Besides any temporal information that is encoded in the feature space, the forest automatically learns the temporal dynamics during training, and it is exploited in inference in an online and efficient manner achieving state-of-the-art results. The last contribution of this thesis is its introduction of the first RGB-D benchmark to allow for the study of egocentric hand-object actions with both hand and object pose annotations. This study conducts an extensive evaluation of different baselines, state-of-the art approaches and temporal decision forest models using colour, depth and hand pose features. Furthermore, it extends the transition forest model to incorporate data from different modalities and demonstrates the benefit of using hand pose features to recognise egocentric human actions. The thesis concludes by discussing and analysing the contributions and proposing a few ideas for future work.Open Acces

    Content-based image retrieval of museum images

    Get PDF
    Content-based image retrieval (CBIR) is becoming more and more important with the advance of multimedia and imaging technology. Among many retrieval features associated with CBIR, texture retrieval is one of the most difficult. This is mainly because no satisfactory quantitative definition of texture exists at this time, and also because of the complex nature of the texture itself. Another difficult problem in CBIR is query by low-quality images, which means attempts to retrieve images using a poor quality image as a query. Not many content-based retrieval systems have addressed the problem of query by low-quality images. Wavelet analysis is a relatively new and promising tool for signal and image analysis. Its time-scale representation provides both spatial and frequency information, thus giving extra information compared to other image representation schemes. This research aims to address some of the problems of query by texture and query by low quality images by exploiting all the advantages that wavelet analysis has to offer, particularly in the context of museum image collections. A novel query by low-quality images algorithm is presented as a solution to the problem of poor retrieval performance using conventional methods. In the query by texture problem, this thesis provides a comprehensive evaluation on wavelet-based texture method as well as comparison with other techniques. A novel automatic texture segmentation algorithm and an improved block oriented decomposition is proposed for use in query by texture. Finally all the proposed techniques are integrated in a content-based image retrieval application for museum image collections
    • …
    corecore