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Abstract 

Accurate bathymetric information is fundamental to safe maritime navigation and 

infrastructure development in the coastal zone, but is expensive to acquire with traditional 

methods. Satellite-derived bathymetry (SDB) has the potential to produce bathymetric 

maps at dramatically reduced cost per unit area and physics-based radiative transfer 

model inversion methods have been developed for this purpose. This thesis demonstrates 

the potential of physics-based SDB in North American coastal waters. First the utility of 

Landsat-8 data for SDB in Canadian waters was demonstrated. Given the need for precise 

atmospheric correction (AC) for deriving robust ocean color products such as bathymetry, 

the performances of different AC algorithms were then evaluated to determine the most 

appropriate AC algorithm for deriving ocean colour products such as bathymetry. 

Subsequently, an approach to minimize AC error was demonstrated for SDB in a coastal 

environment in Florida Keys, USA. Finally, an ensemble approach based on multiple 

images, with acquisitions ranging from optimal to sub-optimal conditions, was 

demonstrated. Based on the findings of this thesis, it was concluded that: (1) Landsat-8 

data hold great promise for physics-based SDB in coastal environments, (2) the problem 

posed by imprecise AC can be minimized by assessing and quantifying bias as a function 

of environmental factors, and then removing that bias in the atmospherically corrected 

images, from which bathymetry is estimated, and (3) an ensemble approach to SDB can 

produce results that are very similar to those obtained with the best individual image, but 

can be used to reduce time spent on pre-screening and filtering of scenes. 

 

Keywords:  satellite-derived bathymetry; physics-based models; atmospheric 

correction; Landsat 8 
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 Introduction 

1.1. Overview1 

Nearshore environments provide valuable ecosystem services. They play a crucial 

role in sustaining global biodiversity and mitigate the impact of storms, floods and wave 

damage for people living in coastal regions. Understanding the processes and properties 

of these environment is thus important. For example, bathymetric estimates from satellite 

data can assist in flood management and planning, resource management and recreation 

[1]. Likewise, they are valuable for defense purposes such as amphibious operations by 

the military [2], and useful for humanitarian operations such as rapid, targeted decision 

during disaster response and recovery. Bathymetric information, in the form of maps of 

water depth, will be necessary to achieve the United Nations Sustainable Development 

Goal 14 (i.e., “conserve and sustainably use the oceans, seas and marine resources for 

sustainable development”) [3]. As part of efforts towards the provision of bathymetric 

maps, and with the aim of facilitating the comprehensive mapping of the world’s entire 

seafloor by 2030, the Nippon Foundation and General Bathymetric Chart of the Oceans 

(GEBCO) both started the Seabed 2030 initiative in 2017 - when only 6% of the world’s 

ocean bottom had been mapped [4]. This initiative seeks to make a complete, freely 

available global bathymetric map available to the scientific community and the public in 

general; and has added about 14.5 million square kilometres of new bathymetric data, 

mainly derived using traditional acoustic techniques. Through this effort, approximately 

20% of the world’s seafloor has now been mapped [5].  

The use of optical satellite imagery represents one feasible approach for collecting 

data necessary to derive bathymetric information, especially in shallow coastal waters 

where bathymetric mapping with ship-based systems is time-consuming and hazardous. 

For example, Landsat 8 imagery is free and publicly available, and covers any area outside 

the poles every 16 days. Combined with its predecessors (Landsat 1-7), the Landsat 

satellites provide a near-global and more or less continuous record of the satellite imagery 

for the world’s land and coastal areas from 1972 to the present day. Together with this 

 

1 This section which provides an introduction to the thesis has been kept brief as it has been 
introduced in greater depth in Chapters 2 and 4. 
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data source, recent advances in bathymetric data processing methods - such as those 

that use satellite images to extract bathymetry from (1) ocean wave velocity (wave 

kinematic bathymetry; WKB) [6], (2) stereo images (satellite-derived photogrammetric 

bathymetry; SPB) [7] and (3) spectral reflectance of water (satellite-derived bathymetry; 

SDB) [8,9,10,11]- now offers great promise to fill gaps in existing survey data coverage, 

thus revolutionizing the way bathymetry is derived. These three approaches to bathymetric 

surveying can be used collectively or individually to help meet current information needs 

in shallow coastal waters. For example, the three distinct methods can be integrated in a 

way that leverage the best features of each to address the shortcomings of the others. For 

example, areas of high sediment load at the mouths of rivers and lakes are unsuitable for 

SDB, but are well suited for WKB, as WKB does not require light penetration through water 

column (which underpins SDB) but relies on optical imaging of wave crests. To this end, 

the utility of SDB with physics-based models is demonstrated in shallow coastal waters in 

this thesis.  

1.2. Research objective 

The aim of this thesis is to explore the application of multispectral remote sensing 

for satellite-derived bathymetry. Specifically, the study seeks to: 

(1) Examine the applicability of physics-based models for SDB in North American 

waters (Chapter 2). 

(2) Evaluate the performances of different AC algorithms to determine which 

method produces the most robust remote sensing reflectance, the input from 

which bathymetry is estimated (Chapter 3). 

(3) Demonstrate how atmospheric correction biases related to environmental 

factors can be minimized to improve SDB results (Chapter 4). 

1.3. Thesis structure 

The rest of this thesis consists of three journal articles that each addresses the 

objectives outlined in section 1.2. Chapter two, which was published in Canadian Journal 

of Remote Sensing, evaluates the potentials of Landsat 8 data for physics-based SDB in 
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three shallow water areas in Canada. This paper, which was the first published 

assessment of physics-based SDB in Canada, highlights the need for precise atmospheric 

correction for physics-based SDB. Thus, the second paper (Chapter 3), which was 

published in Remote Sensing, provides an evaluation of four atmospheric correction 

algorithms (ARCSI: Atmospheric and Radiometric Correction of Satellite Imagery, 

ACOLITE: Atmospheric Correction for OLI ‘lite’, SeaDAS: SeaWiFS Data Analysis System 

and L8SRC: Landsat 8 Surface Reflectance Code) for estimating the remote sensing 

reflectance, the direct input into the bathymetry algorithm. In this chapter, it was revealed 

that biases from atmospheric correction may be related to environmental factors that are 

not considered sufficiently in all atmospheric correction algorithms. The third paper 

(Chapter 4), currently under review in Remote Sensing, then uses one of the AC 

algorithms recommended in the second paper to retrieve water depth estimates for an 

area in the Florida Keys, USA. In doing so, it also demonstrates how atmospheric 

correction biases related to environmental factors can be minimized to improve SDB 

results, and tests an ensemble approach that derives water depth based on multiple 

images from the study area. Chapter 5 concludes by highlighting the contribution of each 

paper in this thesis.  

1.4. References 

1. International Hydrographic Organization (IHO). 2005. Manual on Hydrography 

Publication M-13. Monaco: International Hydrographic Bureau. 

2. Elmore, P.A.; Avera, W.E.; Harris, M.M. Use of the AN/AQS-20A tactical mine-

hunting system for on-scene bathymetry data. J. Mar. Syst. 2009, 78, S425–

S432. 

3. United Nations. 2015. Transforming Our World: the 2030 Agenda for Sustainable 

Development. https://sustainabledevelopment.un.org/post2015/transformingourw

orld/publication (accessed June 28, 2020). 

4. Wölfl, A.C., H. Snaith, S. Amirebrehimi, C.W. Devey, B. Dorschel, V. Ferrini, 

V.A.I. Huvenne, M. Jakobsson, J. Jencks, G. Johnston, G. Lamarche, L. Mayer, 

D. Millar, T.H. Pedersen, K. Picard, A. Reitz, T. Schmitt, M. Visbeck, P. 

Weatherall, R. Wigley. Seafloor mapping – the challenge of a truly global ocean 

bathymetry Frontiers in Marine Science, 6 (2019), p. 283. 
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 The potential for Landsat-based 
Bathymetry in Canada  

This chapter has been published in the Canadian Journal of Remote Sensing.  

Citation details: Anders Knudby, Shahryar Khalique Ahmad & Christopher Ilori (2016). The 

Potential for Landsat-Based Bathymetry in Canada, Canadian Journal of Remote 

Sensing, 42:4, 367-378. 

2.1. Abstract 

Accurate bathymetric information is fundamental to safe maritime navigation and 

infrastructure development in the coastal zone, but it is expensive to acquire with 

traditional methods. Satellite-derived bathymetry has the potential to produce bathymetric 

maps at dramatically reduced cost per unit area. In this study, we investigate the depths 

to which Landsat 8 data can be used with a radiative transfer model inversion scheme to 

produce bathymetric maps for shallow waters in Canada. Simulation results indicate that 

in relatively clear waters the technique could be effective for mapping of depths up to ∼ 

4.5 m with ≤ ∼1 m error at a 95% confidence level, although depths of up to only ∼ 3 m 

can be similarly mapped in more turbid waters. A case study from turbid Boundary Bay, 

BC, indicates that imperfect derivation of above-surface remote sensing reflectance leads 

to greater errors in practice. Radiative transfer model inversion of Landsat 8 data allows 

coarse identification and preliminary bathymetric mapping of the shallowest waters in 

Canada, which are, at present, largely unknown outside main traffic corridors. 

2.2. Introduction 

Knowledge of the depth of nearshore waters is crucial for economic activity in the 

coastal zone, including infrastructure development, resource extraction, navigation safety, 

and maritime defense operations. Measurement of water depth and subsequent 

production of bathymetric charts is, therefore, typically a core governmental responsibility, 

carried out using ship-based acoustic measurements coupled with differential GPS 

information. Such measurements have high vertical and horizontal accuracy but are 

expensive and, therefore, often of very limited extent, which leads to sparse data coverage 
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outside primary shipping corridors. In addition, survey vessel safety concerns dictate that 

the shallowest areas are often left unsampled. In some regions of the world, including 

parts of Canada, centuries-old measurements, conducted with lead-lines and 

georeferenced by using the navigational instruments of the time, still form the basis of 

current bathymetric charts [1]. In Canada, the length of the coastline, much of which is 

located in the Arctic Ocean, adds to the challenge of producing accurate and up-to-date 

bathymetric information for national nearshore waters. In the Canadian Arctic, only 1% of 

waters have been mapped to modern standards, and resources to expand this coverage 

are limited [2]. Especially in the context of increased shipping in the Arctic, there is an 

urgent need for innovative technologies to increase the efficiency and coverage of 

bathymetric mapping in Canada. 

One promising technology is satellite-derived bathymetry (SDB) based on 

inversion of radiative transfer models (RTMs) using passive optical remote sensing data. 

Pioneered by Lee et al. (1998, 1999) [3,4], the approach relies on a physics-based RTM 

to calculate the spectral reflectance of an aquatic environment, with specified optical 

properties for the water surface, water column, and seafloor at a given water depth, and 

sun-surface geometry. The model is run in forward mode for a range of parameter 

combinations and is then inverted by finding the parameter combination that produces the 

closest match to the spectrum observed in each pixel. In addition to producing an estimate 

of water depth, this parameter combination also includes values of water optical properties 

(absorption and backscattering) and seafloor spectral reflectance that may be used to 

assess water quality and seafloor habitat. A number of existing models [4,5,6,7,8] rely on 

this general approach but vary in terms of the underlying RTM [9,10], the function used 

for mapping from parameter to spectral space, the search algorithm used for inversion, 

and additional algorithms used for postprocessing (e.g., [11]). An extensive multimodel 

comparison study [12] found that all tested models produced reasonable water depth 

estimates for depths reaching 10 meters–15 meters at 2 sites in Australia and the 

Caribbean, and that more complex models required longer processing times and generally 

produced more accurate water depth estimates. Model differences varied between 

environments and datasets, and no single model was universally preferable. Although the 

utility of this approach has, thus, been demonstrated, most results reported in the scientific 

literature have been produced with airborne hyperspectral data acquired over clear 

tropical waters. This combination of data and environment represents a best-case 
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scenario, but the potential for RTM-based SDB in more turbid waters, and using freely 

available multispectral satellite data, remains poorly explored. The use of satellite data 

necessitates accurate atmospheric correction [13], known to be a challenge for dark 

targets such as water surfaces [14] where the water-leaving radiance typically contributes 

less than 10% of the sensed signal [9]. Furthermore, multispectral sensors typically only 

have a few (3–5) bands in the wavelength region useful for water depth estimation, thus 

providing fewer parameters and less information for model inversion. Nevertheless, given 

the free and near-global availability of multispectral satellite data, the depths to which 

these data can be used to derive accurate bathymetric information is important, including 

for the less-than-ideal conditions represented by turbid coastal waters in many parts of the 

world. Simpler SDB approaches, which employ coincident water depth point 

measurements to calibrate an empirical model that predicts water depth on the basis of 1 

or more spectral radiance or reflectance values (e.g., [15,16]), have been demonstrated 

for turbid waters in the Baltic [17], North America [18], and elsewhere. However, the 

reliance on coincident calibration data, as well as simplifying assumptions such as 

homogeneous water optical quality through the image, dramatically reduces the scalability 

of these methods and, therefore, their potential to contribute to bathymetry mapping at 

large spatial scales. 

In this article, we provide a first assessment of the depth to which bathymetry can 

reliably be mapped using the RTM inversion approach with Landsat 8 data in Canada. 

Although Landsat 8 was not designed for bathymetry retrieval, recent studies suggest that 

its improved radiometric resolution (12-bit) and the addition of a coastal aerosol band 

allows improved bathymetry estimation compared to its predecessors [19]. We first apply 

a simulation approach [20] to 3 sites with varying latitude and water optical quality, in which 

realistic sensor-environment noise is added to forward-modeled reflectance spectra, 

which are then inverted to assess the influence of noise on water depth retrieval. We then 

present a field-validated case study from Boundary Bay, a turbid bay in southwestern 

British Columbia. 
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2.3. Data and methods 

2.3.1. Simulation Experiment 

A simulation experiment was used to assess the impact of sensor-environment 

noise on depth estimation for 3 sites in Canada: Boundary Bay (49º N, 123º W), Hudson 

Bay (59º N, 94º W), and Baffin Bay (72º N, 74º W). The PlanarRad RTM, a free software 

for modelling light in natural waters, [10] was used through the PlanarRadPy environment 

[21] to forward model above-surface remote sensing reflectance, Rrs(0+), which was then 

convolved to the spectral response functions for Landsat 8 bands 1–4. The following data 

were used for the forward modeling: 

1. Three seafloor reflectance spectra, representing 100% coverage of sand, 

Sarcodiotheca gaudichaudii (red algae), and Zostera marina (seagrass), were 

sampled in Boundary Bay according to protocols outlined by Roelfsema et al. 

(2006) [22]. An Ocean Optics Jaz spectrometer in an underwater housing was 

used to measure 40 samples of each seafloor type. Visual outliers were removed, 

after which the median spectrum was used to represent each seafloor type. The 

resulting spectra are shown in Figure 2.1. Seafloor reflectance spectra from 

Boundary Bay were also used for simulation at the other 2 sites, from which local 

data were unavailable. 

 

Figure 2.1. Spectra used to describe seafloor reflectance 
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2. Realistic water optical quality parameters P440, G440, and X550 were all assessed for 

each site, using Level 3 ocean color products [23] from the NPP VIIRS Generalized 

Inherent Optical Property (GIOP) algorithms [24,25]. Describing absorption at 440 

nm due to phytoplankton, P440 was assessed from the “absorption due to 

phytoplankton at 443 nm” product. Values were converted from 443 to 440 nm for 

input to PlanarRadPy, using  

P440= 1.01 ∗  P443,                                                       (2.1) 

a linear rearrangement of the empirical model from Lee et al. (1998) [3], accurate to within 

1% for all relevant values. Describing absorption at 440 nm due to Colored Dissolved 

Organic Matter (CDOM), G440 was assessed by using the “absorption due to gelbstoff and 

detrital material at 443 nm” product and calculated as 

G440 = aCDOM443/e(−S∗ (443−440)) [4],          (2.2) 

where S = 0.14 and aCDOM443 is absorption due to CDOM at 443 nm. Describing backscattering at 

550 nm due to suspended particulate matter, X550 was assessed using the “particulate 

backscattering at 443 nm” product and calculated as  

X550 = bbp443/(550/443)Y [4]           (2.3) 

where Y = 1 and bbp443 is particulate backscattering at 443 nm. Ocean color products from 

the summers 2014 and 2015 were investigate, and typical values for good (clear) water 

quality days were identified for each site. To produce a range of realistic values for forward 

modeling, minimum and maximum values for each parameter were set at 50% and 200% 

of these typical values (Table 2.1).  

Table 2.1. Parameter ranges used for forward modeling of above-surface 
diffuse surface reflectance. 

Site Min P Max P Min G Max G Min X Max X Min Z Max Z 

Boundary Bay 0.17 0.76 0.35 1.05 0.012 0.005 0.01 10.0 
Hudson Bay 0.014 0.058 0.045 0.183 0.001 0.004 0.01 10.0 
Baffin Bay 0.020 0.080 0.035 0.150 0.0015 0.006 0.01 10.0 
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3. Input depths (Z) ranging from 0.01 m to 10.0 m were used for forward modeling, 

because it was expected that deeper depths would not be detectable in Canadian 

waters (Table 2.1). 

4. Solar zenith and azimuth angles typical for Landsat 8 image acquisitions near the 

summer solstice were used for Boundary Bay and Hudson Bay. In most parts of 

Baffin Bay, nearshore areas remain ice covered until later in the summer; as a 

result, we used typical values for Landsat 8 acquisitions in August for this area. 

A lookup table (LUT) containing above-surface remote sensing reflectances for 

Landsat 8 bands 1–4 was generated by multiple runs of the PlanarRad RTM. In the interest 

of computational efficiency, an adaptive lookup tree (ALUT) approach was adapted from 

Hedley et al. (2009) [8] to determine parameter combinations that optimally cover the 

spectral space and, thus, minimize discretization error during model inversion with an LUT, 

given a number of model runs. ALUT construction began with model runs using all (24 = 

16) combinations of minimum and maximum parameter values, covering the full parameter 

space with a 4D voxel. The parameter space was then searched for the most 

undersampled region, defined as the dimension in the voxel that exhibited the greatest 

mean Euclidian distance between spectra on opposing sides. The voxel space was then 

split into equal parts across that dimension by (23 = 8) additional model runs, using the 

voxel’s mean value for the parameter in question as well as its minimum and maximum 

values for the other 3 parameters. The resulting 2 voxels were then searched, again to 

find the most undersampled region, and the voxel in which this region existed was split 

across the dimension with the greatest mean Euclidian distance between spectra on 

opposing sides. This procedure was repeated a predefined number of times (we used 

1000), until sufficiently dense coverage of spectral space had been achieved. This default 

ALUT procedure was prone to producing few or no subdivisions of the parameter space 

at deep depths, as also noted by Hedley et al. (2009) [8]. To achieve more detailed 

subdivision of the depth (Z) parameter between 5 m and 10 m depths, we multiplied all 

Euclidian distances along the Z dimension by a weighting factor (we used 0.5) scaled by 

the mean Z value of the voxel, which resulted in greater depth detail in the 5 m–10 m 

range. The ALUT algorithm was run separately for each of the 3 seafloor reflectance 

spectra, and the results combined to produce a single LUT. The ALUT principle, as well 

as the difference between the default and depth-detailed versions, is illustrated in Figure 

2.2. 
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Figure 2.2. Two-dimensional outline of the ALUT principle, and illustration of 
the difference between the default (A) and depthdetailed (B) 
versions. For a given iteration, existing forward-modeled spectra are 
indicated by black circles and the dimension of maximum spectral 
difference is indicated by hollow circles. The Z axis covers the range 
of depths modeled (0.01 m–10 m), and Axis-2 represents any 1 of the 
water quality parameters P, G, or X. Note that although the voxel is 
illustrated here in only 2 dimensions, 4 dimensions (Z, P, G, and X) 
were used in the present study. 

To evaluate the error with which the LUT can theoretically be used to derive water 

depth from Landsat 8 observations, the separability between forward-modeled spectra 

must at a minimum be related to the effect that sensor-environment noise has on the 

Landsat 8 measurements. To that end, the sensor environment noise equivalent 

perturbation of above-water diffuse reflectance, NEΔR(0+), was evaluated by calculating 

the band-wise standard deviation over several homogenous deep water areas from which 

subsurface upward radiance could be assumed homogeneous [7,26]. For each site, 3 

cloud-free Landsat 8 scenes acquired at a time with calm sea surface, clear water, and 

negligible sun glint were identified, de-glinted [27], and then carefully examined to produce 

per-band noise estimates; NEΔR(0+) values were converted to above-surface remote 

sensing reflectance as per Hedley et al. (2009) [8], using the relation Rrs(0+) = 
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0.54R(0+)/kQ, [4] where R(0+) is the above-surface diffuse reflectance, k is a factor used 

to convert above-surface to below-surface diffuse reflectance, and Q = 4 is the ratio of 

upwelling irradiance to upwelling radiance below the water surface [28]. Whereas Hedley 

et al. (2009) [8] used a fixed k = 0.7 for this conversion, we noted substantial band-to-band 

variation in modeled k values from the PlanarRad results. Therefore, we used band-

specific k values, ranging from 0.96 to 1.82, calculated as the average k value from all 

PlanarRad runs and resulting in the NEΔR(0+) values listed in Table 2.2; NEΔR(0+) values 

from each band were assumed to be normally distributed with a mean of zero and the 

standard deviation listed in Table 2.2. To evaluate the influence of sensor-environment 

noise on depth retrieval, for each forward modeled spectrum, 20 randomly sampled 

NEΔR(0+) values were added to each band to produce 20 noise-perturbed spectra, which 

were then inverted using the LUT Model inversion was done by using the binary space 

partitioning tree approach outlined by Hedley et al. (2009) [8], in which principal 

component analysis was used recursively to split the LUT into smaller and spectrally more 

homogeneous LUTs, many of which can be ignored during the search for the best spectral 

match for each pixel. The full LUT was initially split using a dividing plane arranged normal 

to the first principal component and passing through the mean value of all spectra in the 

LUT. Spectra on either side of the dividing plane were then aggregated into 2 new LUTs, 

and new splits based on new dividing planes effected for each new LUT. This process 

continued until a stopping criterion was met (we used LUT size ≤ 20 spectra). This 

recursive partitioning created a tree structure, in which each node consisted of a dividing 

plane with an LUT on either side, and the terminal nodes (leaves) consisted of small LUTs. 

For each LUT in the tree, the Euclidian distance to the dividing plane for the point closest 

to the plane was also calculated. During model inversion, this tree structure was searched 

by determining on which side of each dividing plane the spectrum to match was located, 

proceeding down the associated branch until either a terminal node was reached or the 

spectrum to match was closer to the dividing plane than any of the points in the LUT. At 

that point, the search would step up 1 level in the tree and conduct an exhaustive search 

for the best spectral match. The water depth value associated with the best spectral match 

was then extracted and compared to the depth used to forward model that (noise-

perturbed) spectrum [20]. An overview of the data and processing used in the simulation 

experiment is provided in Figure 2.3. 
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Table 2.2. NEΔRrs(0+) values (sr−1 ) for deep-water homogenous areas in 
Landsat 8 scenes. As expected, values are higher than those 
previously reported for CASI-2 hyperspectral imagery [7]. 

Site Band 1 Band 2 Band 3 Band 4 

Boundary Bay 0.000533 0.000579 0.000886 0.000452 
Hudson Bay 0.000592 0.000558 0.000436 0.000252 
Baffin Bay 0.000567 0.000538 0.000802 0.000334 

 

 

Figure 2.3. Flowchart outlining the simulation experiment. 

 

Example application 

To provide a field test of the SDB-RTM approach in Canadian waters, we applied 

it to a Landsat 8 image acquired June 14, 2015, for the Boundary Bay site (Figure 2.5). 

Forward modeling was conducted using the ALUT approach described previously, using 

the parameter ranges listed in Table 2.1 as well as the solar zenith angle (29.160) and 

solar azimuth angle (145.060) derived from the image metadata. Two approaches were 

tested for calibrating the Landsat data to above-surface diffuse reflectance. Initially, the 

L1T product was atmospherically corrected with the Py6S interface [28] to the 6S code 

[29] through ARCSI [30], using aerosol optical density and water vapor density 

measurements, from the AeroNet station on nearby Saturna Island, for parametrization of 
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aerosol optical thickness and atmospheric water vapor content. As a simplified approach, 

the Landsat 8 Climate Data Record (CDR) Surface Reflectance product [31] was also 

tested. Although results were similar to within ∼ 5% for most areas, the Landsat CDR 

product had visible artefacts near the water’s edge (see Figure 2.4), occasionally leading 

to large overestimation of depths. Only those results based on the AeroNet-calibrated 6S 

correction were, therefore, used for further processing. After atmospheric correction, the 

image was de-glinted [27] and converted to above-surface remote sensing reflectance as 

described, and LUT inversion was carried out using the binary space partitioning tree 

approach to extract per-pixel depth estimates.  

 

Figure 2.4. Comparison of (a) Landsat CDR surface reflectance, and (b) surface 
reflectance calculated with 6S, using the AeroNet station at Saturna 
Island for parametrization of aerosol optical thickness and 
atmospheric water vapour content (right). Red circles indicate what 
looks like a tiling artefact, and a dark band, not present in the 
original data, around the edge of the seagrass beds. 

To assess the accuracy of the resulting depth estimates, 53 field validation data 

points were collected on August 23, 2015, from the northeastern part of the bay (Figure 

2.5). Depths were measured from kayak using a lead-line, and georeferenced with a 

Garmin eTrex GPS. A substantial tidal range exists in the area (∼ 2.0 m on both the days 

of image and field data acquisition). As a result, all field data were converted to water 

depth at the time of image acquisition, using tidal stage estimates for nearby Tsawwassen 

(produced by XTide; [32]), and field observations with negative water depths at the time 

of image acquisition were removed from the subsequent analysis.  
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Figure 2.5. Landsat 8 image from Boundary Bay, June 14, 2015. Locations of 
field observations shown in pale blue circles. The inset in the top 
right corner is a zoomed-in version of the area in the red box, for 
improved comparison with the depth estimates (Figure 2.7). Red 
numbers indicate, respectively, (1) a shallow seagrass slope, (2) the 
location of 2 relatively deep channels, and (3) a shallow sand bank 
at the southern edge of the channel emerging from the Nicomekl 
River. 

2.4. Results 

The simulation results are shown in Figure 2.6 in which original depths used to 

forward model spectral reflectance are compared to the corresponding predicted depths 

derived from LUT inversion with noise-perturbed spectra. The shaded regions illustrate 

the loess-smoothed range between the 2.5 and 97.5 percentiles of predicted depths for a 

given original depth. The simulation results suggest that, with error-free estimates of per-

pixel above-surface reflectance, water depths could be mapped to within 1 m until ∼ 4.5 

m depth and within 2 m until ∼10 m depth, at a 95% confidence level, for the relatively 

clear waters in Hudson Bay and Baffin Bay. The poorer optical water quality in Boundary 

Bay increases prediction error such that water depths could similarly be mapped to within 
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1 m until ∼ 3 m depth, and occasional input depths in the 2 m–3 m range are predicted at 

10 m. Errors increase predictably at deeper depths for all sites. Note that depth predictions 

are limited to ≤ 10 m because this was the deepest modeled depth.  

 

Figure 2.6. Simulation results from all 3 sites. Input depths are shown on the X 
axis, and depths predicted from inversion of noiseperturbed forward 
modeled spectra are shown on the Y axis. Overlapping points are 
shown in darker shades. The shaded region illustrates the loess-
smoothed range between the 2.5 and 97.5 percentiles of predicted 
depths for a given input depth. 

A comparison between the Landsat image (Figure 2.5) and the depth estimates 

produced from it (Figure 2.7) illustrate that shallow seafloor topography is well resolved, 

including the shallow seagrass slope on the left side of the inset, the locations of the 

deeper parts of channels, and the shallow sand bank in the bottom right of the inset (see 

red numbers in Figure 2.5.). Tidal channels are correctly mapped as becoming shallower 

toward their northern beginnings, and the central part of the bay is also correctly mapped 

as being deep. Note, however, that the central part of the image is optically deep, meaning 

that the seafloor-reflected contribution to the sensed signal is negligible. Although the area 

is, thus, correctly identified as “not shallow,” the actual depth cannot be estimated. The 

comparison between field-measured and predicted depths is shown in Figure 2.8. Of the 

10 validation points in the 0 m–2 m depth range, 7 have predicted depths between 0 m 

and 2 m and the other 3 are predicted between ∼3.75 m and 5 m. Validation points at 

deeper depths are consistently and sometimes severely overestimated.  
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Figure 2.7. Depth estimates for Boundary Bay. Land and other pixels with 
Landsat 8 band 7 diffuse reflectance > 0.10 masked in black. The 
inset in the top right corner is a zoomed-in version of the area in the 
red box, for improved comparison with the true-color composite 
(Figure 2.5). 

 

Figure 2.8. Measured and predicted water depths from Boundary Bay, BC. 
Locations with water depths measured (and tide-corrected) between 
0 and 2 meters are typically predicted within that range. Depths 
deeper than 2 meters are typically predicted in the 3.5 meter–7.5 
meter range and are systematically overestimated. 
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2.5. Discussion 

The simulation results (Figure 2.6) are encouraging, especially for the Hudson Bay 

and Baffin Bay sites, where water optical quality was relatively good and sensor-

environment noise reflectance equivalent NEΔR(0+) was lower than we had expected, 

given the high solar zenith angles at these locations. As a result, the simulation suggests 

that water depths can be mapped to ∼ 4.5 m with ≤ 1 m error at a 95% confidence level 

at these locations. Due to the poorer water optical quality in Boundary Bay, the simulation 

suggests that water depths can be mapped to only ∼ 3 m here, with less than ≤ 1 m error 

at a 95% confidence level. The ∼ 1 m error at a 95% confidence interval is the depth 

accuracy limit for an Order 2 hydrographic survey in Canada [33] and is, therefore, a 

relevant benchmark for satellite-derived bathymetry in Canada. Note that noise 

perturbation of the input spectra leads to greater overestimation than underestimation of 

depths, because change of Rrs(0+) per unit of depth decreases with increasing water 

depth.  

It is also important to note that the simulations assume error-free per-pixel 

estimates of above-surface remote sensing reflectance, and that imperfect atmospheric 

and sun-glint correction as well as imperfect conversion from diffuse reflectance to remote 

sensing reflectance is likely to lead to larger actual errors. Atmospheric correction remains 

an issue for multispectral (and hyperspectral) data over water, and the effects on RTM 

inversion methods can be severe [13]. The Landsat 8 surface reflectance product has not 

yet been validated, and although the Landsat 5 and 7 equivalents have undergone 

extensive evaluation for terrestrial areas [34,35], 1 study that has specifically assessed 

Landsat-based surface reflectance estimates produced for water pixels showed that, 

although 6S outperforms other algorithms, errors are still in the order of 0.01 – 0.02 

(absolute, diffuse reflectance) for Landsat 7 ETM+ bands 1–4 [14]. Given that shallow-

water above-surface diffuse reflectance values around 0.03–0.05 are common for the 

blue/green bands and lower for the red and near-infrared bands, relative errors in that 

range are substantial. Because atmospheric correction for Landsat is scene based, 

differences in atmospheric conditions within a scene could partly be to blame [36], and 

per-pixel radiometric matching to more refined and better validated surface reflectance 

products [37,38] might represent a straightforward solution. Conversion from above-

surface diffuse reflectance, which is the standard output from atmospheric correction 
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algorithms for multispectral satellite data, to above-surface remote sensing reflectance is 

not straightforward, either. There is substantial difference between our band-specific k 

values and the fixed k value used by Hedley et al. (2009) [8], and Vahtmae and Kutser 

(2013) [13] used an alternative, more direct conversion of Rrs(0+) = R(0+) / Q, setting Q = 

π , while we used Q = 4. Field testing and comparison of these procedures for a range of 

water quality and water surface conditions is needed to evaluate their relative 

appropriateness.  

However, the NEΔR(0+) values we used were based on investigation of only 3 

scenes, and it is reasonable to expect that real errors might be lower for some scenes, 

e.g., with unusually homogeneous atmospheric and sea surface conditions. Similarly, the 

P, G, and X values used for the simulations include some values twice as high as those 

typically found in the VIIRS products. For a given scene acquired on a day with exceptional 

water quality, actual P, G, and X values would be substantially lower, leading to improved 

depth estimation. It is also important to note that the 3 sites were not preselected based 

on high water quality; areas with better/worse optical water quality and, thus, more/less 

amenable to satellite-derived bathymetry are likely to exist across Canada.  

A comparison between the results of the simulations and the application to the 

Landsat 8 image from Boundary Bay illustrates primarily the effect of imperfect estimation 

of above-surface remote sensing reflectance from the Landsat data. Although severe 

overestimation at shallow depths is very rare in the simulation results, one site with a field-

measured depth of ∼ 1 m had a predicted depth of 5 m, and several sites in the ∼ 2 m 

range of measured depths had predicted depths of up to 7.5 m (Figure 2.8). Given the 

water optical quality in Boundary Bay, reflectance spectra may differ very little between 2 

m and 7.5 m, and imperfect Rrs(0+) calibration of the input image can result in large depth 

estimation errors. However, it should also be noted that the tidal correction of the field 

validation data was subject to uncertainty due to the geographical context of the 

measurement sites. Field validation points were all measured at the extreme northeastern 

end of Boundary Bay, whereas the tidal correction was based on Tsawwassen, which is 

located only a few kilometers away but on the other side of the Point Roberts peninsula. 

More importantly, the estuaries of the Serpentine and Nicomekl rivers provide a direct 

water input to the northeastern part of the bay, thus modifying tidal influences on water 

depths. The deeper field validation points, which are systematically overestimated, were 

indeed measured in the combined subtidal channel of these rivers (Figure 2.5). Although 
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the magnitude of these influences is unknown, they suggest that the consistent 

discrepancy between predicted and observed depths for the deeper points may at least 

partly reflect an underestimation of the tide-corrected depth measurements. In addition, 5 

sites with field-measured depths between 0.2 m and 2.0 m had predicted depths of 0.01 

m (Figure 2.8). Four of these sites are located over dense seagrass beds, where the long 

blades of Zostera marina were observed floating at or near the surface even at measured 

depths above 3 m. The high near-infrared reflectance of these floating seagrass blades is 

a likely cause for the underestimation of depths in these areas. Such complex 3-

dimensional seafloor structure is not modeled by PlanarRad and would require improved 

functionality in the RTM used, as shown by Hedley et al. (2016) [39]. 

Nevertheless, despite the poor fit shown in Figure 2.8., the RTM inversion is 

generally successful at separating depths measured below and above 2 m, and the 

resulting depth map is generally successful at resolving shallow seafloor topography. The 

combination of useful and problematic results points to the necessity of per-pixel quality 

control, to allow users to identify areas in the map where estimated depths are relatively 

accurate and develop an appropriate level of confidence in the results. Brando et al. (2009) 

[7] developed a quality control procedure that includes per-pixel estimation of optical 

closure (fit between closest modeled and observed spectra) and substrate detectability 

(contribution of seafloor-reflected radiation to the sensed signal), and demonstrated that 

depth estimations were more precise in areas with good optical closure and high substrate 

detectability. In our case, such quality control would correctly flag the deep central part of 

Boundary Bay as having negligible substrate detectability and unreliable depth estimates 

while indicating higher reliability at shallower depths. A sediment plume seen extending 

south from the shallow sand bank just below the red box in Figure 2.7 is mapped as 

shallow water because the sediment creates a “false bottom” and represents a situation 

in which a different kind of quality control (e.g., using multiple images; [18]), would be 

needed to correctly flag depth estimates from this area as unreliable. 

Although the field test results from Boundary Bay suggest that only crude 

separation between shallow and deep water can be reliably mapped here, as is the case 

for other sediment and CDOM-rich environments [17], it is important to keep in mind that 

water optical quality is better in most other parts of Canada and that only a single image 

acquired on a day with exceptional water quality is necessary to achieve deeper and more 

reliable depth estimation. In addition, there is potential to refine the data processing 
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structure outlined previously in ways that may further improve the results. For example, 

the effect of errors in absolute radiometric calibration of the input image might be mitigated 

by modifying the measure of fit used for spectral matching during model inversion - we 

used the Euclidian distance, as is commonly done, but in the presence of spectrally 

correlated atmospheric correction errors, a measure of spectral shape, e.g., spectral 

angle, could be useful in addition or instead of the Euclidian distance [13]. Our work also 

used only pure seafloor spectra, whereas, in reality, all pixels in our study area contain a 

mix of sand and seagrass with varying but small amounts of red algae. Mixed seafloor 

spectra could thus be introduced [8,40] to improve the spectral matching. Another 

promising avenue for improvement is to exploit spatial autocorrelation in water optical 

quality instead of relying on per-pixel estimates. One such approach has been developed 

by Jay and Guillaume (2014) [11] in the form of a localized maximum likelihood estimation 

of both depth and water quality parameters, which showed substantial improvement over 

the per-pixel approach. There is also potential to substantially improve processing speed 

by using Lee et al.’s (1998) [3] semi-analytical model instead of conducting the PlanarRad 

model runs, although this model has some discrepancy with Planar-Rad outputs for bright 

substrates in shallow areas [20]. Finally, the availability of new free data sources might 

improve the precision of RTM inversion results. Sentinel-2 has a band specification similar 

to that of Landsat 8 but with different spatial resolution, and EnMAP will produce 

hyperspectral data with 30 m spatial resolution. Both have the potential to produce results 

superior to those possible with Landsat 8 data. 

2.6. Conclusion 

Through radiative transfer simulations and a field test in Boundary Bay, BC, we 

demonstrated that Landsat 8 has potential for mapping shallow bathymetry in Canada with 

a radiative transfer model inversion scheme. The field test demonstrated that reasonable 

separation between shallow (<2 m) and deeper (>2 m) water can be achieved even in the 

Bay’s relatively turbid waters, and the simulations suggest that better results can be 

expected for clearer waters elsewhere. Occasional severe over-estimation of water depth 

points to the need for per-pixel quality control, to allow users to develop appropriate 

confidence in the results. Given the extent of Canada’s coastline and the lack of 

bathymetric information for most of it, the ability to use free Landsat data to detect areas 

submerged in a few meters of water, without the need for coincident field measurements, 
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has the potential to dramatically improve our knowledge of shallow seafloor topography in 

Canada. 
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3.1. Abstract 

Ocean colour (OC) remote sensing is important for monitoring marine ecosystems. 

However, inverting the OC signal from the top-of-atmosphere (TOA) radiance measured 

by satellite sensors remains a challenge as the retrieval accuracy is highly dependent on 

the performance of the atmospheric correction as well as sensor calibration. In this study, 

the performances of four atmospheric correction (AC) algorithms, ARCSI, ACOLITE, 

LaSRC, and SeaDAS, implemented for Landsat-8 Operational Land Imager (OLI) data, 

were evaluated. The OLI-derived remote sensing reflectance (Rrs) products (also known 

as Level-2 products) were tested against near-simultaneous in-situ data acquired from the 

OC component of the Aerosol Robotic Network (AERONET-OC). Analyses of the match-

ups revealed that generic atmospheric correction methods (i.e., ARCSI and LaSRC), 

which perform reasonably well over land, provide inaccurate Level-2 products over coastal 

waters, in particular in the blue bands. Between water-specific AC methods (i.e., SeaDAS 

and ACOLITE), SeaDAS was found to perform better over complex waters with RMSE 

varying from 0.0013 to 0.0005 sr-1 for the 443 and 655 nm channels, respectively. 

Analyses of differences in spectral bands between satellite and in-situ measurements 

highlight the need for spectral adjustment for validation purposes, particularly in the green 

and red bands. Of the four AC algorithms, SeaDAS is the most sensitive to spectral band 

differences, with the largest difference (improvement) in the 655 nm channel. An 

assessment of the effects of dominant environmental variables revealed AC retrieval 

errors are influenced by solar zenith angle and wind speed for some methods and bands. 

Recognizing that the AERONET-OC sites are not representative of all inland waters, 

extensive research and analyses are required to further evaluate the performance of 
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various AC methods for medium resolution imagers like Landsat 8 and Sentinel-2 under 

a broad range of aquatic/atmospheric conditions.  

Keywords: atmospheric correction; remote sensing reflectance; Landsat 8; band 

adjustment; validation; AERONET-OC. 

3.2. Introduction 

Ocean colour remote sensing provides information on in-water optical properties 

indicating the concentrations of water constituents like chlorophyll-a. In optically shallow 

waters, depth and seafloor spectral reflectance may also be estimated using remotely 

sensed images. Information about near-surface, in-water optical properties, in the form of 

water quality maps, can provide advance warning of algal bloom development [1] and 

potentially lead to early mitigation efforts to reduce health risks and financial losses. 

Bathymetric maps, derived from water depth estimates, can be used to produce or update 

navigational charts [2], reducing the risk of ship groundings. Benthic habitat maps, inferred 

from seafloor spectral reflectance, can be used to track changes in the distribution of 

seafloor habitats [3,4]. However, extracting ocean colour products such as chlorophyll-a, 

water depth and bottom types from remotely sensed images is difficult because, over blue 

ocean waters, of the total signal that reaches the TOA (Top of Atmosphere), only ~10% 

typically comes from within the water column [5]. In addition to the radiation leaving the 

water column (Lw), the TOA radiance measured by satellite sensors includes contributions 

from scattering and absorption in the atmosphere and reflection at the sea surface [6]. It 

is important to estimate and remove the contribution from these other sources, in order to 

estimate Lw, which is readily normalized by the total downwelling irradiance just above the 

sea surface to yield Rrs. 

Atmospheric effects are removed through atmospheric correction (AC) [7], but 

residual errors in AC can introduce large uncertainties in Rrs estimates, resulting in 

erroneous retrieval of OC products such as apparent optical properties of water [8]. In 

open ocean waters, where phytoplankton governs the optical regime, it can be 

conveniently assumed that there is no water-leaving radiance in the near-infrared (NIR) 

region such that any measured TOA radiance in this spectral band is attributed to 

atmospheric path radiance and reflectance from the water surface. While this assumption 

is valid for open-ocean (Case 1) waters, in shallow or optically complex (Case 2) waters 
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that are, in general, characterized by a combination of constituents, such as 

phytoplankton, coloured dissolved organic matters and suspended particulate matters, 

Rrs(NIR) may be significantly greater than zero. This is because bottom reflectance (which 

can come from highly reflective near-surface vegetation) and backscattering by 

suspended materials can produce reflectance [9]. This can lead to over-correction of 

atmospheric and surface reflectance effects, leading to underestimation and even 

negative Lw estimated within the shorter wavelengths used to derive OC products 

[9,10]. To account for the non-negligible Rrs(NIR), algorithms that work for Case 2 waters 

have been developed (e.g., [10-12]) and tested (e.g., [13,14]). With these efforts, it is now 

possible to retrieve Lw over coastal waters. However, the low spatial resolution of 

traditional ocean colour sensors inhibits the detection of detailed features that are not 

easily discernible in low resolution satellite images. The recent availability of higher-

resolution satellite sensors, e.g. Landsat 8 Operational Land Imager (OLI) and Sentinel-2 

Multispectral Instrument (MSI), with adequate spectral and radiometric characteristics for 

ocean colour applications has the potential to greatly improve coastal ocean colour 

applications, including water quality [15,16], bathymetry, and seafloor habitat mapping 

[17].  

Optimizing the utility of the OLI sensor for aquatic science and applications requires 

validating Rrs products to better understand its potential and limitations. A few recent 

studies have started investigating the quality of OLI-derived Rrs for coastal applications. 

For example, Pahlevan et al. (2017a) [15] used the AC scheme in the SeaWiFS Data 

Analysis System (SeaDAS) software package to determine the best Landsat 8 band 

combinations that can minimize error in Rrs retrieval over different coastal water types at 

selected AERONET-Ocean Colour (OC) sites. Using newly computed calibration gains, 

they revealed that OLI-derived Rrs estimates are as good as those from other ocean colour 

sensors. Likewise, the work of Franz et al. (2015) [18] illustrated the importance of OLI 

data for water-related studies. By employing the AC process in the SeaDAS Level-2 

processing algorithm (l2gen), they assessed the quality of OLI-derived Rrs and 

subsequently retrieved chlorophyll-a concentration over the Chesapeake Bay, USA. In 

agreement with Pahlevan et al. (2017a) [15], they found that with a precise AC procedure 

the high radiometric quality and improved imaging capabilities of OLI hold great promise 

for satellite-based coastal monitoring. Doxani et al. (2018) [19] tested a wide range of AC 

algorithms over different land cover types, highlighting the strengths and limitations of 
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each algorithm. More recently, Wei et al. (2018) [20] also assessed four AC algorithms 

with a focus over water bodies, revealing that the NIR-SWIR approach implemented in 

SeaDAS produced the most robust Rrs estimates from Landsat 8. However, none of these 

studies examined the effects of environmental variables (such as wind speed) on the 

retrieval accuracy of AC algorithms. 

With the proliferation of OC products usage among the science community, and the 

need for robust Rrs products, it is important to understand the potential of AC algorithms. 

Most of the ocean colour community has for years been using water-based AC methods 

for a wide range of applications from coastal to inland waters, so it is important that the 

effects of relevant environmental variables on the Rrs retrieval accuracy of these AC 

algorithms is examined. Such knowledge may assist in the choice of AC algorithm for a 

given set of environmental conditions, and/or improved Rrs retrieval under a wider range 

of conditions. Equally, it is important that other users interested in studying inland waters 

(e.g., biogeochemists, aquatic biologists) fully understand the accuracy of non-water 

based AC processors, in particular, the land surface reflectance product, which is 

commonly used.  

Here we pursued an approach similar to Pahlevan et al. (2017a) [15], but expanded 

it by evaluating the performances of four different AC algorithms to determine which 

method produces the most robust Rrs products in shallow coastal waters. Also, like Doxani 

et al. (2018) [19], we tested both land-based and water-based algorithms at multiple sites, 

but covered more sites over a longer time period to better capture space-time dynamics 

related to water optical properties. Using 54 in-situ measurements from 14 AERONET-OC 

sites, we (1) tested the following algorithms for atmospheric correction of Landsat 8 

images: a) Atmospheric and Radiometric Correction of Satellite Imagery (ARCSI) [21], b) 

the Atmospheric Correction for OLI ‘lite’ (ACOLITE) [22], c) NASA’s standard algorithm as 

implemented in the SeaWiFS Data Analysis System (SeaDAS) [8] and, d) the United 

States Geological Survey’s standard land-based AC used to produce the Landsat 8 

Surface Reflectance (LSR) Climate Data Record (Landsat CDR), herein referred to as 

LaSRC [23], (2) analysed the differences in spectral bands between satellite and in-situ 

measurements, and (3) examined the effects of three key environmental variables on the 

Rrs retrieval accuracy of water-based AC algorithms. To our knowledge, this is the first 

inter-comparison exercise that tested AC algorithms using representative data from many 
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coastal sites with varying atmospheric conditions and optical properties, combining the 

three approaches mentioned above in a single study. 

3.3. Materials and Methods  

3.3.1. Landsat 8 OLI data 

OLI measures TOA radiance in the visible, NIR and short-wave infrared (SWIR) 

bands, at a spatial resolution of 30 m. Compared to its predecessors, OLI includes a new 

coastal/aerosol band (435-451 nm) in addition to the traditional blue (452-512 nm), green 

(533-590 nm) and red (636-673 nm) bands. The addition of a new band, together with an 

enhanced spectral coverage and radiometric resolution, enables improved observation of 

water bodies from space and the ability to estimate the concentration of atmospheric 

aerosols for AC [16,24,25] (note that aerosol estimation for AC by the coastal band is done 

over land). Compared to data from existing global ocean colour missions, the higher 

spatial resolution has the potential to make important contributions to ocean colour remote 

sensing, such as separating and mapping in-water constituents in coastal waters [16,25]. 

Although OLI signal-to-noise ratios (SNRs) (Table 3.1) are generally lower than those of 

heritage ocean colour sensors such as SeaWiFS or MODISA (MODIS onboard the Aqua 

platform), the relatively high visible band SNRs (particularly in the coastal/aerosol and blue 

bands) and the improved SNR across all bands compared to past Landsat missions 

improves OLI’s ability to measure subtle variability in surface conditions and ultimately 

make OLI data a new and valuable data source for ocean colour studies [16,18]. 

Table 3.1. Comparison of the band centers and the signal-to-noise ratios of 
MODIS and Landsat 8 OLI at specified levels of typical spectral 
radiance. 

Band centres (nm) 

MODIS 443 488 555 645 858 1640 2130 
SeaWiFS 443 490 555 670 865 NA NA 

OLI 443 482 56 655 865 1609 2201 
Signal-to-noise ratio (SNR) 

MODIS 838 802 228 128 201 275 110 
SeaWiFS 950 1000 850 500 350 NA NA 

OLI 344 478 279 144 67 30 14 
L typ (w m-2 µ-1 sr-) 

MODIS 4.9 32.1 29 21.8 24.7 7.3 1.0 
SeaWiFS 70.2 53.1 33.9 8.3 4.5 NA NA 

OLI 69.8 55.3 27.5 13.4 4.06 0.353 0.0467 
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3.3.2.  AERONET-OC data 

To validate the performance of the AC processors applied to the OLI data, we 

acquired 122 cloud-screened and fully quality-controlled Level 2.0 AERONET-OC in-situ 

measurements of normalized water-leaving radiance (nLw) for 14 AERONET-OC sites, 

including 12 coastal sites (Galata Platform, Gloria, GOT Seaprism, Gustav Dalen Tower, 

Helsinki Lighthouse, Long Island Sound Coastal Observatory (LISCO), Martha's Vineyard 

Coastal Observatory (MVCO) , Thornton C-Power, USC Seaprism, Venise, WaveCIS Site 

CSI-6, Zeebrugge-MOW1) and two lake sites (Lake Erie, Palgrunden) (Figure 3.1). 

AERONET-OC, managed by NASA’s Goddard Space Flight Center (GSFC) [26], is a sub-

network of the AERONET federated instrument [27,28]. Although OLI and AERONET-OC 

have somewhat different spectral bands, a set of comparable bands centred at 441 nm, 

491 nm, 551 nm, and 667 nm can be used for cross-comparison purposes. Thus, 

AERONET-OC data were collected in four spectral bands centered at 441, 491, 551, and 

667 nm, for comparison with OLI’s four visible bands, centered at 443, 483, 561 and 655 

nm. Note that there is a slight difference, i.e., ±1 to ±3 nm, in all four bands for some sites. 

As Rrs is not directly available from the AERONET-OC sites, the normalized water-leaving 

radiances (nLw, W m-2 sr-1) were divided by the top-of-the atmosphere (TOA) solar 

irradiance (F0) [29] to obtain Rrs. 
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Figure 3.1. Map showing the 14 validation sites from AERONET-OC station (1: 
Galata, 2: Gloria, 3: GOT Seaprism, 4: Gustav Dalen Tower, 5: 
Helsinki, 6: Lake Erie, 7: LISCO, 8: MVCO, 9: Palgrunden, 10: 
Thornton C-Power; 11: USC Seaprism, 12: Venise, 13: WaveCIS Site 
CSI, 14 Zeebrugge-MOW1). 

3.4. Match-up exercise 

To obtain the in situ Rrs data needed to test AC procedures for OLI, we performed a 

match-up exercise between the AERONET-OC measurements and OLI data as follows: 

(i) Using the OLI metadata database file provided by USGS, python code was created to 

automatically retrieve all Landsat 8 OLI scenes and the contemporaneous AERONET-OC 

data (from AERONET-OC website) that are within a ± 30-minute time window of Landsat 

8 overpass times, for the April 2013 - May 2017 timeframe (note that a strict time window 

of ± 30-minute, which greatly reduces the number of match-up pairs, was used to limit the 

influence of variability from processes such as high tides, rapid current and particulate 

dynamics in water masses, thus improving the quality of match-ups). This yielded a text 

file containing a total of 122 match-ups with coincident satellite and in-situ data, for 14 

AERONET-OC sites (Figure 3.2), as well as information on aerosol optical thickness, SZA 

and wind speed for each match-up. All corresponding OLI scenes were subsequently bulk-

downloaded using Landsat-util, a tool to automatically find and download multiple Landsat 

8 scenes. Some of the 122 OLI data visibly contained a non-negligible amount of specular 

reflection off the sea surface (sunglint). As not all AC algorithms have the capacity for 
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sunglint correction, to obtain realistic and comparable Rrs across all AC methods, scenes 

with visible specular reflection were excluded. All images were subsequently processed 

by each AC algorithm (as described in Section 2.4.2). (ii) Following the approach of Bailey 

and Werdell (2006) [30], a regional subset of Landsat 8 data was generated for each 

image from all AC algorithms that were employed in this study, by obtaining a 7x7 pixel 

box centred on the location of the AERONET-OC site. To avoid errors introduced by the 

presence of the AERONET-OC measurement platforms themselves, the centre 3x3 pixel 

window was excluded. (iii) Valid satellite match-ups were retrieved in the 7x7 box by 

enforcing the SeaDAS exclusion flags, which include flags for land, clouds, cloud-shadow, 

ice, stray light, low nLw (555), high viewing zenith angle (> 60o), high sunglint and high 

TOA radiance. To ensure a fair comparison, it should be noted that only the common 

match-ups from all AC algorithms were used for further analysis (a total of 248 match-ups 

were produced by all AC algorithms: ACOLITE: 56, ARCSI: 69, LaSRC: 69, SeaDAS: 54). 

To ensure an unbiased intercomparison, we included pixels with negative (Supplemental 

Data 3E) and zero Rrs retrievals from all methods. (iv) We then obtained the per-band 

median Rrs values of the unflagged pixels for final validation with in situ data. The median 

AERONET-OC measurements collected within the ± 30-minute window of Landsat 8 

overpass were utilized to represent in situ match-ups.  
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Figure 3.2.  Number of match-ups between Landsat 8 OLI scenes and 
AERONET-OC site measurements within ± 30-minute window of 
Landsat-8 overpass. GAL: Galata, GLO: Gloria, GOT: Got Seaprism, 
GUS: Gustav Dalen Tower, HEL: Helsinki, ERIE: Lake Erie, LIS: 
LISCO, MVC: MVCO, PAL: Palgrunden, THO: Thornton C-Power, 
USC: USC Seaprism, VEN: Venise, WAV: WaveCIS Site CSI, ZEB: 
Zeebrugge-MOW1). Dark blue represents the total number of initial 
match-ups within a ± 30-minute time window of Landsat 8 overpass 
times for each site. Light blue represents the total number of final 
match-ups used for analysis after excluding scenes with sunglint 
and performing the match-up exercise. 

3.5. Data processing 

3.5.1. Description of atmospheric correction (AC) algorithms 

Atmospheric correction of the OLI data was carried out using four algorithms: ARCSI, 

ACOLITE (version 20170113.0), SeaDAS (version 7.4) and LaSRC. Note that LaSRC is 

a product which has already been processed to surface reflectance by the United States 

Geological Survey (USGS). Both ACOLITE and SeaDAS have been specifically designed 

for AC over water surfaces, whereas ARCSI and LaSRC have not; we therefore refer to 

the latter two as land-based methods. The output of the water-based methods is Rrs, which 

is directly comparable to the in-situ data from AERONET (after conversion: Rrs = nLw/ F0), 

while the output of the land-based methods is in units of above-surface diffuse reflectance 

R(0+), which we converted to Rrs using:  

    𝑅𝑟𝑠 = 𝑅(0+)/π,                (3.1) 
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ARCSI is an open-source software program developed at Aberystwyth University [21]. 

It is a relatively new AC algorithm with functionalities to process multispectral images from 

both commercial and publicly available sensors and also to obtain processed data for 

direct use in remote sensing analyses [31]. It is a command line tool where Py6S [32] can 

be implemented to correct multispectral images to above-surface diffuse reflectance using 

the 6S model [33], which simulates ground and atmospheric radiation under a variety of 

conditions. Within the 6S method, input parameters such as Aerosol Optical Thickness 

(AOT), vertical column water vapour and ozone concentration are automatically used by 

the 6S method to characterize the state of the atmosphere.  

ACOLITE is a binary distribution of Landsat 8 OLI and Sentinel-2 MSI processing 

developed by the Royal Belgian Institute of Natural Sciences [22,34]. It is an image-based 

AC algorithm that estimates Lw by correcting for molecular and aerosol scattering in the 

atmosphere using the Gordon and Wang (1994a) approach [5]. Molecular reflectance 

correction, based on viewing and illumination geometries, is performed with a 6SV-based 

look-up table [33] . Unlike SeaDAS, which uses 12 aerosol models for aerosol estimation 

[5,35], aerosol reflectance is estimated by determining aerosol type from the ratio of 

reflectances in two SWIR bands over water pixels where reflectance can be assumed 

zero, an approach similar to Ruddick et al. (2000) [36]. Based on this assumption, it also 

retrieves water-leaving reflectances in both the visible and NIR bands together with other 

parameters of interest in marine and inland waters. ACOLITE is primarily designed for 

processing Landsat 8 OLI data for aquatic remote sensing applications, but has recently 

been modified and updated to include processing of Sentinel-2 MSI data [37].  

LaSRC is a Level-2 data set produced and released as provisional products by the 

USGS since January 2015, primarily to support terrestrial remote sensing applications. 

Unlike the precursor algorithm (LEDAPS) used for previous Landsat satellites (Landsat 4-

5 TM and Landsat 7 ETM+), which used the 6S model, LaSRC is generated using a 

dedicated Landsat Surface Reflectance code [24]. Data are available as standalone 

climate data records (CDRs) which represent specific geophysical and biophysical 

properties of the land surface [23]. AC is mainly based on the MODIS collection 6 AC 

algorithm, which uses a radiative transfer model for the inversion of atmospheric 

parameters such as aerosol and water vapour [24]. It should be noted that surface 

reflectance is provided in seven spectral bands (the first seven OLI bands) only for scenes 

with solar zenith angle less than 76o, and that bands 443 and 482 nm are not suitable for 
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analysis as they are ‘consumed’ for aerosol inversion tests within the LaSRC. Although 

still provisional and under continuous improvement, LaSRC has been validated and 

assessed for land applications [38-41], and has a dedicated aerosol retrieval algorithm for 

pixels over water [23](19)(19). 

SeaDAS, which uses two NIR bands for aerosol estimation, contains an AC scheme 

originally designed for open ocean water based on the assumption of negligible Lw in the 

NIR bands. This approach, which is NASA’s operational AC algorithm [5], includes an 

l2gen (Level 2 generator) to retrieve Rrs and other optical and geophysical water and 

atmospheric properties. Following some improvements on how to estimate aerosol 

contributions (e.g., [12,42,43]) the l2gen processor in SeaDAS can now be used for 

deriving Rrs in both moderately and highly turbid coastal waters [14]. Following the release 

of SeaDAS Version 7.2, Landsat 8 OLI data can be processed with the l2gen processor 

[18].  

3.5.2. Atmospheric correction procedure and validation 

To derive Rrs, all four AC algorithms were parameterized using their default 

processing options. In addition, the following processing was implemented. In SeaDAS, 

out-of-band correction options was set to zero (outband_opt=0), i.e., Rrs was reported at 

full bandpass, without correction to the nominal band center, and no sunglint correction 

was implemented (glint_opt = 0) since there is no such correction option in other 

algorithms. In ARCSI, the ‘clear water’ option was used for the reflectance of a ground 

target as processing requires an option from ‘green vegetation’, ‘clear water’, ‘sand’ or 

‘lake water’. Also, AOT and other atmospheric parameters were automatically identified 

and estimated by ARCSI during batch processing. To derive AOT for each scene, realistic 

minimum and maximum values of 0.001 and 0.9, respectively, were manually specified. 

Finally, to allow for consistency among all methods, we assumed a perfect sensor 

calibration by applying unity gains for vicarious calibration across all bands for all 

processors. For SeaDAS, aerosol correction was implemented following the Gordon and 

Wang (1994a) approach [5], with the NIR/SWIR correction option (865–1609 nm band 

combination), as suggested in Pahlevan et al. (2017a) [15] and Mobley et al. (2016) [7]. 

ACOLITE aerosol correction was implemented using the default SWIR option (1609 and 

2201 nm band combination) which computes Rayleigh-corrected reflectance from the 

SWIR bands for moderate and turbid waters. Each AC algorithm was applied to the final 
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54 Landsat 8 OLI scenes, representing a wide variety of coastal and atmospheric 

conditions (Supplemental Data 3B). When comparing their performance, we consider 

AERONET-OC data as reference with negligible uncertainties. Note that uncertainties in 

the AERONET-OC in situ measurements are ~5% in the blue to green bands and ~8% in 

the red band [26]. As noted in Pahlevan et al. (2017b) [44] and Mélin and Sclep (2015) 

[45], compensating for discrepancies arising from the differences in nominal band centre 

wavelengths is crucial for obtaining a robust match-up analysis across all spectral bands 

(in particular for OLI’s relatively broad spectral bands). To this end, we carried out a 

spectral band adjustment using the deep neural network approach as described in 

Pahlevan et al. (2017b) [44] and compared Rrs derived with and without band adjustments.  

The algorithm performance was compared using six metrics including: 
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as well as the coefficient of determination (R2), slope, and intercept of the line fitted using 

least-squares regression between in-situ and satellite Rrs estimates. xmea and xest are 

AERONET-OC and satellite-derived Rrs data, respectively. The spectral angle, which is 

insensitive to spectra amplitude, is used to quantify the similarity between satellite and in 

situ Rrs spectra. Values close to 0 indicate high similarity.  

3.6. Results and Discussion 

3.6.1. Validation of AC algorithms 

Scatter plots showing the estimated (OLI) and observed (AERONET-OC) Rrs values 

for each match-up are presented in Figure 3.3, and summary statistics are tabulated in 

Table 3.2. There are clear differences between the water-based and land-based AC 
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algorithms, with SeaDAS and ACOLITE outperforming ARCSI and LaSRC in all metrics 

for all bands, with only one exception (slope for Rrs(482)). Between the two water-based 

methods, SeaDAS outperforms ACOLITE in every metric for all bands, with the exception 

of slopes for Rrs(482), Rrs(561), and Rrs(655). SeaDAS has spectral angels and RMSEs 

close to zero (spectral angles between 0.31 and 0.16 and RMSEs between 0.0013 and 

0.0005 across all four wavelengths) demonstrating a high degree of similarity between in-

situ and OLI-estimated Rrs with OLI data processed through SeaDAS (Table 3.2). A 

comparison of RMSE results of the per-band difference with and without band adjustments 

(Supplemental Data 3A) shows that SeaDAS was the AC method most sensitive to 

spectral band differences, with the largest improvement of band adjustment occurring in 

the 655 nm channel. Spectral Angle values obtained for all algorithms showed that 

SeaDAS and ACOLITE have the highest similarity with in-situ RrsRemote Sens. spectra 

(ARCSI: 0.46, ACOLITE: 0.27, LaSRC: 0.53 and SeaDAS: 0.20) 

 

 

 

Figure 3.3. Scatterplots of the relationship between in-situ measurements (x-
axis) and OLI estimates (y-axis) for each OLI band acquired over 14 
AERONET-OC sites. Regression lines are shown in colours, while 
the thick dotted black lines are 1:1 lines. 

 



40 

Table 3.2. Statistical results for the retrieved Rrs obtained for all processors 
with and without band adjustment (values in parenthesis represent 
results without band adjustment). Best metrics are highlighted in 
bold letters. After band adjustment linear fit, which was employed to 
reveal the relationship between in-situ and modelled Rrs, improves 
with increasing wavelength for both ACOLITE and SeaDAS, with R2 
values of 0.70/0.84, 0.85/0.92, 0.92/0.95 and 0.93/0.97 for bands 1 
through 4 for ACOLITE/SeaDAS, respectively. A similar trend is seen 
for ARCSI and LaSRC for the first three bands. 

 R2 Slope RMSE (1/sr) Intercept p-values 

Rrs 443 
ARCSI 0.43 (0.41) 0.91 (0.89) 0.0085 (0.0085) 0.0080 (0.0084) 8.92e-08 
ACOLITE 0.70 (0.68) 0.97 (0.97) 0.0039 (0.0039) 0.0036 (0.0037) 4.16e-15 
LaSRC 0.05 (0.05) 0.23 (0.25) 0.0042 (0.0042) 0.0050 (0.0050) 0.11 
SeaDAS 0.84 (0.84) 1.08 (1.08) 0.0013 (0.0013) -0.0006 (-0.0006) 2.36e-22 

Rrs 482 
ARCSI 0.68 (0.63) 1.01 (0.92) 0.0065 (0.0063) 0.0060 (0.0061) 2.00e-13 
ACOLITE 0.85 (0.79) 1.03 (0.94) 0.0032 (0.0031) 0.0027 (0.0029) 1.99e-14 
LaSRC 0.44 (0.43) 0.60 (0.56) 0.0035 (0.0035) 0.0041 (0.0041) 3.77e-08 
SeaDAS 0.92 (0.87) 1.09 (1.00) 0.0012 (0.0015) -0.0002 (0.00009) 5.44e-30 

Rrs 561 
ARCSI 0.77 (0.77) 0.95 (0.97) 0.0051 (0.0048) 0.0046 (0.0042) 5.27e-18 
ACOLITE 0.92 (0.87) 1.00 (0.98) 0.0016 (0.0019) 0.0005 (0.0002) 1.38e-29 
LaSRC 0.80 (0.78) 0.83 (0.83) 0.0030 (0.0029) 0.0027 (0.0025) 9.48e-20 
SeaDAS 0.95 (0.92) 1.03 (1.21) 0.0012 (0.0011) 0.00005 (-0.0003) 1.13e-34 

Rrs 665 
ARCSI 0.64 (0.63) 0.91 (1.06) 0.0033 (0.0034) 0.0028 (0.0026) 4.49e-13 
ACOLITE 0.93 (0.89) 0.98 (1.13) 0.0010 (0.0013) 0.0006 (0.0005) 1.91e-31 
LaSRC 0.52 (0.50) 0.65 (0.75) 0.0022 (0.0021) 0.0011 (0.0010) 8.39e-10 
SeaDAS 0.97 (0.92) 1.01 (1.21) 0.0005 (0.0011) -0.0001 (-0.0003) 4.00e-40 

 
The overall performance of SeaDAS reveals that the NIR-SWIR aerosol correction  

option can yield satisfactory results in low-to-moderately turbid waters. A possible reason 

for this is that the aerosol correction scheme, constructed following Ahmad et al. (2010) 

[42], was based on aerosol data obtained mainly from AERONET-OC sites [45]. 

Comparison of R2 values among all methods shows that the lowest and most diverse 

values are in the 443 nm wavelength, with values between 0.05 and 0.84. For LaSRC in 

particular, the regression line for the comparison in the 443 nm wavelength deviates very 

much from the 1:1 line, yielding a poor R2 and slope (Figure 3.3). This poor correlation 

and low RMSE (R2: 0.05, slope: 0.23) is mostly a result of the large discrepancies between 

the observed and estimated Rrs for the Zeebrugge-MOW1 site, where mean Rrs was 

underestimated by ~70%. This is the largest underestimation by any method, across all 

sites. For this site, which is one of the most turbid sites in the AERONET-OC network, 

mean observed in-situ Rrs in the red band is 0.0155 sr-1, making it the only site with Rrs(655) 
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one order of magnitude greater than the mean value of ~0.001 sr-1 observed for all 14 

AERONET-OC sites. This level of turbidity is common for this site, which is located only 

~3.65 km from coastline and receives sediment-rich water inputs from nearby rivers, as 

also noted by Vanhellemont and Ruddick (2015) [46] and as clearly visible in additional 

scenes excluded during the match-up exercise. Note that the TOA radiance data were 

used ‘as is’ without optimizing the vicarious calibration gains (as computed by Pahlevan 

et al. (2017a) [15]), which might further improve Rrs retrievals. Similarly, none of the AC 

methods, with different configuration capabilities which might improve performance, was 

optimized as there is no optimal setting that can work for all cases considered in this paper. 

3.6.2. Inter-comparison of reflectance spectra at each site 

Comparison of mean estimated and observed Rrs at each AERONET-OC site 

(Supplemental Data 3d) shows that all algorithms except SeaDAS generally overestimate 

Rrs across all wavelengths, with the largest and smallest overestimation occurring in the 

443 and 665nm wavelengths, respectively. This is further supported by the RMSE and 

bias results (Figure 3.4). The largest errors (RMSE) and overestimations (bias) are 

observed in the 443 nm wavelength, probably due to the strong atmospheric scattering in 

this band. ARCSI has the largest overall positive bias in this wavelength, and indeed the 

highest overestimation at each site. However, its Rrs results across all wavelengths at the 

Zeebrugge-MOW1 site compare well with Rrs estimates from SeaDAS and ACOLITE. This 

suggests that ARCSI has a low sensitivity to the high concentrations of suspended 

sediments that dominate this site, as reported by De Maerschalck and Vanlede (2013) 

[47]. This may also serve as an indication that ARCSI can better deal with turbid conditions 

than LaSRC, which underestimates Rrs by ~45% at this site. The failure of LaSRC in this 

wavelength is likely due to the fact that it is part of the bands used for validating the 

accuracy of the aerosol inversion scheme [23].  

The best performance from LaSRC across all bands is at Lake Erie (with two match-

ups) where all other AC algorithms except ARCSI also have the best match with in-situ 

Rrs. LaSRC outperforms other algorithms in the first three bands. Percentage difference 

values are 4.5%, -3.2% and -0.3% for the first three bands, respectively. For ACOLITE 

and SeaDAS, the corresponding values are 28.8/-20.7%, 13.6/-12.8% and -0.4/-6.4%. 

Indeed, LaSRC has the best Rrs estimate of all methods in the 561 nm channel, while 

ACOLITE has the best Rrs estimate in the 655 nm channel, with a percentage difference 
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of -1.3%, whereas both SeaDAS and LaSRC are -18.2% and -30%, respectively. Similar 

to the estimated Rrs by LaSRC in Lake Erie in the 561 nm channel, it also agrees well with 

in-situ Rrs at Zeebrugge-MOW1 site; the percentage difference here is -0.25%. For 

SeaDAS and ACOLITE, these values are 6.7% and 4.1%, respectively. LaSRC also 

outperforms other AC algorithms in the 443, 482 and 655 nm channels at the GOT-

Seaprism site, with only one match-up. Percentage differences between estimated and in 

situ Rrs are 8.8%, 11.1% and -40.8%, respectively. For ACOLITE and SeaDAS, the 

corresponding values are 87.7/-79.3%, 60.9/-46.3%, and 96.4/-127.6%. This is the only 

site where SeaDAS uncharacteristically underestimates Rrs across all 4 bands. While any 

conclusion is tentative as GOT Seaprism (date: 2014026) only has one match-up, the poor 

performance of SeaDAS here is as a result of algorithm failure (very low Rrs in 443, 482 

and 561 nm wavelengths, and negative Rrs in 655 nm wavelength) which can be attributed 

to conditions such as residual effects from cloud shadow or overcorrection for aerosol 

contribution in one or more visible band. Overcorrection typically occurs when water-

leaving radiance is non-negligible in the band used to estimate the aerosol contribution 

[48]. Other instances of failure (as defined above) from one or more algorithms are: 

ACOLITE (Gloria 2014358: band 4, USC Seaprism 2016222: bands 3 and 4), SeaDAS 

(GOT Seaprism 2014026: band 4, Helsinki 2013235: band 1, Palgrunden 2013156: band 

1, USC Seaprism 2016222: band 4, USC Seaprism 2016334: band 4, Venise 2015221: 

band 4), LaSRC (WaveCIS: 2013221: bands 1 and 4). The low or negative Rrs retrievals 

from these algorithms indicate a limitation of these algorithms at dealing with the 

atmospheric and water quality conditions present at those match-ups.  

One possible reason for the generally poor performance of ARCSI can be the aerosol 

contribution removal which relies on estimates from 1) dense dark vegetated surfaces, 

based on the assumption that reflectance of vegetated pixels is sufficiently dark and a 

linear relationship between reflectance in the SWIR and blue bands or 2) dark pixels in 

the blue band, based on the assumption of an invariant aerosol concentration over the 

entire scene. However, these assumptions can easily be violated: i) finding a vegetated 

pixel that satisfies this condition may be difficult in scenes acquired over coastal waters, 

and ii) AOT variations may be sufficiently large such that adjoining pixels may have 

significantly different AOT. For the blue bands in particular, per-scene AOT estimates may 

lead to erroneous retrievals. For LaSRC, the generally poor performance may be due to 

the use of land-based pixels for aerosol estimation, which is typically not appropriate for 

water surfaces. In addition, for LaSRC, retrieving accurate Rrs estimates over water 
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requires the presence of a considerably large land area adjoining the water pixels. The 

majority of the AERONET-OC sites used in this study only have relatively small nearby 

land surfaces. This may help explain the few instances of good performances near land 

masses (e.g. for the Lake Erie, Zeebrugge MOW-1 sites). 

  

Figure 3.4. Overall band-by-band RMSE and mean bias results for all 
algorithms. 

3.6.3. Influence of environmental factors for SeaDAS and ACOLITE 

To understand the impact environmental factors may have on Rrs retrieval errors from 

the water-based AC methods, we investigated the influence of three variables: aerosol 

optical thickness (AOT) at 869 nm, hereafter referred to as AOT(869), SZA, and hourly 

wind speed. These three variables are known to influence Rrs retrievals [49,50), e.g. 

AOT(870) and SZA have been found to reduce the quality of water-leaving radiance 

derived from SeaWiFS and MODIS sensors [51]. Figures 5a-c illustrates the error (xest - 

xmea) for each match-up point as a function of each environmental parameter, for each AC 

method. Negative values imply that an algorithm underestimated the observed Rrs value, 

and vice versa. We used tests of the statistical significance (two-tailed, α = 0.05, critical 

value = 0.2262) of the individual Pearson correlation coefficients to guide this analysis. 

While ACOLITE consistently overestimated Rrs in the 443, 482 nm bands, as also noted 

by Vanhellemont et al. (2014c) [52] , errors for both SeaDAS and ACOLITE were not 

significantly influenced by AOT (Figure 5a, no statistically significant correlations). 

However, SZA was significantly and positively correlated with Rrs retrieval errors from 

SeaDAS for all four bands (i.e., r = 0.495486743, 0.483529464, 0.253699366 and 

0.427793365, respectively), and from ACOLITE for the 443 and 482 nm bands (i.e., r = 

0.239717715 and 0.228792001, respectively) (Figure 5b). A similar pattern was evident 

for wind speed, which was significantly positively correlated with Rrs retrieval errors from 
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SeaDAS for all bands except band 3 (for which the positive correlation is present but not 

statistically significant), and from ACOLITE for the 443 and 482 nm bands (Figure 5c). 

These patterns, while generally causing only small errors in Rrs retrieval, may guide the 

further development of both AC methods to make them more robust across the spectrum 

of environmental conditions. 

 

 



45 

Figure 3.5. Scatterplots of the error (sr-1) showing the dependency of Rrs 
retrieval accuracy from both ACOLITE and SeaDAS on (a) AOT(869), 
(b) SZA  and (c) wind speed. AOT(869) and wind speed were derived 
from coincident measurements at each AERONET-OC site used in 
this study, while SZA was obtained by subtracting the sun elevation 
angle provided in the Landsat 8 metadata from 90°. Each circle 
represents a match-up data point, for a total of 54 data points across 
the 14 AERONET-OC site. The 54 match-ups and their 
corresponding environmental parameter values are tabulated in 
Supplemental Data 3C. 

3.7. Conclusion 

This chapter provides an evaluation of four atmospheric correction algorithms 

(ACOLITE, ARCSI, LaSRC and SeaDAS) for estimating Rrs. Fifty-four match-ups were 

used to test the performance of these algorithms over various coastal sites that form part 

of the AERONET-OC network. After accounting for spectral band differences in 

AERONET-OC and OLI measurements/products, the Rrs products from all algorithms 

were compared to AERONET in-situ Rrs data. Generic AC methods (ARCSI and LaSRC) 

are less accurate for deriving Rrs in coastal environments than water-based methods 

(ACOLITE and SeaDAS). Generic AC methods are particularly unreliable in the 443 and 

482 nm channels, and performed well at only a few sites located in nearshore and inland 

waters. SeaDAS produced the best performance overall, while ACOLITE, though it 

performed better than the two generic AC methods, is less accurate than SeaDAS for Rrs 

retrievals over (mostly) low-to-moderately coastal waters such as those typical of the 

AERONET-OC sites. Analyses of differences in spectral bands between satellite and in-

situ measurements reveal that band adjustment minimizes differences between sensors 

with different spectral bands. A relationship seems to exist between Rrs retrieval accuracy 

for the two water-based AC methods and two atmospheric variables: SZA and wind speed. 

Future studies should examine these relationships further, and consider related 

improvements to the AC methods. Neither of the water-based AC methods can currently 

be used to process images from commercial sensors such as WorldView-2/3 (which have 

improved spatial resolution) or previous Landsat missions (though this capability is 

available in an in-house version of SeaDAS for future public release). Given the 

usefulness of high spatial resolution data and the understanding that can be gained from 

time series analysis for aquatic studies, such improvements would be valuable. Our 

findings are primarily applicable to nearshore coastal waters. Further validation is required 

over inland waters (i.e., rivers, lakes, reservoirs) - and particularly in stations with few 
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match-up points (e.g., GOT Seaprism and Lake Erie with one and two match-ups, 

respectively) - to better understand the performance of each AC method for various 

science and application areas. In future studies, the authors intend to (1) evaluate the 

performance of these AC algorithms over inland waters such as those found over the 

GloboLakes sites and (2) compare satellite-derived bathymetry products obtained from 

using the water-based AC algorithms.  
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4.1. Abstract 

Physics-based radiative transfer model inversion methods have been developed and 

implemented for satellite-derived bathymetry (SDB); however, precise atmospheric 

correction (AC) is required for robust bathymetry retrieval. In a previous study we revealed 

that biases from atmospheric correction may be related to imaging and environmental 

factors (such as wind speed, aerosol optical properties and solar zenith angle) that are not 

considered sufficiently in all atmospheric correction algorithms. Thus, the main aim of this 

study is to demonstrate how atmospheric correction biases related to environmental 

factors can be minimized to improve SDB results. To achieve this, we first tested a 

physics-based inversion method to estimate bathymetry for a nearshore area in the Florida 

Keys, USA. Using a freely available water-based AC algorithm (ACOLITE), we used 

Landsat 8 (L8) images to derive per-pixel remote sensing reflectances, from which 

bathymetry was subsequently estimated. We then quantified known biases in the 

atmospheric correction using a linear regression that estimated bias as a function of 

imaging and environmental factors, and applied a correction to produce a new set of 

remote sensing reflectances. This correction improved bathymetry estimates for seven of 

the nine scenes we tested, with the resulting changes in bathymetry RMSE ranging from 

+0.29m (worse) to -0.53m (better). In addition, we showed that an ensemble approach 

based on multiple images, with acquisitions ranging from optimal to sub-optimal 

conditions, can be used to estimate bathymetry with a result that is similar to what can be 

obtained from the best individual scene. This approach can reduce time spent on pre-

screening and filtering of scenes. The correction method implemented in this study is not 

a complete solution to the challenge of atmospheric correction for satellite-derived 
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bathymetry, but can eliminate the effects of biases inherent to individual AC algorithms 

and thus improve bathymetry retrieval. It may also be beneficial for use with other AC 

algorithms, and for estimation of seafloor habitat and water quality products, though further 

validation in different nearshore waters is required. 

Keywords: satellite-derived bathymetry; physics-based inversion method; atmospheric 

correction 

4.2. Introduction 

Bathymetric information from satellite data is of fundamental importance in optically 

shallow waters, where the seafloor is visible from space and the water-leaving radiance is 

influenced by reflection off the seafloor. Such information, in the form of maps of water 

depth, is essential for a wide variety of purposes including offshore activities (e.g., pipeline 

laying), resource management (e.g., fishery), and defense operations (e.g., navigation). 

Traditional bathymetric charts are based on soundings obtained during hydrographic 

surveys. However, as ship-borne surveys are costly and time-consuming, and many 

shallow-water environments are highly dynamic, it is impossible to survey all areas of 

interest, and the difficulty in accessing shallow and remote areas means that in practice 

up-to-date data are typically only available for limited areas (harbors and main navigation 

corridors). Airborne LiDAR Bathymetry (ALB) systems, such as SHOALS [1], Section 

LADS [2], and EAARL [3] can also be used to map water depth. With these techniques, 

vertical accuracy of about ±15 cm in shallow water is possible [4], although accuracy is 

affected by turbidity and the LiDAR system. While precise bathymetric mapping of water 

depth to about 20 - 70 m depth can be achieved with airborne LiDAR [5,6], costs 

associated with these systems are relatively high, thus limiting their application over large, 

or remote, areas.  

Passive optical satellite remote sensing can also be used to map bathymetry, typically 

known as satellite-derived bathymetry (SDB), based on the relationship between the 

colour of a shallow-water area and the depth of water. SDB can be implemented using 

empirical or physics-based methods. The empirical methods are based on the simple 

premise that a statistical relationship can be established between water depth and the 

remotely sensed radiance of a water body, using regression or similar analysis 

[2,7,8,9,10]. All empirical approaches thus require coincident in-situ data on water depth 

for calibration; ideally these data should be up to date and have good geographic and 
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depth distribution. Empirical approaches assume that the inherent optical properties 

(IOPs) of the water, as well as seafloor spectral reflectance, do not vary across the image, 

and results may therefore contain large errors and require manual editing when this is not 

the case. A key advantage of empirical approaches is the ability to retrieve water depth 

relatively easily, but their reliance on calibration from coincident field observations and the 

need of knowledge about the bottom features mean that they cannot be used for 

systematic regional and global mapping and monitoring. Physics-based methods instead 

estimate bathymetry on per-pixel basis through inversion of a radiative transfer model 

(RTM). As such, they do not assume uniform IOPs and seafloor reflectance, nor do they 

rely on coincident depth data for calibration. In addition to bathymetry, seafloor reflectance 

and water IOPs, which can be used to infer substrate and water quality respectively, can 

be simultaneously retrieved, and per-pixel uncertainties of all these parameters, including 

water depth, can also be determined. While originally developed for and tested on airborne 

hyperspectral imagery, physics-based methods for SDB have also been demonstrated for 

multispectral satellite sensors [11,12,13,14]. Physics-based methods can be implemented 

using either look-up tables (LUTs) [15,16] or semi-analytical optimization methods [17,18]. 

In the first case, a database of remote sensing reflectance (Rrs) spectra is built from a 

radiative transfer model provided with a range of values for water depth, spectral seafloor 

reflectance, water column optical properties (absorption and backscattering coefficients), 

and known environmental conditions such as sun angle and wind speed. For retrieval of 

parameters (water depth, water IOPs, and seafloor reflectance) in each image pixel, a 

search is then performed to find the Rrs in the LUT that best matches the one observed in 

the pixel [15]. With semi-analytical optimization methods, the radiative transfer equation is 

used to estimate water depth by iterative optimization of the same parameters. In both 

methods, the best match between modeled and observed reflectance is determined using 

a least squares or similar matching technique.  

Despite the advantages of physics-based methods, a substantial challenge is that 

they rely on precise estimates of absolute radiometry, typically in the form of Rrs or water-

leaving radiance (Lw). Unlike other optical remote sensing applications, including the 

empirical approaches to satellite-derived bathymetry, physics-based retrieval algorithms 

may perform very poorly if Rrs is incorrectly estimated, and high-quality Rrs data from a 

robust atmospheric correction (AC) is essential for accurate physics-based water depth 

estimation. Accordingly, a variety of AC algorithms have been developed for ocean colour 

(OC) products retrieval such as bathymetry, and several studies have validated their 
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performance against in-situ data. For example, Pahlevan et al. (2017) [19] validated Rrs 

produced from different AC schemes in the Sea-Viewing Wide Field-of-View Sensor 

(SeaWiFS) Data Analysis System (SeaDAS) with in-situ data from the AERONET-OC 

network. Likewise, Doxani et al. (2018) [20] assessed the performance of different AC 

methods and validated their Rrs with match-up datasets over both land and water surfaces 

in an AC inter-comparison exercise. Warren et al. (2019) [21] evaluated the accuracy of a 

wide range of freely available AC processors by comparing them to reference Rrs data 

from different coastal and inland waters. Similarly, in a more recent AC exercise, Zhang & 

Hu (2020) [22] also analyzed an AC algorithm, comparing its Rrs images with those 

measured over few sites from the AERONET-OC stations. Collectively these studies 

demonstrate that accurate AC remains a challenge for OC remote sensing where precise 

Rrs data are needed. It is therefore important to explore ways by which errors in AC 

outputs, and their effect on products derived from them, can be minimized. One way to 

address some of the problems posed by imprecise atmospheric correction is to assess 

and quantify the impacts of environmental variables on AC accuracy and then account for 

this in the atmospherically corrected image. In an earlier study [23], four publicly available 

AC processors (2 land-based and 2 water-based) for deriving the Rrs in coastal waters 

were compared and validated with 54 Rrs match-up datasets from AERONET-OC stations. 

The study revealed that biases from ACOLITE and SeaDAS, two of the state-of-the-art 

AC algorithms, are influenced by environmental variables. In this study, we demonstrated 

the potential of Landsat 8 (L8) data for SDB in US coastal waters and assessed the 

performance of a commonly used and publicly available water-based AC algorithm 

(ACOLITE: [24]) for physics-based SDB. To minimize the effect of imperfect atmospheric 

correction on the bathymetry retrieval, we further used a correction factor to improve the 

original atmospherically corrected image from ACOLITE. Using a set of 9 images, SDB 

estimates from these two AC procedures were then compared with lidar-derived 

bathymetry of the area. Lastly, we used an ensemble approach to produce SDB of the 

study area using all the corrected images. 



55 

4.3. Study Sites and Imagery 

4.3.1. Study sites 

The Florida Keys is a series of islands that extend from the southern end of Florida, 

USA, to the south-southwest. Their nearshore shallow waters include coral reef tracts, 

patch reefs, bank reefs, seagrass meadows and unvegetated hard and soft bottom. This 

site was chosen because of its relatively clear waters, the good knowledge of seabed 

features and availability of lidar-derived depth data for validating SDB estimates of water 

depth. The section of the Florida Keys used in this study is presented in Figure 4.1, along 

with the distribution of bathymetric lidar data for the area. 

 

Figure 4.1. Landsat 8 image showing the upper Florida Keys. Bathymetric lidar 
data used for validation are shown in yellow. 

4.3.2. Satellite data 

Nine L8 images (Figure 4.2) from the Florida Keys, acquired during both optimal and 

near-optimal conditions for SDB, were downloaded from the archive of the United States 

N 
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Geological Survey after visually inspecting all available images from May 2013 to May 

2019. L8 OLI (Operational Land Imager) collects visible, NIR and SWIR spectral band 

imagery at 30 m spatial resolution. In addition to the improved positional accuracy of 14 

m, compared to 50 m for its predecessors in the Landsat series, L8 includes coastal and 

aerosol (433-453 nm) and blue (450-515 nm) bands for coastal and bathymetric mapping 

[25,26]. 

 

Figure 4.2. A section of Florida Keys image showing the RGB composite of 
each image used in this study and the validation area (red square) 

  

f. 14/02/2018 

c. 26/01/2017 b. 05/01/2015 

e. 13/01/2018 d. 12/28/2017 

a. 01/12/2013 
 

g. 03/02/2018 h. 01/02/2019 i. 05/03/2019 
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4.3.3. Lidar data 

Bathymetric LiDAR data were acquired for the study site from the National Oceanic 

and Atmospheric Administration (NOAA) Office for Coastal Management's Digital Coast 

(https://coast.noaa.gov/digitalcoast/), in raster format with a spatial resolution of 0.3 m. A 

portion of the collection covering the Florida Keys coastal area was referenced to mean 

sea level and resampled to 30 m to match the spatial resolution of L8 (Figure 4.1). 

4.4. Methodology 

4.4.1. Data preprocessing 

Atmospheric correction 

We implemented two types of AC methods for water depth retrieval: (1) we used 

ACOLITE to process L8 images into Rrs values (henceforth Rrsraw), and (2) then applied a 

correction factor to reduce errors in the original ACOLITE output and create new corrected 

Rrs values (henceforth Rrscorrected). ACOLITE [25], specifically designed for AC over water 

surfaces, is an AC method that estimates water-leaving radiance by simulating 

contributions from molecular (Rayleigh) and particulate (aerosol) scattering using a 6SV-

based look-up table [27]. Based on Ruddick et al. (2000) [28], aerosol reflectance is 

estimated by determining a per-tile aerosol type (or epsilon) from the ratio of reflectances 

in two bands over water pixels where water-leaving reflectance can be assumed to be 

zero. The epsilon is then used to extrapolate the observed aerosol reflectance to the 

visible bands to remove atmospheric contributions. ACOLITE was originally designed for 

processing L8 images, but has been modified and updated to also process Sentinel-2 data 

[29]. Furthermore, the most recent version, which can be adapted to commercial sensors 

such as Pleiades, contains an additional AC scheme (now the default setting) called the 

dark spectrum fitting (DSF) algorithm, as well as a sun glint correction scheme [30]. In this 

study ACOLITE (version 20170113.0) was used to produce all Rrs images, which are the 

direct input into the bathymetry algorithm. The default SWIR option (1609 and 2201 nm 

band combination) was implemented for all images. This band combination takes 

advantage of the longest-wavelength SWIR band, where water absorption is the highest. 

In a previous study [23], in which a range of atmospheric correction algorithms were 

compared and validated against in-situ water-leaving radiance from 14 AERONET-OC 
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stations, statistically significant relationships were demonstrated between errors in 

ACOLITE’s Rrs estimates for L8’s 443 nm and 482 nm bands and three environmental 

variables – Solar Zenith Angle (SZA), Aerosol Optical Thickness (AOT) at 865 nm (AOT865) 

and wind speed (u10); probable but statistically non-significant relationships were also 

demonstrated for the 561 nm and 655 nm bands. Using multiple linear regression, we 

therefore derived a set of coefficients that were used to estimate the error of ACOLITE’s 

Rrs estimates for each of those four bands in each image, as a function of SZA, AOT865 

and wind speed. Each of the four bands used for depth retrieval in this study was then 

corrected using Equation 1: 

 

Rrscorrected = Rrsraw - (a + b*SZA + c*AOT865 + d*u10)  (4.1) 

 

where Rrscorrected and Rrsraw are the Rrs images with and without correction respectively; 

and a, b, c and d are coefficients obtained through fitting a linear model to the data from 

Ilori et al. (2019) [23]. SZA was obtained from the metadata of each L8 scene. AOT865 was 

processed and obtained using the l2gen processor in the SeaDAS software, and an 

average value used for each image was calculated by randomly sampling multiple pixels 

over the area of the study site. Wind speed data was obtained from the National Centers 

for Environmental Prediction Reanalysis project [31], where 6-hour global wind speed 

estimates are archived. Table 4.1 presents the value of each environmental parameter for 

each image used in this study. 

Table 4.1. Environmental parameter variables for each image. 

Scene date 
(dd/mm/yyyy) 

SZA 
(degrees) 

AOT865 u10 
(m/s) 

01/12/2013 50.36 0.081 5.29 

05/01/2015 52.79 0.088 1.07 

26/01/2017 50.13 0.083 2.49 

28/12/2017 52.98 0.076 6.45 

13/01/2018 52.14 0.142 3.11 

14/02/2018 45.63 0.12 4.84 

02/03/2018 40.66 0.11 3.21 

01/02/2019 49.02 0.122 3.74 

05/03/2019 39.74 0.143 4.67 
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Sun glint correction 

As sun glint correction is not inherently part of the ACOLITE version used in this study, 

we implemented the NIR method [32] to remove specular reflection off the sea surface for 

images where glint was visually obvious. This method assumes that for optically deep 

areas (where radiation reflected from the seafloor has negligible influence on Lw) any 

remaining NIR signal after atmospheric correction must be due to sea surface reflection. 

Glint intensity and removal is thus performed by establishing a linear relationship between 

the NIR and visible bands over an optically deep area in the image, and that relationship 

is then used across all water pixels to reduce Rrs for the visible bands to its assumed glint-

free value. 

4.4.2. Estimation of noise equivalent reflectance 

Bathymetry model inversion based on least squares optimization techniques is 

generally sensitive to environmental noise [33,34], thus high NE∆Rrs may make images 

unsuitable for bathymetry extraction. Following atmospheric correction, we therefore 

estimated the noise-equivalent difference in reflectance, NE∆Rrs (sr-1) [35], based on the 

methodology of Wettle et al. (2004) [36]. A 33 x 33-pixel window was selected over an 

optically deep homogeneous area, and the band-wise standard deviation of Rrs calculated 

(Table 4.2). Ideally, the NE∆Rrs should be lower than 0.00025 sr-1 in each of the visible 

bands, with the exception of the blue band [37], which was the case for all nine images 

used in this study. 

Table 4.2. The noise equivalent difference in reflectance (NE∆Rrs), computed 
from a kernel of 33 X 33 pixels from optically deep and 
homogeneous area, for each image used in this study. 

Dates Band 1 Band 2 Band 3 Band 4 

01/12/2013 0.000200 0.000154 0.000096 0.000061 

05/01/2015 0.000136 0.000108 0.000084 0.000063 
26/01/2017 0.000092 0.000072 0.000057 0.000042 
28/12/2017 0.000151 0.000105 0.000081 0.000053 
13/01/2018 0.000111 0.000103 0.000069 0.000047 
14/02/2018 0.000157 0.000129 0.000108 0.000063 
02/03/2018 0.000126 0.000110 0.000069 0.000043 
01/02/2019 0.000148 0.000127 0.000100 0.000063 
05/03/2019 0.000086 0.000081 0.000059 0.000042 
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4.4.3. Parameterization of environmental properties 

To implement the physics-based approach to SDB, values of optical properties and 

substratum spectral reflectance that are representative of the environment in question are 

needed. Water IOP (P440, G440, and X550) parameterization for forward modelling for each 

site was based on assessment from Level 3 OC products from the VIIRS Generalized 

Inherent Optical Property (GIOP) algorithms [38]. P440 is the phytoplankton absorption 

coefficient at 440 nm, G440 is the absorption of gelbstoff and detrital materials coefficient 

at 440 nm, and X550 is the particulate backscattering of suspended particles coefficient at 

550 nm. Using parameter values obtained from these OC products, ranges of values for 

each parameter were determined by observing the lowest and highest parameter values 

for all dates from GIOVANNI, an online visualization tool for OC products [39]. Values 

slightly lower and higher than the observed lowest and highest values, respectively, were 

then chosen (Table 4.3). As part of the inversion model, seafloor reflectance spectra are 

also needed. We used two seafloor spectra (Figure 4.3), based on the area’s benthic 

description [40]. 

Table 4.3. Parameter ranges used for forward modelling. 

P (mg m-3)  G (m-1) X (m-1) Z (m) 

0.006 - 0.04  0.004 - 0.04 0.0005 - 0.006 0.1 - 30 

 

 

 

Figure 4.3. Spectra of the seafloor reflectance of Florida Keys. 
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4.4.4. Forward modelling of remote sensing reflectance 

To derive water depth, we applied a modified version of the semi-analytical inversion 

model of Lee et al. (1988; 1989) [17,18] to the atmospherically corrected images. In this 

inversion scheme, the sub-surface remote sensing reflectance, rrs, (the ratio of upwelling 

radiance to downwelling irradiance just below the surface) is related to absorption (a) and 

backscattering properties (𝑏𝑏) of the water column, the seafloor reflectance (ρ) and water 

depth (H). For nadir-viewing satellites, the model can be expressed as: 

 

 

𝑅𝑟𝑠 ≈
0.5𝑟𝑟𝑠

1−1.5𝑟𝑟𝑠
                  (4.2) 

where rrs, the subsurface remote-sensing reflectance, is expressed as:  

 

𝑟𝑟𝑠(𝑎, 𝑏𝑏,𝐻, 𝜌) ≈ (0.084 + 0.170𝑢)𝑢 (1 − 𝑒𝑥𝑝 {− [
1

cos(𝜃𝑤)
+

1.03√1+2.4𝑢

cos(𝜃𝑣)
] 𝑘𝐻}) +

𝜌

𝜋
𝑒𝑥𝑝 {− [

1

cos(𝜃𝑤)
+

1.04√1+5.4𝑢

cos(𝜃𝑣)
] 𝑘𝐻}                               

                        (4.3) 

 

𝑢 = 
𝑏𝑏

a+ 𝑏𝑏 
               (4.4)                                                                                   

 

𝑘 = a + bb                            (4.5)                                                                                                  

          

where 𝜃𝑤 and 𝜃𝑣  are the sub-surface solar zenith and sub-surface sensor viewing angles, 

respectively. Absorption (a) and backscattering coefficients (𝑏𝑏) are functions of 1) the 

absorption coefficient of phytoplankton at 440 nm, P; 2) the absorption coefficient of 

colored dissolved materials at 440 nm, G; and 3) the backscattering coefficient of 

suspended particles at 550 nm, X. These are expressed as: 

  

𝑎 =  𝑎𝑤 +  𝑃𝑎∗ 𝑝ℎ𝑦  + 𝐺𝑒−0.015(𝜆−440)                                           (4.6) 
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𝑏𝑏 =  𝑏𝑏𝑤 + 𝑋 [
550

𝜆
]

𝑌
                                                                              (4.7) 

where 𝑎𝑤  and 𝑏𝑏𝑤 are the absorption and backscattering coefficients of pure water 

respectively [41],  𝑎∗ 𝑝ℎ𝑦  is the specific absorption of coefficient of phytoplankton 

(normalized to a value of 1.0 at 440 nm), λ is the centre wavelength and Y is the spectral 

shape that depends on the particulate shape and size. 

While Lee’s inversion model uses albedo of only one key benthic substrate (sand), 

our model includes a parameterization to set the seafloor reflectance as a linear mix of the 

two bottom types. To reduce computing time, forward modelling was performed using the 

adaptive look-up table (ALUT) method [11,16]. Using realistic extreme values of all 

environmental parameters, this procedure uses a hierarchically-structured look up table 

(LUT) to efficiently cover the range of expected Rrs values while minimizing over-sampling 

of spectrally similar regions of environmental space. This look-up-table approach requires 

bounded ranges for all the modelled parameters, for which we used the value ranges in 

Table 4.3.  

4.4.5. Inversion of remote sensing reflectance 

Model inversion was subsequently performed using the binary space partitioning 

(BSP) approach [11,16], as described in [12]. Briefly, this technique subdivides the LUT 

created during forward modelling into different nodes. First, the BSP splits the whole LUT 

into two (left and right child nodes) and subsequently subdivides the nodes into a 

partitioning tree which facilitates the optimization of the per-pixel LUT search. After model 

inversion and depth retrieval, water depths were corrected for tidal height at the time of 

each image acquisition using tidal height estimates obtained from Oregon State 

University’s tide prediction service [42]. Both the forward modelling and inversion were 

implemented using python codes. 

4.4.6. Validation of depth estimates 

Validation of depth estimates from the two atmospheric correction procedures was 

performed by comparing the estimated depths to the LiDAR data. The number of depth 

estimates used for validation (Table 4.4) varied between the nine images due to 

differences in the number of pixels for which depth was successfully estimated, as pixels 
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which did not pass the AC’s internal quality checks (e.g. due clouds), pixels with negative 

depths, and pixels that were visually impacted by boats, wake, or cloud shadows, were 

eliminated prior to validation. Based on the remaining pixels, we used the correlation 

coefficient (R2), RMSE (root-mean-squared-error) (Equation 8) and bias (Equation 9) to 

compare the accuracy of the uncorrected and corrected SDB estimates with the LiDAR 

datasets. The RMSE is used to measure the accuracy of the estimated depth values; and 

bias is used to indicate overestimation (positive value) or underestimation (negative 

value):  

RMSE = √
1

𝑛
∑ (𝑥𝑜𝑏𝑠 − 𝑥𝑒𝑠𝑡)2𝑛

𝑖=1               (4.8)    

              

bias = 
∑ (𝑥𝑜𝑏𝑠−𝑥𝑒𝑠𝑡)𝑛

𝑖=1

𝑛

∑ (𝑥𝑜𝑏𝑠−𝑥𝑒𝑠𝑡)𝑛
𝑖=1

𝑛
            (4.9) 

 

where n is the number of observations, and xobs and xest are the measured and estimated 

depths, respectively. Values closer to zero for both error metrics indicate a better result. 

SDB obtained with Rrsraw and Rrscorrected are hereafter referred to as SDBraw and SDBcorrected 

respectively. 

4.5. Result and discussion 

Scatterplots showing water depth estimates produced from both Rrsraw and 

Rrscorrected images and the LiDAR depth measurements are shown in Figure 4.4, and 

summary statistics (R2, RMSE and bias) are listed in Table 4.4. Accuracy decreases for 

both SDBraw and SDBcorrected with depth, particularly beyond ~15 m where the proportion of 

the measured signal originating from reflection at the seafloor becomes negligible. In 

general, for depths shallower than 15 m, SDBcorrected points cluster more tightly around the 

1:1 line than do the SDBraw points.  
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`

 

Figure 4.4. Scatterplots of satellite-derived bathymetry estimates vs LiDAR 
measurements. Red points show water depth estimates obtained 
from original ACOLITE outputs; blue points show estimates 
obtained after applying the correction factor. The 1:1 line is shown 
in black.  
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Table 4.4. Summary validation statistics for SDB estimates (SDBraw and 
SDBcorrected). Bold letters in the RMSE column indicate where 
noticeable differences were observed between SDBraw and 
SDBcorrected estimates. 

Scene date 
dd/mm/yyyy 

RMSE (m) 
(SDBraw / 
SDBcorrected) 

Bias 
(SDBraw / 
SDBcorrected) 

R2 

(SDBraw / 
SDBcorrected) 

Number 
of 
validation 
points 

01/12/2013 2.01 / 1.63 0.13 / 0.11 0.83 / 0.89 3135 
05/01/2015 2.44 / 2.47 -1.21 / -1.34 0.83 / 0.80 3351 
26/01/2017 1.68 / 1.97 -0.22 / -0.73 0.89 / 0.87 3338 
28/12/2017 2.12 / 1.59 0.52 / -0.47 0.86 / 0.90 3148 
13/01/2018 2.18 / 1.94 0.58 / 0.66 0.8 / 0.89 2850 
14/02/2018 2.11 / 2.04 -1.60 / -1.37 0.93 / 0.91 3351 
02/03/2018 1.89 / 1.57 0.21 / 0.07 0.83 / 0.87 3292 
01/02/2019 1.62 / 1.33 -0.23 / -0.21 0.91 / 0.94 3303 
05/03/2019 1.32 / 1.29 -0.034 / -0.37 0.94 / 0.95 3346 

 

4.5.1. Effects of image conditions on depth accuracy 

Turbidity 

Out of the nine Rrs images we applied the correction factor to, seven corrections 

resulted in reduced RMSE values, significantly so for six of the images. Two corrections 

resulted in increased RMSE, one substantially so (the image from 26/01/2017, see Table 

4.4) (RMSE values for SDBraw and SDBcorrected will hereafter be referred to as RMSEraw and 

RMSEcorrected, respectively). For this image, accurate depth estimates were not possible 

beyond ~15 m (Figure 4.4c), regardless of correction. A visual inspection of this image 

shows sediment plumes in the study area (Figure 4.5a), which suggests that turbidity 

contributed to underestimation of water depth for both SDBraw and SDBcorrected [14] and the 

image is of marginal use for SDB regardless of correction. The other image with a slightly 

increased RMSE (05/01/2015) also has what looks like a silt plume emerging from 

nearshore channels in the southwestern portion of the area for which depth was calculated 

(Figure 4.5b). 

Glint 

With an RMSE value of 2.18 m, the image from 13/01/2018 produces the second-

poorest SDBraw estimate out of the nine images. A visual inspection of this image (Figure 

4.5c) indicates the presence of moderate glint. Glint correction was not performed as the 

image did not show any noticeable improvement after the initial testing. Likewise, for the 
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image from 14/02/2018 (Figure 4.5d), the relatively high RMSEraw and RMSEcorrected values 

(and relatively high bias values, Table 4.4) may be attributed to residual sun glint (in 

addition to light turbidity). While an attempt was made to de-glint this image as described 

in Section 3.1.2, given that the NIR-based de-glinting method [32] implemented (1) relies 

on manual selection of deep-water pixels to estimate glint contribution, (2) assumes that 

there are glint free pixels among those selected [43], and (3) assumes a homogenously 

low Rrs(NIR) across all water pixels, failure to meet these conditions may have resulted in 

the observed residual glint. For example, Rrs(NIR) may be non-negligible in glint-free but 

very shallow (~1 m) or turbid waters, or where reflective vegetation such as seagrass is 

close to the upper water column [44]. For these two images, the correction produces 

slightly reduced RMSE values (Figures 4.4e and 4.4f). 
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Figure 4.5. Maps showing different confounding factors that might have 
affected SDB estimates from some images. (a) and (b) - 1: Boat-
generated wake. 2: Plume emerging from a near river discharge. 3: 
Moving boats. Sun glint can be observed in (c) and (d) as visible 
texture around the southeastern part of the images. 

4.5.2. Effect of wind speed and SZA on SDB performance 

This section discusses the effect of the environmental variables on AC accuracy. 

It should be noted that only SZA and wind speed are discussed as AOT did not seem to 

affect AC accuracy. 

Out of the seven scenes whose SDB performance improved with the correction, 

greater corrections were done for five scenes (i.e., Figures 4.4a, d, e, f and h) acquired 

with SZA > 45° (Table 4.1), and the remaining two scenes (i.e., Figures 4.4g and i) were 

acquired during high wind speed (3.21 and 4.67 m/s, respectively). The most noticeable 

RMSE reduction from correction (RMSEraw=2.12; RMSEcorrected=1.59) was observed for the 

d. 14/02/2018 
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scene with the highest SZA and highest wind speed (Figure 4.4d). This is supporting 

evidence for the existence of a relationship between ACOLITE’s overestimation of Rrs in 

the first two bands of L8 and these two environmental variables (Ilori et al. 2019), and 

gives an idea of the magnitude of its impact on SDB performance. A recent observation 

by Estrella et al. (2020) [46] also found a dependecy between AC retrieval accuracy and 

wind speed in coastal waters. While there is strong evidence to conclude that the 

correction factor used in this study lowers RMSE values for images with high wind speed, 

it should be noted that wind speed data used in this study come from 6-hour estimates in 

reanalysis model, and thus have their own uncertainty. For this reason, more testing may 

be needed for a firmer conclusion about the relationship between ACOLITE’s error and 

wind speed. 

4.5.3. Bathymetry estimates at different depth ranges 

Figure 4.6 shows the performance of SDBraw and SDBcorrected for each image, 

binned to 5-m depth increments. The accuracy of SDB estimates decreases with 

increasing depth for both SDBraw and SDBcorrected. While higher RMSE values should be 

expected at deeper depths due to the diminishing signal from seafloor reflectance, it 

should be noted that the number of LiDAR points for validation is also smaller at deeper 

depths, leading to increased uncertainty around the RMSE values reported at these 

depths. 
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Figure 4.6. (a-i) RMSE values obtained for SDBraw and SDBcorrected estimates at 
different water depths. Results at higher depth (> 20m) should be 
interpreted with caution as the number of depth observations for 
those depth ranges was comparably lower than those available for 
shallower depth ranges. Depth observation for each depth range is 
as follows: 1-5 m: ~600, 5-10 m: ~1500, 10-15 m: ~300, 15-20 m: ~40, 
30-25 m: ~20 and 25-30 m: ~20. Note that the y-axes have different 
ranges for each date, to facilitate comparison between RMSEraw and 
RMSEcorrected for each single scene. 

4.5.4. SDB estimates using an ensemble approach 

Most SDB studies are based on a single image for each study area, with 

researchers typically selecting the best available image using visual inspection [14]. Our 

results indicate that this may not be a robust approach. To illustrate the problem, we invite 

readers to visually inspect the nine images used in this study (Figure 4.2), and identify the 

one that looks most suitable for SDB. Then proceed to Table 4.4 to see if it was indeed 

the one that produced the best results, as measured by RMSE, bias, or R2. An informal 

test among our colleagues, all of whom work on ocean colour remote sensing, suggests 

that it is not easy to identify the best scene. However, a unique advantage of optical remote 
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sensing is repetitive acquisition of images over the same area. This is especially important 

for SDB, where the suitability of a given image is determined by transient environmental 

factors, such as cloud and aerosols, sea surface state, and turbidity [47]. We explored one 

way of taking advantage of the multiple images available for the study area (i.e., all 9 

images) by testing an ensemble approach in which we calculated the per-pixel median 

depth value of all nine corrected images (i.e., SDBcorrected) used in this study. We then 

compared the resulting depth estimates with those obtained using the best individual 

image from the analysis in Section 4.1 (i.e. the image from 05/03/2019, see Table 4.4). 

Figure 4.7 shows that the results produced by the ensemble are very similar to those 

obtained with the best individual image (compare to Figure 4.4i). SDB estimates up to 

~17m are similar to the SDBcorrected estimates from the 05/03/2019 image, as are the RMSE 

values for the 1-5, 5-10, and 10-15 m depth ranges (Figure 4.8). Outliers are noticeably 

reduced in the ensemble result when compared to any of the sub-optimal images that 

were also included in its calculation, suggesting that the use of median depth is effective 

in eliminating noise in the ensemble. The ensemble approach thus eliminates the need for 

selection of a single best image, while producing SDB results of similar accuracy. In this 

context it is noteworthy that the best image is also the one with the lowest NE∆Rrs in bands 

1, 2 and 4, as well as the second-lowest NE∆Rrs in band 3 (Table 4.2). This suggests that 

one effective way to pre-screen images, either for a single-best-image approach or to 

determine which images should be included in an ensemble, could be to estimate NE∆Rrs 

and select those images with the lowest values across the visible bands. 
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Figure 4.7. Scatterplots of ensemble-based satellite-derived bathymetry 
estimates vs LiDAR measurements. Blue dots show estimates 
obtained after applying a correction to the Rrs images. The solid line 
represents the 1:1 relationship. 

 

 

Figure 4.8. RMSE values obtained for the ensemble based SDB estimates at 
different water depths. 
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4.6. Conclusion 

In this study, we demonstrated the use of Landsat 8 data for physics-based SDB 

in US coastal waters. A state-of-the-art atmospheric correction method (ACOLITE) was 

used to convert per-pixel radiometric units to Rrs, and a radiative transfer model was 

inverted to estimate water depth, which was compared to airborne lidar validation data. 

The results showed that ACOLITE can be used to produce SDB from imagery that is free 

of conditions such as clouds, glint, sediments plumes, boats and wakes, with an accuracy 

(RMSE 1.32 m) comparable to that reported from empirical and physics-based SDB 

elsewhere. To account for ACOLITE’s known overestimation of Rrs for Landsat 8’s coastal 

and blue bands, we applied a correction factor, calculated as a function of solar zenith 

angle, aerosol optical thickness and wind speed, to obtain a corrected set of Rrs images. 

Using a total of nine Landsat 8 images, we showed that the correction factor improved 

SDB results, both on average (RMSE reduction of 0.17 m) and for the best single image 

(RMSE reduction of 0.03 m). SDB improvements from application of the correction factor 

were greatest for images acquired at high solar zenith angle and at high wind speeds, 

where ACOLITE is known to have the greatest bias. The correction method demonstrated 

in this study can be implemented with any appropriate AC algorithm. Finally, we 

demonstrated that an ensemble approach based on multiple images, with acquisitions 

ranging from optimal to sub-optimal conditions, can be used to derive bathymetry with a 

result that is similar to what can be obtained from the best individual image. This is 

important because it is rarely visually obvious which of several images is best for SDB, 

and the ensemble approach can be automated to reduce time spent on pre-screening and 

filtering of scenes, and potentially also reduce the amount of missing pixels caused by 

clouds and cloud shadows encountered in any single image. Automating SDB will 

ultimately facilitate the efficient and operational use of the globally available L8 (and other 

multispectral) data sets. 
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 Conclusions 

This thesis consists of three separate, but related studies with the overarching 

aim of assessing and demonstrating the utility of physics-based SDB in coastal waters of 

North America. This chapter discusses the key findings and contributions from each 

chapter. 

5.1. Key findings and contributions 

Chapter 2 focuses on the utility of multispectral data for physics-based bathymetry 

using a case study from three Canadian waters – Boundary Bay, Hudson Bay and Baffin 

Bay. Results indicate that Landsat 8 data can be used for mapping water depths up to 

~4.5 m with less than 1 m error at 95% confidence in the relatively clear northern waters, 

though only up to ~3 m in the more turbid conditions found in Boundary Bay. Notably, a 

key finding of this chapter is that precise AC is crucial for robust SDB retrievals, and that 

AC is the primary obstacle to physics-based SDB as observed from the results obtained 

in this chapter. Also, it was revealed that SDB has limitations when applied to turbid, 

optically shallow waters. While there is currently no effective way to correct the impact of 

turbidity, imprecise atmospheric correction can be minimized.  

To this end, the focus of chapter 3 was on the evaluation of several freely available 

atmospheric correction methods to determine the best algorithm that can minimize error 

when estimating the remote sensing reflectance, from which ocean colour products are 

estimated. Results revealed that generic AC methods which perform reasonably well over 

land are not appropriate for ocean color products retrieval. Findings of this chapter will 

guide the selection of appropriate AC method for estimating ocean colour products. 

Furthermore, as all AC algorithms contain some form of biases which are related to 

environmental factors and not accounted for during their implementation, chapter 3 further 

assessed the effects of three environmental variables (SZA, wind speed and AOT) 

believed to be affecting AC retrieval accuracy. Analysis with SeaDAS and ACOLITE (two 

state-of-art, water-based AC methods) showed that SZA and wind speed strongly affect 

AC retrieval accuracy, especially in Landsat 8’s first two bands, and especially for 

ACOLITE. This contribution is valuable as it may guide further developments of AC 

methods to make them more robust across a broader range of environmental conditions. 
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This will particularly be important for physics-based SDB, which benefits from a special 

treatment for a correction of the atmospheric and environmental factors. 

To show the effects of environmental factors on AC retrieval accuracy and how 

they can be minimized for robust SDB retrievals, chapter 4 describes an approach to 

minimize atmospheric correction error and improve physics-based SDB. Drawing on the 

lessons learned in chapters 2 and 3, ACOLITE - a widely used AC algorithm - was used 

to estimate bathymetry for an area in the Florida Keys, USA. A correction factor, calculated 

as a function of solar zenith angle, aerosol optical thickness and wind speed on the basis 

of data from chapter 3, was applied to nine Landsat 8 images. Results revealed that 

accounting for AC errors related to SZA and wind speed can lead to improved SDB 

retrievals, especially for images acquired at high solar zenith angle and at high wind 

speeds, where ACOLITE is known to have the greatest bias. A similar approach can be 

used to improve remote sensing reflectance from other biased AC algorithms, and for 

deriving other ocean colour products such as seafloor habitat and water quality maps. In 

addition, it was shown that an ensemble approach based on the use of multiple images 

can be implemented for SDB, thus reducing time spent on identifying optimal images for 

SDB. Finally, this chapter also highlighted that the NE∆Rrs can be used to ensure images 

are fit for purpose for either a single-scene or ensemble SDB.  

Given the potential advantages of physics-based SDB (as discussed in chapters 2 

and 4), it is increasingly gaining interest among different users. However, issues with 

uncertainties in depth accuracies - mainly due to AC - still remain, thus prohibiting its full 

adoption in mainstream bathymetric mapping. Implementing the approach to minimize 

biases from AC for robust bathymetry estimates as demonstrated in this thesis can further 

increase interest in the adoption of physics-based SDB by product users such as private 

companies and hydrographic offices – e.g., the National Oceanic and Atmospheric 

Administration (NOAA), USA and the Canadian Hydrographic Service (CHS), who have 

both recently adopted SDB. This will promote the production of regularly updated 

bathymetric charts, hence facilitating research on nearshore geomorphology, sediment 

transport, hydrodynamics, and other fields that rely on models of nearshore terrain. 

Consequently, insights gained from this research can assist the US and Canadian 

governments, for example, in identifying stable and dynamic seafloor areas along parts of 

their coast where frequent change in morphology poses a challenge to hydrographers. In 

the same vein, the CHS will benefit from updating old hydrographic charts in the Arctic, 
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where large parts are currently blank and where maritime transportation is central to 

people’s social and economic activities. At more regional levels, accurate water depth 

maps can assist in flood management and planning by municipal governments. Such 

maps may be used to design flood mitigation plans and formulate policies in response to 

flood safety concerns in cities likely to face future sea-level rise and climate change.  

5.2. General conclusion and outlook 

This thesis demonstrated that accuracy of SDB estimates derived from physics-

based inversion models are highly dependent on the quality of AC. Precise estimates of 

the Rrs produced through application of AC is therefore crucial to reducing errors and 

uncertainties during the inversion scheme. To this end, a correction method was used to 

improve SDB accuracy by accounting for known effects of environmental factors in the Rrs 

images. Future studies should consider using the correction approach demonstrated in 

this study to improve the Rrs using more satellite data. Thanks to the 5-day revisit of the 

Sentinel-2 satellite mission, both Landsat 8 and Sentinel-2 data products offer the potential 

to support such effort. Likewise, the recent rapid increase in the development of water-

based AC algorithms will provide an avenue to obtain per-band correction factors for a 

given AC algorithm since it can be reasonably assumed that all AC algorithms have some 

bias. This may improve understanding about sources of errors contributing to retrieval 

errors, thus guiding further developments of AC algorithms.  

Another potential future research focus relates to a correction for adjacency 

effects, which arise when photons from neighbouring areas are scattered into the path of 

upwelling radiation detected by the sensor. Adjacency effects can introduce artefacts in 

the Rrs which will lead to error in the inversion and subsequently decrease accuracy of 

SDB estimates. Such correction, while not considered in this thesis, may further reduce 

uncertainties in physics-based SDB, especially from lakes, inland waters or coastal waters 

in close proximity to land. This additional correction will ultimately promote the utility of 

physics-based SDB for operational usage for shallow water mapping anywhere on Earth. 
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Appendix. Supplemental Data for Chapter 3 
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Supplemental Data 3a. 

The root mean squared errors showing the impacts of per-band spectral adjustment on AERONET-OC match-ups. For all AC 
methods, there is no noticeable effect in the 443 nm channel. Similarly, for the land-based AC methods, there is no observable 
difference in the 443 and 482 nm channels. Band adjustment improves results for bands 2, 3 and 4 for SeaDAS, decreasing RMSE 
values by 16.6, 23.9 and 43.8% in the 482, 561 and 655 nm wavelengths, respectively, and also improves results for bands 3 and 4 
for ACOLITE by 15.6 and 24.2%, respectively. For SeaDAS, the largest observable difference is in the 655 nm channel. This is by far 
the largest improvement from band adjustment across all bands and AC methods. Overall, SeaDAS is the most sensitive method to 
spectral band differences, with the largest difference (improvement) in the 655 nm channel. 
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Supplemental Data 3b. 

Satellite scenes and their correspondent sites 

 

Landsat Scene ID Site 

['LC81810302014141LGN00' Galata 

['LC81810302014253LGN00' Galata 

['LC81810302015240LGN00' Galata 

['LC81810302015352LGN00' Galata 

['LC81800292014086LGN00' Gloria 

['LC81800292014358LGN00' Gloria 

['LC81800292015041LGN00' Gloria 

['LC81800292015361LGN00' Gloria 

['LC81280542014026LGN00' GOT_Seaprism 

['LC81920192013151LGN00' Gustav_Dalen_Tower 

['LC81880182013235LGN00' Helsinki_Lighthouse 

['LC81880182014190LGN00' Helsinki_Lighthouse 

['LC81880182016180LGN00' Helsinki_Lighthouse 

['LC81880182016228LGN00' Helsinki_Lighthouse 

['LC81880182016260LGN00' Helsinki_Lighthouse 

['LC80200312016219LGN00' Lake_Erie 

['LC80200312016235LGN00' Lake_Erie 

['LC80130322013273LGN00' LISCO 

['LC80130322014004LGN00' LISCO 

['LC80130322015023LGN00' LISCO 

['LC80130322015279LGN00' LISCO 

['LC80130322016266LGN00' LISCO 

['LC80110312013291LGN00' MVCO 

['LC80110312014038LGN00' MVCO 

['LC80110312014150LGN00' MVCO 

['LC80110312015025LGN00' MVCO 

['LC80110312014086LGN00' MVCO 

['LC81950192013156LGN00' Palgrunden 

['LC81950192016165LGN00' Palgrunden 

['LC81990242016129LGN00' Thornton_C-power 

['LC81990242016305LGN00' Thornton_C-power 

['LC80410372014312LGN00' USC_SEAPRISM 

['LC80410372016222LGN00' USC_SEAPRISM_2 

['LC80410372016318LGN00' USC_SEAPRISM_2 

['LC80410372016334LGN00' USC_SEAPRISM_2 

['LC81920292014106LGN00' Venise 

['LC81920292015013LGN00' Venise 

['LC81920292015221LGN00' Venise 

['LC81920292016016LGN00' Venise 

['LC81920292016128LGN00' Venise 
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['LC81920292016192LGN00' Venise 

['LC81920292016240LGN00' Venise 

['LC80220402013240LGN00' WaveCIS_Site_CSI 

['LC80220402013320LGN00' WaveCIS_Site_CSI 

['LC80220402014019LGN00' WaveCIS_Site_CSI 

['LC80220402014291LGN00' WaveCIS_Site_CSI 

['LC80220402014323LGN00' WaveCIS_Site_CSI 

['LC80220402015038LGN00' WaveCIS_Site_CSI 

['LC80220402015342LGN00' WaveCIS_Site_CSI 

['LC80220402016009LGN00' WaveCIS_Site_CSI 

['LC80220402016041LGN00' WaveCIS_Site_CSI 

['LC80220402016073LGN00' WaveCIS_Site_CSI 

['LC81990242014091LGN00' Zeebrugge-MOW1 

['LC81990242014219LGN00' Zeebrugge-MOW1  
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Supplemental Data 3c. 

Values of environmental parameters for each match-up 
 

Station Date   SZA (0) AOT 869 (nm) Wind Speed (m/s) 
Chlorophyll
-a (mg/m3) 

Galata_2014141 27.68254 0.061308 4.109681 1.15 

Galata_2014253 41.58995 0.116449 3.284061 1.10 

Galata_2015240 37.50297 0.058537 2.129808 0.73 

Galata_2015352 68.64532 0.191727 4.643727 0.62 

Gloria_2014086 45.39897 0.039736 1.40709 1.03 

Gloria_2014358 69.93295 0.009096 13.20025 2.28 

Gloria_2015041 62.24466 0.011158 9.488579 1.64 

Gloria_2015361 70.11336 0.01644 8.966497 1.31 

Got_2014026 39.26405 0.184762 2.348026 0.81 

Gustav_2013151 37.76921 0.045492 7.765895 1.44 

Helsinki_2013235 49.6655 0.045049 7.813921 4.11 

Helsinki_2014190 38.82244 0.052049 5.058227 5.19 

Helsinki_2016180 38.00992 0.036343 3.183139 3.87 

Helsinki_2016228 47.29317 0.015965 5.356986 3.00 

Helsinki_2016260 58.31484 0.014555 7.385065 3.66 

LakeErie_2016219 31.06475 0.036835 4.838009 5.32 

LakeErie_2016235 35.04874 0.032271 2.098577 5.84 

LISCO_2013273 45.86886 0.02143 6.629846 6.12 

LISCO_2014004 65.76056 0.009206 3.691909 3.92 

LISCO_2015023 63.25687 0.01911 5.097444 5.36 

LISCO_2015279 48.07922 0.025828 6.469751 4.84 

LISCO_2016266 43.53788 0.03848 4.592692 4.06 

MVCO_2013291 53.30351 0.016554 8.056089 3.24 

MVCO_2014038 60.57072 0.025061 6.897844 4.52 

MVCO_2014086 43.2755 0.042702 8.934463 4.96 

MVCO_2014150 25.55208 0.054678 2.590076 1.50 

MVCO_2015025 64.20812 0.036832 10.15678 5.03 

Palgrunden_2013156 37.03093 0.01894 3.94127 7.58 

Palgrunden_2016165 36.71529 0.013707 0.5948 6.87 

Thornton_2016129 36.60009 0.070453 7.756932 16.3 

Thornton_2016305 66.8652 0.058625 2.756128 3.24 

USCSeaPrism_2014312 52.58024 0.028872 4.974118 0.22 

USCSeaPrism_2016222 37.88999 0.074677 3.123159 0.63 

USCSeaPrism_2016318 54.05641 0.027335 3.450807 0.30 

USCSeaPrism_2016334 57.61152 0.026866 3.217656 0.61 

Venise_2014106 37.88999 0.023221 6.324373 3.41 

Venise_2015013 68.62708 0.039125 3.700884 1.19 

Venise_2015221 33.40939 0.125445 3.092528 0.78 
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Venise_2016016 68.39465 0.011226 6.740557 0.58 

Venise_2016128 31.50274 0.03962 1.123216 1.01 

Venise_2016192 27.88954 0.085338 1.76539 1.59 

Venise_2016240 38.46594 0.033166 1.342931 1.87 

WaveCIS_2013240 28.31299 0.080524 3.036319 2.15 

WaveCIS_2013320 50.72926 0.069036 6.575934 2.20 

WaveCIS_2014019 54.4896 0.03491 7.112117 3.99 

WaveCIS_2014291 42.45005 0.016669 3.183118 1.55 

WaveCIS_2014323 51.5107 0.016451 2.907233 1.53 

WaveCIS_2015038 50.60994 0.022994 2.271182 1.80 

WaveCIS_2015342 55.17512 0.033926 1.131623 3.37 

WaveCIS_2016009 56.01941 0.072489 4.151914 3.19 

WaveCIS_2016041 49.98228 0.008506 5.38026 3.97 

WaveCIS_2016073 39.38958 0.052527 5.027627 2.76 

Zeebruge_2014091 49.09826 0.093231 2.259445 3.42 

Zeebruge_2014219 37.90776 0.13111 3.071374 4.11 
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Supplemental Data 3d.  

Line graphs showing the Rrs spectra of each of the 14 AERONET-OC stations (Results 
were averaged for each station except GOT Seaprism for which only one match-up is 
available) 

. 
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Supplemental Data 3e.  

Cases of negative Rrs retrievals from the four AC algorithms 
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