918 research outputs found

    A novel adaptive PD-type iterative learning control of the PMSM servo system with the friction uncertainty in low speeds

    Get PDF
    High precision demands in a large number of emerging robotic applications strengthened the role of the modern control laws in the position control of the Permanent Magnet Synchronous Motor (PMSM) servo system. This paper proposes a learning-based adaptive control approach to improve the PMSM position tracking in the presence of the friction uncertainty. In contrast to most of the reported works considering the servos operating at high speeds, this paper focuses on low speeds in which the friction stemmed deteriorations become more obvious. In this paper firstly, a servo model involving the Stribeck friction dynamics is formulated, and the unknown friction parameters are identified by a genetic algorithm from the offline data. Then, a feedforward controller is designed to inject the friction information into the loop and eliminate it before causing performance degradations. Since the friction is a kind of disturbance and leads to uncertainties having time-varying characters, an Adaptive Proportional Derivative (APD) type Iterative Learning Controller (ILC) named as the APD-ILC is designed to mitigate the friction effects. Finally, the proposed control approach is simulated in MATLAB/Simulink environment and it is compared with the conventional Proportional Integral Derivative (PID) controller, Proportional ILC (P-ILC), and Proportional Derivative ILC (PD-ILC) algorithms. The results confirm that the proposed APD-ILC significantly lessens the effects of the friction and thus noticeably improves the control performance in the low speeds of the PMSM

    Adaptive Neural Network Feedforward Control for Dynamically Substructured Systems

    Get PDF
    (c) 2014 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other users, including reprinting/ republishing this material for advertising or promotional purposes, creating new collective works for resale or redistribution to servers or lists, or reuse of any copyrighted components of this work in other works

    Disturbance Observer-based Robust Control and Its Applications: 35th Anniversary Overview

    Full text link
    Disturbance Observer has been one of the most widely used robust control tools since it was proposed in 1983. This paper introduces the origins of Disturbance Observer and presents a survey of the major results on Disturbance Observer-based robust control in the last thirty-five years. Furthermore, it explains the analysis and synthesis techniques of Disturbance Observer-based robust control for linear and nonlinear systems by using a unified framework. In the last section, this paper presents concluding remarks on Disturbance Observer-based robust control and its engineering applications.Comment: 12 pages, 4 figure

    Advanced control designs for output tracking of hydrostatic transmissions

    Get PDF
    The work addresses simple but efficient model descriptions in a combination with advanced control and estimation approaches to achieve an accurate tracking of the desired trajectories. The proposed control designs are capable of fully exploiting the wide operation range of HSTs within the system configuration limits. A new trajectory planning scheme for the output tracking that uses both the primary and secondary control inputs was developed. Simple models or even purely data-driven models are envisaged and deployed to develop several advanced control approaches for HST systems

    A brief review of neural networks based learning and control and their applications for robots

    Get PDF
    As an imitation of the biological nervous systems, neural networks (NN), which are characterized with powerful learning ability, have been employed in a wide range of applications, such as control of complex nonlinear systems, optimization, system identification and patterns recognition etc. This article aims to bring a brief review of the state-of-art NN for the complex nonlinear systems. Recent progresses of NNs in both theoretical developments and practical applications are investigated and surveyed. Specifically, NN based robot learning and control applications were further reviewed, including NN based robot manipulator control, NN based human robot interaction and NN based behavior recognition and generation

    A neural network-based inversion method of a feedback linearization controller applied to a hydraulic actuator

    Get PDF
    In this work, we use a neural network as a substitute for the traditional analytic functions employed as an inversion set in feedback linearization control algorithms applied to hydraulic actuators. Although very efective and with strong stability guarantees, feedback linearization control depends on parameters that are difcult to determine, requiring large amounts of experimental efort to be identifed accurately. On the other hands, neural networks require little efort regarding parameter identifcation, but pose signifcant hindrances to the development of solid stability analyses and/or to the processing capabilities of the control hardware. Here, we combine these techniques to control the positioning of a hydraulic actuator, without requiring extensive identifcation procedures nor losing stability guarantees for the closed-loop system, at reasonable computing demands. The efectiveness of the proposed method is verifed both theoretically and by means of experimental results

    A classification of techniques for the compensation of time delayed processes. Part 2: Structurally optimised controllers

    Get PDF
    Following on from Part 1, Part 2 of the paper considers the use of structurally optimised controllers to compensate time delayed processes

    Finite-Time Integral Sliding Mode Control for Motion Control of Permanent-Magnet Linear Motors

    Get PDF
    The finite-time motion control problem of permanent-magnet linear motor (PMLM) is studied in this paper. Firstly, based on finite-time integral sliding mode (FTISM) technique, a finite-time control (FTC) law is proposed such that the PMLM can track the desired trajectory in finite time in the presence of disturbances. Secondly, to alleviate the chattering caused by discontinuous property of the control law, a novel saturation function is introduced to replace the signum function in the proposed FTC law. Finally, the effectiveness of the proposed method is shown by simulation results and comparisons
    • …
    corecore