18 research outputs found

    Disturbance observer-based backstepping control of tail-sitter UAVs

    Get PDF
    The application scope of unmanned aerial vehicles (UAVs) is increasing along with commensurate advancements in performance. The hybrid quadrotor vertical takeoff and landing (VTOL) UAV has the benefits of both rotary-wing aircraft and fixed-wing aircraft. However, the vehicle requires a robust controller for takeoff, landing, transition, and hovering modes because the aerodynamic parameters differ in those modes. We consider a nonlinear observer-based backstepping controller in the control design and provide stability analysis for handling parameter variations and external disturbances. We carry out simulations in MATLAB Simulink which show that the nonlinear observer contributes more to robustness and overall closed-loop stability, considering external disturbances in takeoff, hovering and landing phases. The backstepping controller is capable of decent trajectory-tracking during the transition from hovering to level flight and vice versa with nominal altitude drop.Web of Science106art. no. 11

    Dual observer based adaptive controller for hybrid drones

    Get PDF
    A biplane quadrotor (hybrid vehicle) benefits from rotary-wing and fixed-wing structures. We design a dual observer-based autonomous trajectory tracking controller for the biplane quadrotor. Extended state observer (ESO) is designed for the state estimation, and based on this estimation, a Backstepping controller (BSC), Integral Terminal Sliding Mode Controller (ITSMC), and Hybrid Controller (HC) that is a combination of ITSMC + BSC are designed for the trajectory tracking. Further, a Nonlinear disturbance observer (DO) is designed and combined with ESO based controller to estimate external disturbances. In this simulation study, These ESO-based controllers with and without DO are applied for trajectory tracking, and results are evaluated. An ESO-based Adaptive Backstepping Controller (ABSC) and Adaptive Hybrid controller (AHC) with DO are designed, and performance is evaluated to handle the mass change during the flight despite wind gusts. Simulation results reveal the effectiveness of ESO-based HC with DO compared to ESO-based BSC and ITSMC with DO. Furthermore, an ESO-based AHC with DO is more efficient than an ESO-based ABSC with DO.Web of Science71art. no. 4

    Nonlinear robust control of tail-sitter aircrafts in flight mode transitions

    Get PDF
    © 2018 Elsevier Masson SAS In this paper, a nonlinear robust controller is proposed to deal with the flight mode transition control problem of tail-sitter aircrafts. During the mode transitions, the control problem is challenging due to the high nonlinearities and strong couplings. The tail-sitter aircraft model can be considered as a nominal part with uncertainties including nonlinear terms, parametric uncertainties, and external disturbances. The proposed controller consists of a nominal H∞controller and a nonlinear disturbance observer. The nominal H∞controller based on the nominal model is designed to achieve the desired trajectory tracking performance. The uncertainties are regarded as equivalent disturbances to restrain their influences by the nonlinear disturbance observer. Theoretical analysis and simulation results are given to show advantages of the proposed control method, compared with the standard H∞control approach

    Trajectory Generation and Tracking Control for Aggressive Tail-Sitter Flights

    Full text link
    We address the theoretical and practical problems related to the trajectory generation and tracking control of tail-sitter UAVs. Theoretically, we focus on the differential flatness property with full exploitation of actual UAV aerodynamic models, which lays a foundation for generating dynamically feasible trajectory and achieving high-performance tracking control. We have found that a tail-sitter is differentially flat with accurate aerodynamic models within the entire flight envelope, by specifying coordinate flight condition and choosing the vehicle position as the flat output. This fundamental property allows us to fully exploit the high-fidelity aerodynamic models in the trajectory planning and tracking control to achieve accurate tail-sitter flights. Particularly, an optimization-based trajectory planner for tail-sitters is proposed to design high-quality, smooth trajectories with consideration of kinodynamic constraints, singularity-free constraints and actuator saturation. The planned trajectory of flat output is transformed to state trajectory in real-time with consideration of wind in environments. To track the state trajectory, a global, singularity-free, and minimally-parameterized on-manifold MPC is developed, which fully leverages the accurate aerodynamic model to achieve high-accuracy trajectory tracking within the whole flight envelope. The effectiveness of the proposed framework is demonstrated through extensive real-world experiments in both indoor and outdoor field tests, including agile SE(3) flight through consecutive narrow windows requiring specific attitude and with speed up to 10m/s, typical tail-sitter maneuvers (transition, level flight and loiter) with speed up to 20m/s, and extremely aggressive aerobatic maneuvers (Wingover, Loop, Vertical Eight and Cuban Eight) with acceleration up to 2.5g

    Precise Trajectory Tracking of Multi-Rotor UAVs Using Wind Disturbance Rejection Approach

    Get PDF
    This paper discusses the resilience of the UAV quadrotor to wind disturbances. An unknown input-state observer is presented that uses the Lipschitz method to estimate the internal states and disturbances of the quadrotor and compensate for them by varying the velocities of the four rotors. The observer intends to use existing sensor measurements to estimate the unknown states of the quadrotor and reconstruct the three-dimensional wind disturbances. The estimated states and external disturbances are sent to the PD controller, which compensates for the disturbances to achieve the desired position and attitude, as well as robustness and accuracy. The Lipschitz observer was designed using the LMI approach, and the results were validated using Matlab/Simulink and using the Parrot Mambo mini quadrotor

    Neural network control design for an unmanned aerial vehicle with a suspended payload

    Get PDF
    Unmanned aerial vehicles (UAVs) demonstrate excellent manoeuvrability in cluttered environments, which makes them a suitable platform as a data collection and parcel delivering system. In this work, the attitude and position control challenges for a drone with a package connected by a wire is analysed. During the delivering task, it is very difficult to eliminate the external unpredictable disturbances. A robust neural network-based backstepping sliding mode control method is designed, which is capable of monitoring the drone's flight path and desired attitude with a suspended cable attached. The convergence of the position and attitude errors together with the Lyapunov function are employed to attest to the robustness of the nonlinear transportation platform. The proposed control system is tested with a simulation and in an outdoor environment. The simulation and open field test results for the UAV transportation platform verify the controllers' reliability

    Conception, modélisation, et commande d'un mini-drone convertible

    Get PDF
    There is a growing interest to design convertible aerial vehicles that can hover like helicopters and fly forward efficiently like airplanes. This thesis is devoted to the conception, modeling, and control of such a convertible mini-UAV (Unmanned Aerial Vehicle). The main contributions of this work are threefold. Firstly, we design a novel UAV structure by adding to each side of a quadrotor one wing that can rotate around an axis belonging to the propellers' plane. Our prototype has many advantages over existing convertible structures: simple mechanical concept since inspired by a classical quadrotor, flexibility for selecting different components (wings, propellers), flexibility for the control design, etc. Secondly, we provide an energy modeling of this type of convertible UAVs, taking into account their characteristics as compared to full-scale helicopters (large variation of aerodynamic forces, performance degradation at low Reynolds number, etc.). Finally, as for the control design, the degrees of freedom of the wings permit the decoupling between propellers and wings' orientations. This greatly enhances the control flexibility as compared to traditional aircraft. Relying on this feature, several control approaches are proposed. In particular, using a specific geometrical design, we show that an efficient control of our UAV can be obtained without air-velocity measurements. Simulation results confirm the soundness of our control design even in the presence of strong and varying wind. En route to validate the theory, a mechanical prototype of the UAV was constructed in our laboratory and preliminary flight tests were performed.Cette thèse concerne les drones dits "convertibles", qui allient capacité au vol stationnaire et efficacité énergétique en vol de croisière. Les principales contributions de ce travail comportent trois volets. D'abord, nous concevons une nouvelle structure de drone en ajoutant de chaque côté d'un quadrirotor une aile qui peut pivoter autour d'un axe appartenant au plan des hélices. Notre prototype a de nombreux avantages par rapport aux structures convertibles existantes: conception mécanique simple car dérivée d'un quadrirotor classique, flexibilité pour le montage de différents composants (ailes, hélices), etc. Deuxièmement, nous proposons une modélisation énergétique de ce type de drone convertible, en tenant compte de ses caractéristiques par rapport aux hélicoptères avec pilote à bord (grande variation des forces aérodynamiques, dégradation des performances à faible nombre de Reynolds, etc.). Finalement, concernant la conception de la commande, les degrés de liberté des ailes permettent le découplage entre les orientations des hélices et celle des ailes. Cela augmente considérablement les possibilités de contrôle par rapport aux aéronefs traditionnels. S'appuyant sur cette caractéristique, plusieurs approches de contrôle sont proposées. En particulier, en utilisant une conception géométrique spécifique, nous montrons qu'un contrôle efficace peut être obtenu sans mesures de la vitesse air. Les résultats de simulation confortent cette stratégie de contrôle, même en présence de vent fort et variable. Afin de valider la théorie, un prototype mécanique du drone a été construit dans notre laboratoire et des essais en vol préliminaires ont été effectués
    corecore