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Adaptive Neural Network Feedforward Control for
Dynamically Substructured Systems

Guang Li, Member, IEEE, Jing Na, David P. Stoten, and Xuemei Ren

Abstract— The potential applications of dynamically substruc-
tured systems (DSSs) with both numerical and physical substruc-
tures can be found in diverse dynamics testing fields. In this
paper, an adaptive feedforward controller based on a neural
network (NN) is proposed to improve the DSS testing perfor-
mance. To facilitate the NN compensation design, a modified
DSS framework is developed so that the DSS control can be
considered as a regulation problem with disturbance rejection.
Then an adaptive NN feedforward compensation technique is
proposed to cope with uncertainties and nonlinearities in the DSS
physical substructure. The proposed NN technique generalizes
the existing results in the literature, and it does not require any
information of the plant model and disturbance model, which
significantly simplifies its application on DSS. In particular, we
propose a novel adaptive law for the NN online learning, where
appropriate NN weight error information is derived and used to
achieve improved performance. Real-time experimental results
on a mechanical test rig demonstrate the improved performance
by using the NN compensation strategy and the new adaptation
law.

Index Terms— Adaptive control, dynamics testing, mechanical
system, neural networks (NN).

I. INTRODUCTION

THE dynamically substructured system (DSS) technique is
currently receiving significant attention in various fields,

e.g., large-scale structural and automotive system testing.
A DSS contains both numerical and physical substructures [1].
In a DSS test, a full-size system is decomposed into two or
more substructures, in which only the critical parts (usually
containing nonlinearities and uncertainties) are tested phys-
ically, while the remaining parts (usually containing large-
scale components) are tested simultaneously in numerical
model form. In this sense, DSS is able to test full-size critical
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components of an emulated system in a laboratory environ-
ment so that the drawbacks involved with purely numerical
and purely physical testings can be avoided. The applications
of the DSS concept can be found in areas, such as automotive
[2], aerospace [3], civil engineering [4]–[6], and robotics [7].
See [1] and [8] for a detailed discussion on the advantages of
using DSS.

DSS is distinguishable from the hardware-in-the-loop (HIL)
method, which is used traditionally to test the performance
of a controller, with a hardware interface to an embedded
numerical plant. However, in more recent developments, the
HIL approach has some common features with DSS method-
ology [9]. The distinguishing feature of DSS is the synthesis
of a composite system involving both numerical and physical
testing components, which must be synchronized at their
interfaces to create a similar testing environment to the original
emulated system. See [2] for a discussion about the differences
between the concepts of DSS and HIL.

In a DSS test, it is expected that the differences between the
salient responses of the DSS and the original emulated system
are as small as possible. These differences are affected by the
synchronization of the physical and numerical substructures.
Hence, the control design objective in a DSS test is to
synchronize the interaction signals at the interface between
the numerical and physical substructures subject to the testing
(i.e., excitation) signal. In [1], a substructuring framework
and general control design methodologies were proposed and
successfully applied to a quasi-motorcycle (QM) DSS test rig
[10], [11].

Generally, the performance of a DSS test can be influenced
by two factors. One factor is from the inevitable and significant
uncertainties and nonlinearities in the physical substructure.
Ignoring these problems during DSS controller designs may
greatly deteriorate the testing results. Because of this reason, a
DSS usually requires a high fidelity controller which must be
able to cope with uncertainties and nonlinearities in the physi-
cal substructure. Some DSS control strategies are proposed to
overcome these problems in different situations. Among these
strategies, an adaptive control algorithm, called minimum
control synthesis, is demonstrated to be an effective control
method for DSS control problem [12], [13]. The second
factor is the complication introduced by the dynamics of the
actuators employed in a DSS. The limiting characteristics of
the actuators can significantly deteriorate the DSS performance
in some cases. These effects are explicitly compensated out by
the design given in [1]. So-called actuator delay compensation
is investigated by [14]; the actuator saturation problems in DSS
control were addressed in [15]–[18].

1063-6536/$31.00 © 2013 IEEE
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In this paper, we focus on the first factor influencing
the DSS performance by employing neural network (NN)
feedforward compensation technique. This is motivated by the
approximation capability of NN in identification and control
design, which is widely studied in the control community
[19]–[25]. There are also several results dedicated to NN
feedforward compensation for the rejection of disturbances
[26], [27]. Recently, Ren et al. [28], [29] developed two novel
NN feedback-feedforward control schemes to attenuate the
effect of external vibrations on nonlinear mechanical systems,
in which the closed-loop stability can be guaranteed in the
sense of Lyapunov. In addition, the dynamical models of the
plant, disturbance and sensors are not required, while only
the accelerometer measurements of disturbances are utilized,
which makes them attractive from a practical viewpoint. In
these results, the NN weights are updated online adaptively,
and e-modification [20], [21] is introduced to guarantee the
boundedness of adaptive parameters. It is noted that NN
adaptive techniques are rarely utilized in the DSS system
design and synthesis.

In this paper, we will investigate a novel DSS control
strategy: an adaptive controller with NN feedforward compen-
sation, and propose a novel adaptive law for online NN weight
learning to improve the convergence performance [30]. We
first transform the existing generalized DSS framework in [1]
into a modified framework, and then the DSS control design
can be considered as a regulation problem with measured
disturbance rejection. With this observation, an adaptive NN
compensator can be designed and superimposed upon a pre-
designed linear two degree-of-freedom (DOF) DSS controller
to achieve improved synchronization. The linear feedback
controller is employed to guarantee the stability of the closed-
loop system, while the NN is used to provide an extra
feedforward compensation action to cope with uncertainties
and nonlinearities. The salient feature of the proposed method
lies in the fact that the NN feedforward control design does not
require any information on the plant, and the effect from the
system modeling uncertainties can also be diminished through
the NN feedforward compensation. The experimental results
on a QM DSS test rig demonstrate the superior performance
of applying NN feedforward compensation over a linear feed-
forward controller alone. The NN compensation strategy in
[28], [29] was also generalized from single input, single output
(SISO) case to generic multiple input, multiple output (MIMO)
cases, which makes it possible to apply this strategy to the
coupled multivariable DSS control problem. In particular, in
contrast to our previous work [31], we also propose a novel
adaptive law for NN weight learning beyond the conventional
e-modification or σ -modification [20], [21], where appropriate
weight error between the ideal weights and their estimation is
derived and used to update the NN weights so as to further
improve the overall performance.

The structure of this paper is as follows. We start with
a generalized DSS framework for control system design in
Section II. In Section III, we first transform the generalized
DSS framework to an alternative framework, and then address
the details of the design of the NN compensator based on this
transformed DSS framework. In Section IV, the DSS test rig

Fig. 1. Linear control DSS framework of [1].

and the real-time experimental results are presented. Finally,
the paper is concluded in Section V.

II. GENERALIZED DSS CONTROL FRAMEWORK AND THE

QM TEST RIG

A. Generalized DSS Control Framework

The general DSS framework proposed in [1] was shown
in Fig. 1. In this framework, the three terms {G0, G1, G2}
are used to represent a generalized system, yielding the
generalized substructures �1 and �2, together with the gen-
eralized outputs z1, z2. For a class of practical applications,
we can denote �1 as the numerical substructure and �2
as the physical substructure, respectively, hence �1 = �N

and �2 = �P . The following associations can also be
made: G1 is related to �N , G0 to both �P and �N , and
G2 to the so-called transfer system component of �P . The
transfer system consists of the test specimen actuators, sensors
and mechanical support structure. In the figure, {d, u} are
external excitations and the DSS control signals, while {z1, z2}
are the outputs of the numerical and physical substructures,
respectively.

In the DSS test, the two outputs must be in near-perfect
synchronization; that is, the substructuring error y := z1 − z2
must always be driven toward zero if a DSS is to function
satisfactorily. The control objective of the DSS, as shown in
Fig. 1, is thus to minimize the DSS error, i.e., the difference
between z1 and z2

y = z1 − z2 = G1d − G0u − G2u (1)

using a control signal u produced by a 2-DOF controller

u = Kd d + Ky y (2)

where Kd is a linear feedforward controller and Ky is a linear
feedback controller.

Under this DSS framework shown in Fig.1, various DSS
controllers can be designed to achieve the control objective.
A straightforward design for the feedforward linear controller
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Fig. 2. Photograph of the quasi motorcycle test rig.

is to choose Kd = (G0+G2)
−1G1 and Ky via pole-placement,

as shown in [1].
However, this ideal situation can never be perfectly real-

ized due to parameter variations, unmodeled dynamics and
unknown external disturbances in practical systems. In this
paper, we present a new method that uses NN to provide
an extra compensation to mitigate against the above effects.
A case study is used to demonstrate the effectiveness of this
method.

B. QM Test Rig and Its Substructured Form

In this case study, we apply our control strategy (to be pre-
sented later) to a QM hydraulically actuated system developed
at the University of Bristol; see Fig. 2 for a photograph of the
rig and Fig. 3 for its schematic representation. This test rig
was extensively studied in the previous work [11]. Here, we
briefly introduce it again for completeness.

The test rig is composed of three subsystems, the first
of which is a rigid vehicle body with an evenly distributed
mass of 229 kg, and two suspension struts together with two
swing arms. Each suspension strut is connected to the vehicle
body at one end and to a swing arm at the other end. Two
25-kN hydraulic actuators are attached to the swing arms,
respectively. The second and third subsystems consist of two
separate 25-kN hydraulic actuators, attached to the hubs of the
front and rear wheels/tires. Each hydraulic actuator has a built-
in linear variable differential transformer for the measurement
of displacement and also a load cell for the measurement
of force. For test purposes, we can select each subsystem
either as a numerical or a physical element. Hence, we can
derive different DSSs for this test rig, which are classified
according to the type of forces at the interfaces between the
subsystems [11].

In this paper, we only focus on one scenario: the QM body
with the two suspension struts constitute the physical sub-
structure, while the front and rear wheels form the numerical
substructure. We call this a single mode (SiM) substructure
since only one type of force, comprised of inertial terms, is
imposed on the physical substructure. The interface variables
are the displacements and the forces at the attachment points
of the wheel hubs and the ends of the swing arms and they
are represented, respectively, as {y31, y32}, {y1, y2}, { f31, f32}
and { f1, f2}, see Fig. 3.

Fig. 3. Schematic representation of the quasi motorcycle test rig. (a) Vehicle
body with two suspension struts and two swing arms. (b) Hub and wheels
with j = 1 for the front and j = 2 for the rear.

TABLE I

NOTATION LIST FOR THE QM SYSTEM –VARIABLES

The dynamical equations of the QM system can be found
in [11], and the linearized equations of motion after the
Laplace transformation is summarized as follows:

y1 = Gyd1d1 − Gy f 1 f1 (3)

y2 = Gyd2d2 − Gy f 2 f2 (4)

f31 = P2s2 yb31 + P3s2 yb32 (5)

f32 = P3s2 yb31 + P1s2 yb32 (6)

yb31 = G31y31 (7)

yb32 = G32y32 (8)

with

Gyd1 = c1s + k1

m1s2 + c1s + k1
Gyd2 = c2s + k2

m2s2 + c2s + k2

Gy f 1 = 1

m1s2 + c1s + k1
Gy f 2 = 1

m2s2 + c2s + k2

G31 = c31s + k31

m31s2 + c31s + k31
G32 = c32s + k32

m32s2 + c32s + k32

P1 = m3 L2
1

L2 + J3

L2

P2 = m3 L2
2

L2 + J3

L2

P3 = m3 L1 L2

L2 − J3

L2

with m31 = m3 L1/L and m32 = m2L2/L.
Here all the variables and parameters, with their nominal

values, are listed in Tables I and II.
Suppose the forces { f31, f32} are chosen as the interface

constraint signals, while the displacements {y31, y32} are the
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TABLE II

NOTATION LIST FOR THE QM SYSTEM–PARAMETERS

synchronizing signals, which are generated by the action of
the inner-loop controlled actuators

y31 = G Ay1u31 (9)

y32 = G Ay2u32 (10)

where the displacement output transfer functions

G Ay1 = G Ay2 = 43.6

s + 37.6

are the dynamics of the actuators and they are derived by
system identification.

By manipulations of (3)–(8), the SiM can be represented
by the DSS framework of Fig. 1 with

z1 =
[

y1
y2

]
z2 =

[
y31
y32

]
d =

[
d1
d2

]
u =

[
u31
u32

]

and

G1 = Gd G0 = GI G A G2 = G A

where

Gd =
[

Gyd1 0
0 Gyd2

]

G A =
[

G Ay1 0
0 G Ay2

]

GI =
[

Gy f 1 P2s2G31 Gy f 1 P3s2G32

Gy f 2 P3s2G31 Gy f 2 P1s2G32

]
.

III. ADAPTIVE DSS CONTROL WITH NN COMPENSATION

In this section, we will first transform the generalized DSS
framework (as shown in Fig. 1) into a regulation form and
then we will develop a novel adaptive control scheme with
NN feedforward compensation.

A. Adaptive NN Feedforward Control Framework for DSS
System

Substituting (2) into (1) leads to

y = [I + Gu Ky]−1Gdd (11)

where
Gu := G0 + G2 Gd := G1 − Gu Kd .

Fig. 4. Equivalent representations of Fig. 1. (a) Framework 1. (b) Frame-
work 2.

According to [11], Fig. 1 can be transformed into an equivalent
framework as shown in Fig. 4(a), which can be further trans-
formed to an equivalent alternative framework in Fig. 4(b). In
Fig. 4(b), Gd contains a predesigned feedforward controller
Kd and denotes the disturbance model from d to the output y.
If the testing signal d is assumed to be the external disturbance,
and the reference r is set to zero (r = 0), the control problem
in Fig. 4(b) amounts to a standard regulation control problem
with measured disturbance rejection, i.e., to regulate the output
y in Fig. 4(b) to zero under the disturbance d . If we choose
Kd = G−1

u G1, as shown in Section II, then y ≡ 0. However,
this can never happen due to unmodeled uncertainties. Hence
u f is added as an extra feedforward control signal, which is
generated by a compensator to attenuate the extra disturbance
that cannot be fully compensated by Kd = G−1

u G1 (i.e.
Gd �= 0 due to the modeling errors).

Following the similar arguments for choosing
Kd , if we can design an ideal compensator as
u∗

f = G f d = Gu
−1Gdd , then it is intuitively reasonable

that the effect of the disturbance d can be eliminated
completely in the nominal case. However, this inverse-based
feedforward controller may not be feasible in practical
applications. On the one hand, the inverse of Gu may not
be derived in a straightforward manner if it is nonminimum
phase or noninvertible; on the other hand, when the
system nonlinearities and uncertainties are significant, the
performance can significantly degrade. For this reason, we
aim to use the nonlinear NN compensation technique to
construct the feedforward compensator, so that the previously
mentioned problems can be avoided.

Although a predesigned feedback control Kd is used in
Fig. 4 (Kd is incorporated into Gd ), it should be noted
that the NN design does not depend on the existence of
Kd , i.e., in the worst case, we can set Kd = 0, so that
the feedforward compensation u f is used to accommodate
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Fig. 5. DSS control with NN compensation.

all unknown dynamics and disturbances without using the
disturbance model. Thus, the subsequent analysis is still valid
for Kd = 0.

The following development is based on the transfer function
matrix from the signals d and −u f to y:

GC L := [
(I + Gu Ky)

−1Gd , (I + Gu Ky)
−1Gu

]
whose state space realization is

ẋ = Ax + Bu(−u f ) + Bdd, y = Cx (12)

where x ∈ R
nx , y ∈ R

ny , u f ∈ R
nu , d ∈ R

nd , and
A, Bu, Bd , C are system matrices with appropriate dimen-
sions. Note that GC L is strictly proper by assuming that G0,
G1 and G2 are also strictly proper.

As this paper mainly focuses on the feedforward compen-
sator design and synthesis, the predesigned linear controllers
Ky and Kd are assumed to stabilize the closed-loop system
without disturbance. In this paper, a linear quadratic regulation
(LQR) control will be used to design the linear controllers
as shown in Section IV-A. To facilitate further analysis, the
following assumption must hold.

Assumption 1: The linear control DSS framework in Fig. 1
(or equivalently, Fig. 4) is asymptotically stable.

Remark 1: In the nominal case, Assumption 1 can be
satisfied by appropriately designing the stabilizing linear con-
trollers Ky and Kd (See Section IV-A for example). Assump-
tion 1 guarantees that A in (12) is Hurwitz. Hence, there exist
positive definite matrices P and Q such that AT P+P A = −Q
holds. This condition will be used later in the proof of the
closed-loop stability involving the NN compensator.

Based on the transformed DSS framework in Section III-A,
we can now design the NN compensator for DSS. If we use
an auxiliary external disturbance �ω to represent the effects
of uncertainties and nonlinearities on the DSS dynamics, then
(12) can be modified as

ẋ = Ax + Bu(−u f ) + Bdd + �ω, y = Cx (13)

where y is the DSS error to be regulated. To compensate
for this extra disturbance �ω and also d on the DSS error
y, the adaptive DSS control scheme with a feedforward NN
compensator (as shown in Fig. 5) is proposed.

It is proved that an unknown function can be approximated
by an NN in a compact set [20]. Then we can use an NN to
approximate the dynamics ũ∗

f := �ω + Bdd ∈ R
nx as

u∗
f := W∗T �(d) + �φ (14)

such that
ũ∗

f = Buu∗
f . (15)

Here Bu, Bd are known matrices defined in (12); W∗ ∈
R

N×nu , with N > 0, is the optimal network weighting matrix;
�φ ∈ R

nu is the approximation error vector. The following
assumption holds for the NN adaptive laws to be presented.

Assumption 2: The optimal NN weighting matrix W∗
and the approximation error vector �φ are bounded by
‖W∗‖ ≤ WN , WN > 0 and ‖�φ‖ ≤ ε, ε > 0.

The feedforward compensation signal u f is provided by

u f = W T �(d) (16)

where W ∈ R
N×nu is the adaptive NN weight matrix,

�(d) = [S1(d), S2(d),…, SN (d)]T ∈ R
N is the network

basis function; Si (d) is sigmoidal functions with the form of
Si (d) = (a/1 + e−bd) − c, where a, b ∈ R

+ and c ∈ R are
NN tuning parameters that represent the bound, slope and bias
of the sigmoidal curve, respectively.

Substituting (14), (15), and (16) into (13) with an NN
compensation can be expressed as follows:

ẋ = Ax + Bu W̃ T �(d) + Bu�φ, y = Cx (17)

where W̃ = W∗ − W is the NN weight error.
Remark 2: In the DSS synthesis, the external excitation d is

precisely known and available. However, the proposed method
can also be extended to a system (not the DSS case) in which
only an approximated measurement of d is available (e.g.,
the accelerometer signal of d as in [28]). In addition, the
established feedforward control does not depend on the system
model and the disturbance model, which can simplify the DSS
control system design when the system model (especially for
the physical substructure) cannot be easily derived.

Remark 3: In the proposed DSS framework in Fig. 5, the
NN compensator is superimposed on a predesigned linear
feedforward controller Kd to provide an extra compensation
signal in the feedforward path, so that the uncertainties and
nonlinearities in the plant can be compensated. Hence, this
method can guarantee a better performance than the case with
linear feedforward controller alone. This is also different to
the method proposed by [29], where only an NN compensator
without a linear feedforward controller is employed.

B. Adaptive Law Design With e-Modification

In this subsection, we first present an adaptive law for
updating the NN weights based on the e-modification [20].
The NN weight W of (16) can be updated [31] based on

Ẇ = 	{�(d)yT FT − σ‖y‖W } (18)

where ‖y‖ is the Euclidean norm of the output y; 	 = 	T > 0
is the adaptive learning matrix with 	 ∈ R

N×N ; σ > 0 is
the e-modification parameter and F ∈ R

nu×ny is a designed
matrix fulfilling the matching condition P Bu = CT FT . This
condition will be utilized in the proof of the closed-loop
stability [see (20)]. Note that this matching condition is usually
considered as the strictly positive real type condition, which
can be fulfilled in our DSS study. A detailed analysis for the
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construction of matrices F and Q can be found in [32] to
satisfy this condition.

We have the following result.
Theorem 1: Consider the DSS dynamics described by (13)

with the NN feedforward control (16) and the parameter
update law (18), the system states and the network weight
error are uniformly ultimately bounded (UUB).

Proof: Consider the following Lyapunov function:

V = 1

2
x T Px + 1

2
tr{W̃ T 	−1W̃ } (19)

where tr{·} is the trace of the corresponding matrix.
By applying (17) and Assumptions 1, 2, we can obtain the

time derivative of V as follows:

V̇ = 1

2
x T (AT P + P A)x + x T P Bu

×{W∗T �(d) + �φ − W T �(d)}
+ tr{W̃ T 	−1 ˙̃W }

= −1

2
x T Qx + x T P Bu�φ + yT FT W̃ T �(d)

− tr{W̃ T �(d)yT FT − σ‖y‖W̃ T W }. (20)

Since tr{W̃ T �(d)yT FT } = yT FT W̃ T �(d) and tr{W̃ T W } =
tr{W̃ T (W∗ − W̃ )} ≤ −(‖W̃‖− 1

2 WN )2 + 1
4 W 2

N , it follows that

V̇ ≤ −1

2
Qm‖x‖2 − σCM‖x‖(‖W̃‖ − 1

2
WN )2

+ PM BMε‖x‖ + σCM‖x‖
4

W 2
N

≤ −‖x‖{1

2
Qm‖x‖ + σCM (‖W̃‖ − 1

2
WN )2

− PM BMε − σCM

4
W 2

N }

(21)

where PM , BM and CM are the maximum eigenvalues of
P , Bu and C respectively, and Qm is the minimum eigenvalue
of Q.

It can be shown that V̇ ≤ 0 as long as either

‖x‖ ≥ 2(PM BMε) + σCM
2 W 2

N

Qm
(22)

or

‖W̃‖ ≥ 1

2
W 2

N +
√

PM BMε

σCM
+ W 2

N

4
. (23)

Therefore, V̇ is negative outside a compact set defined by
(22) and (23) in the ‖x‖ and ‖W̃‖ plane, which is shown
to be an attractive set for the system. According to the
Lyapunov theorem extension [20], this demonstrates the UUB
[20], [21] of both the system state ‖x‖ and the NN weight
error ‖W̃‖. This means that the regulation performance of the
system of Fig. 5 can be retained and the system output y is
bounded in a small neighborhood around zero. In this case,
the synchronization of the DSS control can be achieved.

C. Adaptive Law Design With Parameter Error

To guarantee the stability of system (17), adaptive law (18)
is proposed, for which the first term is the gradient-based
error and the second term σ‖y‖W is the e-modification term

[20], which is employed to guarantee the boundedness of NN
weights W . However, the introduction of such a term may
degrade the adaptive learning speed. As known in adaptive
control literatures, the parameter adaptation should preferably
include some information on the parameter estimation error to
improve the error convergence [30].

In this subsection, we will further investigate a novel
adaptive law for NN weight learning, which is driven by the
tracking error and the appropriate parameter error. To do this,
a set of auxiliary system variables are first derived by intro-
ducing appropriate filter operations on the system dynamics so
that the NN weights error information is obtained explicitly
and used for NN weights learning. The novel adaptive law
is incorporated into the feedforward NN control implemen-
tation and the closed-loop stability will also be proved. The
introduction of such a term in the adaptation allows for fast
learning speed and thus better control performance. This is
clearly different to previous work [31].

To derive the NN weights error, we consider error system
(17) and define the filtered variables of x and � as

kẋ f + x f = x, x f (0) = 0 (24a)

k�̇ f + � f = �, � f (0) = 0 (24b)

where k > 0 is a filter parameter.
Then the following fictitious filter defines the auxiliary

variable �φ f :

k�φ̇ f + �φ f = �φ, �φ f (0) = 0 (25)

and the filtered version of system (17) can be derived as

ẋ f = Ax f + Bu W̃ T � f (d) + Bu�φ f

= Ax f + Bu(W∗ − W )T � f (d) + Bu�φ f
(26)

where x f ∈ R
nx , φ f ∈ R

nu and �φ f ∈ R
nu are the filtered

variables of x , φ and �φ, respectively. Note that �φ is not
precisely known, and the filter operation (25) and the associate
variable �φ f are only used for analysis.

It can be obtained from (24)–(26) that

ẋ f = x − x f

k
(27a)

x − x f

k
− Ax f = Bu(W∗T − W T )� f + Bu�φ f . (27b)

Now we introduce another auxiliary filtered matrix variables
L(t) ∈ R

N×N and Q(t) ∈ R
nx ×N as

L̇(t) = −l L(t) + � f �
T
f (28a)

Q̇(t) = −l Q(t) + [(x − x f )/k − Ax f + Bu W T � f ]�T
f

(28b)

where l > 0, and the initial conditions L(0) = 0, Q(0) = 0.
One may obtain the solutions of (28) as

L(t) =
∫ t

0
e−l(t−τ )� f (t)�

T
f (t)dτ (29a)

Q(t) =
∫ t

0
e−l(t−τ )[(x −x f )/k− Ax f +BuW T � f ]�T

f (t)dτ.

(29b)
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Then we define a matrix variable M(t) ∈ R
nx ×N by

M(t) := Bu W T L(t) − Q(t) (30)

where the matrix variables L(t) and Q(t) are determined by
the differential equation (28).

Substituting (27) and (29) into (30) gives

M(t) = −BuW̃ T L(t) − ζ(t) (31)

where ζ(t) := ∫ t
0 e−l(t−τ )Bu�φ f �

T
f (τ )dτ , and ζ is bounded

by ‖ζ‖ ≤ εζ for some εζ > 0 since the NN basis vector � f

and the approximation error �φ f are all bounded.
With the above development, we introduce another novel

NN adaptive law for feedforward control (16) as follows:

Ẇ = 	[�(d)yT FT − σ MT Bu] (32)

where 	 ∈ R
N×N , σ ∈ R are being positive learning gains

	 > 0, σ > 0.
Remark 4: Comparing (32) with (18), one can find that the

second term is different. As shown in (31), the variable M
derived from (30) denotes the information on the NN weights
error W̃ , which is then used to drive the adaptation. Therefore,
faster learning speed is expected. In addition, similar to [30],
we can prove that the matrix L(t) in (29) is positive definite
(i.e. L(t) > β > 0) provided the persistent excitation (PE) of
matrix � holds. Since � f is the filtered version of � based
on (24), � f is PE as long as � is PE, i.e.,

∫ t
0 � f (t)�T

f (t)dτ >

0, and thus L(t) = ∫ t
0 e−l(t−τ )� f (t)�T

f (t)dτ > 0 is true.
This can be achieved in our DSS system with external distur-
bance d .

The following theorem demonstrates the stability of using
this adaptive law.

Theorem 2: Consider the DSS described by (13) with the
NN feedforward control (16) and the parameter update law
(32). The system states x and the network weight error W̃ are
all uniformly UUB.

Proof: Consider the Lyapunov function candidate

V = 1

2
x T Px + 1

2
tr{W̃ T 	−1W̃ }. (33)

The first derivative of V along (17) and (31) is

V̇ = − 1

2
x T Qx + x T P Bu�φ + σ tr{W̃ T MT Bu}

= − 1

2
x T Qx + x T P Bu�φ

− σ tr{W̃ T LT W̃ BT
u Bu} − σ tr{W̃ T ζ T Bu}

≤ − 1

2
x T Qx + x T P Bu�φ − σc1‖W̃‖2 + σc2‖W̃‖

(34)

where c1 = β B2
m > 0, c2 = εζ BM > 0 are all bounded

constants, where Bm is the minimum eigenvalue of Bu .
By applying the Young’s inequality ab ≤ a2/c + cb2 for

c > 0 on the terms xT P Bu�φ and c2‖W̃‖, it follows that

V̇ ≤ − 1

2
(Qm − 2c)‖x‖2 + (PM BMε)2

c

− σ(c1 − c)‖W̃‖2 + σc2
2

c
≤ − γ V + θ

(35)

where γ = min (Qm − 2c)/PM , 2σ(c1 − c)/	−1
M and θ =

(PM BMε)2/c + σc2
2/c are all positive constant if we select

c < min(Qm/2, c1). Then according to the Lyapunov theorem
extension [20], the UUB of both the system states x and the
NN weight error W̃ are all guaranteed.

Remark 5: In [28], [29] only second-order SISO or
decoupled MIMO systems were considered. Here, The-
orem 1 extends the results to high-order multivariable
systems, and more specifically, this paper incorporates
the NN feedforward compensation into a modified DSS
control framework to propose a DSS control synthesis
methodology.

Remark 6: In the practical implementation of the pro-
posed NN compensation (16), the form of the feedfor-
ward control neural network W T �(d) can be converted into
a discrete-time version in which the input vector of the
NN at the sampling time k can be selected as �(d) =
[S(d(k)), S(d(k − 1)),…, S(d(k − N))]. This was practically
verified by [29] and others in the study of steady-state
performance.

Remark 7: The adaptive NN compensation technique pro-
posed in this paper is effective in coping with uncertainties
present in a DSS. In some practical DSS testings, con-
straints may also be a prominent problem to be resolved.
When both constraints and uncertainties are predominant in
a DSS testing, it is possible to combine the anti-windup
compensation technique in [17], [18] with the NN algorithm
proposed in this paper to cope with these problems at the same
time.

IV. EXPERIMENTAL RESULTS

A. Control System Design

For the DSS shown in Section II, the linear feedback
controller Ky and a linear feedforward controller Kd are
designed using an LQR strategy to fulfill Assumption 1.

Suppose that the transfer functions G0(s), G1(s) and G2(s)
are strictly proper and their state space matrices are Gi (s) ∼
(Ai , Bi , Ci , 0) with i = 0, 1, 2. Then, according to the DSS
framework shown in Fig. 1, the state space realization for the
whole system can be written as

ẋ = Āx + B̄uu + B̄dd (36a)

y = C̄x (36b)

with x = [
x T

0 x T
1 x T

2

]T ∈ R
nx and

Ā =
⎡
⎣ A0 0 0

0 A1 0
0 0 A2

⎤
⎦

B̄u =
⎡
⎣ B0

0
B2

⎤
⎦

B̄d =
⎡
⎣ 0

B1
0

⎤
⎦

C̄ = [−C0 C1 −C2
]
.
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Fig. 6. Bode plots of (solid lines) Ky(s) and (dashed lines) Kd (s). The top
left two plots are the gain and phase of Ky11 and Kd11; the top right two
plots are the gain and phase of Ky12 and Kd12; the bottom left two plots are
the gain and phase of Ky21 and Kd21; and the bottom right two plots are the
gain and phase of Ky22 and Kd22.

The corresponding equations for a linear observer (for the
theoretical details of the design of LQR and linear observer,
see [33] are

˙̂x = Āx̂ + B̄uu + B̄dd + L(y − ŷ) (37a)

ŷ = C̄ x̂ . (37b)

Suppose the feedback gain K is computed from the alge-
braic Ricatti equation so that

u = −K x̂ . (38)

Substituting (38) and (37b) into (37a) leads to the controller-
observer equations

˙̂x = ( Ā − LC̄ − B̄u K )x̂ + B̄dd + Ly (39a)

u = −K x̂ . (39b)

Therefore, the feedback controller is Ky ∼ (Ac, Bc,y, Cc, 0)
and the feedforward controller is Kd ∼ (Ac, Bc,d , Cc, 0),
where

Ac = Ā − LC̄ − B̄u K , Bcd = B̄d

Bc,y = LCc = −K .

The weights of the Kalman filter when designing the
observer are chosen as Qn = Iny and Rn = 0.25 × Inu ; the
weights for the algebraic Ricatti equation are Q = C̄T C̄ and
R = 0.01 × Inu . With these parameters, the constant feedback
gain K can be calculated by the MATLAB routine lqr. The
bode plots of Ky and Kd are shown in Fig. 6.

We design both NN feedforward compensators using the
adaptive laws (18) corresponding to Theorem 1 and (32)
corresponding to Theorem 2. A single-layer NN with 4
neurons is employed in both NN compensators. The number
of neurons is selected by gradually increasing this number
until no further improvement of regulation performance can
be observed, while the computational costs are also taken
into consideration in the experiments. The network basis
functions for both NN compensators are the same and takes
the form of �(d) = [�(di (k)),�(di (k − 1)),�(di (k − 2)),

Fig. 7. Comparison of DSS errors (y1) when controlled by (a) LQR alone,
(b) LQR with NN compensator from Theorem 1, and (c) LQR with NN
compensator from Theorem 2.

�(di (k − 3))]T , where the sigmoidal functions are tuned as
S(di ) = (2/1 + e−0.01di )−0.1; here di is the i th element of d .
For the NN compensator from Theorem 1, the parameters used
in the experiments are specified as 	 = 30, σ = 0.0002. For
the NN compensator from Theorem 2, the parameters used in
the experiments are 	 = 5.5, σ = 1, k = 0.001, l = 100. All
these parameters are tuned during tests. In particular, practical
systems do not allow too large gains, which may result in a
high-gain control and divergence in the adaptation. Thus, the
learning coefficients have to be chosen not excessively large,
i.e., by gradually increasing them from small initial values
until the tracking error and control signal started to exhibit
oscillatory control action.

B. Experimental results

The testing signal d = [d1, d2]T is composed of two
ramping chirp signals, where d2 has a 0.85 s delay from d1,
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Fig. 8. Comparison of DSS errors (y2) when controlled by (a) LQR alone,
(b) LQR with NN compensator from Theorem 1, and (c) LQR with NN
compensator from Theorem 2.

representing the forward motion of the vehicle. The testing
duration is 20 s. A ramp time of 20 s is used, with the
magnitude increasing from 0 to 0.0025 m at 20 s. The
frequency span is from 10 to 2 Hz. This testing signal is
assumed to be a road disturbance, when the vehicle (1.7 m
in length between the front and rear wheels) is running at a
speed of 2 m/s.

Fig. 8 shows the DSS errors when using an LQR controller
Ky, Kd alone, when using both an LQR controller and an NN
compensator based on Theorem 1, and when using both an
LQR controller and an NN compensator based on Theorem 2.
It is clear that the magnitude of the DSS errors when using the
LQR control plus NN compensators at lower frequencies are
much smaller than the DSS errors when only using the LQR
control alone. However, the performances of the LQR control
plus NN compensators are slightly worse at higher frequencies.
This can be explained by the compensation signals (u f ) for the

Fig. 9. Compensation signals generated by the NN compensator (Theorem 1).
(a) Compensation signal for u f 1. (b) Compensation signal for u f 2.

Fig. 10. Compensation signals generated by the NN compensator
(Theorem 2). (a) Compensation signal for u f 1. (b) Compensation signal for
u f 2.

two inputs plotted in Figs. 9 and 10, which shows that the mag-
nitude of the compensation signals decreases with the increase
of frequency, i.e., more compensation effort is emphasized
in the lower frequency range. In practice, according to the
frequency range of the testing signal d that we are interested
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Fig. 11. Comparison of ISE plots of the DSS errors.

in, a tradeoff can be adjusted by tuning the parameters of the
NN compensator.

For a clearer comparison, the integral squared errors (ISE)
of the DSS controlled by LQR alone, LQR with NN compen-
sator from Theorem 1, and LQR with NN compensator from
Theorem 2 are shown in Fig. 11, which demonstrates that
the overall performance of the case with LQR and NN com-
pensators significantly outperforms the case with LQR control
alone, and in particular, the NN compensator from Theorem 2
outperforms the NN compensator from Theorem 1, which
clearly validates the efficacy of the new adaptive law (32).

V. CONCLUSION

We proposed a novel approach to cope with the unmodeled
uncertainties and nonlinearities in the DSS control problem
using an adaptive NN strategy. This approach was developed
by: 1) first transforming a generalized DSS framework to a reg-
ulation control framework with measured disturbance rejection
and feedforward compensation and 2) incorporating an NN
feedforward compensation strategy into the DSS applications
as a general MIMO systems. The advantage of using this
approach was that no previous knowledge of the physical
substructure of a DSS was required during the NN compen-
sator design. We also investigated a novel adaptive law for
the NN weight updating based on an appropriate weight error
information, which can lead to improved performance. The
real-time applications on a mechanical test rig demonstrated
the efficacy of this NN compensation technique and the novel
adaptation scheme.
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