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The finite-time motion control problem of permanent-magnet linear motor (PMLM) is studied in this paper. Firstly, based on
finite-time integral sliding mode (FTISM) technique, a finite-time control (FTC) law is proposed such that the PMLM can track
the desired trajectory in finite time in the presence of disturbances. Secondly, to alleviate the chattering caused by discontinuous
property of the control law, a novel saturation function is introduced to replace the signum function in the proposed FTC law.
Finally, the effectiveness of the proposed method is shown by simulation results and comparisons.

1. Introduction

Permanent-magnet linear motor (PMLM) not only has the
merits such as high force density achievable, low thermal
losses, high precision and accuracy, and simple mechanical
structure [1], but also is probably the most natural choice
for applications involving high-speed, high-precision motion
control among the electric motor drives [2]. Nowadays,
PMLM has been widely used in the precision manufacturing
industries. Compared with the traditional rotary motors [3-
8], linear motors require no indirect coupling mechanisms
as in gear boxes, chains, and screws coupling, which greatly
reduces the contact type nonlinearities and mechanical
disturbances such as friction force and backlash [1, 2, 9].
Therefore, PMLMs meet the increasing demands for high
performance servo applications and have been successfully
used in machine tools [10], semiconductor manufacturing
systems [11], and so forth. Since PMLMs are not equipped
with transmission mechanisms, the achievable performance
of PMLMs, such as the ability to reduce the effects of
uncertainties and external disturbances, is unavoidably lost to
some extent. Thus, it is very important to reduce these effects,

either through proper mechanical design or via control
schemes. The effects may be kept to admissible levels, through
the alternative mechanical design approach, but they may be
very costly one. It may be an economical feasible method
to suppress these effects based on the controller design for
PMLM system.

The friction (Coulomb, viscous, and stiction) and ripple
forces (detent and reluctance forces) are the two major
disturbances that affect the system directly [1]. Friction is a
natural phenomenon that arises from the contact between
the translator and the track [12]. Moreover, in a closed-
loop control system, the friction may result in a steady-
state error, a limit cycle, and a low bandwidth. Ripple
forces are strong, position-dependent forces arising from
the magnetic structure of a PMLM. It comprises of the
cogging force and reluctance force, both of which are periodic
relationship with respect to the position of the translator
relative to the magnets [2]. With the growing interest in
improving the precision of position/speed tracking control,
more advanced disturbance rejection method is needed in
the PMLM control system. To improve the disturbance
rejection performance of PMLMs, numerous methods have



been presented in the recent literature. Based on sliding
mode control and a proportional-integral-based disturbance
observer, [13] proposes a control law to guarantee the stability
of the tubular linear synchronous motor system regardless
of the payload mass. In [I1], an Elman neural network
controller based on improved particle swarm optimization
is developed for a PMLM. In [1], a robust control law
which consisted of feedback control law based on integral
sliding mode (ISM) method and feedforward compensation
part based on adaptive estimation algorithm is proposed. In
[2], a new hysteretic relay method is proposed to identify
the force ripples and friction in PMLM system, based on
which a composite control approach which is consisted of
a PID control law with a feedforward compensation term is
proposed. Reference [9] proposed a state-periodic adaptive
compensation approach, which uses one trajectory period
past information along the state axis to update the current
adaptation law for PMLM system. In [14], to achieve high
control performance, a field-programmable gate array based
intelligent complementary sliding mode control is proposed
for the PMLM system such that the mover can track peri-
odic reference trajectories. To solve the precision control
problem of PMLM motion control system in the presence
of significant disturbance, a robust control scheme based on
the disturbance observer (DOB) is proposed to reduce the
sensitivity of the control performance to disturbance [15].
To provide adequate disturbance rejection performance and
overcome the stability problem as well as improve the motion
control accuracy, [16] proposes a control approach which
combines feedback feedforward controller and a digital DOB
for a PMLM drive system. All the above mentioned control
methods [1, 2, 9, 13-16] can improve disturbance rejection
performance of PMLMs in some extent. However, most of
the existing results [1, 2, 9, 14] about PMLMs motion control
laws are asymptotically stable ones. This implies that the
convergence rate of the system states is at best exponential.
In other words, the desired position and velocity cannot be
tracked in a finite time. Obviously, the control laws with
finite-time convergence are more desirable. Besides faster
convergence rates, the closed-loop systems under finite-time
control (FTC) laws usually demonstrate higher accuracy
and better disturbance rejection properties [17-21]. Due to
the above superiorities, FTC technique has been used in
robotic manipulator systems [18, 20], inverted pendulum
systems [21], spacecraft systems [22], PMSM systems [23],
and multiagent systems [24, 25], and so forth.

In this paper, the motion control problem of PMLM
is considered in the presence of friction and ripple forces.
By introducing a finite-time integral sliding mode (FTISM)
manifolds, a FTISM control law is proposed for PMLM
system, which can guarantee that the desired trajectories
can be tracked in finite time. However, the proposed FTISM
control law has a discontinuous term which leads to chat-
tering. Inspired by traditional boundary layer method, a
novel saturation function is introduced to replace the signum
function in the proposed discontinuous control law. Analysis
indicates that under the proposed continuous FTISM control
law, the trajectories of the system will converge to a much
smaller region than that of under the traditional boundary
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method; that is, compared with the traditional boundary
layer approach, the closed-loop system under the proposed
continuous FTISM control law has much smaller steady-state
errors. The major merit of the proposed method is that it
can not only effectively alleviate chattering, but also maintain
relatively good disturbance rejection performance. All the
results are supported by simulations.

2. Problem Statement and Preliminaries

The mathematical model of a PMLM can be approximately
described as follows [9]:

kck
. ffe . 1 1
x(@) = —mx ) - ;Ffric - EFripple

+ k—fu ), @
Rm

where u(t) is time-varying motor terminal voltage, x(t) is

the motor position, R is the resistance, m is the moving

thrust block mass, k is the force constant, k, is the back

electromotive force, and Fg;. and F, . denote the friction

and ripple force, respectively.

The friction force affecting the movement of the translator
may be modeled as a combination of Coulomb friction,
viscous friction, and the component due to Stribeck effect,
which can be interpreted as stiction. The friction force is
modeled as

Fue = [fo+ (o= £) € 4 fx]sign (0, @

where f, is the Coulomb friction coefficient, f; is static
friction coefficient, f, is the viscous friction coefficient,
and x, is the lubricant parameter. The ripple force can be
described by a sinusoidal function of the load position. In this
paper, we assume that the ripple force could be any kind of
Fourier expansion such as

Fripple = ZI:AI sin (wi'x + (Pl) > (3)

where A; is the amplitude, w; is the state-dependent ripple
force frequency, and ¢, is the phase angle [9].

Leta = —kfke/(Rm), b = kf/(Rm), and d(t) = Fqi +
Fiipple denote lumped disturbance, and let x,(f) = x(t)
and x(t) = x,(t) denote position and velocity, respectively,
then we have

xp (1) = x, (t)
4)
X, (1) = ax, (t) +bu(t) - &
m

Define the tracking errors

e (t) = x, () = x4 (t),

ey (t) =x, (1) — x4 (),

(5)

where x,4(t) and x,(t) are the desired position and veloc-
ity, respectively. The control objective is to track the
given desired position x,4(t) and the corresponding desired
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velocity x4(t) in finite time, that is, to design an FTC law for
the following error system:

é (t) = e, (t)

(6)
é, (t) = ae, (t) + bu (t) - % +ax, () —%,(t)

such that e;(#) — 0 and e,(t) — 0 in finite time.
Next, we review the concept of finite-time stability and
several lemmas, which will serve as basis for this study.

Definition 1 (see [19]). Consider system

x=f(x),

where f(-) D —  R"is nonLipschitz continuous
on a neighborhood D of the origin x = 0in R". The
equilibrium x = 0 of (7) is (locally) finite-time stable
if there are an open neighborhood U of the origin and a
function T : U{0} — [0,00), such that every solution
trajectory x(t, x,) of system (7) starting from the initial
point x, € U {0} is well defined and unique in forward time
for t € [0,T(x,)) and limt_,T(xo)x(t, x,) = 0. Here T'(x,) is
called the convergence time (of the initial state x;). The
equilibrium of system (7) is finite-time stable if it is Lyapunov
stable and finite-time convergent. If U = D = R", the origin
is a globally finite-time stable equilibrium.

f(0)=0, x€eR", (7)

Lemma 2 (see [17]). Assume that there exists a continuous
function V(x) : U — R such that the following conditions
hold.

(i) V(x) is positive definite.

(ii) There exist real numbers ¢ > 0 and o € (0,1) and
an open neighborhood Uy < U of the origin such
that V(x) + cV*(x) <0, x € U, \ {0}.

Then the origin is a finite-time stable equilibrium of
system (7), and the finite convergence time T satisfies T <
V(x(0)7%/c(1 - ). IfU = U, = R", the origin is a globally
finite-time stable equilibrium of (7).

Lemma 3 (see [26]). The origin of system

X=y, y=u (8)

is a globally finite-time-stable equilibrium under the feedback
control law

u = -k, sig “(x) - k, sig az ()’) > )

where ki, k, >0, 0 <oy < land o, =20, /(1 + ;).

3. Main Results

Assumption 4. Assume that both the friction force Fy,;. and
the ripple force F are bounded, and there exists a positive

ripple
constant scalar [ such that |Fp,;. + Fy,| < I, that is, [d(¢)] <

ripple
L.

For system (6), a finite-time integral sliding mode is
designed as [21]

t
s=e j 0 (k1 sign (e))[ey| ™ + K, sign (e,) [es| “2) dr,
(10)

where ki, k, >0, a; > 0,and o, = 20, /(1 + ;).

Theorem 5. If system (6) satisfies Assumption 4, then under
the control law

1 . o . oy
u(t) = 5 (kl sign (e, )|e;| ™ +k, sign (e,) |e, ]
n
+ae, + ax,; — X4 + 1 sign (s)) ,
with s defined in (10), and 1 > 1/m, and the states of system
(6) will be stabilized to the origin in finite time; that is,e; —

0,e, — 0 in finite time.

Proof. Consider the Lyapunov function
V==s" (12)

By differentiating V' with respect to time t, we have
V =ss

) dw ..
—s<aez+bu—7+axd—xd (13)

+ky sign (er)]e;| ™ + k, sign (e,)|es| “2> :

Substituting (11) into (13) yields

v d(t) . !
V=55=(———f181gn(s)>s£—<17—— Is

" ’”> (14)
= \2(n-1)V"

By Lemma 2, (14) implies that the FTISM s = 0 can be
reached in finite time.

As s = 0, we have

t
€ = _J‘ 0 (kl sign (ey)]e| ™ + K, sign (e;)|ey az) dr, (15)
that is,
& = —kysign(e;)|e;|™ —k;sign (e)le,] ™. (16)

According to Lemma 3, the states of system (6) will
converge to zero in finite time. This completes the proof. [

Remark 6. The proposed control law (11) can not only
suppress the lumped disturbance (friction and ripple forces)
effectively, but also guarantee that the states of closed-loop
error system is stabilized to origin in finite time. However,
the signum function in control law (11) leads to undesired



chattering of the closed-loop system. In order to eliminate
chattering, the signum function

. T |S| #:0)
sign (s) = { Is| 17)
0, Is|] =0

can be replaced by the saturation function

s
W, Is| > e,
s
sat<—>= : (18)
€ - |s| <e,
€

where € > 0 represents the width of the boundary layer [20],
according to the conventional method. In this manner, we
obtain a continuous control law that can be expressed as

1 o, . 293
u(®) =~ (K sign (@) fea] ™ + ko sign (&) e
(19)

. n s
+ae, + ax,; — X  + nsat <—>>,
€

which can guarantee the finite time reachability to the
region |s| < A, £ le/(mn) < € (as n > 1/m).

Next, we introduce a class of novel nonlinear saturation
functions as follows:

sign (x), |x| > 1,

sat ,(x) = 20
) {sign(x)|x|“, <1, (20)

where 0 < o < 1. It is easy to show that

sign(x), a=0

sat . (x) = 21
(%) <lsat(x), a=1. @)
In the case of x € {x | 0 < |x] < 1}and0 <

a < 1, we have [sat, (x)| > [sat(x)], and sat,(x) =
sat(x)as|x] = 1lorx = 0. In order to facilitate
comprehension, the standard saturation function sat (x),
the classical signum function sign (x), and the novel satu-
ration function sat ,(x) with two different « (1/3 and 2/3)
are shown in Figurel. It can be observed from Figurel
that [sat ,(x)] > [sat(x)lasx € {x | 0 < [x] < 1}
and sat ,(x) = sat(x) as |[x| > 1 or x = 0, which verifies
the validity of the above analysis.

Theorem 7. If system (6) satisfies Assumption 4, then under
the control law

1 oy . 293
u(t) = 3 (kl sign (e;)]e;| ™ + k; sign (e,)|e,|
(22)

S s
+ae, + ax, — X4 + nsat (E))

with s defined in (10), n > I/m, and

. s
sign (E)’ Is| >e,
s
sat,,C(—) = N (23)
€ sign <i>‘£ Is|] <€
& ellel”’
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FIGURE 1: Classical signum functions sign (x), standard saturation
functions sat (x) and sat ,(x) with different «.

with 0 < o < 1 and € > 0, and the trajectory of system (6) will
converge to the neighborhood of FTISM s = 0 as

I 1/«
Is| <A, A, = <—) € (24)
mi

in finite time.

Proof. Substituting control law (22) into (13) yields

V=si= (d(t) —nsata<z>)s

(a0 ()
<

d(t) — nsign <§> : lx)s,

—(n— %) Is| (25)

By Lemma2, we can have that the region A, =
(l/mn)l/ “€ can be reached in finite time. This completes the
proof. O

Remark 8. One may argue that through adjusting
control gains 7 to be large enough, both convergence
regions, that is, A; and A, can be rendered to be as small
as desired, which means that the proposed novel saturation
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Desired position (m)

0.5

Desired velocity (m/s)

FIGURE 2: The desired position (a) and velocity (b).
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FIGURE 3: Position tracking errors under control laws (19), (22), (27),
and (28).

function sat ,(-) does not have any prominent advantage
over the standard saturation function sat(-) disturbance
rejection performance. However, high-gain feedback control
system often exhibits instability in the actual operation.
From the considerations as well as control saturation
constraints, # cannot be selected to be sufficiently large.
In this case for the control law (22) has an additional
parameter « that can be adjusted to enhance the disturbance
rejection performance without obvious increase in the
control input. In fact, 0 < [/(mn) < 1, we can select « to
approximate to 0 such that 1/« in (24) is sufficiently larger

than 1, which means (l/(mr]))l/“e < (I/(mn))e. That

is, A, can be designed to be much smaller than A;, which
implies that we can regulate the parameters « and # such
that under the control law (22), the closed-loop system can
have smaller steady-state errors compared to that under the
control law (19).

Remark 9. Obviously, if «; = 1 in the proposed FTISM (10),
then it degenerates to the traditional linear integral sliding
mode (LISM), and the FTISM control law (11) becomes

1
u(t) = 3 (kie, + kye, + ae, + ax, — &, +nsign (s)).
(26)
It is easy to prove that under the control law (26), the states
of system (6) will be stabilized to the origin asymptotically.
Similarly, in order to alleviate chattering of the LISM control
law (26), we take saturation functions (18) and (23) to

replace the signum function in the LISM control law (26),
respectively. We obtain two continuous LISM control law:

u(t) = —117 (kle1 + kye, + ae, + ax, — X4 + nsat <£>>,
€
(27)

u(t) = —ll) (kle1 + kye, + ae, + ax; — X  + nsat, (£>)
€
(28)
for system (6). And under continuous control laws (27) and

(28), the states of the system (6) will converge to the small
regions A, and A,, respectively, in finite time.

4. Simulations

In this section, we take a PMLM as target to illustrate the
effectiveness of the proposed methods. The model parameters
of PMLM are given as m = 5.4kg, R = 16.8ohms, k; =
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TaBLE 1: Control parameters for the simulation.

Control laws Parameters
FTISMI1 k, =25k, = 10,a, = 1/3,&, = 1/2,7 = 10, = 0.5
FTISM2 k, =25k, = 10,0, = 1/3,0, = 1/2, = 1/3,77 = 10,e = 0.5
LISMI1 k, =25,k, = 10,5 = 10,e = 0.5
LISM2 k, =25k, =10, =10, = 1/3,e = 0.5
0.08 60
0.06
40 +
0.04 P
— 20t
Q 0.02 |3 5
E &
g s 0
5 _ g
g —002f S
3 : -20
S 004}
-0.06 | —40
-0.08 |
-60 .
—01 ) 0 1 2 3 4 5 6 7 8 9 10
0o 1 2 3 4 5 6 7 8 9 10 Time (s)
Time (s)
--- FTISM1 - — LISM1
--- FTISM1 ~-— LISM1 — FTISM2 e LISM2
— FTISM2 LISM2

FIGURE 4: Velocity tracking errors under control laws (19), (22), (27),
and (28).

130N/A, and k, = 123V/m/s, and the same values are
used in [9]. Among the friction forces, the viscous force
has the greatest impact to PMLM control system, which is
proportional to the speed in the motion process [27], and
the parameters for the friction are taken as f, = 10N, f, =
20, and f, = 10N. To represent the high order Fourier
expansion, the ripple force is chosen as

F

ripple = A sin (wx) + A, sin (3wx) + Ay sin (5wx),  (29)

where A, = 8.5, w = 314rad/m, A, = 4.25,and A; = 2.0.
The following reference trajectory is used [9]:

t
x, () = 0.25sin (27:— - E) +0.25 (30)

with T; = 4s.

For convenience, in the simulation abbreviations FTISMI,
FTISM2, LISMI and LISM2 denote control laws (19), (22),
(27), and (28), respectively.

Consider the initial states of system (4) as (x,(0), x,(0)) =
(0, 0). The control parameters of all the four control laws (19),
(22), (27), and (28) are listed in Table 1. The desired position
and velocity are shown in Figure 2. The position and velocity
tracking error curves under control laws (19), (22), (27),
and (28) are shown in Figures 3 and 4, respectively. In this

FIGURE 5: Input signals under control laws (19), (22), (27), and (28).

simulation, the switching gain # and width of the boundary
layer € for all the four control laws FTISMI1, FTISM2, LISM1,
and LISM2 are the same. However, as clearly shown in the
simulation results, the proposed continuous FTISM control
laws FTISM1 and FTISM2 can achieve better control perfor-
mance than that of the continuous LISM control laws LISM1
and LISM2, and the control laws with novel saturation func-
tion FTISM2 and LISM2 can obtain much smaller tracking
errors than that with standard saturation function FTISM1
and LISMI. Under the control law FTISM2, the system not
only has the best disturbance rejection performance, but also
has the fastest convergence rate, which is an evidence as
stated in Remark 8. The input signals of control laws FTISM1,
FTISM2, LISMI, and LISM2 are shown in Figure 5. It can
be observed from Figure 5 that all of the four control laws
FTISM], FTISM2, LISM1, and LISM2 can alleviate chattering
effectively, and the amplitudes of the control laws FTISMI,
FTISM2 are smaller than that of the control laws LISM1 and
LISM2.

5. Conclusions

In this paper, a finite-time integral sliding mode (FTISM)
control method has been proposed to study the motion con-
trol problem of PMLMs. Under the proposed FTISM control
law, the desired trajectory can be tracked in finite time in the
presence of friction and ripple forces. Note that the signum
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function could lead to chattering. To alleviate chattering, a
novel saturation function has been introduced to replace the
signum function in the proposed FTISM control law. Both
theoretical analysis and simulation results show that under
the proposed FTISM control law with the novel saturation
function, the trajectories of the system have better control
performance (convergence rate and disturbance rejection
ability) than that of FTISM control law with the standard
saturation function. In summary, the major merit of the
proposed method is that it can not only effectively alleviate
chattering, but also maintain relatively good disturbance
rejection performance.
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