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Summary

This Ph.D thesis depicts the development of unmanned aerial vehicles (UAV) in hardware design

as well as software algorithm development. The main UAV developed is a quadrotor and it has

been thoroughly modeled and controlled through the onboard software system using our ground

control station. The UAV is mounted with an advanced avionics system used for navigation and

a stereo camera system used for obstacle sensing and navigational enhancements.

Obstacle detection capabilities are manifested through visual-based algorithms which allow

general obstacles and specific obstacles such as power lines to be sensed. The algorithms pro-

posed include stereo-based obstacle sensing that is capable of detecting obstacles to an accuracy

of 10 cm within a 5 m range based on the camera’s field of view. Visual-based navigation is

also explored using visual odometry where the UAV’s pose estimate is obtained by a fusion of

visual-based odometry estimates and inertial measurement unit (IMU) readings using a Kalman

filter. The proposed algorithm relies on the use of the Perspective-n-Points motion estimation

and is shown to be more reliable than the Rigid Motion Computation as it computes relative

motion estimation based on image feature points and their 3D world coordinate. The algorithm

has shown to accumulate an error of less than 5% of the distance traveled.

An active stereo vision system has also been developed to operate in featureless environ-

ments such as indoor environments. The active stereo vision system makes use of a laser emit-

ter to project features into an otherwise featureless environment. The stereo system then tracks

these features and is able to generate a sparse 3D point cloud which could then be used for

obstacle detection or navigational purposes.

In this thesis, novel ideas have been implemented in both hardware and software. In platform

development, a hybrid reconfigurable UAV has been designed and built in hopes of having a

more optimal platform to achieve navigation in urban environments. It is hoped that the visual-

based algorithms could be ported to such an unconventional platform. As the platform could

transform from a vertical VTOL form to that of a horizontal cruise form, having the vision
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sensor switch its orientation could have interesting results. For example, if the vision sensor is

facing forward during VTOL mode, it could be used for sensing obstacles or navigation. Then

when the uav transforms into cruise flight mode, the vision sensor will be facing the ground and

it could be used for image stitching to generate a 2D map of the area it flew over. An efficient

onboard 2D map stitching algorithm has also been implemented in international competitions

and will be covered in later chapters.
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Chapter 1

Introduction

1.1 Motivation

In the recent few years, the role of autonomous robotics in human life has been getting more

pivotal. In many situations, humans can be replaced by autonomous robots to deal with tasks

in a more efficient and safer way. Among them, aerial robots with their ability to move easily

in 3-dimensional (3D) space are potentially more viable in many applications where the robot’s

maneuverability is crucial. Autonomous aerial vehicles exhibit great potential to play in roles

such as: data and image acquisition [1], localization of targets [2], surveillance, map building,

target acquisition, search and rescue, multi-vehicle cooperative systems [3] [4] and others.

The rapid development of unmanned aerial vehicles resulted from the significant advance-

ment of micro-electro-mechanical-system (MEMS) sensors and microprocessors, higher energy

density Lithium Polymer batteries and more efficient and compact actuators, thus resulting in

the rapid development of unmanned aerial vehicles. The vertical take-off and landing (VTOL)

crafts due their capability for flying in many different flight missions have obtained more atten-

tion.

The helicopter as a VTOL aircraft, is able to take-off in a confined area, hover on the spot,

perform horizontal flight movements and land vertically. However, besides these features, tra-

ditional helicopters have a complex architecture. The conventional helicopters requires a tail

rotor to cancel the main rotor’s reactive torque. They also typically need a large propeller and

main rotor. Moreover, their flight control mechanism is relatively complicated. Other than the

mechanical complexity of the main rotor cycle pitch mechanism, the helicopters’ up and down-

wards motion control require the main rotor to maintain rotational speed while changing the
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pitch angle of rotor blades which needs a special mechanical configuration setup [5].

Although great success has been achieved, the development and applications of unmanned

helicopters are still at its initial stage. It is attractive and necessary to investigate the potential

of unmanned helicopters, and extend their applications in future. The capability of fully au-

tonomous flying in an urban environment seems to point towards one of the main goals to a

next generation Unmanned Aerial Vehicle (UAV). With advanced on-board sensors, a UAV is

expected to see and avoid obstacles, as well as localize and navigate in city areas. These tasks

are derived from both military and civilian requirements, such as giving soldiers in urban oper-

ation the ability to spot, identify, designate, and destroy targets effectively and keep them out of

harm’s way, or providing emergency relief workers a bird’s-eye view of damage in search and

rescue missions after natural disasters.

In this thesis, I will cover the development and verification of technologies enabling a UAV

to operate in an urban environment with sense and avoid capabilities. The focus will be on

UAV flight using vision-based technology to aid the development of UAV obstacle detection,

navigation as well as mapping capabilities. The thesis covers the build-up of both simulation

analysis as well as real-data testing. Studies will be performed to investigate various challenges

facing UAV urban flight and provide potential solutions which are developed into functions

that could be run onboard a UAV. Software simulations and flight demonstrations will then be

conducted to verify the effectiveness of such algorithms.

It is undoubted that the latest trend in the unmanned aerial vehicles community is towards

the creation of intelligent unmanned aerial vehicles, such as a sophisticated unmanned helicopter

equipped with a vision enhanced navigation system [6], [7], [8]. Utilizing the maneuvering

capabilities of the helicopter and the rich information of visual sensors, it aims to arrive at a

versatile platform for a variety of applications such as navigation, surveillance, tracking, etc.

More specifically, a vision system already becomes an indispensable part of a UAV system. In

the last two decades, numerous vision systems for unmanned vehicles have been proposed by

researchers world-wide to perform a wide range of tasks.

1.2 Literature Review on Non-active Range Sensing Technologies

In the last two decades, non-active range sensing technologies have gained much interests, es-

pecially the vision sensing technologies [9]. Compared to active sensing technologies, the non-
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active sensing technologies use passive sensors and do not emit any energy, which is important

in special situations, such as a battleground. Although sophisticated sensors such as a radar

or a laser scanner can provide accurate relative distance to objects in the surrounding environ-

ment, their cost and weight is not acceptable for low-cost and small-sized unmanned systems.

Furthermore, all of them cannot identify targets and understand complicated environments.

Vision sensing technologies are employed by unmanned systems mainly due to their distin-

guishing advantages:

1. Vision systems can provide rich information on objects of interest and the surrounding

environments, such as color, structure of scene and shape of objects;

2. Vision systems require natural light only and do not depend on any other signal source;

3. Vision systems are generally of low cost and light weight when compared to the other

related sensing systems such as radars and laser scanners;

4. Vision systems use only passive sensors that do not emit any energy, so that the whole

system is undetectable, and safer in special conditions, such as battle fields.

Although such integration of vision and the robots achieved remarkable success in the last

two decades, the machine vision is still a challenge due to its inherent limitations [10]:

1. The way that biological vision works is still largely unknown and therefore hard to emu-

late on computers;

2. Attempts to ignore biological vision and to reinvent a sort of silicon-based vision has not

been as successful as initially expected;

3. Computationally expensive for processing large image sequences.

Fortunately, thanks to the rapid growth of computer and electronic technologies, light-

weight and powerful commercial processors become more and more feasible. In the following

section, we will discuss the vision sensing technologies and their applications, as well as in-

vestigate the novel ideas, concepts and technologies behind these applications which we could

implement in the goal for vision-based sensing used for UAVs.
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1.2.1 Stereo Vision

According to the knowledge in computer vision, the most straightforward approach to measure

the relative position is to use stereo vision technology. A stereo camera is a type of camera with

two or more lenses which allows the camera system to simulate human binocular vision, and

therefore gives it the ability to decipher depth information in a process known as stereo photog-

raphy. The distance between the lenses in a stereo camera (the intra-axial distance) is about the

distance between one’s eyes (known as the intra-ocular distance) and is about 6.35 cm, though

a longer base line (greater inter-camera distance) produces more extreme 3-dimensionality.

Figure 1.1: Stereo Vision Working Principle.

The fundamental idea behind stereo computer vision is that depth information can be com-

puted when two points of reference are given for a single three-dimensional point. The method

used to compute the depth of a point is called triangulation, which is illustrated in Fig. 1.1.

In order to understand triangulation using stereovision, let us look at a few definitions below

first.

1. Epipolar plane: the plane defined by a 3D point and the optical centers. Or, equivalently,

by an image point and the optical centers.

2. Epipolar line: the straight line of intersection of the epipolar plane with the image plane.

It is the image in one camera of a ray through the optical center and image point in the

other camera. All epipolar lines intersect at the epipole.

One of the key problems in stereo computation is finding corresponding points in the stereo

images. Corresponding points are the projections in the two stereo images of a single point in
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the three-dimensional scene. The process to find those corresponding points is called “Stereo

matching” or “Stereo Correspondence”.

In order to perform the triangulation calculation, features in the left image need to be

matched to corresponding features in the right image. Stereo matching is the process by which

a match score is computed for a given pixel location in either the right or left image coordinate

frame. Two types of correspondence matching techniques are used, namely area-based matching

and feature-based matching.

The study on the range measurement for the navigation of robots has already been reported

in [11]. A stereo vision system was employed to augment a traditional sensor system for a

UAV. However, the fixed base-line of the stereo camera constrains the measurement range, and

the computational cost of processing stereo images also limits its usages in the applications of

UAVs with limited payload and space.

Stereo vision can be used to obtain the depth information directly, however, the computa-

tional cost and weight is high. A stereo vision system set in a forward looking position could be

an option used to realize the navigation, guidance and obstacle avoidance an autonomous UAV

needs.

1.2.2 Optical Flow Techniques

In stereo vision, the relative distance between the UAV and the objects in the environment are

directly measured through triangulation. Besides direct measurement, the indirect method of

estimating the relative speed of objects detected is also frequently used. Such a technique was

presented in [12] to navigate a UAV through urban canyons. Both the optic-flow approach and

stereo vision technique were employed to hold the UAV in the center of the canyons safely, and

avoid obstacles detected. Although the optical flow method is suitable for the motion estima-

tion of UAVs in the forward flight condition, it cannot estimate the absolute position, which is

required in applications, such as the drift-free hover. Optical flow is also used as a means for

tracking features that are detected in an image and could be used to estimate motion.

Optical flow is described as the pattern of apparent motion of brightness objects, surfaces,

and edges in a visual scene caused by the relative motion between an observer, which could be an

eye or a camera, and the scene. Ideally the optical flow is the projection of the 3-dimensional ve-

locity on the image. The initial hypothesis in extracting optical flow is the brightness constancy

assumption, i.e, the intensity structures of local time-varying image regions are approximately
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constant under motion for at least a short duration.

Let I(x, y, t) denote the image intensity of (x, y) at time t, the brightness constancy

assumption is given by

I(x+
dx

dt
δt, y +

dy

dt
δt, t+ δt) = I(x, y, t) , (1.1)

which indicates that the intensity does not change in a short time period. With the small move-

ment assumption, the following image intensity, I(x+
dx

dt
δt, y+

dy

dt
δt, t+δt) , can be expressed

in Taylor series:

I(x+
dx

dt
δt, y +

dy

dt
δt, t+ δt) = I(x, y, t) +

∂I

∂x

dx

dt
+
∂I

∂y

dy

dt
+
∂I

∂t
, (1.2)

which with (1.2) yield

dI

dt
=
∂I

∂x

dx

dt
+
∂I

∂y

dy

dt
+
∂I

∂t
= 0 (1.3)

We define

u =
dx

dt
, v =

dy

dt
, (1.4)

Ix =
∂I

∂y
, Iy =

∂I

∂y
, It =

∂I

∂t
(1.5)

which with (1.3) obtain

Ixu+ Iyv + It = 0 or ∇I(x, y, t) · (vx, vy, 0) + It(x, y, t) = 0 , (1.6)

where u, v are the x and y component of the velocity or optical flow of I(x, y, t), and Ix, Iy, It

are the derivatives of the image at (x, y, t) in the corresponding directions. Here we have one

constrain (1.6), but there are two unknowns u, v. To find the optical flow, additional information

must be added to the problem statement to clearly define a single stable solution. This problem

is often referred to as the aperture problem as stated in [13].

Horn-Schunck Optical Flow

A global smoothness term was introduced to obtain a function for estimating optical flow togeth-

er with the gradient constraint (1.6) [14]. The estimated velocity field, v(x, t) = (u(x, t), v(x, t))
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is constrained to minimize (1.7):

∫
Ω

[(∇I · v + It)
2 + λ 2(|∇u‖2 + |∇v|2)] d~x (1.7)

where the magnitude of λ reflects the influence of the smoothness term, and larger λ leads to a

smoother flow. Iterative equations are used to minimize (1.7), and obtain the image velocity:

uk+1 = ūk − Ix[Ixū
k + Iyv̄

k + It]

α2 + I2
x + I2

y

(1.8)

vk+1 = v̄k − Iy[Ixū
k + Iyv̄

k + It]

α2 + I2
x + I2

y

, (1.9)

where k denotes the iteration number, u0, v0 denotes initial velocity estimates which are set to

zero, and ūk, v̄k denote neighborhood average of uk, vk.

The Horn-Schunck algorithm yields a high density of flow vectors, i.e. the flow information

missing in inner parts of homogeneous objects is filled in from the motion boundaries. However,

it is more sensitive to noise than other local methods. Noise that appears in images will result in

high intensity gradients. They serve as weights in the data term of the regularization functional

Eqn. 1.7. Since the smoothness term has a constant weight λ, smoothness is relatively less

important at locations with high intensity gradients than elsewhere. Consequently, flow fields

are less regularized at noisy image structures.

Lucas-Kanade Optical Flow

Based on the assumption that the flow is essentially constant in a local neighborhood of the pixel,

Lucas and Kanade proposed a flow estimation technique based on the first-order derivatives of

the image sequence [15]. A weighted least-square (LS) fit of first-order constraints (1.6) in each

small spatial neighborhood Ω is formulated to calculate the optical flow of all the pixels in that

neighborhood by minimizing (1.10):

min
∑
~x∈Ω

W 2(~x) [∇I(~x, t) · ~v + It(~x, t)]
2 (1.10)

where W (~x) denotes a window function that gives more influence to constraints at the center of

the neighborhood than those at the periphery. The solution to this least square problem can be
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obtained by solving the following linear system for n points xi ∈ Ω at a single time t,

ATW 2A~v = ATW 2~b (1.11)

where

A = [∇I(~x1), ...,∇I(~xn)]T ,

W = diag[W (~x1), ...,W (~xn)],

~b = −[It(~x1), ..., It(~xn)]T .

The closed form solution of the linear system in (1.11) is obtained as

~v = [ATW 2A]−1ATW~b

The solution is possible when ATW 2A is nonsingular, which could be seen as a 2× 2 matrix:

ATW 2A =

 ∑
W 2I2

x

∑
W 2IxIy∑

W 2IxIy
∑
W 2I2

y

 (1.12)

One important advantage of this approach over Horn and Schunk [14] is the existence of a

confidence measure. The smallest eigenvalue, λ1 , of (1.12) provides a measure to distinguish

estimates of normal velocity from 2-Dimensional (2D) velocity. And by processing information

in a neighborhood, the Lucas-Kanade method can often resolve the inherent ambiguity of the

optical flow equation. Another advantage is that this method is less sensitive to image noise than

point-wise methods. However, because of its local processing characteristics, it cannot provide

flow information in the interior of uniform regions of the image.

1.2.3 Feature Detection, Description & Matching

Features in the image sequences have to be extracted first before stereo vision or optical flow

could be calculated. Features in different images should be well matched by good correspon-

dence measures. Therefore the methods to detect and describe point correspondence between

images becomes important. This could be accomplished in three steps:

• Detection: “Interest points” are selected at distinctive locations, such as corners, blobs,
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and T-junctions. The interest point detector should be repeatable under different viewing

conditions;

• Description: Every interest point is described as a descriptor, which has to be distinctive

and robust to noise, detection displacement and geometric and photometric deformation;

• Matching: The descriptor vectors are matched between consequent images based a dis-

tance measures, such as Mahalanobis or Euclidean distance.

Feature Point Detectors

The most widely used detector is the one proposed by Harris and Stephens[16]. This combined

corner and edge detector is based on the local auto-correlation function and it performs with

good consistency on natural imagery. Even though this method is invariant to image rotation,

it is not scale-invariant. To tackle the scale problem, Lindeberg came up with an automatic

scale selection in [17]. This makes it possible to detect interest points in an image at dif-

ferent characteristic scale. Both the determinant of the Hessian matrix and the Laplacian are

evaluated to detect blob-like structures. To further improve Lindeberg’s method, Mikolajczyk

and Schmid [18] created a robust and affine-invariant feature detectors with high repeatability,

coined Harris-Laplace and Hessian-Laplace. A scale-adapted Harris measure or the determinant

of the Hessian matrix is used to select the location, and the Laplacian to select the scale. This al-

gorithm can simultaneously adopt location information as well as scale and shape of the point’s

neighborhood. Focusing on speed, Lowe proposed to approximate the Laplacian of Gaussian

(LoG) by a Difference of Gaussian (DoG) filter.

Mikolajczyk and Schmid made a comparison of the available scale and affine-invariant de-

tection techniques [19], they claimed that Hessian-based detectors were more stable and re-

peatable than their Harris-based counterparts. Moreover, using the determinant of the Hessian

matrix rather than its trace (the Laplacian) seemed advantageous, as it triggered less on elongat-

ed, ill-localized structures.

A large variety of feature description techniques exists, but the best has been the one pre-

sented by David Lowe [20]. The method is called the Scale Invariant Feature Transform (SIFT).

It transforms an image into a large collection of local feature vectors, each of which is invariant

to image translation, scaling, and rotation, and partially invariant to illumination changes and

affine or 3D projection. It computes a histogram of local oriented gradients around the inter-
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est point and stores the bins in a 128-dimensional vector (8 orientation bins for each of 4 × 4

location bins).

Herbert Bay et al [21] proposed a novel scale and rotation-invariant detector and descriptor,

coined Speeded Up Robust Features (SURF). It is partly inspired by the SIFT descriptor. SURF

is several times faster than SIFT and claimed by its authors to be more robust against differ-

ent image transformations than SIFT. SURF relies on integral images for image convolutions

to reduce computation time and builds on the strengths of the leading existing detectors and

descriptors, using a fast Hessian matrix-based measure for the detector and a distribution-based

descriptor. It describes a distribution of Haar wavelet responses within the interest point neigh-

borhood. Integral images are used for speed and only 64 dimensions are used reducing the time

for feature computation and matching. The indexing step is based on the sign of the Laplacian,

which increases the matching speed and the robustness of the descriptor.

1.3 Contribution of the Thesis

The contributions of the thesis are segmented into three main topics that address the develop-

ment of UAVs with sensing capabilities. They are namely platform development and modeling,

obstacle sensing, and vision-based navigation and environment mapping. Each topic is then

covered in detail throughout multiple chapters and they are summarized as below.

Chapter 2 studies the different type of possible platforms that are capable of performing

autonomous navigation in an urban built-up environment. In the study, it was determined that the

current platform that fits the our application is the Quadrotor UAV. Modeling of the Quadrotor

UAV was then discussed in detail in Section 2.4. One of the disadvantages of VTOL UAVs

is due to its limited flight endurance capabilities when compared to fixed-wing UAVs. The

VTOL UAVs are not able to successfully complete missions where they are required to fly long

distances before reaching their target operational area. This problem is addressed and tested in

real-flight with the development of a hybrid unconventional UAV described in Section 2.6.

In an urban built-up environment, there exist an inherent need for the UAVs to exhibit ob-

stacle sensing capabilities while operating autonomously. Chapter 3 covers the capabilities of

vision sensors as a primary sensor to detect obstacles in the generic case as well as the specific

case. Upon detection of these obstacles, there are many pursuing techniques that could be ap-

plied to track the target. Section 3.7 describes a vision-based algorithm developed for tracking
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these obstacles. Upon tracking obstacles, avoidance strategies such as that of potential field [22]

could be used.

Chapter 4 explores the novel use of vision sensors used for navigation. It covers the novel

implementation of active stereo vision which could be used for navigation and obstacle detection

in environments that are devoid of features. Chapter 5 goes in detail on the use of vision to aid

navigation for UAVs. It depicts a stereo vision based odometry calculation that uses 3D-to-3D

correspondences and stereo vision based pose estimation that uses 3D-to-2D correspondences.

Both techniques could be used for UAV navigation in urban environments but we cover the

advantages and disadvantages of each.

Apart from the need for obstacle detection, operators will usually require maps of the urban

environment to be built. 2D stitched maps taken from a bird’s eye view could capture detailed

surface structures. Chapter 6 depicts map building in 2D for use by operators. This method was

also used in a recent international UAV competition which our UAV team won first place.

Finally, we conclude our work done and findings in the whole thesis in Chapter 7. It then

covers the possible future work that we could expand from the work of this thesis.
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Chapter 2

Platform Development

2.1 Introduction

Quadrotors as compared to conventional rotorcrafts have a simpler mechanical structure and

flight mechanism. Using four rotors in a symmetrical configuration removes the need of a tail

rotor. In fact, since each pair of rotors rotate in opposite directions, the generated reactive torque

are inherently canceled. The quadrotor’s fixed pitch blades reduces the platform’s mechanical

complexity, and the relatively small propeller size could decrease mechanical vibration. From

the maneuverability point of view, quadrotors are generally able to offer better performance over

traditional helicopters. Quadrotors have a symmetrical rigid structure which can be considered

as an omnidirectional vehicle. They can be configured such that right, left, front and back would

have a relative direction. In particular, this means it potentially is able to fly in any direction

without maintaining its heading towards the desired direction [5]. Furthermore, quadrotors

have a relatively simple flight control mechanism which is only based on individual propellers’

rotational speed.

However, quadrotors as with most VTOL aircraft have low performance in aspects of for-

ward flight speed, range, and endurance. Although new platforms have been proposed to in-

crease the performance of VTOL aircraft and in specific quadrotors in horizontal flight, through

a simple modification on its orientation control, the improvement to the quadrotor’s maneuver-

ability in horizontal displacement can be expected.

In fact, the standard quadrotor is constructed from four propeller-rotor sets in a plus style.

The quadrotor flies in horizontal plane by changing its attitude. The desired attitude is obtained

by differing the rotors speed of different pairs of rotors. Hence, only two rotors are involved
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Figure 2.1: Quadrotor in plus and cross styles.

in horizontal movement which are defined along the body frame axes and lies on the quadrotor

arms. By simply considering the quadrotor in a cross style comparing to the body frame (see

Fig. 2.1), we are able to take advantage of using all four rotors in achieving horizontal displace-

ment. In such a configuration all rotors participate together to rotate the platform around the

desired axis of orientation. Thus for a quadrotor in the cross style when compared to the stan-

dard quadrotor, for the same desired motion, provides higher momentum which can increase the

quadrotor’s maneuverability performance.

2.2 Platform Selection

A thorough review of the available platforms and their problems surfaced after some research.

Current market survey of existing platforms capable of flight in outdoor environments show that

the platforms will require a minimum payload of near to 1 kg for onboard systems and sensors to

realize fully autonomous control. As with outdoor environments, having the capability to resist

wind is also a significant issue. Urban canyons frequently have large drafts as wind pass through

them. Generally, smaller unmanned aerial vehicles (UAVs) are unable to fly outdoors due to this

reason. Therefore, platform selection lies with selecting a platform that has the desired payload

capability of 1 kg, have a large enough dimension and thrust to resist outdoor wind drafts and

a decent flight endurance. One of our desired specifications of a small outdoor UAV is to have

it as light-weight as possible to facilitate transportation. This will be kept in mind and achieved

as much as possible.
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A few frequently used platforms that show potential are mentioned below. But each of them

have their limitations.

2.2.1 ESky Big Lama Co-axial Helicopter

Figure 2.2: ESky Big Lama Co-axial Helicopter.

The ESky Big Lama Co-axial Helicopter shown in Fig. 2.2 is a light-weight platform which

has a co-axial pair of propellers. The propellers rotate in contra-rotating directions to generate

thrust and is mechanically stable due to the mechanical stabilizer above the propellers. The

co-axial helicopter has a relatively good payload of about 400 g. However, with a basic onboard

system, it would not be able to take-off comfortably. The Big Lama is also not capable of flying

outdoors when the propulsion system is already taxed to its maximum due to the high payload

and will not be able to resist strong winds.

2.2.2 Align T-Rex 450 Conventional Helicopter

Figure 2.3: Align T-Rex 450 Conventional Helicopter.

15



The Align T-Rex 450 shown in Fig. 2.3 is one of the smallest hobby grade conventional

helicopters available and it is built with outdoor flight in mind. It has a fuselage weight of 850 g

but with only a payload of about 300 g. Thus, with its limited payload capabilities, it will not

be possible to mount the sensor suite and onboard systems required for urban outdoor flight.

Therefore, as a start, platform selection will be geared towards having a platform to test

and evaluate different approaches to the urban navigation problem before tackling the weight

limitation issue. The quadrotor, being easy to model and having very good payload is chosen to

be the platform of choice.

2.2.3 XAircraft X650 Quadrotor platform

Figure 2.4: XAircraft X650 Carbon Fibre Quadrotor.

The X650 Quadrotor has a payload capability of up to 1 kg and able to fly in two different

modes. Namely, the “Plus” style and the “Cross” style. The “Cross” style is chosen as the

optimal choice as it has higher capabilities in aggressive, high velocity flight as well as allowing

obstruction free sensor placement. The X650 Quadrotor has a programmable gyro onboard

which covers the aspects of motor mixing and inner-loop stability in manual flight. Lastly, the

quadrotor is chosen as the platform as it is easily scalable to include additions to its onboard

system and sensors. The final state of the platform is to enable it to achieve autonomous flight

in an urban environment. The platform has been modified to mount the onboard systems and

sensor suite. The onboard system will house a Gumstix processor for control and the sensor

suite will be made up of Point Grey vision sensors, SBG Systems Inertial Measurement Unit

(IMU) and the controllable inner loop control board.
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2.2.4 Related Work on Quadrotors

Many groups have worked on standard quadrotors and realized various controllers and scenarios

based on these platforms. The STARMAC is one of the more successful outdoor platform from

Stanford University. They build up their quadrotor based on the Dragonflyer III platform and

developed their own avionics system. One of the first progress of this project is presented

in [23]. They took the advantages of a sliding mode controller to stabilize the height and Linear

Quadratic Regulation (LQR) method to control the attitude. An extensive dynamic modeling

including aerodynamic analysis was done on STARMAC [24]. By using differential Global

Positioning System (GPS), STARMAC succeeded in performing autonomous hovering flight

with a duration of up to two minutes and within a 3 m circle [25]. In addition, an outdoor

autonomous trajectory tracking were realized based on the STARMAC quadrotor [25] as well

as modeling of the flapping propeller [26].

A research group in Australian National University developed a large scale quadrotor. In the

preliminary study, platform design, fabrication and hardware development of the first design,

MARK I, was described in [27]. The issue of insufficient thrust margin and unstable dynamic

behavior led them to design the second platform MARK II [1]. The complete dynamic modeling

and aerodynamic analysis is presented in [28]. Through this work, a discrete proportional-

integral-derivative (PID) controller is used to realize the attitude control.

Another outdoor flying quadrotor was introduced in [29]. This group developed an advanced

powerful avionic system based on the gumstix processor and cross bow IMU. A nonlinear hi-

erarchical flight controller and a complete stability analysis is presented in this work. Based on

the proposed controller, they succeeded in achieving autonomous take-off and landing, and an

outstanding attitude and path tracking performance.

The indoor quadrotor also attracted many groups. A truly successful indoor quadrotor was

built in MIT [30]. The goal of this platform is to realize a single or multi-vehicle health man-

agement system. The development of advanced equipped quadrotor for detection of target ob-

servation under indoor calamity environment was discussed in [31]. More advanced controllers

are also implement on this type of helicopter. A robust adaptive and back stepping control was

proposed and validated experimentally on a quadrotor in [32], [33].
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2.3 Hardware and Software Development

2.3.1 Platform Design

This section aims to illustrate the systematic design and development of the quadrotor platform.

The mechanical structure of the quadrotor platform will be introduced and the configuration

of the rotor and propeller will be discussed. Development of the avionics board as a electronic

heart of the vehicle will be extensively described with specifications and features of the autopilot

components highlighted.

The body of the quadrotor should satisfy some important structural features. It should be

strong enough to withstand all the forces produced by the rotors, the hardware and battery

payload, and sufficiently lightweight to allow the mounting of extra sensors or using higher

capacity batteries. It also should be relatively flexible to absorb the impact of a hard landing.

Among various types of commercial quadrotor frame, we chose the X650 carbon fiber quadrotor

from XAircraft. The platform body frame made from carbon fiber is strong and lightweight. It

has four sets of rotors with efficient high strength 12 in propellers, high frequency 500 Hz Ultra-

PWM (Pulse-width modulation) supported motor drivers and a programmable three axes gyro.

The total weight of platform excluding the battery, receiver and avionic board is about 800 g.

We added one layer of carbon fiber mounting board on the center of the frame where the avionic

board, Radio Control (RC) receiver, GPS module and battery regulator are placed. To ensure

that the center of gravity is near the central axis, the battery is mounted under the center of the

frame to counter the weight caused by adding the onboard system. Below shows the assembled

platform.

Figure 2.5: Left: X650 quadrotor assembled frame, Right: The developed quadrotor hovering.
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2.3.2 Avionics System Design

In this project, we aim to design and development a lightweight, powerful, cheap and expandable

avionics system. Since the goal is to use this setup for different types of mini-UAVs, it is

essential to choose standard, low-cost and high quality components for each part. In fact, the

current on-board system’s weight does not exceed 100 g, which could be appropriate for most

mini helicopters and airplanes. The block diagram of the on-board system is depicted in Fig. 2.6.

The system is governed by the main computer board which is chosen to be the Gumstix Overo

Fire processor supported by the Summit extension board, which is sufficiently powerful for

normal control processing tasks. This embedded computer has enough communication ports

to drive the other avionics boards. Also, it has an embedded Wi-Fi module which can be used

as a communication link to the ground station or other UAVs’ board. In addition, the Gumstix

processor supports micro SD cards, which is useful for logging flight data.

Figure 2.6: Avionics system block diagram.

The sensing core of the avionics setup is an inertial navigation system (INS). It consists of

an IMU, GPS, barometer and ultrasonic sonar. Usually this component is most expensive item

in avionics systems. However, since we are trying to achieve a low cost design, ArduIMU, one

the cheapest and lightest IMU in the current market was selected. On contrary to its prices, the

ArduIMU can provide accurate orientation data. Moreover, this IMU’s programming is open

source, which gave us the opportunity to modify the code based on own design demands. The

GPS unit is responsible for ground position and velocity data and the Ublox GPS is chosen as

an appropriate unit for our design as it can be easily matched with ArduIMU. However, the
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GPS position it gives is not very accurate, specifically, altitude is quite inaccurate. To help fuse

the GPS data, a barometer and ultrasonic sonar are added to the INS. The barometer gives air

pressure and it is possible to estimate the relative height based on this information. Furthermore,

for automatic take-off and landing scenarios, precise height measurement is necessary. The

sonar is mounted under the platform facing ground and through the ultrasonic signal reflection

analysis, the sonar provides quite accurate relative altitude data for INS. We also modified the

IMU firmware to read the RC receiver Pulse-position modulation (PPM) signal and send it to

the main processor. These data are necessary for model identification. The standard actuators

in UAVs such as servo motors and rotor-speed controllers are driven by the PWM signal. A

servo controller board is added to the setup to derive the actuators. A Pololu micro serial servo

controller, due to it’s compact design and light weight is a very suitable candidate for our design.

One of the important part of any avionic system is the fail safe switch. Basically, during any

autonomous flight, there are potentially dangerous situations where we need a reliable option

to switch back to manual flight. The fail safe board is a hardware switch that acts as a servo

multiplexer. By assigning one channel of RC receiver to the fail safe channel selection input, the

pilot is able to switch back to manual flight mode overriding the autopilot system. In our setup,

the data monitoring and sending of necessary commands are done by a ground control station. In

fact, a laptop is linked to the on-board computer through Wi-Fi. The flight data are continuously

sent to the ground station which is displayed for the user. The user during autonomous flight

can also send predefined commands to the avionics system. Similar to all hobby aircrafts we

have a Radio Frequency (RF) transmitter and receiver module for manual flight.

The aforementioned board’s hardware and firmware have been developed from several years

of consistent work in the NUS UAV group. [34], [35], [36], [37], [38].

Table 2.1: The software framework thread description.

Thread name Task description

IMU INS data fusion and servo reading
DLG Data logging
CTL Control
SVO Servo driving
CMM Communication to control ground station

The INS data fusion is handled in the IMU thread. The software activates this thread to read
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Figure 2.7: Avionics board.

the INS output at a refreshing rate of 50 Hz which in our setup also contains the RC receiver

PPM data. The DLG thread helps by recording the flight data during every flight. Sampling time,

sensors raw and filtered data, controller outputs and user defined variables are logged in a 2 GB

SD memory card. The data are written in a text file format which can be easily read in a computer

and imported to MATLAB or excel programs for post-flight analysis. The CTL thread realizes

the flight controllers where the flight scheduling and hierarchical control algorithms are covered.

In real flight, the controller reads the states from the IMU thread, but when hardware-in-the-loop

simulation is applied, states are obtained from the identified dynamic model. Driving the servo

and platform actuators is done through the SVO thread. This part gets the controller output from

the CTL thread and converts it to the servo board input range. As it is mentioned previously,

this board is mainly added to our setup when reading the gyro output is desired. Therefore, the

SVO thread’s main roles are sending the controller output to the servo board, reading the gyro

output and scaling the received data accordingly for logging thread. The communication with

ground control station is realized in the CMM thread where the quadrotor states, RC transmitter

data are sent to ground station via Wi-Fi. The preliminary received command processing also is

done in this thread.

The ground station has been developed by NUS UAV team [37]. The ground control sta-

tion software is mainly used for monitoring the aerial vehicle’s behavior, sending the flight task

command and hardware-in-the-loop simulation. Fig. 2.8 shows the graphic user interface (GUI)

of the ground control station. In left side of the software, the received states are listed; the user

can choose one or several signals to be plotted in the graph windows. The monitored state vari-

ables mainly are the position, body and ground velocities, ground acceleration, attitude angles

and angular rate, manual and auto servo outputs and GPS raw position data. At the bottom of
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Figure 2.8: Ground control station (GCS).

the GUI, the command bar input is designed to obtain the command string from the user. The

command strings are defined in the embedded onboard firmware as a task command. For in-

stance, sending “hover” will be processed in the onboard system as a hover flight scenario, the

task management layer will obtain the current position as a reference and call the outer-loop

and inner-loop hovering controller functions to hold the quadrotor at its current position. How-

ever, some commands have two parts, the command name and the input argument. Trajectory

tracking command and the desired path number as the command argument, is an example of this

structure. Onboard, when a command is received it will be processed in several steps. First it

is validated, and then extracted if it contains extra input. If the new command request a change

of flight task, the corresponding flight controllers are executed in the control loop, the relevant

variables such as references may be reloaded based on the current scenario, and depending on

the flight condition the output trim values can be adjusted.

2.4 Quadrotor Modeling

2.4.1 Quadrotor Flight Mechanism

The quadrotor proposed in this paper is developed in a cross style(see Fig. 2.7) which has a

different flight mechanism as compared to standard quadrotors as shown in Fig. 2.9. As with

standard quadrotors, the basic motion of the quadrotor is realized by adjusting individual pro-
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peller’s speed. The propellers have a fixed-pitch and their air flows point downwards to produce

an upward thrust. On each end of the horizontal arms, a rotating motor is placed. The whole

quadrotor setup consists of two clockwise rotating motors and two counter-clockwise rotating

motors.

Figure 2.9: Freebody diagram of Quadrotor.

The quadrotor’s translational motion requires tilting the platform towards the desired axis.

Hence, similar to the traditional helicopters, the translational and rotational motion are coupled.

Basically, changing the speed of one motor can cause a motion in three degrees of freedom

(DOF). This phenomena is the reason that allows the quadrotor with six DOF to be controlled

by only four inputs [39].

The thrust in the vertical direction is produced by the summation of all the rotors’ force.

Changing all four rotors’ rotational speed by the same amount generates a vertical accelera-

tion. In manual flight, this motion is controlled by the throttle channel. The pitching motion is

produced by applying torque around the y axis. Changing the speed of the front pair of rotors

against the back pair of rotors will result in the platform tilting around the y axis. The elevator

channel controls this motion in manual flight. The rolling motion exhibits the same mechanism

as pitching but around the x axis. The difference of the left and right pair of rotors provides

rolling which is around the x axis. The pilot uses the aileron channel to induce this motion.

Yawing motion is introduced by exerting torque around the z axis. Applying different rotational

speed to the pair of counter rotating motors, causes a change of heading. In fact, the yaw motion

is generated by the rotors’ reactive torque. During manual flight, the rudder channel is used to
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Figure 2.10: Thrust and Roll visualization.

change the quadrotor’s heading. See Fig. 2.10 and Fig. 2.11 for the visualization.

Hence for hovering flight, all the rotors’ thrust must be equivalent. Slight differences may

cause the quadrotor to tilt and be unstable. Although the quadrotor flight control mechanism

may seem simple, in real flight, it is almost humanly impossible to fly it without the help of a

controller. For the manual flight, in order to assist the pilot, a commercial gyro will be used to

control the quadrotor’s attitude.

2.4.2 Quadrotor Dynamics

In this section, we aim to derive the mathematical model of the quadrotor in the cross style. The

quadrotor dynamics are obtained through combining aerodynamics forces and blade theory.

The quadrotor has four motors with propellers mounted on four arms extended at 90◦ to each

other. Power is applied through the attached battery to create torque on the rotor shaft which

in turn creates thrust for each rotor. Each of the rotors also creates torque about the blade area

which affects the whole quadrotor’s dynamics. An initial modeling of the Quadrotor is done

while considering a limited flight envelope. Only hovering or low velocity flight are considered

during the derivation of the dynamics shown below.

To achieve this goal, we first define the quadrotor dynamic and kinematic equations. The

dynamic model describes how applied forces and torques result in translational and rotational

accelerations. The relation between the vehicle’s position and velocity are described through its
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Figure 2.11: Pitch and Yaw visualization.

kinematic equations [40]. The inertial and body frames are introduced as shown in Fig. 2.12.

The origin of the body frame is assumed to be at the center of gravity with the following

notations defined. The North-East-Down inertial frame and body frame is defined as F I =

(ex, ey, ez) and FB = (exb, eyb, ezb) respectively. Body orientation with respect to NED frame

is defined as η ∆
= [φ, θ, ψ]T where we can also define the respective roll, pitch and yaw, body

frame angular rates; ωb ∆
= [p, q, r]T as rolling rate, pitching rate and yawing rate. Position in the

inertia frame is defined as ξ ∆
= [x, y, z]T and body frame velocities as vb ∆

= [u, v, w]T .

Figure 2.12: Inertia and body coordinate system
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The rigid body dynamic equation subjected to acting forces and torques in the body-fixed

frame and in Newton-Euler scheme is:

 mI3×3 03×3

03×3 J


 v̇b

ω̇b

+

 ωb × (mvb)

ωb × (Jωb)

 =

 F b

τ b

 , (2.1)

where m[kg] is the mass of platform, I is an identity matrix, J is the moment of inertia ma-

trix for the quadrotor platform. The platform has a symmetric body structure and most of its

mass is located around the CG, hence we can assume the inertia matrix has a diagonal form,

J = diag(Jxx, Jyy, Jzz). F b and τ b are total force and torque applied to the aircraft body re-

spectively. The body velocity is projected to its inertial reference frame through the rotational

matrix, ξ̇ = Rvb, given as

R =


cθcψ cψsθsφ − sψcφ cψsθsφ + sψcφ

sψcθ sψsθsφ + cψcφ sψsθcφ − cψsφ

−sψ cθsφ cθcφ

 , (2.2)

where ck = cos(k), sk = sin(k). The transformation matrix from η̇ to ωb also is η̇ = Γωb,

where

Γ =


1 sin(φ) tan(θ) cos(φ) tan(θ)

0 cos(φ) − sin(φ)

0 sin(φ)
cos(θ)

cos(φ)
cos(θ)

 . (2.3)

The quadrotor exhibits an under-actuated dynamic system where there are six DOF but only

four control inputs. The main acting forces on the quadrotor are its weight, rotor thrusts and

body drag force [39]. The motor thrust fi is proportional to square of the propeller’s angular

velocity Ωi and acts along the ez as define in Fig. 2.12. The rotor rotational speed is controlled

through the input voltage vi.

fi = KΩΩ2
i (2.4)

Ωi =
Kv

1 + τfs
vi (2.5)
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where KΩ and Kv are the constant coefficients, and τf is the response delay of the rotor thrust.

As the platform moves through the air, it produces drag, however since our platform’s mo-

tion as a small scaled VTOL aircraft is slow, the generated drag is quite small. The body drag

force can be written as

D = −1

2
ρCd

∣∣∣vb∣∣∣ vb, (2.6)

where ρ is the density of air and Cd is the drag coefficient.

Gravity also exerts a force on the quadrotor. This force acts on the Center of Gravity (CG)

and in inertial frame and is given by:

f Ig =

(
0 0 mg

)T
. (2.7)

However, since we are defining all the acting forces in the body frame, the gravity force

must be transferred to the body frame. The gravity force in the body frame is then obtained

following [41].

f bg = RT f Ig =


−mg sin (θ)

mg cos (θ) sin (φ)

mg cos (θ) cos (φ)

 (2.8)

As a result, the total acting force in body frame is obtained as follows.

F b = −1

2
ρCd

∣∣∣vb∣∣∣ vb + f bg −
4∑
i=1

fie
z (2.9)

The roll, pitch and yaw (τφ, τθ, τψ) torques acting on the body frame are mainly produced

by the rotors’ differential thrust. Changing the motors’ thrust results in roll and pitch torques.

Yaw torque is mainly generated by differential thrust between the two pairs of counter-rotating

motors. The yaw moment produced by the rotors’ reactive torque Q is given as,

Qi = dΩi, (2.10)

where d is a rotor induced torque drag coefficient which mainly depends on the propeller’s

specification. Thus, the acting torques on body fixed frame are as shown.
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τφ =
√

2
2 l[(f2 + f3)− (f1 + f4)]

τθ =
√

2
2 l[(f1 + f2)− (f3 + f4)]

τψ = Q1 −Q2 +Q3 −Q4

(2.11)

The quadrotor complete dynamic model can be derived by substituting equations (2.9),

(2.11) into (2.1) and transferring the body states to inertial frame with the transformation matri-

ces (2.2) and (2.3). The next step is to determine the unknown model parameters and conduct

identification experiments to obtain the numerical representation of this model.

2.4.3 Model Parameter Identification

In this section, we present the model parameter identification procedure. Based on the model

structure which was derived in the previous section, the unknown parameters are determined.

However, not all parameters are necessary to be identified. For instance, the body drag force

due to the low velocity of the platform does not significantly influence the quadrotor’s dynamic

and thus we will not consider this term. The unknown parameters are identified through static

experiments and recorded flight data. The ground experiments are mainly suited for identifying

the parameters that can be measured in static condition such as platform weight, center of gravity

position, moment of inertia and platform dimensions.

For those parameters that should be identified based on the flight data analysis, we require

data logging hardware which was designed and implemented in real flight tests. The developed

avionic system is able to record the RC receiver inputs, IMU and GPS outputs which respec-

tively contain joystick signal, quadrotor attitude and position data. Additionally, only for model

identification purposes, a PWM measurement board is added to system to record the gyro output

(motors inputs).

2.4.4 Static Tests

Moment of Inertial Measurement

The platform moment of inertia can also be measured through the static experiments. We follow

the same method used in [42] which is theoretically based on the Trifilar Pendulum theory.

Using the Trifilar Pendulum theory [43], by the setup of a simple experiment, the moment

of inertia of a compound object such as the quadrotor with onboard systems can be measured.
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Figure 2.13: Left: Jzz measurement, Right : Jxx,Jyy measurement.

Since quadrotors are structurally symmetric, only the moment about each axis is required to be

identified. Also, the moment of inertial in the x and y direction is expected to almost similar

due to the symmetrical setup.

The platform in this case is suspended by three lines with equal length to create a torsional

pendulum as shown in Fig. 2.13. The suspended quadrotor is excited minutely in the axis of

interest. The period of oscillation is recorded and using Eqn. 2.12, the rolling, pitching and

yawing moment of inertia could all be calculated [42].

Jxx,yy,zz =
mgl1l2l3t

2

4π2L

l1 sinα1 + l2 sinα2 + l3 sinα3

l2l3 sinα1 + l1l2 sinα2 + l1l2 sinα3
(2.12)

where αi is the angle between the three strings which for our setup all are 120◦. li is distance

between the strings and L is length of them. t is the platform oscillation period around the axis

of measured moment of inertia.

In order to obtain the period, first the platform should be suspended from three points around

the desired axis and then excited gently. The platform oscillation is recorded by a camera for

several periods. Each perturbation experiment is done three times to improved accuracy and

reliability of the results. Captured video is analyzed in a computer and the average of periods

for all experiments is calculated. This procedure is repeated to obtain the moment of inertia

about each axis. All axes measured moment of inertia are given in Table 2.2.

Center of Gravity Location

Finding and adjusting the center of gravity is a very important step to have in order to obtain a

stable platform. To find the CG location, in at least three experiments, the platform should be
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suspended from one arbitrary point. For simplicity, we attached the string to the tip of quadrotor

rotor arm. For each plane (x− y, x− z, y − z), the platform is suspended from an appropriate

point such that the desired plane faces the camera in which a high resolution picture is captured.

In the computer, a straight line connects the attached points. The intersection of these lines gives

the location of center of gravity. For our quadrotor the CG obtained is very close to the center

of platform which verifies the correct placement of our avionics system.

Rotor Thrust Measurement

The rotor thrust measurement stand consist of a force meter, tachometer for measuring the pro-

peller rotational speed, servo control board which drives the motors and, current and voltage

monitoring systems. Fig. 2.14 shows the assembled setup.

Figure 2.14: Thrust measurement experiment.

Before each experiment, the force measurement unit and tachometer are carefully adjusted

and calibrated. This experiment is mainly used for modeling the rotors force dynamics. The

current and voltage data will be used to estimate total power consumption as well.

Since quadrotors mainly operates in hovering condition and at low velocities, it would be

reasonable to observe the rotor dynamic through a ground experiment. In fact, it is assumed that

the UAV will fly in low wind conditions and not very aggressively, therefore the rotor-propeller’s

30



indoor behavior will replicate a real outdoor flight. In order to identify the rotor dynamic, a

thrust force experimental setup was designed. For a full range of input from minimum to full

throttle, rotor thrust, propeller angular velocity, rotor current and applied voltage are measured.

In order to improve the accuracy of the result, this experiment was repeated at least three times.

Fig. 2.15 shows the experiment’s collected data.
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Figure 2.15: Rotor-Propeller thrust experiment’s collected data. (a) Servo input to rotor thrust,
(b) Square of propeller angular velocity to rotor thrust, (c) Servo input to propeller angular
velocity, (d) Consumption current to rotor thrust.

Fig. 2.15(b) shows that Ω2 is proportional to the thrust. However, from the Fig. 2.15(c) it can

be observed that the propeller angular velocity is not linearly proportional to the input voltage.

This phenomena seems to be due to the rotor speed controller characteristic. The electronic

speed controller (ESC) controls the rotor rotational speed to regulate the output power.

Hence, as Fig. 2.15(a) illustrates, the rotor thrust is approximately linearly proportional to

the servo input. From the control aspect, only this relationship is necessary. As a result the

Eqn. 2.13 is valid for our setup.

fi =
Kf

1 + τfs
vi, (2.13)

where Kf is the constant thrust lift coefficient.
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To obtain the force response time delay, a square wave is applied to the motor input and

the corresponding thrust response is observed by force measurement unit. Meanwhile, voltage

of the battery as a power source is monitored by a oscilloscope. Since, the force measurement

unit only shows the steady thrust, the time delay is estimated from battery voltage drop, which

depends on the rotor current and correspondingly output thrust.

The rotor dynamic coefficients are obtained based on a least square curve fitting. Fig. 2.16

to Fig. 2.18 shows the curve fitting results.
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Figure 2.16: Rotor thrust to angular velocity coefficient (KΩ) result.

All the parameters that are identified by the static experiments are listed in Table 2.2.

2.4.5 Flight Experiments

In this part, we plan to use experiment data obtained from flight tests to identify the remaining

unknown model parameters. The obtained parameters from the static experiments can also be

tuned or validated through this method. In this approach the pilot will be asked to excite a

requested dynamic of the platform in a certain way. The avionic board through the INS system

will observe the response of the UAV and record the sensor data on the onboard memory card.

We chose a time domain model identification method and will use MATLAB IDENT toolbox
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Figure 2.17: Rotor rotational velocity coefficient (Kv) result.

−0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1 1.2
0

1

2

3

4

5

6

7

8

Servo input (−1 ~ 1)

F
or

ce
 (

N
)

Normalized servo input / Force

 

 

Experimental data
Fitting curve

Figure 2.18: Rotor thrust lift coefficient (Kf ) result.
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Table 2.2: Numerical value of identified parameters from ground experiment.

Description Parameter Value / Units

Rolling, pitching, yawing moment of inertia Jxx,Jyy,Jzz 0.03356, 0.03122, 0.05423 kg.m2

Rotor thrust to rotational velocity coefficient KΩ 0.059
Rotor rotational velocity coefficient Kv 9.2994
Rotor thrust lift coefficient Kf 4.4861
Rotor thrust response time delay τf 0.06 s
Rotor to CG distance l 0.325 m
Total platform mass m 1.37 kg

to analyze the collected data. We describe the implementation procedure of this approach in the

following steps.

Flight Data Collection

It is clear that the dynamic input-output data is necessary. The model states and their measur-

ability status are given in Table 2.3. Recording RC receiver outputs Urc = (Ua, Ue, Uth, Ur)

is useful when we have the gyro in the control loop or as a input source for gyro model i-

dentification where more details will be covered in Section 2.5. For non-measurable variables

highlighted in Table 2.3, it is possible to observe them based on the mathematical relationship

expressed in Eqn. 2.1 and Eqn. 2.2. In fact, we have all the dynamic states and inputs data for

model identification.

Table 2.3: Dynamic states and inputs description and measurability status.

Variable Physical expression Units Direct measurability

x,y,z Position in inertial frame x,y,z axis m Yes
u,v,w Velocity in body frame x,y,z axis m/s No
φ,θ,ψ Roll, Pitch, Yaw angle rad Yes
p,q,r Roll, Pitch, Yaw angular rate rad/s Yes

acxb,acyb,aczb Body acceleration in body frame x,y,z axis m/s2 Yes
Mi Normalized rotori input (−1 ∼ 1) NA Yes
Ua Normalized aileron servo input (−1 ∼ 1) NA Yes
Ue Normalized elevator servo input (−1 ∼ 1) NA Yes
Uth Normalized throttle servo input (−1 ∼ 1) NA Yes
Ur Normalized rudder servo input (−1 ∼ 1) NA Yes
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Model Identification Input Signal

Since Chirp signals contains a variety of frequency components, it is an appropriate input signal

for model identification or validation purposes [42]. A typical linear Chirp signal is mathemati-

cally expressed as Eqn. 2.14 [44].

uchirp(t) = Achirp sin

[
2π(f0 +

kchirp
2

t)t

]
, (2.14)

where Achirp is amplitude, f0 initial frequency, and kchirp is the rate of frequency increase.

In order to appropriately excite the desired dynamic, selecting the Chirp frequency range is

a crucial step. Furthermore, since this signal is applied manually by the pilot, preparing some

simulation based flight tests for training purpose is highly recommended. The initial frequency

is preferred to be as low as possible, however it depends on pilot’s sight and maneuverability.

The maximum frequency should be chosen to avoid exciting undesired dynamic nonlinearities,

mechanical vibration and actuators’ rate constrains.

The Chirp ratio is preferred to be linearly increasing. In each flight experiment, the pilot

initially apply two sinusoid long period inputs to the desire channel [44]. Basically, this is to

ensure that the low frequency is completely perturbed [42]. Thereafter, the input frequency

should be increased smoothly to the desired maximum frequency. It is worth mentioning that

the input amplitude does not necessarily have to be constant, typically keep the variation in the

range of ±10− 20% is acceptable [38].

During the flight test, the quadrotor is expected to exhibit abnormal behavior due to the chirp

input and its nonlinear dynamic. Therefore, it would be better to do this experiment in a wide

and open area. Since, we mainly plan to control the quadrotor not very aggressively, the UAV

should be perturbed around hovering. Hence, firstly the quadrotor hovers at a appropriate point

with a good eyesight, then the pilot excites only one desired channel as a chirp signal style.

Meanwhile the onboard system records all the desired data. For each channel the perturbation

is repeated several times to ensure enough qualified data is recorded.

Between each perturbation, the pilot is requested to keep the quadrotor in a hovering flight

for several seconds. This part later would help to easily identify each set of data, and also verify

the trim values. Furthermore, because of dynamic coupling and disturbances, when one channel

is perturbed, the platform may drift in different directions or orientations. Yet, the pilot is asked

to not touch the other channels to correct the quadrotor, unless in emergency situations. This
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method is quite important, specifically when we want to decoupled the dynamic model and

identified them separately.

Quadrotor Hovering Trim Value

For any further analysis on the flight data, trim values of states and inputs are necessary. In fact,

the quadrotor is modeled around the trim values which physically is the signal’s value in a good

hovering condition. We asked the pilot to keep the quadrotor in a hovering mode and adjust the

joystick trim inputs to achieve a good hovering flight with minimum input correction.

Meanwhile, the onboard system records all the measurable signals. After this experiment,

the data are analyzed and a period of best hovering flight is extracted. Averaging this part’s

data, gives the trim values. The results are presented in Table 2.4. Regarding to the inputs’ trim

(ua0, ue0, uth0, ur0), even though mathematically it is expected to have zero inputs for hovering,

due to the imbalance rotor thrust and payload, and minor nonsymmetric mechanical structure,

small inputs’ bias are almost always necessary. From the control point of view, these trim values

correspond to the zero controller output.

In the model identification process, the required parameters will be identified around these

trim values.

Table 2.4: States and inputs trim value in hover condition.

Variable Trim value in hover condition Units

ua0 0.0660 NA
ue0 0.0660 NA
uth0 0.1800 NA
ur0 −0.0130 NA

u0, v0, w0 −0.0739,−0.1759,−0.5610 m/s
φ0, θ0, ψ0 −0.0381, 0.0035,−0.0288 rad
p0, q0, r0 0.00092, 0.00095,−0.0023 rad/s

acxb0, acyb0, aczb0 −0.0023,−0.0024,−0.1139 m/s2

Parameter identification

After preprocessing the raw data, we are ready to identify the desired unknown parameters.

We use the MATLAB IDENT toolbox [45] software and prediction error method (PEM) as an

identification algorithm.
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The rotor thrust dynamic can be identified based on the vertical body acceleration. The total

rotor thrust can be obtained from Eqn. 2.15. In fact, if body z axis acceleration is perturbed

in a zero attitude condition, we can assume all the rotor thrust are approximately equal and

throttle input is equivalently distributed to the rotors’ input. Hence, individual rotor thrust can

be observable.

4∑
i

fi = m (−ẇ + qu− pv + g cos θ cosφ) (2.15)

After data de-trending based on the signal trim values, the input-output data source is ready

for identification processing.

The data is then fed into the Matlab IDENT toolbox with 20 ms sampling rate. The model

structure is assigned as Eqn. 2.13 and initial guess values are chosen as ground static experiment

results. The other set of throttle perturbation is used for model validation. The toolbox estimates

the model based on the given structure and through PEM method. Fig. 2.19 shows a comparison

between the identified rotor thrust model from static ground experiment and that based on flight

data. As the figure illustrates, the two estimated models are quite identical and can closely track

the observed output force.
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Figure 2.19: Rotor thrust dynamic model comparison.

The induced torque coefficient d, can be estimated based on yaw dynamic. From Eqn. 2.10

and Eqn. 2.11, the yaw ratio dynamic with respect to motors voltage input can be written as:
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ṙ =

Jxx−Jyy
Jzz

pq + d
Jzz

Ω

Ω(s) = Kv
1+τf s

4∑
i=1

(−1)i+1 vi
(2.16)
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Figure 2.20: Yaw ratio dynamic estimated and measured outputs.

In a similar manner, a flight experiment is conducted to collect the necessary data to identify

the yaw dynamic parameter. The rudder channel is excited in a Chirp style, and the sensors data

are recorded correspondingly. Due to the small attitude dynamic coupling, and unavoidable pilot

correction applied on the other channels, we observed small changes on the pitch and roll out-

puts. Based on the model structure from Eqn. 2.16 and collected data, MATLAB identified the

induced torque coefficient d. The estimated model output is compared with real measurements

and the result are given in Fig. 2.20.

The identified parameters based on flight tests are presented in Table 2.5.

Table 2.5: Numerical value of identified parameters from flight data.

Parameter Value Description

Kf 3.8738 Rotor thrust lift coefficient
τf 0.095583 Rotor thrust response time delay
d 0.013 Induced torque coefficient
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2.5 Quadrotor Model with Gyro-in-the-Loop

One way to control the quadrotor is to use the gyro in both manual and autopilot flight modes.

In this approach, the autopilot system acts as a pilot and apply the control outputs to the gyro

instead of directly controlling the motors. As Fig. 2.21 illustrates, the gyro gets the control

signals from the autopilot and accordingly distributes them to the motors. The gyro itself is

also able to control the quadrotor attitude angles or angular ratios. In fact adding the gyro in

the automatic flight control loop makes the overall controller simpler, since the gyro can help to

stabilize the attitude. However, it requires additional dynamic identification to model the close

loop attitude dynamic with having the gyro as a attitude stabilizer.

Furthermore, from a safety aspect, this structure can be helpful specifically during prelim-

inary autopilot tests. In the rare case when the autopilot system goes wrong and the pilot is

forced to switch back to manual mode, the rotor inputs do not experience this change, since the

gyros have already been driving the motors.

Figure 2.21: Gyro in the loop control structure.

The gyro used in our system has two working configurations: Hover mode and Cruise mode.

In the hover mode, the gyro stabilizes quadrotor attitude based on the control inputs. The aircraft

with gyro in hover mode, is inherently quite stable. As hover mode mainly is for hovering flight,

the gyro in cruise mode is more suitable for cruise flight. Based on our tests, in the cruise mode,

the gyro is controlling attitude angular ratio and the quadrotor behaves more aggressively. We

have conducted several flight tests to observe the gyro characteristic and model the closed loop

attitude dynamics. In the following sections we will identify the model of quadrotor attitude

dynamic when the gyro is in the control loop. Since, the gyro to some extent controls the

attitude states, we will assume the attitude axes dynamic are decoupled. Moreover, the motors

input are linearly proportional to throttle channel, thus the gyro does not affect the rotor thrust

dynamic.
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2.5.1 Gyro in Hover Mode

We set the gyro in hover mode and asked the pilot to perturbed all the channels around the

hovering condition. The perturbation style is the same as that stated in Section 2.4.5. The input

joystick signal, together with attitude angles and their ratio are analyzed. It is observed that

the gyro in this mode, stabilizes angles of pitch and roll axes and angular ratio of heading. In

order to have an initial guess for the model order, it can be argued that, each attitude dynamic

naturally is a double integrator and the gyro have a PID controller inside, hence the closed loop

system should behave as a third order system with two stable zeros. However, during model

identification analysis, it is found that a simple second order system can reasonably match the

output signals. Eqn. 2.17 to Eqn. 2.19 shows the attitude dynamic model structure and Fig. 2.22

to Fig. 2.24 illustrates the accuracy of identified models.

φ(s) =
Kφ

(1 + τφ1s) (1 + τφ1s)
e−Tφua (2.17)

θ(s) =
Kθ

(1 + τθ1s) (1 + τθ1s)
e−Tθue (2.18)

r(s) =
Kr

(1 + τrs)
ur (2.19)

In this mode, since the gyro directly controls the pitch and roll angles, these attitude dy-

namics has a considerable delay which has to be taken into account. It worth to note that, it

is possible to increase the model order to obtain a perfect output matching, but it will increase

the complexity of controller and correspondingly increase computation cost. From the control

point of view, since the closed loop is stable, for roll and pitch dynamics the gyro can take the

responsibility of inner loop tracking control and for the heading, we can consider the yaw angle

dynamic as a simple linear second order system with input ur from Eqn. 2.19.

2.5.2 Gyro in Cruise Mode

In this mode, the gyro stabilizes the attitude angular ratio and hence the platform behavior is

not as smooth as the gyro in hover mode. In a similar flight experiment manner, we have done

several flight tests for each individual channel identification. From the collected flight data, it

can be observed that, a first order system can quite perfectly emulate each attitude dynamic.

Hence, the attitude angular ratio structures are estimated as presented in Eqn. 2.20 to Eqn. 2.22.
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Figure 2.22: Gyro in hover mode, rolling identified model.
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Figure 2.23: Gyro in hover mode, pitching identified model.
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Figure 2.24: Gyro in hover mode, yaw angle ratio identified model.

The heading dynamic basically is the same as the gyro in hover mode. With such a model

structure the unknown parameters are also identified. Fig. 2.25 to Fig. 2.27 show the estimated

model fidelity.

p(s) =
Kp

(1 + τps)
ua (2.20)

q(s) =
Kq

(1 + τqs)
ue (2.21)

r(s) =
Kr

(1 + τrs)
ur (2.22)

The numerical value of identified model parameters for both gyro operation modes are listed

in Table 2.6.

2.5.3 Model Validation

In this section we aim to verify the fidelity of the identified dynamic model. To do so, we have

used the collected data from previous flight tests. For perturbation of each input channel, the

measured body axes acceleration and angular rate ratios are compared with simulated model

outputs. Since for further control purpose, we plan to mainly use the gyro (cruise mode) in

the loop configuration, the model validation result of this configuration is only presented here.
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Figure 2.25: Gyro in cruise mode, roll angle ratio identified model.
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Figure 2.26: Gyro in cruise mode, pitch angle ratio identified model.
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Figure 2.27: Gyro in cruise mode, yaw angle ratio identified model.

Table 2.6: Quadrotor with gyro in the loop attitude dynamic identified parameters.

Parameter Value Parameter Value

Kφ −0.8628 τθ1 0.079119
Kθ −0.59151 τθ2 0.079119
Kr −4.8121 τp 0.033855
Kp −2.3167 τq 0.046672
Kq −2.4967 τr 0.37029
τφ1 0.076615 Tφ 0.1 s
τφ2 0.076615 Tθ 0.1 s

Fig. 2.28 to Fig. 2.31 illustrates this comparison. As it can be observed from the figures, the

identified quadrotor model is able to track the measured states with acceptable accuracy. We

will use this model for further control design and simulation analysis.

The details for modeling a cross style quadrotor has been described through this modeling

section. Through the modeling and physical experiments conducted, we are able to obtain all

the parameters for the cross style quadrotor. Both simulations and real flight tests have been

successfully conducted to prove the performance and model of the quadrotor. A cross style

quadrotor boasts great maneuverability to execute aggressive flight patterns and enable the un-

obstructed placement of sensors such as cameras or scanning laser rangefinder.
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Figure 2.28: Model verification using aileron perturbation.
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Figure 2.29: Model verification using elevator perturbation.
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Figure 2.30: Model verification using rudder perturbation.
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Figure 2.31: Model verification using throttle perturbation.
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2.6 Development of an Unconventional UAV

Development of unconventional UAVs have made major progress due to the huge improvements

in research areas such as UAV flight control theories, MEMS, electronic devices and material

science. Unconventional UAVs have great potential applications in military and civilian oper-

ations, especially where there are severe constraints in their operating environment. In tasks

such as outdoor surveillance, the ability to perform long endurance or long distance missions

usually requires the UAV to perform cruise flight. Efficient cruise flight is usually achieved

with UAVs having airfoils that have good lift to drag ratios. However, there are cases where

there are insufficient take-off space available for standard airplane-type UAVs to be launched

and recovered. On the other hand, the capability of VTOL and hovering is beneficial to most

surveillance missions as it allows for a close up static surveillance view of the intended target

instead of circling around the target site as with most fixed-wing UAVs. A hybrid UAV with

both cruise flight and VTOL capability will be very useful in such tasks. A few prototypes of

hybrid aircrafts fitting these tasks have been designed in the past, such as the Tail-sitter airplanes

developed by the University of Sydney and the University of Compiegne [46], the hybrid UAV

developed by icarusLabs [47] and the tilting-wing quadrotor–SUAVI [48], developed by Hancer

and his teammates. However, these existing designs are usually only optimal in one mode of

flight and largely sacrifice the performance of the other mode. For example, the main structural

design of SUAVI ensures its stable flight in the VTOL mode. However, its airfoil structure de-

signed for the cruise mode is just four small pieces of airfoils attached to the tilting wings. Its

cruise mode is far more inefficient when compared to conventional airplanes.

The ideology for a true hybrid UAV was one that allows the UAV to achieve optimal flight

performances in both VTOL and cruise mode. In the rest of this chapter, we highlight the design

and development methodology that enabled us to rapidly develop our unconventional UAV, “U–

Lion”. U–Lion is the preliminary prototype developed which not only has two modes of flight,

but is also capable of restructuring the platform shape by folding or expanding its wings. This

special design aims to achieve stable and efficient flight in both VTOL and cruise modes.

2.6.1 Design Methodology

Our design methodology with reference from Cai et al. [38] was an iterative way of four steps

shown in Fig. 2.32. The first step was overall layout design, which includes the brainstorming
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Figure 2.32: U–Lion Design Methodology.

process, aircraft configuration establishment and weight estimation. The second step includes:

(I) Wing design, in which we designed the wing based on parameters that can satisfy our re-

quirement for the lift force. (II) Propulsion design, in which we designed the propulsion system

comprising rotors and gimbals. (III) Internal mechanisms design, where several mechanisms

were designed to realize reconfigurable wings, adaptive CG and canard wings. The third step

was generating the computer-aided design (CAD) and computational fluid dynamics (CFD)

analysis. This step allowed us to realize and validate our design virtually. We designed all the

components and parts for our UAV in detail, and exported the geometry to the CFD software to

validate their aerodynamic performance. We may have several iterations in this step until all of

the design specifications are satisfied. The last step is implementation and flight test. Carbon

fibre and Expanded PolyOlefin (EPO) foam were used as the materials for U–Lion because of

their low weight and good structural characteristics. Flight tests were then conducted for our

U–Lion including VTOL tests and fixed-wing tests until the platform’s flight performance meets

our expectation.

The design of this unconventional UAV was motivated by the requirements of unconven-

tional UAVs with the capabilities of VTOL, hovering, as well as long-range, high-speed flight.

The requirement of VTOL leads to our design incorporating the features of rotary propulsion

instead of the very popular flapping-wing mechanism found in recent research [49], [50], [51].
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For the rotary propulsion approach, single-rotor helicopter is the most conventional and mature

platform, applied to both research and practical cases. The rotating torque produced by the

main rotor is countered by the tail rotor mounted with a specific distance from the main rotor.

However, the complexity of the swash-plate mechanism makes the single-rotor propulsion d-

ifficult to be implemented. Another approach is the use of co-axial rotary propulsion, which

makes use of two contra-rotating motors to counter the torque, providing a clean and vectorized

thrust. The direction of the vector thrust is controlled by a gimbal mechanism activated by two

electric servos, whereby the pitch and roll channels are mechanically decoupled. The yawing

motion is achieved by the difference of the upper and lower rotor rotational rates. There are also

some other hybrid aircrafts adopting multi-rotor system as their propulsion methods. The Tac-

tical Utility TU-150 from Rheinmetall Airborne Systems, with two propeller blades mounted

on its wing tips, is capable of hovering and cruising at 120 knots for up to eight hours. Some

research groups take the quad-rotor design as the VTOL scheme, distributing four rotors on the

wing and fuselage. Certain rotors are able to tilt forward to provide propulsion for fixed-wing

flight. However, limited by thrust provided and weight budget, the multi-rotor option, subjected

to low efficiency and large weight, is not an ideal choice. With these considerations, the vector

thrust with a gimbal mechanism outperforms other approaches with regards to weight, design

complexity and energy efficiency.

The mission of long-range flight and high cruising speed brings about several problems.

Wing shape, configuration and its layout are main factors that affect the efficiency, which are

relative to the endurance, maximum velocity, as well as the maneuverability.

The wing shape is typically defined by aspect ratio. The aspect ratio is a measurement of

how long and slender the wing appears when seen from above. Generally, wings are catego-

rized into low, moderate and high aspect ratio according to different length-to-breadth ratio.

Airplanes with low aspect ratio wings are more structurally efficient and have higher instanta-

neous roll rate. Low aspect ratio planes allow for high and ultra high speed, and more aggressive

maneuverability. The moderate aspect ratio wings are made for most of the general purpose air-

crafts with requirements on moderate velocity and endurance. For the high aspect ratio wings,

with a long and slender appearance, they are applied to the aircrafts capable of long range and

extremely stable cruise flight due to aerodynamical efficiency of the wings and less induced

drag. For this unconventional UAV, the moderate aspect ratio (between 2 to 7) are selected due

to the tradeoff between high speed and long endurance.
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Wing sweep angle is one of the main factors that affect the aerodynamic characteristics

and efficiency of wings. The straight wings are the most structurally efficient ones that are

adopted by the majority of low-speed aircraft designs. Some wings sweep forward from the

root to the tip to avoid tip stall problems and reduce tip losses, while forward swept wings are

subject to aeroelastic flutter. The example of forward swept wings can be found on the design

of Su-45 Berkut. However, swept wings aircraft are often developed with the wings sweeping

rearwards from the root to the tip. At high speed range, the swept wings have lower drag so

that the aircraft is provided with high maneuverability. Thus, in order to achieve both long

endurance and high speed within one platform, the variable sweep wing is chosen to make the

wing positions configurable at different occasions to suit different operational needs. A four-bar

mechanism was developed to meet the requirement of wing repositioning in our design and will

be describe in Section 2.6.2.

2.6.2 Design of U–Lion

Figure 2.33: CAD drawing of U–Lion in cruise mode.

Wing Design

Wing design is the most crucial part for an aircraft design, as the lift created by the wings needs

to exceed the gravitational force by around 50% to provide enough control margin. To describe

the performance of wings, several parameters are generally used including the lift coefficient

CL, drag coefficientCD and wing loading. These characteristics are affected by aircraft forward

velocity, angle of attack (AOA) and wing airfoil shape [52]. The following formulae represent
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Figure 2.34: CAD drawing of U–Lion in hovering mode.

the lift coefficient and drag coefficient,

CL =
2L

ρv2A
, (2.23)

CD =
2Fd
ρv2A

, (2.24)

where L is the lift force, Fd is the drag force, ρ is the mass density of the fluid, v is the speed of

the object relative to the fluid, which is actually flight speed, and A is the reference area, which

is the wing area.

Aerodynamics analysis

The aerodynamics analysis is based on empirical methods for the airfoil. The wing parameters

are shown in Table 2.7. To achieve high flight efficiency in cruise flight, we adopt the notion

from eagles with high aspect ratio wings. “Clark Y” airfoil is selected as our choice because of

its great performance in the low-speed range.

Table 2.7: Wing parameters for fixed-wing configuration.

Parameter Value

Reference wing area 0.36 m2

Wing span 1.8 m
Wing chord length 0.2 m
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In the condition of 8 m/s flow velocity and 10◦ AOA, the Reynolds number is:

Re = ρV l/µ = 1.1× 105, (2.25)

then the lift coefficient of Clark Y airfoil is estimated to be 1.3 using lift and drag coefficient

curves generated by the Profili software, which is shown in Fig. 2.35. Hence the lift force can

be calculated as:

L =
1

2
ClρV

2S = 19.3 N, (2.26)

Assisted by the vectoring thrust provided by the coaxial propeller and lift force from the

fuselage, the lift force from the wings is sufficient to support the 2 kg weight of U–Lion in

cruise flight.

Figure 2.35: Lift and drag coefficient curves of Clark Y airfoil when Re = 1.1× 105.

Vector Thrust Design

Since U–Lion was designed to achieve VTOL, hovering, and cruise flight capabilities, we re-

quire the thrust mechanism to be designed with the following features:

1. For VTOL mode, the thrust is enough to lift the gross take-off weight of the aircraft.
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2. For full-envelope VTOL mode control, 3-axis attitude control should be realizable includ-

ing pitching, rolling and yawing motions.

3. For cruise mode, the mechanism is able to assist cruise flight in fixed-wing mode.

Figure 2.36: The self-customized contra-rotating motor.

The overall take-off weight inclusive of the battery was estimated to be 2 kg. Thus, the

co-axial contra-rotating rotor must be able to provide at least 3.5 kg thrust for the purpose of

attitude control and maneuverability. After surveying commercial-off-the-shelf (COTS) brush-

less motors, a brushless motor with 1100 Kv was selected to build the contra-rotating rotor. It is

shown in Fig. 2.36 that the shaft in the upper motor was removed and an extended lower motor

shaft was used in its stead. A bearing was inserted between the upper motor and the lower motor

shaft to realize the free movement between the two rotors. A 11× 7 pusher propeller was fixed

onto the shaft and a smaller counter-clockwise 10 × 5.5 propeller was screwed on the upper

motor. In the hovering condition, the torque of each rotor was counterbalanced with the same

revolutions per minute (RPM) and yawing motion was created with the difference between the

upper and lower rotor. As shown in Fig. 2.37, for pitching and rolling motions, a gimbal de-

vice was installed to realize the vector thrust pointing to any desired direction. An aluminum

inner ring was fastened with the outer ring by two bearings between them and the outer ring

was assembled on the top of the aircraft. Both of the gimbal rings were attached with a linkage
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Figure 2.37: U–Lion propulsion system.

controlled by a servo. The angle of the servo horn could be adjusted to realize the required angle

of the gimbal ring which results in a full-envelope control of the UAV. With this vector-thrust

contra-rotating motor, x-axis and y-axis rotating motions are realized. To create a greater yaw

motion, two rotating canard wings were designed in the down-flow areas of propellers to assist

yaw control in VTOL mode.

Reconfigurable Wing Design

The tail-sitter is capable of two flight modes: cruise flight mode and VTOL mode. For cruise

flight mode, a larger wing span is preferable to generate more lift at a lower speed. For VTOL

mode, the aircraft has to maintain a small footprint to reduce the effect of wind disturbance.

The fully extended wing in VTOL mode also makes it harder for the vehicle to maneuver in

its heading direction. Keeping this trade-off in mind, we came out with a reconfigurable wing

design which extends the wing in cruise mode and retracts the wing in VTOL mode. To keep the

system structure simple and minimize the platform weight, the reconfiguration is implemented

using a four bar linkage design [53]. The design procedure and implementation details will be

covered in this section.

54



Four-bar Linkage Design

The design of a four-bar system involves the determination of each of the four bars’ length

subject to a set of constraints. In this design, we have the following constraints:

1. Single servo driving: To simplify the system structure and reduce the weight of the

system, we design two sets of four-bar linkage system which use only one driving servo.

As shown in Fig. 2.38, there are two sets of four bar linkage mechanisms, {OABE} and

{OCDF}. The three revolute joints (O, E, F ) are fixed to the air frame. Joint B and

D are attached to the two sets of wings. While the servo drives the bar CA to sweep a

certain angle around joint O, both EB and FD will change accordingly, adjusting the

wings’ spanning angle.

2. Minimum load on servo: In order to exert minimum load on the servo barOA, especially

when the wings are fully extended, one extreme position is set to the position where the

rocker OA and the coupler AB are co-linear with each other seen in Fig. 2.39. In this

condition, the load induced by the right wing are compensated by the one from the left

wing. This corresponds to the case when the wings are fully extended. In the other

aspect, in order to effectively extend the wings from vertical mode to horizontal mode,

the transmission angle between AB and EB must be defined specifically. We design the

transmission angle to be in the range of [45◦, 90◦].

3. Wing sweeping angle: To fully extend and retract the wings between horizontal mode

and vertical mode, the sweep angle of the wing are designed to be 90◦, denoted by 2β in

Fig. 2.39. What’s more, the sweeping angle of the rocker OA is defined as φ and set to

be 90◦. The two extreme positions of the reconfigurable wing are labeled as OABE and

OA′B′E in Fig. 2.39.

In practice, referring to Fig. 2.38, the distance between revolute jointE and F is determined

by the overall vehicle frame size. The length of the rocker arms OA and OC are defined by

the available servo horn length. With all the above constraints, we could derive the length of

linkage bar system as:

EB =
0.5EF ·OA

(EF −OA ) sinβ
(2.27)

AB = 0.5EF −OA+ EB sinβ (2.28)
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Figure 2.39: Parameter determination of four-bar linkage.
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With the specified constraints and the Eq. 2.27 and Eq. 2.28, we could derive the parameters of

four bar linkage system as shown in Table 2.8.

Table 2.8: Parameters of four bar linkage.

Parameter Value

OA/OC 38 mm
AB/CD 109.4 mm
EB/FD 31.68 mm
EF 250 mm
Rocker Sweeping Angle 90 deg

Four-bar Linkage Implementation

Figure 2.40: Extended wing configuration.

With the designed four-bar linkage parameters determined, we build the reconfigurable wing

structure as shown in Fig. 2.40 and 2.41. Fig. 2.40 illustrates the case when the wings are fully

extended for cruise flight and Fig. 2.41 demonstrates the retracted wing configuration for VTOL

mode.
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Figure 2.41: Retracted wing configuration.

2.6.3 Adaptive Center of Gravity

The CG of an aircraft should be located around the center of lift of the wings during cruise flight.

On the other hand, during VTOL and hovering, the CG should be located as far away from the

propellers as possible, based on our experiences from flight tests. The adaptive CG mechanism

is able to reposition the CG of the aircraft to a certain extent, so that the CG requirements for

both cruise and VTOL/hovering could be met.

Figure 2.42: Adaptive CG mechanism.
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CG position is adjusted by moving the heaviest component on the aircraft, i.e. the battery.

It weighs 300 g, about one seventh of the total mass of the aircraft. During cruise flight, the

battery is located immediately after the central plates. The separation between the central plates

and the tail, i.e. the maximum distance that the battery can travel, is 40 cm. By pushing the

battery all the way from the center to the tail, the CG of the aircraft can be pushed towards the

tail by 5 − 6 cm. The mechanism to move the battery consists of a pulley near the tail, a servo

motor near the propeller, a belt and a slider on the fuselage. The battery is strapped to the slider

which is attached to the belt. The servo turns the belt, and the battery moves accordingly.

Although it is not the definitive solution to the CG problem between transitions, the adap-

tive CG mechanism has proved to be helpful. During our flight tests, significant improvement

in hovering stability is observed after installing the mechanism. Stability in VTOL/hovering

modes turns out to be affected by more than CG position alone. Large surface area, inadequate

power from propeller and other unknown factors could all have contributed to the instability,

which is why the adaptive CG mechanism is only a complementary solution to the stability

problem. The current version of adaptive CG mechanism is a promising solution to the stability

problem between transitions. Further improvement in the mechanism, as well as a more thor-

ough understanding of the causes of instability, are necessary to completely address the stability

issue.

2.6.4 Material Stress Analysis

Based on flight tests, the most vulnerable part of the fuselage is determined to be the central

plate. A preliminary structural analysis of the central plate is thus conducted.

Figure 2.43: Free body diagram of the wing.

As shown in Fig. 2.43, the reactions at the wing-body joint consist of one force and one mo-
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Figure 2.44: Fixtures in FEM Simulation.

Figure 2.45: Load in FEM Simulation.
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ment. Assuming that sections of the plate glued to carbon fiber square tubes are fixed (Fig. 2.44),

and that load is applied to the plate at where the bearing holder and the plate contact (Fig. 2.45).

The load on the plate is equivalent to 10 N of lift at the center of each wing (mg/2 = 10 N in

Fig. 2.43) with a safety factor of 1.5. With this set-up, a Finite Element Method (FEM) sim-

ulation is carried out using SolidWorks Simulation. As shown in the Fig. 2.46 and Fig. 2.47,

the maximum stress is well below the yield strength of carbon fiber, and the displacements are

negligible.

Figure 2.46: Stress simulation conducted on central plate.

A complete FEM simulation, however, is necessary to get a thorough understanding of the

behavior of the fuselage when loaded. That analysis is beyond the capability of Solidworks

Simulation, and thus requires more sophisticated FEM software and techniques [54].

2.6.5 Electronic Configuration

The electrical components are listed in Table 2.9. The motor is a self-customized contra-rotating

motor with maximum lifting force generated at around 35 N. The two electrical speed controller

(ESC) are chosen to be DualSky 40XC4018BA for the accuracy of the controlling the speed of

the motors. The weight of the ESC is 30 g and the maximum current allowed is 40 A which is

suitable for the control of the rotating motor.

In this U–Lion design, there are quite a few actuators with different requirements. Based on

the requirements, different servos are chosen for minimum weight and larger safety margin. The
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Figure 2.47: Displacement simulation conducted on central plate.

Table 2.9: List of electrical components.

Component Part Number

Motor Himax CR3516
Propellers APC 11×5.5P & 10×7
ESC Dualsky 40 XC4018BA
Gimble servo Airtronics 94820 Servo
Four bar mechanism servo HS7950TH
Wing control surface servo HS-65MG
Tail control surface servo HS-85MG
Canard servo HS-65MG
Gyro Futaba GY240
Receiver Futaba R6014HS
Transmitter Futaba 14FG
Battery 4S 2200mAh

specifications of the selected servos are listed in Table 2.10. The servo used for supporting the

gimbal mechanism is selected to be the Airtronics 94141Z. The gimbal support servo must have

a fast response for good controllability and the torque has be large enough for supporting the

gimbal movement. Since the maximum tilting angle of the gimbal is 30◦ and the radius of the

gimbal is 3 cm the maximum torque generated to the gimbal is approximately 2× sin 30◦×3 =

3 kgcm. The selected Airtronics servo fulfils the requirement with maximum torque of 4 kgcm

with a response speed of 0.16 sec/60◦. The weight of the Airtronics servo is 32.9 g which is

light for U–Lion.
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Table 2.10: Specifications of servos.

Component Part No. Torque Speed Weight
(kgcm) (sec/60◦) (g)

Gimble servo Airtronics 94820 4 0.16 32.9
Four bar servo HS7950TH 29 0.15 68
Wing control servo HS-65MG 1.5 0.11 10
Tail control servo HS-85MG 3.5 0.14 21.83
Canard servo HS-65MG 1.5 0.11 10

The wing control surface servos and canard servos are selected to be HS-65MG servo. The

main reason to select this servo is because of its light weight. The HS-65MG servo only weighs

10 g while providing a relatively high torque of 1.5 kgcm and a fast response speed of 0.11

sec/60◦. For the tail control surface servo, since the tail control surface requires larger torque

and more stable response, the servo is selected to be HS-85MG. The HS-85MG servo has a

higher torque of 3.5 kgcm and the weight is 21.83 g.

The servo for the four bar mechanism is selected to be HS7950TH which has a high torque

and low weight. Based on the four bar mechanism calculation and the weight of the wings,

in order to support the foldable wings, the servo has to provide a torque of at least 15 kgcm.

The HS7950 servo could provide a torque of 29 kgcm which fulfils the requirement with a

safety factor of around 2. The weight of the servo is 68 g which is lower than other servos that

have similar torque. The reaction time for the servo is 0.15 sec/60◦ which provides a prompt

response for the wing folding. The main controller for the VTOL mode is the gyro controller,

which serves as a proportional controller for the attitude control. The gyro is selected to be

Futaba GY240. The gyro has a very accurate gyro sensor and fast controlling rate (70 Hz)

which is suitable for U–Lion.

2.6.6 Control Modes

The control methods for VTOL mode and cruise flight mode are quite different for a UAV.

For conventional VTOL UAV, such as helicopter or co-axial helicopters, the VTOL six degree

control is achieved by varying the angle of wing trust. However, for the fixed wing plane, the

motion control is achieved by the control surface on the wings or the tails. The difficulty of

unconventional UAV with VTOL and cruise flight ability lies greatly in how to combine the two

control modes as well as the transition between the two modes. In our UAV design, we adopt
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Figure 2.48: The control circuit of U–Lion.

the vector trust for VTOL control and control surface for the cruise flight control.

The control involves three modes of control, i.e. VTOL mode, fixed wing mode and the

mixed control mode. The U–Lion is controlled manually at the current stage. The onboard

electronic circuit mainly consists of a receiver and extending components, as shown in Fig. 2.48.

The control logic is programmed in the transmitter as shown in Fig. 2.49. Defining the global

coordinate as the standard North-East-Down (NED) XYZ frame with X axis pointing north, Y

axis pointing east and Z axis pointing down. VTOL flight requires the motor to be pointing in

the negative Z direction and cruise flight requires the motor pointing in XY plane. Defining the

local frame of U–Lion to be (xlocalylocalzlocal) with zlocal axis pointing down, ylocal axis pointing

to the right wing and parallel to the XY plane, xlocal axis perpendicular to the y axis and z

axis following the right hand rule. The coordinate system is shown in Fig. 2.50. Due to the

special tail sitter design, we can see that the pitch, roll and yaw movement agrees in both VTOL

mode and cruise mode. Thus it allows a smooth transition in control signals between VTOL

and cruise mode. This results in a clear control logic for manual control and paves the way for

future automated control.

For the VTOL control mode, the main controller for the VTOL mode is the gyro controller,
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Figure 2.49: The control logic of U–Lion.

which serves as a proportional controller for the attitude control. Three gyros are used in U–

Lion, two of them are sensing the pitch and roll movement in VTOL mode. They are connected

to the servos supporting the gimbals as shown in Fig. 2.36. The gyro will sense the rate of the

attitude change in each of the channel and feedback to the servo to change the direction of the

trust which stabilizes the UAV and control the attitude for desired motion. The third gyro is

placed to sense the yaw movement of the UAV. The raw control signal generated by the yaw

gyro is then mixed with the throttle input signal and sent to the contra-rotating motors to control

the yaw and heave motion in the VTOL mode.

In the fixed wing mode, the wings are reconfigured into the horizontal position. The vector

trust is fixed in vertical position and the control is achieved by changing the control surface on

the wings and the tails. In this way, after transiting into fixed wing mode, the plane can just fly

similar to a normal fixed wing plane.

The mixed control mode is the one that combines the above mentioned two methods. The

vector trust will change its direction and the control surface can vary to assist the control in both

VTOL and fixed wing mode. The canard will assist the yaw control in the VTOL mode; the

variation of the tail control surface will assist the pitch control so as to achieve a more stable
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flight performance and better control performance. In the fixed wing flight, the variation of the

vector thrust system will allow for a more agile motion control. The plane could have a more

aggressive control performance.

The transition between VTOL mode and cruise mode requires the U–Lion to transform

from vertical flight into horizontal flight. The mixed control mode serves as an important bridge

between VTOL mode and cruise mode. The change of pitch angle of the vector trust will push

the head down and the elevator on the tail also assists this transition process. The control surface

on the wings will help to stabilize the UAV during transition. After transition, the wing and tail

control surfaces can effectively control the UAV and the control mode is switched to cruise

mode.

2.6.7 The 2nd AVIC Cup - International UAV Innovation Grand Prix

The 2nd AVIC Cup International UAV Innovation Grand Prix (abbr. UAVGP) is a large-scale

biennial aviation event authorized by the Ministry of Science and Technology, and co-organized

by the Aviation Industry Corporation of China (AVIC) and Chinese Society of Aeronautics and

Astronautics (CSAA), hosted by AVIC Culture Co. Ltd (ACUL). As an aviation mega festival,

UAVGP provides an opportunity to show innovative ideas and new-technological works, as well

as act as a platform of international communication for individuals and groups all over the world.

The UAVGP comprises several different competition categories such as the Athletic Grand

Prix, the Creativity Grand Prix and the Air Show competition. U–Lion was registered into the

Creativity Grand Prix along with 76 other teams. In the Creativity Grand Prix, competitors had

to design a new type of aircraft that has unique characteristics and prove that it was capable of

stable flight. During the competition, the different teams all exhibited their platforms and while

there were a few really novel platforms, a lot of platforms could not perform due to malfunction

or crashed during flight. U–Lion performed flawlessly and demonstrated its flight capabilities

of VTOL then transiting to cruise mode before hovering and finally landing. The NUS team

achieved 11th position out of 76 teams and garnered the New Innovation Star Award for U–

Lion’s unique features.

The flight on the competition day at Beijing is shown in Fig. 2.51. The subfigures in the

figure are cropped from the video taken on the day with 0.25 seconds time difference between

each frame. From the figures we can see a very smooth transition between VTOL mode and

cruise mode. The flight shows very good dynamic performance of the U–Lion.
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Figure 2.50: The coordinate definition of U–Lion.
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Figure 2.51: U–Lion displaying wing reconfiguration on the competition day.
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Table 2.11: U–Lion Mark III Specifications.

Specification Value / Unit

Weight 2.2 kg
Max Thrust 40 N
Max Cruise Speed 10 m/s
Flight Endurance 10 mins
Dimensions 2.2 m× 0.9 m× 0.3 m

In this section, we presented the development and implementation of the U–Lion. U–Lion

has been designed with a reconfigurable wing and a tail-sitter structure, which combines the

advantages of a fixed-wing plane and a rotor helicopter effectively. During the competition,

U–Lion has demonstrated that it could transit from vertical takeoff to a hovering stage before

flying in cruise mode to realize efficient long duration flight. U–Lion also performed well in the

creative category with the special internal designs that empowered its capabilities. These are

namely, the reconfigurable wings, the adaptive center of gravity and the unique contra-rotating

thrust-vectored propulsion system.

Further experiments are in progress to obtain a reliable and accurate dynamic model of the

U–Lion such that we can fulfill fully-autonomous flight in the future. In addition, we intend

to implement intelligent algorithms such as vision-based techniques in obstacle avoidance and

target tracking to allow the U–Lion to be used in multi-task autonomous missions.

2.7 Conclusion

In this chapter, we described in detail the methodology used in the development of our platform

which covers the design and implementation of the hardware, avionics and sensor systems.

The chapter then covered in detail the modeling of the quadrotor platform which derives the

mathematical model of the quadrotor through combining aerodynamic forces and blade theory.

Many of the methods depicted are essential to the successful modeling and system identification

of the quadrotor and this was proven with the model validation experiments conducted. The last

part of the chapter goes into details on the development of an unconventional UAV which was

later verified in the 2013 Beijing UAVGP competition. Through this chapter, the reader is able

to fully understand the theory and experimental requirements to the successful development of

UAV platforms.
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Chapter 3

Vision-based Obstacle Detection

3.1 Introduction

UAVs that fly with a low altitude will almost always encounter obstacles in its flight path. The

obstacles present in the UAV’s operating environment threatens the UAV’s capability to com-

plete its mission. Therefore, it is imperative that UAVs have a form of obstacle detection and

avoidance scheme to ensure its continued survival in these environments. Many current UAVs

lack this obstacle detection and avoidance capability and mostly rely on the operators to plan a

path that is free of obstacles prior to the start of its mission. However, obstacles exists in every

environment and it is almost impossible for operators to have any precedent knowledge on new

obstacles that may surface during the mission. As such, many long ranged UAV missions still

require operators to be ever vigilant and reactively control the UAVs to avoid any possible ob-

stacles. This chapter proposes the use of vision sensors as the primary sensor of choice for the

detection of either generic or specific obstacles.

Figure 3.1: PointGrey Bumblebee2 stereo camera.
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From literature, one of the most robust vision system is a stereo vision system [55] where

after calibration is able to output obstacle’s position with respect to the camera frame. One such

camera system is the PointGrey Bumblebee2 stereo camera as show in Fig. 3.1. We have also

built our own customized stereo system which give us the liberty to adjust its baseline based on

different uses. Fig. 3.2 shows our stereo vision system and with it mounted on our quadrotor

UAV. Stereo vision algorithms also do not have the distance scaling problem as compared to

monocular algorithms [56] which require complex filtering and other sensors to correct its scal-

ing problem. However, as with most vision-based methods, the accuracy of the vision sensors is

not comparable to scanning lasers and its error will have to be addressed in Section 3.2 before

going into some of the obstacle detection algorithms developed. Apart from stereo vision based

algorithms, we will also explore the use of monocular vision as a way to detect depth of our

obstacles in Section 3.4.

Figure 3.2: Left: Customized stereo camera, Right: Stereo camera mounted on Quadrotor.

3.2 Stereo Triangulation Error Model

Stereo vision techniques arose from the similarity that drives the stereo imaging capability that

our eyes give us. It aims to emulate this capability through the use of computational systems and

cameras to mimic that which nature already has. Stereo vision allows the use of rectified images

to calculate a disparity map by applying the Sum of Absolute Difference (SAD) windows. The

disparity map could then be projected into 3D space such that almost all image features will

have an accompanying 3D coordinate. The flow of stereo vision calculation is observed below:

Stereo Vision Algorithm Flow

1. Calibration: Using camera calibration techniques, we could obtain the camera intrinsic
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parameters. These parameters consist of radial and tangential distortion values as well as

camera intrinsics such as focal length and image size.

2. Rectification: Warps the left and right images of a stereo pair such that their epipolar

lines are row aligned. These rectified images signify the images you will get if a perfectly

set up pair of cameras is achieved in a stereo rig. The images have their lens distortion

removed and results in a perfect image of the surrounding.

3. Correlation: A disparity map is constructed by locating matching pixels in the left and

right images. This is usually achieve by using the sum-of-absolute differences window to

search along the epipolar line until the matching pixel is found. The difference in pixel

coordinate is then recorded as the disparity of the image. The calculated disparity at each

pixel is proportional to the inverse of the range of the scene.

4. Triangulation: With the known geometric arrangement of the cameras as found in the

calibration portion, we can then turn the calculated disparity into distances relative to the

camera. This is through the process of triangulation.

In a stereo system, errors in measurement can come from many sources, including quanti-

zation errors of the image, photometric and geometric distortion of the camera and numerical

errors in the matching algorithm. These errors in turn cause true locations of perceived feature

points to be inferred with some error. In a stereo camera setup, two cameras are usually placed at

offsets of baseline distance,B, from a coordinate system centered with reference to the cameras.

Assuming that the stereo camera setup is calibrated and that the images captured are rectified

accurately, the projections of the same 3D point in the left and right images lie on corresponding

epipolar lines. If the stereo camera setup is in the normal (left-right) camera configuration, the

epipolar lines will coincide with the horizontal (v) coordinate lines. Therefore, for a given pixel

at position (u, v) in the left image where u represents the x−axis and v represents the y−axis

in the image plane, the search for the corresponding pixel in the right image will be along the

1D direction of (i, v) where only i varies accordingly to the number of columns present in the

image.

A 3D point P , in the world coordinate is captured by the stereo camera and projects onto

the left image at xl and also projects onto the right image at xr. Single pixel values are unstable

as matching primitives, so small windows around the pixels are usually selected to act as a

descriptor for the feature point of interest. For the fixed pixel on the left image at xl, the search
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is established on the right image along the horizontal epipolar line until a neighborhood intensity

pattern is found to be similar to the window descriptor of the left image pixel. Due to the above

mentioned errors, the stereo camera system will determine xl and xr with some errors.

Figure 3.3: Triangulation error uncertainty.

Fig. 3.3 illustrates the errors caused by image quantization where because of the resolution

limits, the estimated location of point P can lie anywhere in the shaded region surrounding the

true location. Random effects can cause this region to have boundaries that are less sharp but

the general shape will be similar.

There are generally two kinds of errors involved in stereo triangulation. They are namely

matching correlation errors and estimation errors. In the section below, we will go about looking

in detail how these errors are described and modeled.

3.2.1 Stereo Correlation Errors

Correlation errors arise from where the matches between features are inaccurate thus resulting in

a wrong correlation match and wrong disparity value obtained. As mentioned in Section 3.2, the

correlation of features are usually obtained using search window masks. Larger stereo masks

will provide better accuracy but more smoothing of the 3D surface will be observed. From

experimentation, mask size 11 is a good compromise mask size which gives accurate readings
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as well as limited smoothing of the 3D surface to still produce pronounced surface details.

We have conducted an experiment to test the magnitude of stereo estimation errors. The

results are summarized in Table 3.1 and Table 3.2 below. The results indicate the standard

deviation of the disparity matching for estimation errors.

Table 3.1: Correlation accuracy results.

Resolution Correlation Accuracy

160× 120 0.10 pixels
320× 240 0.11 pixels
640× 480 0.10 pixels

Table 3.2: Correlation accuracy results for 320× 240 resolutions.

Stereo Mask Correlation Accuracy

5 0.18 pixels
7 0.18 pixels
9 0.14 pixels
11 0.11 pixels
13 0.10 pixels
15 0.10 pixels

From the tables, it is apparent that the correlation accuracy improves with bigger stereo

matching masks. Changing the resolution will not affect the correlation accuracy but will indi-

rectly affect the depth calculation as the camera intrinsics will be modified.

3.2.2 Stereo Estimation Errors

Estimation errors occur where the correlation match was correct but there are some errors in

estimating the position of the features thus resulting in an erroneous subpixel disparity value.

The accuracy of disparity calculations are very dependent on what the camera is being pointed

at, but it is generally 1− 2 mm at up to approximately 2 m.

In terms of testing and verifying the quality of the disparity calculations, it is very difficult

to do any absolute measurements - the reason for this is that the origin (0, 0, 0) of the camera

is unknown and can vary from camera to camera. The quality of disparity results will also vary

from environment to environment due to shadows and lighting conditions. However, determin-

ing the quality of disparity calculations in your environment could be done relatively in a couple

of different ways:
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Estimation Methods

1. Point Feature

(a) Point the camera at a feature.

(b) Determine the position of the feature relative to the camera.

(c) Move the feature a known amount and re-determine its location.

(d) Distance calculation and absolute error comparison.

2. Planar Surface

(a) Point the camera at a highly textured planar surface.

(b) Capture all of the points on the surface.

(c) Fit a plane to the points and then determine how far off each pixel is from the plane.

(d) Distance calculation and absolute error comparison.

The basic equations determiningX,Y, Z position of a feature point, P , in world coordinates

are:

u

f
=
X

Z
(3.1)

v

f
=
Y

Z
(3.2)

z

f
=
B

d
(3.3)

where d is the disparity value, (u, v) is the pixel position in the image relative to the image

centre, B is the stereo baseline and f is the focal length.

The tolerance in X,Y are determined by the calibration error p shown below:

∆X =
pZ

fx
(3.4)

∆Y =
pZ

fy
(3.5)

The tolerance of Z is obtained as shown below:
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δZ

δd
= −fB

d2
(3.6)

Substituting Eqn. 3.3 for d,

δZ = − Z
2

fB
δd (3.7)

where δd is the uncertainty in disparity. Therefore, for a given expected error for calibration

error, p and disparity error, δd, we can calculate the errors in position of the 3D point.

Figure 3.4: Image used for disparity error calculation.

We performed the above mentioned method of using a planar surface and a tree-trunk surface

for error verification with the experimental setup as shown in Fig. 3.4 and Fig. 3.5. Both of

the obstacles had highly textured surfaces which allowed a dense stereo correspondence to be

calculated. The 3D coordinates are calculated for each of the disparity obtained from the planar

surface and their values are then averaged to obtain a depth reading. The obtained depth readings

are then compared with that of the VICON Motion Systems data which represents the true

position of the test objects to obtain the absolute error for stereo triangulation. Fig. 3.6 and

Fig. 3.7 shows the comparison and absolute error data.
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Figure 3.5: Disparity map used for error verification.
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Figure 3.6: Depth data of “Board” obstacle and absolute error.
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Figure 3.7: Depth data of “Tree” obstacle and absolute error.
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It could be seen from the data that the error increases exponentially with distance. With a

stereo camera that has a baseline of 12 cm, it could be seen that the efficient working range of

the stereo cameras is only within 5 m. Within the working range, the absolute error for distances

calculated still ranges between 10 cm to 20 cm. One important observation to note is that for

any features detected out of the 5 m working range, there will be an error of more than 0.5 m.

These data could only be used as an approximation and is not recommended for use in more

intricate algorithms.

3.3 Stereo Vision Depth Map Estimation

Stereo vision allows the use of rectified images to calculate a disparity map by applying the Sum

of Absolute Difference (SAD) [57] window to search for matches throughout. This generates a

dense disparity map which we could use to obtain a dense depth map. A depth map is useful in

many applications such as 3D shape matching [58], 3D model learning [59] and also in our case,

obstacle detection. For most cases of obstacle detection, it will be advisable to have a generic

3D model of the obstacle such that the obstacle could be described clearly in 3D space.

Ol 
B 

Z 

Or 

f f 
x x 

P 

xl xr 

𝐶𝑥𝑙 
𝐶𝑥𝑟  

Figure 3.8: Calibrated and rectified stereo vision setup.

Eqn. 3.9 describes the basic relationship between distance of a feature with respect to its
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disparity. It is the basis of the generation of a 3D reconstruction or depth map. Assuming

that through accurate calibration of the cameras and the rectification of the images depicted

in Section 3.2, we will arrive at the setup shown in Fig. 3.8. The figure shows a point, P

observed by both the left and right cameras and have their corresponding pixel values of xl and

xr respectively. With a rectified image pair, the point will be observed in the same horizontal

axis in both images. The difference between both pixel values will be the disparity value, d =

xl − xr.

The depth Z could be found by similar triangles

B − (xl − xr)
Z − f

=
B

Z
(3.8)

Z =
fB

xl − xr
(3.9)

where f is the focal length of the camera,B is the baseline distance of the stereo rig and (xl−xr)

is the disparity calculated.

Stereo vision also allows us to be able to calculate points in three dimension. This is basi-

cally done by using the points’ screen coordinates and the camera intrinsic matrix to reproject

the points into 3D space. The reprojection matrix is:

Q =



1 0 0 −cxl

0 1 0 −cyl

0 0 0 f

0 0 −1/B (cxl − cxr)/B


(3.10)

Given a 2D homogeneous point and its associated disparity, d, we can project the point into

three dimensions using Eqn. 3.11.
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Q ·



x

y

d

1


=



X

Y

Z

W


(3.11)

The 3D coordinates are then calculated by dividing them by the weight,W : (X/W,Y/W,Z/W ).

With these set of 3D coordinates, we can generate a point cloud for every pair of stereo

calibrated images.

3.4 Monocular Vision Depth Estimation

In order to detect and avoid obstacles during flight, a depth-based obstacle detection algorithm

could also be used. Conventionally, computer vision techniques such as pattern recognition are

used for detection of objects and obstacles as mentioned in Section 3.7. However, in many sce-

narios, the environment consist of obstacles which are unknown. It is impossible to “pre-train”

the UAV to “recognize” all obstacles. Therefore, a depth-based 3D vision obstacle detection

method is used to compute the depth of the scene in front of the UAV. If the depth of a certain

part of the scene is less than a prescribed threshold, that portion is classified as an obstacle and

obstacle avoidance procedure is activated.

The main steps in the algorithm are feature extraction, feature matching, and depth estima-

tion. The reason to perform feature extraction and matching is to obtain the feature position on

the image, and to calculate the feature velocity on the image. The details of the depth estimation

will be given in the next section. The idea of depth estimation is structure from motion [60].

More precisely, if the state of the UAV can be measured and the image of a 3D point can be

matched between two images, the 3D position of the point can be determined. In obstacle

avoidance, we are more interested in the distance between the obstacle and the UAV, we focus

on how to estimate the depth of the 3D point to achieve this. The state (i.e., position, velocity

and attitude) of the UAV can be measured by GPS and inertial sensors.
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Figure 3.9: Reference frames involved in depth estimation. N: NED frame, B: body frame, C:
camera frame.

3.4.1 Monocular Depth Estimation Algorithm Design

The coordinate frames involved in depth estimation algorithm are given in Fig. 3.9. The notation

used are also given below.

• PC = [X,Y, Z]T : the coordinates of a 3D point P expressed in the camera frame. This

is the unknown variable we are going to estimate.

• ωC = [ωCx , ω
C
y , ω

C
z ]T : the angular velocity of the camera frame relative to the NED

frame, with coordinates expressed in the camera frame.

• vC = [vCx , v
C
y , v

C
z ]T : the linear velocity of the camera frame relative to the NED frame,

with coordinates expressed in the camera frame.

• p = [x, y]T : the image feature point of the 3D point on the ideal image plane (f = 1).

The angular rate ωB and velocity vB of the UAV resolved in the body frame can be obtained

from GPS and inertial sensors. Then ωC = RCBω
B , vC = RCBv

B , where RCB is the rotation

transformation from the body frame to the camera frame. The feature point position p can

be obtained from feature detection algorithms. The feature velocity on the image, ṗ, can be

computed based on optical flow.

The following depth estimation algorithm is valid only for static scenes without any dynamic

objects, i.e., ṖN = 0.

82



From

PC = RCN (PN − PNC0
) (3.12)

and

ṘCN = −[ωC ]×R
C
N , (3.13)

we have

ṖC = ṘCNP
N − ṘCNPNC0

−RCN ṖNC0

= −[ωC ]×R
C
NP

N + [ωC ]×R
C
NP

N
C0
− vC

= −[ωC ]×P
C − vC . (3.14)

The operator [∗]× converts a 3 × 1 vector to the associated 3 × 3 skew-symmetric matrix.

Expanding the above equation into components gives

Ẋ = −vCx − ωCy Z + ωCz Y

Ẏ = −vCy − ωCz X + ωCx Z

Ż = −vCz − ωCx Y + ωCy X. (3.15)

Substituting

x = X/Z (3.16)

y = Y/Z (3.17)

into Eqn. (3.15) yields

Ż = −vCz − ωCx yZ + ωCy xZ, (3.18)

which is equivalent to

Ż = (ωCy x− ωCx y)Z − vCz (3.19)
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On the other hand, we have

ẋ = (X/Z)′ (3.20)

ẏ = (Y/Z)′ (3.21)

Substituting Eqn. (3.15) into the above equation gives

 ẋ

ẏ

 =
1

Z

 −1 0 x

0 −1 y




vCx

vCy

vCz

+

 xy −(1 + x2) y

1 + y2 −xy −x




ωCx

ωCy

ωCz

 .(3.22)

The above equation can be rewritten as

 ẋ

ẏ

−
 xy −(1 + x2) y

1 + y2 −xy −x




ωCx

ωCy

ωCz


︸ ︷︷ ︸

b

=

 −1 0 x

0 −1 y




vCx

vCy

vCz


︸ ︷︷ ︸

A

1

Z
,(3.23)

which is in the form:

b = A
1

Z
. (3.24)

So the depth Z can be computed as

Zmeasure =
1

(ATA)−1AT b
. (3.25)

To summarize, we have

Ż = (ωCy x− ωCx y)Z − vCz + ε1 (3.26)

Zmeasure = Z + ε2. (3.27)

The Eqn. 3.26 is the process model of the depth Z. ωC and vC can be measured by GPS and

inertial sensors; x and y can be obtained from feature extraction. Eqn. 3.27 is the measurement

model of the depth Z. This measurement actually is a closed-form estimation of the depth.

However, since there are measurement noises in x, y ,ẋ, ẏ, ωC and vC , the closed-from esti-
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mation is corrupted by noises. So an optimal approach is to combine the process model and

measurement model together then apply the extended Kalman filter (EKF) [61] .

3.4.2 Monocular Depth Estimation Simulation Results

Simulations were carried out with aerial photos taken from Google Maps and they were arranged

into different scenarios to verify the proposed monocular depth estimation approach. In our

simulations, the depth of the scene is displayed as yellow numbers. Should the depth of the

scene be very far from the UAV and falls out of our obstacle threshold, the value of 10000 will

appear. This is an arbitrary value and is present to display that the particular location of the

scene is free of obstacles.

A few scenarios are depicted as follows:

1. Scenario 1 Assume that the UAV flies along a level straight line. The attitude including

heading angle and velocity are constant. The altitude of the UAV is fixed to 20 m.

2. Scenario 2 The UAV is performing a landing task. The attitude and velocity are constant.

But the altitude decreases continuously.

The depth estimation for Scenario 1 is given in Fig. 3.10. It can be seen that the depth

estimation is very accurate. The plan view images are purely simulated according to the sce-

narios shown above and the algorithm is able to obtain accurate results. The errors obtained

were less than 2 m which relates to a percentage error of less than 10%. In order to make the

depth estimation more robust, we divide the image into 4 by 3 grids. The average depth of each

grid is given by yellow numbers. The red number is the depth estimation for each feature point.

The red arrow indicates the optical flow of each feature. Although the depth estimation is more

robust across the whole image, there are times when a grid has very few feature points which

result in erroneous feature matching and thus causes spikes in error for up to 20%.

Fig. 3.11 illustrates how to use depth estimation to detect obstacles. In the lower two rows

of grids in Fig. 3.11, the depth are 20m. But the depth of the upper two rows of grids are very

large. Then we can claim that obstacles exist in the lower two rows of grids.

In the second scenario, the UAV was performing a gradual landing task. From Fig. 3.12

to Fig. 3.13, we can see the height of the UAV reducing as it gradually descends with time.

Overall, the depth can be estimated relatively accurately.
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Figure 3.10: Depth estimation in scenario 1.

Figure 3.11: Illustration on how to classify obstacles.
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Figure 3.12: Early frame captures of depth estimation in Scenario 2.

Figure 3.13: Near landing frame captures of depth estimation in Scenario 2.
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This method assumes the state of the UAV can be measured by GPS and inertial sensors

which we assume to be accurate here. The scene is also assumed to be static. Then an EKF based

depth estimation method is proposed to obtain a stable depth estimate. Simulations show that

the method can give accurate depth estimation. It is notable that the depth estimation inherently

is a structure from motion technique.

3.5 Stereo Vision General Obstacle Detection

With the implementation of Section 3.3, we are able to obtain 3D point clouds from every image

pair captured by the stereo camera. There are many uses for a 3D point cloud. One such use

is to obtain the motion estimation of the camera using algorithms such as Absolute Orientation

Calculation [62] where frame to frame motion is estimated by matching the features between

frames and obtaining the rotation and translation vectors of the camera which induce such a

change in relative position. This method for navigation will be covered in Chapter 5. Another

important use of a 3D point cloud is to detect obstacles which we will describe here.

In a cluttered indoor environment, obstacles exists in the form of tables, chairs and even

human beings. There is no fixed form for an obstacle, therefore, the algorithm we created for

obstacle detection is a generic one where any form of obstacles which are near to the camera will

be detected and segmented. This technique is robust to inaccurate UAV state readings and is also

able to detect obstacles that are dynamic which is very different from the algorithm discussed in

Section 3.4. The basic steps to our algorithm are shown below:

General Obstacle Detection Algorithm

1. Stereo Disparity Map: Using the disparity map generated from Section 3.3, a 3D Point

cloud could be obtained by using the disparity calculated and reprojecting it into world

coordinate using Eqn. 3.11. Fig. 3.14 shows a typical cluttered indoor environment and

its corresponding disparity map.

2. Voxel-Grid Filter: Voxel-Grid filtering is used to down-sample the 3D point cloud into

manageable data sets which are more computational efficient. The Voxel-Grid Filter sets

a specific minimum resolution dimension in the created 3 dimension space and collapses

all the 3D world points into that voxel space. Thereby reducing the resolution of the 3D

point cloud and reducing the computational load required for real-time computation.
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Figure 3.14: Left: Cluttered indoor environment, Right: Disparity map generated for indoor
environment.

3. Distance Thresholding: In stereo vision, the error in 3D estimation of world point, P ,

increases with distance relative to the camera center as described in Section 3.2. In ob-

stacle detection, the objects of interest are also relatively near to the camera. Therefore,

we used a simple Z-direction filter to isolate the 3D points of interests that are within a

fixed depth from the camera. This gives us more accurate readings and allow us to track

obstacles nearer to the camera better.

4. Contour Generation: The 3D points are further clustered into groups based on the K-th

Nearest Neighbour (KNN) [63] clustering algorithm and contours are created and drawn

in the image for better visualization for the user. The use of contours helps to filter out

noise which are created during the disparity map generation process. For general ob-

stacle detection, one is usually only interested in obstacles that of critical size. Contour

generation aims to help categorize the obstacles observed in a scene into different sizes.

Figure 3.15: Left: Cluttered indoor environment, Right: Obstacle classification with rectangular
bounding box.
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5. Obstacle Classification: Obstacles are classified by creating a bounding box around the

contour detected as mentioned above. In our classification, we create a 3D cylindrical

block around the detected obstacle and output the center position of the obstacle with an

accompanying radius and height which corresponds to the cylindrical shaped obstacle.

The UAV can then plan its path around this cylindrical obstacle as a safety distance could

be implemented into the classification of the obstacle. Fig. 3.15 shows the successful

implementation of this obstacle classification scheme.

Figure 3.16: Left: Outdoor forested environment, Right: Tree obstacles detected in forested
environment.

We have also implemented this obstacle detection scheme in a real-life outdoor environment

such as that of a forested environment as shown in Fig. 3.16. We are able to successfully

segment the obstacles in such an environment and classify the obstacles in our above mentioned

classification scheme. The obstacle detection capabilities of our algorithm in a real-life outdoor

environment are observed to be robust and accurate.

3.5.1 Stereo Depth Map Generation

In OpenCV [64], there are two main algorithms used for the calculation of dense disparity maps

in stereo vision applications: Block Matching (BM) [65] and Semi-Global Block Matching (S-

GBM) [66] methods. They basically try to find stereo correspondences between two rectified

images using Sum of Absolute Difference (SAD) windows. The Block Matching method is

a very fast algorithm but it will miss a lot of details if the image has a lot of areas with ho-

mogeneous texture. The Semi-Global Block Matching method is relatively slower than Block

Matching as it performs a global smoothing to the image and extrapolates correspondences in

areas with features are not very pronounce.
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Fig. 3.17 to Fig. 3.19 shows the raw image taken from the left camera and the stereo disparity

maps generated using both algorithms.

Figure 3.17: Unrectified image take with left camera.

Figure 3.18: Stereo disparity map obtained using SGBM.

After the calculation of disparity maps by the above mentioned methods, the disparity values

could be used to reproject the pixel coordinates of the features and their corresponding disparity

values into the 3D world coordinate with the Eqn. 3.11.

Using another library which could process large point clouds called Point Cloud Library

(PCL) [67], we could generate the point cloud visually and display it for users to manipulate.

Fig. 3.20 and Fig. 3.21 shows the stereo image and point cloud generated from it.
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Figure 3.19: Stereo disparity map obtained using BM.

Figure 3.20: Left image of stereo pair used to generate point cloud.
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Figure 3.21: Point cloud calculated and displayed in PCL.

3.6 Power Line Detection

In urban environments there exist obstacles that are potentially hazardous for a low flying UAV.

“Wire strikes” are the number one cause of fatal helicopter accidents. The operational safety of

UAVs in their environment is frequently overlooked but this is essential for mission completion.

Detection of power lines will be primarily achieved by using vision processing. Through the

understanding of how power lines appear in images, we designed an algorithm which could

create detection specifically for power lines. It is the implementation of a series of gradient

mask operators, image inverse thresholding, line-thickness filtering and segmentation that will

result in the detection of power lines in images.

Figure 3.22: Powerline image with noisy background.

During the research into power line detection, we noticed that powerlines vary in appearance

based on the different view perspectives. From a bird’s eye point of view, powerlines will appear

as near parallel straight lines. Tradition methods include Hough transform [68] which could
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correct discontinuities in the power lines detected to present a clearer image of the powerlines

and also form as a prediction on how far the powerlines might extend. However, this point of

view is not the view perspective a UAV will observe should it be flying into the powerlines.

What we conclude was that powerlines will be observed from a frontal view much like that

as shown in Fig. 3.22. We then investigated into the techniques used to segment the powerlines

from the image which will be covered in the rest of the section.

3.6.1 Convolution Filtering

Figure 3.23: Canny edge detector used on power line detection.

One of the first steps to the detection of powerlines will be to carry out the detection of

lines in an image. There are many forms of edge detectors with the Canny Edge Detector [69]

being one of the most well known. We performed the canny edge detection algorithm on a

sample powerline image as shown in Fig. 3.23 and found that if the background was very noisy,

the edge detector will generate much more false detections and will not aid our algorithm in

any way. Therefore, we decided to perform convolution filtering to customize a form of edge

detection that was suitable to our needs.

Convolution filtering is a neighbourhood-based operation in which the output image is ob-

tained by convolving the input with a kernel with a window size of m × n. This kernel is

centered at each pixel under consideration and shifts from the top left pixel to that of the bottom

right pixel of the image through iteration. The convolution of each pixel is given by:

g(x, y) =
m∑

u=−m

n∑
v=−n

f(x+ u, y + v)w(u, v) (3.28)

In our application, we will like to perform specific edge detection that was robust to noise.
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This meant that the kernel should be able to be configured for detection of edges either in the x or

y direction in images. The kernel should also be able to have a smoothing effect for noise and be

tunable for powerlines of different thickness. One very suitable kernel for this application was

the Sobel gradient operator [70]. The Sobel gradient operator is a well-known, non-linear edge

enhancement operator that could perform gradient detection in images which enhance edges

as well as perform smoothing operations in the process. The Sobel operator computes image

gradients over a 3 × 3 area and has the advantage of increasing the averaging of the sampled

image area. This creates the smoothing effect that is less sensitive to noise. Eqn. 3.29 and

Eqn. 3.30 describe the Sobel kernel used to detect horizontal and vertical edges respectively.

Figure 3.24: Sobel kernel filtering in δy.

Figure 3.25: Sobel kernel filtering in δx.

δf

δx
=


−1 −2 −1

0 0 0

1 2 1

 (3.29)

95



δf

δy
=


−1 0 1

−2 0 2

−1 0 1

 (3.30)

In Fig. 3.24 and Fig. 3.25, we have applied the Sobel gradient kernel to great success when

compared with the Canny edge detector. One can observe that the filtering has removed most

of the noise created by the background, leaving behind only the powerlines of interest. The

result from Fig. 3.25 is of particular interest in this topic of powerline detection and we use it to

progress further in our algorithm.

3.6.2 Line Segment Detector

Upon obtaining a filtered edge map from the above section, we will like to obtain the coordinates

of these edges and also to determine if these edges form lines that could possibly represent

powerlines. One particular parameter for powerline detection is the connectivity of the lines as

well as the curvature in which the lines represent. From inspection of powerline images, we can

see that powerlines usually form quadratic curves of varying curvatures. We will want to obtain

these points that describe the quadratic curves prior to applying curve fitting algorithms covered

in Section 3.6.3.

Figure 3.26: Line segment detector applied to powerline image.

Since a quadratic curve can be seen as many segments of straight lines, we apply a line

segment detector that could find these straight lines. LSD is a linear-time Line Segment Detec-
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tor [71] which gives subpixel accurate results without any prior tuning that could be applied to

any form of image. It controls the number of false alarms to an average of only one per im-

age and is based on the Burns, Hanson, and Risemans method [72]. LSD is aimed at detecting

locally straight contours on images which are then defined as line segments.

We obtained real images of powerlines in an outdoor environment and applied both the

convolution filtering as describe in Section 3.6.1 and LSD to the image. From Fig. 3.26, it can

be seen that the line segments were detected clearly and the powerline was detected as well.

Each line segment obtained includes the image coordinates of the start and end of the segment.

We then used this information to further filter out lines that were either too short or that they

were in a near vertical position. Thereby allowing line segments of only a specific gradient to

be obtained from our algorithm.

3.6.3 Least Squares Quadratic Curve Fitting

From the above sections, we observe that powerlines exhibit a straight line to a curve character-

istic usually in a noisy background. The curvature is determined by how much slack or tension

the powerlines are experiencing. Therefore, we performed a least squares quadratic curve fitting

to obtain the powerline curve accurately. A quadratic curve equation is shown below:

y = b0 + b1x+ b2x
2 (3.31)

To achieve the best fit of the quadratic curve with unknown parameters b0, b1 and b2 shown in

Eqn. 3.31, we will have to reduce the measure of the error between the data and the fit curve

through the simple generalization of the linear error function, Eqn. 3.32. This minimum error

is obtained when all the partial derivatives of the error function with respect to the unknown

parameters are all zero.

Error = ε(b0, b1, b2) =

n∑
i=1

(
b0 + b1x+ b1x

2 − y
)2 (3.32)
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The equation that we arrive at from evaluating the partial derivative with respect to b0 is,

∂ε

∂b0
=

n∑
i=1

2
(
b0 + b1xi + b2x

2
i − yi

)
(3.33)

∂ε

∂b0
= 2

[
nb0 + b1

n∑
i=1

xi + b2

n∑
i=1

x2
i −

n∑
i=1

yi

]
= 0 (3.34)

Dividing both sides and rearranging the equation results in the form,

nb0 +

[
n∑
i=1

xi

]
b1 +

[
n∑
i=1

x2
i

]
b2 =

n∑
i=1

yi (3.35)

Similarly, the partial derivatives with respect to b1 and b2 and equating to zero are shown re-

spectively.

[
n∑
i=1

xi

]
b0 +

[
n∑
i=1

x2
i

]
b1 +

[
n∑
i=1

x3
i

]
b2 =

n∑
i=1

yixi (3.36)[
n∑
i=1

x2
i

]
b0 +

[
n∑
i=1

x3
i

]
b1 +

[
n∑
i=1

x4
i

]
b2 =

n∑
i=1

yix
2
i (3.37)

Therefore, by using the linear algebra notation,


n

∑n
i=1 xi

∑n
i=1 x

2
i∑n

i=1 xi
∑n

i=1 x
2
i

∑n
i=1 x

3
i∑n

i=1 x
2
i

∑n
i=1 x

3
i

∑n
i=1 x

4
i

 ·

b0

b1

b2

 =


∑n

i=1 yi∑n
i=1 yixi∑n
i=1 yix

2
i

 (3.38)

Simplifying the notations, we obtain:

X ·~b = y (3.39)

By calculating the transpose of the X matrix and moving the terms to the righthand side, I can

get:

~b =
(
XTX

)−1
XT y (3.40)

where~b = [b0, b1, b2]T .
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3.6.4 Powerline Detection Results

We conducted experiments with images of powerlines obtained in outdoor environments and

captured the images using our self-built stereo camera featured in Section 3.1. In both images,

we applied the above mentioned algorithms to isolate and detect powerlines prior to calculating

the powerline’s 3D coordinates.

Figure 3.27: Powerline segmented from image.

Figure 3.28: Disparity found in powerline image.

From Fig. 3.27 and Fig. 3.28 you can see that we have successfully detected the powerline in

our image. Not only did we detect the powerline in the image, we could also obtain a disparity

image of detected powerline to gauge its exact 3D coordinates which could then be used for

performing obstacle avoidance.
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However there are still cases where the algorithm could not perform. For instance, if the

powerline exist in a background that is very complicated or filled with objects such as that

shown in Fig. 3.29, we will not be able to detect the powerline specifically. However, we can

still employ the general obstacle detection as explained in Section 3.5.

Figure 3.29: Complicated background restricts the detection of powerlines.

3.7 Vision-based Obstacle Tracking

In an urban environment, there are obstacles that are known beforehand and frequently appear

such as trees, lamp-posts and cars. A strategy to apply this knowledge into a more narrow-form

of obstacle avoidance with the implementation of monocular camera obstacle avoidance could

be done. In the application of this type of obstacle avoidance, the user can mark the targets

that are required to be avoided and train the onboard computer to avoid these types of obstacles

should it appear again. This is done so by using the image captured by the onboard camera

and drawing a rectangular target box around the required target. Next, the selected target box

is extracted from the image and training of the target is implemented using the Continuously

Adaptive Mean-SHIFT, CAMSHIFT [73]. Once trained, the UAV will be able to identify and

avoid similar obstacles. This algorithm could also be applied automatically after the detection

of obstacles highlighted in Section 3.5 and is efficient enough to run on very low powered

processors and still be achievable in real-time.
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3.7.1 CamShift Algorithm

The Mean Shift Algorithm [74] is a non-parametric feature-space analysis technique used fre-

quently for clustering in computer vision applications. The Mean Shift algorithm is a procedure

used for locating the maxima of a density function. It is an iterative method that is useful for

detecting the modes of the density. In our application, it is used to detect the centroid of our

selected target’s color. It is the precursor to the algorithm which we will use and therefore is

important for us to understand the strategy it uses to track targets or in our case, obstacles.

Mean Shift Algorithm Steps:

1. Choose a search window size.

2. Choose the initial location of the search window.

3. Compute the mean weighted center of mass location in the search window.

4. Center the search window at the center of mass location computed in Step 3.

5. Repeat Steps 3 and 4 until the search window center converges. i.e. until it has moved a

distance less than the pre-set threshold.

CamShift stands for the “Continuously Adaptive Mean-SHIFT” algorithm. A flow chart

is shown in Fig. 3.30 that summarizes this algorithm. For each video frame, the raw image

is converted to a color probability distribution image via a color histogram model of the color

being tracked, e.g., skin color in the case of face tracking. The center and size of the color object

are found via the CamShift algorithm operating on the color probability image. The current size

and location of the tracked object are reported and used to set the size and location of the search

window in the next video image. The process is then repeated for continuous tracking. The

algorithm is a generalization of the Mean Shift algorithm, highlighted in the flow chart.

CamShift operates on a 2D color probability distribution image produced from the histogram

back projection. The core part of the CamShift algorithm is the Mean Shift algorithm.

CamShift Algorithm Steps:

1. Set the calculation region of the probability distribution from the whole image.

2. Choose the initial location of the 2D mean shift search window.
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3. Calculate the color probability distribution in the 2D region centered at the search window

location in a Region of Interest (ROI) slightly larger than the Mean Shift window size.

4. Run Mean Shift algorithm to find the search window center. Store the moment (area or

size) and center location.

5. For the next image frame, center the search window at the mean location stored in Step 4

and set the window size to a function of the moment found there. Go to Step 3.

Figure 3.30: CamShift algorithm flowchart.

Unlike the Mean Shift algorithm, which is designed for static distributions, CamShift is

designed for dynamically changing distributions. In other words, CamShift is the use of Mean

Shift calculation with an adaptive window size that finds the optimal rotation of the selected
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target. This occurs when objects in video sequences are being tracked and the object moves

so that the size and location of the probability distribution changes in time. The CamShift

algorithm adjusts the search window size in the course of its operation. Initial window size can

be set at any reasonable value. Instead of a set, or externally adapted window size, CamShift

relies on the moment information, extracted as part of the internal workings of the algorithm, to

continuously adapt its window size within or over each image frame.

3.7.2 CamShift Formulation

In the CamShift algorithm, it relies on the tracking of the centroid of the intended target. There-

fore, for the calculation of the centroid of the target in the search window, we will have to obtain

the image’s mean location for the probability distribution. For discrete 2D image probability

distributions, the mean location (the centroid) within the search window is found as follows:

Finding the zero moment and the first moments for x and y,

M00 =
∑
x

∑
y

I (x, y) (3.41)

M10 =
∑
x

∑
y

xI (x, y) (3.42)

M01 =
∑
x

∑
y

yI (x, y) (3.43)

Search window location (the centroid) is then found as,

xc =
M10

M00
(3.44)

yc =
M01

M00
(3.45)

Where I is the pixel (probability) value in the position (x,y) in the image and x and y range over

the search window.

The 2D orientation of the probability distribution is also easy to obtain by using the second

moments in the course of CamShift operation where the point (x, y) ranges over the search

window, and I is the pixel (probability) value at the point (x, y).
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Second moments calculations are,

M20 =
∑
x

∑
y

x2I (x, y) (3.46)

M02 =
∑
x

∑
y

y2I (x, y) (3.47)

Then the object orientation or the direction of the major axis is,

Θ =

arctan

[
2
(
M11
M00
−xcyc

)
(
M20
M00
−x2c

)
−
(
M02
M00
−y2c

)
]

2
(3.48)

The first two eigenvalues which is length and width of the probability distribution of the obstacle

found by CamShift can be calculated in a closed form as shown below,

By letting,

a =
M20

M00
−x2c (3.49)

b = 2

(
M11

M00
− xcyc

)
(3.50)

c =
M02

M00
− y2

c (3.51)

The length l and width w from the distribution centroid can be found,

l =

√√√√(a+ c) +
√
b2 + (a− c)2

2
(3.52)

w =

√√√√(a+ c)−
√
b2 + (a− c)2

2
(3.53)

With these values of orientation, length and width calculated, the CamShift algorithm is then

adapted to adjust the search window and track window based on these values.

3.7.3 Simulation Results

The Camshift code was edited to either have an adaptive searching window or to have a static

search window. During the indoor trials, the simulation was done by choosing the head of one of

our researchers as a tracking target. Therefore, in this simulation result, it will be demonstrating

a face tracking result.
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The simulation is carried out on our own developed Ground Control Station (GCS) with the

following steps:

1. From the stream of images sent from the on-board video, a frame is freezed for easy

selection of the target.

2. Selection of the target is done by clicking the four corners that bound the intended target.

The coordinates of the selection are then sent to the on-board computer for real-time

tracking.

3. A display then appears that shows the tracked target and the search area. The search area

can be configured to be adaptive or static.

4. The target is then tracked in real-time within the captured frame.

From the simulation, it can be seen that the target tracking is successful for both horizontal

and vertical movement as shown in Fig. 3.33 and Fig. 3.34 respectively. At higher speeds, the

algorithm is also able to track the target successfully. However, the tracking could be done better

if the search area is set larger.

Figure 3.31: Left: Freezing a frame, Right: Selecting target within frame.

From the results, CamShift algorithm was successfully used to track the selected target

by calculating the probability of the selected color and having search windows set around the

calculated center. The method assumes that the background is of significantly different color as

compared to the selected target for the algorithm to be effective. The error for the target center

lies in the range of less than 2 pixel error if the motion is not large and that there is no significant

change in color intensity of the target. However, when movement is large and there is a change

of perspective of the target, the target center could drift up to 10 pixels. But the algorithm is

able to quickly converge back to the target center when movement and intensity stabilizes.
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Figure 3.32: Searching area & detected target.

Figure 3.33: Tracking of target in horizontal movement.

Simulation do show that the method can track the selected target accurately but it can be

improved further by the use of target structure and color together. In the application for obstacle

avoidance, the search window could be set to be the whole image frame after the algorithm is

trained to recognize intended obstacles.
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Figure 3.34: Tracking of target in vertical movement.

3.8 Conclusion

Vision-based obstacle detection was implemented in real-time and focus on the detection of ob-

stacles through the use of stereo cameras or a monocular camera. The obstacles were classified

into general obstacles and specific obstacles such as powerlines. In current research, there are

very limited work done on the detection of power lines. They exist mostly from a bird’s eye

view and detects powerlines underneath UAVs. The proposed work for powerline detection is

unique and could be applied robustly in real-time onboard a UAV. This work could see a lot of

applications in low flying UAVs as the ability to sense and avoid is imperative for a UAV to

operate in a low flying altitude as this air zone is where a lot of obstacles exists.
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Chapter 4

Active Stereo Vision in Navigation

4.1 Introduction

In this chapter, we propose an active stereo vision system that allows image processing of sur-

faces that lack features or are smooth. Active stereo ranging could be achieved by the projection

of structured light on the required surfaces. The depth of the surfaces can then be derived by

the matching of the created features on the surface to the features extracted from the acquired

image through triangulation. This method requires the illumination of the working environment

to be well controlled such that binary images of the working environment could be generated.

Following which stereo correspondence between the image pair could be found based on the

projected pattern of the light source.

In our application, we do not used a structured pattern light source but instead use multiple

visible laser beams. In this way, the stereo correspondence problem does not exist as only the

brightest spots in the images generated by the light source needs to be detected and matched.

This means that instead of creating a dense stereo correspondence map, we instead go for a

sparse map which is efficient in calculation and is less susceptible to noise. The stereo corre-

spondence map is then used to create a sparse 3D point cloud which could be used for navigation

or obstacle detection.

We created a detection and matching algorithm which was able to detect the created feature

points and matched them accordingly. As this is a stereo system based technique, the features

were found along similar epipolar lines that coincide with the horizontal pixel coordinate which

is similar to that described in Chapter 3.

What is unique about our application is that whereas most vision algorithms require envi-
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ronments to be rich in features, our method allows us to create a sparse point cloud map even

in environments which are devoid of image features. This method is also able to run in real-

time at 20 Hz on our Intel i7 onboard computer. Our algorithm was also used in the Singapore

Amazing Flying Machine Competition (SAFMC) 2014 to create features in an environment

which is homogeneous. Our team was commended with the Theory of Flight Award for this

implementation.

4.2 Active Stereo Vision Hardware Setup

Active stereo vision setup consists of two major components. Firstly, the backbone of any stereo

system are its cameras. As this is a customized stereo system application, we needed to build

our own active stereo camera. Matrix Vision mvBlueFOX USB2.0 compact industrial CMOS

cameras were chosen to be built upon because of its superior image quality and customization

capabilities such as adjusting its white balance, exposure and frame rate. The cameras could

also be connected to become hardware synchronized and capture images that are perfectly syn-

chronized. This was essential in any stereo vision system as synchronization was mandatory to

obtain correct stereo images for correspondence calculation. The set of cameras were built with

a baseline of 10 cm apart and were calibrated to obtain their individual intrinsic parameters as

well as the rotation and translational vectors between both cameras.

Figure 4.1: Active stereo vision system with laser emitter.

The unique feature about the stereo active vision setup is that it includes a green laser emitter

and diffraction grating mounted in the middle of the stereo camera. The green laser emitter emits

a laser beam that is parallel to the cameras’ principle axis but passes through a diffraction grating
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filter which splits the beam into multiple beams. These beams projects feature points onto the

surfaces the active stereo system is facing. Fig. 4.1 shows the setup of the active stereo system

mounted onto our quadrotor UAV. The cameras are connected to the onboard computer and are

both mechanically and digital synchronized. Fig. 4.2 depicts the laser rays projected from the

laser emitter. Through the diffraction grating, we are able to obtain more than 200 individual

laser points to which we could obtain their 3D coordinates.

Figure 4.2: Laser rays from laser emitter

In the following section, we will describe the active stereo vision algorithm in detail and

cover the essential components of the algorithm such as feature extraction, feature matching

and also the method of stereo triangulation used.

4.3 Active Stereo Vision Algorithm

4.3.1 Feature Extraction

The image captured by the active stereo system consists of the laser projected features on the

surface of interest. Our algorithm works regardless of whether the surface of interest is textured

or homogenous. In Fig. 4.3, you could see clearly where the sparse laser features are projected.

The laser features from the laser emitter are much brighter than the environmental lighting

which makes it simpler to detect. Therefore, to extract the laser features, our algorithm creates
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Figure 4.3: Sparse laser features from the left camera view.

a threshold image based on the intensity of the laser features with respect to the environment to

give us a binary image as shown in Fig. 4.4. From the image, you may observe that most of the

features have been retained and that the background noise has been removed.

Using this binary image, we first obtain contours that bound the binary features and fit circles

onto these contours. With the fitted circles, we will be able to obtain the circle center position in

pixel coordinates as well as the radius of the circle. Using the radius of the circle, we calculate

the pixel area of each contoured binary features. The binary spot features are then filtered based

on their pixel area calculated to remove any form of noise and to retain the stronger features of

interest. The features found are defined with image pixel coordinates that represent the center

of this circle contours.

After extracting the laser features, since we have a calibrated stereo vision system, for the

same point in 3D space, it will have 2 projections in both the left and the right images. Thus, we

can try to match these 2 projection points first using our feature matching process and project it

back to 3D space to give us a sparse 3D point cloud.

4.3.2 Feature Matching

For the matching of the features found in Section 4.3.1, we designed a search pattern algorithm

where we can match the features detected in both images of the stereo system. We first rectify the
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Figure 4.4: Binary image of laser features.

Figure 4.5: Feature point clustering and height estimation.
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images based on the calibration parameters we obtain from stereo calibration. After rectification,

for a feature found on the left camera, we will be able to search for the same feature along the

same epipolar line which is alone the horizontal axis.

In a stereo vision system, when a feature point is found in the left image with image co-

ordinates, (xi, yi), its corresponding feature will usually be found in a range left of this image

coordinate. Therefore, we set a rectangular search range to the left of the detected feature in the

left image and search for the corresponding feature in the right image. We define a search range

that we could tune to fix our required working range accordingly. The search range we used is:

in x-direction, 20 ≤ xi ≤ 150 pixels; in y-direction, −10 ≤ yi ≤ 10 pixels. If this search is

successful, the two matched feature points will be used for stereo triangulation method. During

the matching, there are times where we could have some wrong matches or multiple matches.

These are solved by rejecting multiple matches and treating these matches as erroneous matches.

4.3.3 Linear Stereo Triangulation

After matching the feature points, we could then calculate the respective 3D world coordinate

of the feature using the reprojection matrix found for each camera. Simple triangulation by

back-projecting rays from the two matched points will fail because the rays do not necessarily

intersect due to errors in measured image coordinates.

For a 3D world point, X , which satisfies the equations, x = PX, x′ = P ′X . Where P and

P ′ are projection matrices for the left and right camera. It will be possible to estimate a best

solution for this 3D point. Through camera calibration, we have already obtained the camera

intrinsic matrices with great accuracy. The core idea of stereo triangulation is to estimate a 3D

point, X̂ , which exactly satisfies:

x̂ = PX̂ (4.1)

x̂′ = P ′X̂ (4.2)

The triangulation method used in our algorithm is the linear triangulation method. Assuming

that x from Eqn. 4.1 is written in homogeneous coordinates, x = w(u, v, 1)T , where (u, v) are

the observed point coordinates and w is an unknown scale factor. Now, denoted by pTi which

represent the i-th row of the matrix, P , then Eqn. 4.1 could be written as:
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wu = pT1 X (4.3)

wv = pT2 X (4.4)

w = pT3 X (4.5)

Substituting the unknown scale factor, w, back into the equations, we get,

upT3 X = pT1 X (4.6)

vpT3 X = pT2 X (4.7)

The above two equations could be written in the form AX = 0 which represents homoge-

neous equations. By setting X = (x, y, z, 1)T , one can reduce the set of homogenous equations

to a set of 4 non-homogeneous equations with 3 unknowns in the form:

AX + b = 0 (4.8)

where,

A =



u1 × P(3,1) − P(1,1) u1 × P(3,2) − P(1,2) u1 × P(3,3) − P(1,3)

v1 × P(3,1) − P(2,1) v1 × P(3,2) − P(2,2) v1 × P(3,3) − P(2,3)

u2 × P
′

(3,1) − P
′

(1,1) u2 × P
′

(3,2) − P
′

(1,2) u2 × P
′

(3,3) − P
′

(1,3)

v2 × P
′

(3,1) − P
′

(2,1) v2 × P
′

(3,2) − P
′

(2,2) v2 × P
′

(3,3) − P
′

(2,3)


(4.9)

X =


x

y

z

 (4.10)
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b =



u1 × P(3,4) − P(1,4)

v1 × P(3,4) − P(2,4)

u2 × P
′

(3,4) − P
′

(1,4)

v2 × P
′

(3,4) − P
′

(2,4)


(4.11)

Eqn. 4.8 could then be solved in a least squares manner using Singular Value Decomposition

(SVD). Solving the SVD, we arrive at the 3D coordinates of the feature point with respect to the

camera frame.

4.3.4 K-means Clustering

In every active stereo pair of images, we are able to obtain at least 50 3D coordinates and

their corresponding image feature points. After obtaining this sparse point cloud generated by

the active stereo system, we then go about performing a K-means clustering [75] of the 3D

world coordinates as shown in Fig. 4.5. Performing clustering allows us to create an obstacle

based map where 3D points are clustered into groups and could represent groups of obstacles.

Other than creating a generic obstacle map, K-means clustering allows us to reduce any possible

residual errors obtain from stereo triangulation. The points are clustered and the center of each

cluster with the point deviation can be obtained and further analysis could be performed either

for obstacle detection or navigation purposes.

4.4 Urban Environment Scenario

There are scenarios in certain missions where UAVs are required to fly into buildings for recon-

naissance and surveillance missions. The UAVs help to participate in urban search and rescue

missions and are required to fly and navigate without aid from GPS information. Therefore,

there is a need to develop a system which allows a UAV to navigate in a GPS-less environment.

In urban indoor environments, there are many cases where walls, flooring and ceilings are of

a homogenous color or pattern such as that shown in Fig. 4.6 and these are extremely difficult

environments for image processing algorithms to work.

In such an environment, scanning laser rangefinders are frequently used for navigation but

they draw a lot of power, weigh around 450 g and only provide planar information for navi-
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Figure 4.6: Urban indoor environment.

gation. Laser rangefinders frequently do not provide a rich enough point cloud to aid in the

capability in detecting obstacles that are either above or below their scanning plane. An active

stereo system could be used in this situation to provide a 3D point cloud that would allow the

UAV system to navigate in such an environment.

4.5 Conclusion

Figure 4.7: Vision guidance flight.

We tested the above mentioned active stereo system during the SAFMC 2014 Competition
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as shown in Fig. 4.7. The active stereo system was placed near the front of the quadrotor UAV

facing downwards. This allowed us to create a sparse point cloud below the UAV which could

detect obstacles like tables and chairs as it was flying in an urban indoor environment.

There were tasks depicted in the competition which required the UAV to fly through window-

like openings. Therefore, we used this active stereo system to calculate and maintain the height

of the UAV as it flies through windows. This scenario might seem simple but certain sensors

such as a single laser rangefinder will detect a spike in readings as it passes a window. By using

the K-means clustering, we could prevent this spike in readings and allow us to have a smooth

height reading that could be used for flight control.
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Figure 4.8: Height comparison between laser readings and active stereo system.

Fig. 4.8 shows the height data comparison between the active stereo system and raw laser

rangefinder readings. From the figure, you can see that the height readings obtained from active

stereo vision is smoother as compared to the laser reading. The noisy readings of the active

stereo system happen near the end of the data set due to the fact that the UAV is performing

landing and that the height of the UAV is not within the working range of the algorithm.

Comparing the results obtain from the active vision height algorithm and the raw data from

the laser rangefinder is not conclusion as both measurements have their pros and cons. The laser

rangefinder data is very accurate during movement on flat ground and could be used as a ground

truth. During this situation, the active stereo system is able to have errors less than 5 cm when

compared with the laser readings. However when there is movement over a wall, the active

stereo system is more robust and could provide very smooth results while the laser rangefinder

data has spikes and erroneous readings.
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Chapter 5

Stereo-based Visual Navigation

5.1 Introduction

Stereo vision has been used primarily as the main sensor in many UAV system navigation algo-

rithms. The stereo vision navigation system has to operate in real-time with low delay and the

motion estimation obtained can be used to perform path planning and obstacle avoidance. The

forefront of the algorithms are the feature detection and matching between subsequent frames

obtained by the stereo cameras. Each stereo image pair is also used to generate a sparse dis-

parity map which allows us to calculate the 3D world coordinate of each point detected by the

feature detector. Robust estimates of the camera’s egomotion can then be obtained through both

linear and non-linear optimization before translating it to that of UAV motion. Random Sample

Consensus [76] (RANSAC) outlier rejection is frequently applied to reject erroneous points that

have been included into the calculation. The RANSAC-based rejection scheme can be used to

reject dynamic points that are frequently present in such scenes. Once the features are detected

and robustly tracked, they are used to match to their corresponding 3D coordinate found in the

stereo depth map. The camera’s pose estimation could then be calculated using this set of 3D-

to-2D feature pairs. This function finds the pose that minimizes reprojection error, i.e. the sum

of squared distances between the observed projections image points and the projected object

points.

In the following sections, we will describe a detailed framework that is used to achieve

stereo-based visual navigation. The navigation work done in this thesis will encompass only

odometry based techniques. Odometry is the technique where it uses data from motion sen-

sors to estimate change in position over time. It basically integrates the velocity and position
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estimates to estimate the UAVs’ relative position against its starting position.

Stereo odometry is particularly useful for UAV motion estimation as UAVs generally trav-

el long distances and without repeating their paths. The proposed stereo odometry algorithm

solves this motion estimation problem efficiently and robustly. Although there are other tech-

niques such as visual Simultaneous Localization and Mapping (SLAM) [77] , they usually are

less computationally efficient and UAV applications in urban environments seldom require the

close-loop capability of visual SLAM. As mentioned in Chapter 3, since our obstacle sens-

ing algorithm runs mainly based on a stereo system, we decided to extend this stereo system

to encompass navigational capabilities. The combination of stereo ranging and stereo visual

odometry is generally faster and more reliable than stereo ranging followed by monocular visu-

al odometry and we aim to use this to provide reliable motion estimation for UAVs.

We will cover the use of visual odometry obtained from 3D-to-3D absolute orientation cal-

culation as well as 3D-to-2D calculations using “Perspective-n-Points”.

5.2 Feature Matching & Calculating 3D Points

3D Points 𝐿1 𝑅1 

𝐿2 𝑅2 

𝑡0 

𝐿3 𝑅3 

𝑡1 

𝑡3 

3D Points 

3D Points 

𝐿𝑛 𝑅𝑛 𝑡𝑛 3D Points 

KLT 

KLT 

KLT 

KLT 

KLT 

KLT 

Figure 5.1: Feature detection & 3D coordinate generation.

Given sequential images obtained from a stereo camera, we can track the features using the
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KLT optical flow tracker. KLT provides fast and reliable feature tracking while maintaining

low computational loads. During feature detection we perform two sets of checks to ensure

robust image features. Firstly, we set a mask in the center of the image such that features

found at the edges of the image are discarded as these features will usually have optical flow

tracks that extend out of the image. Secondly, we set a threshold which will allow us to detect

image features that are at least a set number of pixels apart. In the case visual odometry, we

set this threshold to be at least 15 pixels to ensure we have a well spread our feature set as

well as reducing the total number of features to have a more efficient detection phase. During

the feature tracking phase, we perform the KLT optical flow tracker iteratively with gaussian

pyramids. This ensures robust feature tracking that could effectively reject noise.

Figure 5.2: KLT feature tracks.

Seen in Fig. 5.1, KLT optical flow tracker is applied between every stereo image pair to

obtain stereo correspondence matches. We performed a sparse matching as motion estimation

does not require a large number of features to be solved. KLT is further applied to each subse-

quent left image frame to ensure tracking of features between different time frames. In Fig. 5.2,

you can see the feature tracks which represent different correspondences. Blue and green tracks

represent the matches found in between stereo pairs. The red track represents the tracks between

each time frame.

The features are detected and matched across both left and right images to ensure stereo
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correspondence. We search for the features along the horizontal epipolar lines with a fixed

threshold error to allow matches that maybe slightly displaced from the epipolar lines. The

stereo correspondence matches are then used to triangulate the 3D coordinate of the feature

point. We perform linear stereo triangulation as mentioned in Section 4.3.3 to obtain the 3D

world coordinates of each image feature.

To ensure continuous motion estimate, we must ensure that the features found in the left

image frame are matched. The features detected in the left frame are matched such that we

could use this relative motion to obtain the optimal rotation and translation as described in

Section 5.3.

5.3 Stereo Odometry Motion Estimation

Stereo odometry used for autonomous ground vehicles have been prevalent in the past decade

as seen in many works [78], [79]. It usually is performed using a combination of other sensors

such as wheel encoders, and inertial sensors. The literature uses stereo odometry to estimate

vehicular motion from a sequence of images captured from a camera and fuses this with other

sensors for a smoother and more reliable estimate. Its has also seen uses in the Mars Exploratory

Rover [80]. In this section, we will investigate motion estimation using stereo odometry on

UAVs.

There are many ways to achieve motion estimation using features found in images. There

are 2D-to-2D methods which mainly delve in monocular camera applications. Then there are

3D-to-3D methods and 3D-to-2D which are applicable to stereo vision systems. For 3D-to-3D

motion estimation, we intend to use the Absolute Orientation method. For the 3D-to-2D motion

estimation, we intend to use “Perspective-n-Points”.

In this section, we will describe in detail both methods respectively and investigate their

results in Section. 5.9.

5.3.1 Rigid Motion Computation

With two sets of 3D points, point set P and point setQ, that correspond with each other between

two subsequent frames, we can find a rigid transformation that will optimally align the two sets

in the least squares sense. Point set P being the 3D points obtained at time t1 and Point set Q

being the 3D points obtained at time t2 where t2 > t1. This is the well known Absolute Orien-
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tation Problem [62]. Given that point set P = [p1, p2, ..., pn] and point set Q = [q1, q2, ..., qn],

for obtaining the optimal translation t and rotation R, we will need to minimize:

(R, t) = argmin
R,t

n∑
i=1

wi ‖(Rpi + t)− qi‖2 (5.1)

where wi > 0 are the weights of each matching point pair.

We start by computing the weighted centroids of both the point sets:

p̄ =

∑n
i=1wipi∑n
i=1wi

(5.2)

q̄ =

∑n
i=1wiqi∑n
i=1wi

(5.3)

For our case, we currently weigh all of our points with equal weightage.

Next, using the calculated centroids, we can then compute the centered vectors for all i =

(1, 2, ..., n):

ai = pi − p̄ (5.4)

bi = qi − q̄ (5.5)

Upon obtaining the centered vectors, we form A and B which are d × n matrices where d is

the dimensionality of the points. These matrices have ai and bi as their respective columns. We

then compute the d× d covariance matrix, S:

S = AWBT (5.6)

where W = diag(w1, w2, ..., wn).

The Singular Value Decomposition (SVD) of the covariance matrix is obtained, S = UΣV T .

With this, we can finally obtain both the optimal rotation and translation.
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R = V


1 0 0

0 1 0

0 0 det(V UT )

UT (5.7)

t = q̄ −Rp̄ (5.8)

During the calculation of the optimal rotation and translation, there will arise a unique case

where the reflection is obtained instead. This happens when det(V UT ) = −1 and will return a

reflection solution which is not desirable. When this case happens, the desired rotationR can be

obtained by R = V ′UT where V ′ is obtained from V by changing the sign of the 3rd column.

However, from Eqn. 5.7, with a simple implementation of the det(V UT ), we can resolve this

problem and obtain only the true optimal rotation and translation we require.

5.3.2 Perspective-n-Points Motion Estimation

In computer vision literature, to estimate the camera pose from n 3D-to-2D point correspon-

dences is a very fundamental problem. Most problems requires the estimation of six degrees

of freedom of the pose using five camera calibration parameters. They are namely focal length,

principal point, aspect ratio and skew obtained during camera calibration. It could in fact be

established with a minimum of 6 correspondences using the well known Direct Linear Trans-

form [81] (DLT) algorithm. We will explore the use of the Perspective-n-Points (PNP) problem

which is an improved version of the DLT algorithm. The Perspective-n-Points problem assumes

known camera calibration parameters which we obtain during our camera calibration procedure

and provides accurate results.

Given a set of correspondences between 3D points, Pi, expressed in world coordinates, and

their respective 2D image projections, ui, we want to obtain and retrieve the pose of the camera

body with respect to the world with the focal length, f .

From Fig. 5.3, assuming the camera, O, observed two points, pi and pj , dij = ‖pi − pj‖.

The pair of points also defines an angle, θ, between their line of sight rays.
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Figure 5.3: Perpective-n-Points formulation.

xi = ‖pi −O‖ (5.9)

xj = ‖pj −O‖ (5.10)

d2
ij = x2

i + x2
j − 2xixjcosθij (5.11)

fij(xi, xj) = x2
i + x2

j − 2xixj cos θij − d2
ij = 0 (5.12)

where from camera calibration, we obtain,

cos θij =
uTi Ouj√

uTi Oui

√
uTj Ouj

(5.13)

Assuming if there are 3 points, P3P, we arrive at an underdetermined system where three

functions similar to Eqn. 5.12 could be obtained as shown below:
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f12(x1, x2) = 0 (5.14)

f13(x1, x3) = 0 (5.15)

f23(x2, x3) = 0 (5.16)

With 4 points, P4P, we then arrive at an overdetermined system where we could form 4

P3P groups. Namely using a combination of the 4 points, we arrive at groups (P1, P2, P3),

(P1, P2, P4), (P1, P3, P4) and (P2, P3, P4). We could then solve for the xi associated with each

point.

From the pinhole camera model, we have,

w · x = K [R|t]X (5.17)

We then project the image points into the scene,

p′i = xiK
−1ui (5.18)

Then solve for the optimal rotation and translation parameters using a set of linear equations

represented by Eqn. 5.19.

w


u

v

1

 =


fx 0 cx

0 fy cy

0 0 1

 ·

r11 r12 r13 t1

r21 r22 r23 t2

r31 r32 r33 t3

 ·


X

Y

Z

1


(5.19)

Our algorithm iteratively solves the above equations to obtain an optimal solution. It returns

a rotation and translation vector referenced from a set of 3D points from time t1 matched to the

features at time t2 where t2 > t1.

5.4 RANSAC-based Outlier Rejection

RANdom SAmple Consensus (RANSAC) is a very successful robust estimator that is able to

cope with a large proportion of outliers. In this algorithm, RANSAC is used to reject outliers
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before calculating the optimal rotation and translation. The form of outliers come in two distinct

types. In most navigation problems, dynamic objects are almost always present in the scene of

interest and will contribute to gross outliers should they not be removed. Additionally, during

the calculation of stereo disparity, its result includes a lot of noise as calculation of areas with

constant textures will usually lead to error. Both these outliers must be robustly removed and we

base it on the RANSAC-based Outlier Rejection scheme. Shown below is the RANSAC robust

estimation algorithm.

RANSAC Algorithm

1. Given set of S matched 3D points, P and Q, randomly select a subset of 3 pairs of

matched 3D points and apply the Rigid Motion Computation from Section 5.3.1 to obtain

the optimal rotation Rs and translation Ts for the subset.

2. Apply the rotation and translation calculated to obtain Q′ = RsP + Ts. Calculate the

Euclidean distance between each 3D point between point set Q and Q′.

3. Determine the set of data points Si which are within a distance threshold t. The set Si is

the consensus set of the sample and defines the inliers of S.

4. If the size of Si is greater than some threshold T , re-estimate the optimal rotation and

translation from Section 5.3.1 using the inlier set Si and terminate.

5. If the size of Si is less than T , select a new subset and repeat the above.

6. After N (determined from Table 5.1) trials, the largest consensus set Si is selected and

the optimal rotation and translation are re-estimated.

Table 5.1: Number of iterations N for sample size s against proportion of outliers ε

Sample size Proportion of outliers, ε

s 5% 10% 20% 25% 30% 40% 50%
3 3 4 7 9 11 19 35

N =
log(1− p)

log(1− (1− ε)s)
(5.20)
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Table 5.1 is calculated from Eqn. 5.20 where p is the probability that at least one of the

random samples of s points is free from outliers. p is chosen at 0.99. s is the sample size which

is set as 3 for a rigid motion computation problem.

5.5 Non-linear Optimization

Upon obtaining the rotation and translation through the use of rigid motion calculation and

RANSAC outlier rejection scheme, we use this as the initialization of the Levenberg-Marquardt

algorithm for nonlinear least squares minimization [82]. The Jacobian required for this mini-

mization is approximated by forward differencing. Since the 3×3 rotation matrix has only three

degrees of freedom, we work with the euler angles instead. The variable for this minimization

are the three euler angles and the three translation parameters as described in (5.30) to (5.31).

The error function to be minimized is given by:

min

N∑
i=1

∥∥ωi′ − ωi′′∥∥2 (5.21)

5.6 Pose Estimation

Finally, after obtaining the optimal rotation and translation of the camera, we can integrate

the camera’s rotation and translation at every time step to obtain its pose relative to its first

coordinate frame.

Given P0 as the position of the camera in frame 0 and P1 as the position of the camera in

frame 1,

P1 = R1P0 + t1 (5.22)

P1

1

 =

R1 t1

0 1


P0

1

 (5.23)

Also, for the next subsequent frame,
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P2

1

 =

R2 t2

0 1


P1

1

 =

R2 t2

0 1


R1 t1

0 1


P0

1

 (5.24)

Generalizing, we have:

Pn
1

 =

Rn tn

0 1


Rn−1 tn−1

0 1

 · · ·
R1 t1

0 1


P0

1

 (5.25)

Pn
1

 = C

P0

1

 (5.26)

P0

1

 = C−1

Pn
1

 (5.27)

Where C−1 is the relative pose of the camera from frame n with respect to frame 0 coordi-

nate system. C−1 is described as:

C−1 =



r11 r12 r13 tx

r21 r22 r23 ty

r31 r32 r33 tz

0 0 0 1


(5.28)

The elements of C−1 can then be decomposed into the 3 Euler angles φ, θ, ψ that describe the

roll, pitch and yaw and also the translation in x, y, z axis used for navigation.

φ = atan2(r32, r33) (5.29)

θ = atan2(−r31,
√
r2

32 + r2
33) (5.30)

ψ = atan2(r21, r11) (5.31)
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5.7 Kalman Filter Design

The image calculations for position estimates can be achieved at a frequency of 10 Hz. Whilst

the IMU data is obtained at 50 Hz. There is a need to fuse these data together to ensure a

smoother UAV pose estimate output from our algorithm. Therefore, we decided to implement a

9-state Kalman Filter as our filter of choice.

Considering a Linear Time Invariant (LTI) system in the form:

ẋ = Ax + Bu + v(t) (5.32)

y = Cx + w(t) (5.33)

where x, u and y are the states, inputs and measurement vectors. A, B, C are system matrices

of dimensions, [9 × 9], [9 × 3] and [3 × 9] respectively. w and v are input and measurement

noises which can be assumed to be Gaussian with zero means and covariance matrices Q and R

respectively shown below:

E[v(t)] = 0 (5.34)

E[w(t)] = 0 (5.35)

Also,

E[v(t)vT (τ)] = Qδ(t− τ), (5.36)

Q = QT ≥ 0, (5.37)

E[w(t)wT (τ)] = Rδ(t− τ), (5.38)

R = RT > 0. (5.39)

For the UAV pose estimation problem, the motion model and the measurement model which

consists of the state vector x, input vector, measurement vector y and the system matrices need

to be defined as Eqn. 5.40 to Eqn. 5.45.
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x = [x, y, z, u, v, w, βx, βy, βz]
T (5.40)

u = [ax, ay, az]
T (5.41)

y = [x, y, z]T (5.42)

where x, y, z represent the NED position coordinates, u, v, w represent the NED velocities,

ax, ay, az represent the NED accelerations and βx, βy, βz represent the IMU accelerometer bias.

The system matrices are defined as such,

A =



0 0 0 1 0 0 0 0 0

0 0 0 0 1 0 0 0 0

0 0 0 0 0 1 0 0 0

0 0 0 0 0 0 −1 0 0

0 0 0 0 0 0 0 −1 0

0 0 0 0 0 0 0 0 −1

0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0



(5.43)

B =



0 0 0

0 0 0

0 0 0

1 0 0

0 1 0

0 0 1

0 0 0

0 0 0

0 0 0



(5.44)
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C =


1 0 0 0 0 0 0 0 0

0 1 0 0 0 0 0 0 0

0 0 1 0 0 0 0 0 0

 (5.45)

Apart from the above defined motion model and the measurement model, we have to define

the input noise matrix Q and the measurement noise matrix R which are both positive definite

and diagonal and could be obtained by logging flight test data. The diagonal elements in Q rep-

resent the acceleration measurement noises and the diagonal elements in R represent the noises

obtained in position estimate from visual odometry. With the defined Kalman filter models, we

can then build a discrete model to be implemented in our algorithm.

5.8 Transformation of Points in 3D Space
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Figure 5.4: Camera coordinate system against NED coordinate system.

The UAV body frame is defined in the North-East-Down (NED) coordinate system. Where-

as the camera coordinate frame is defined differently as shown in Fig. 5.4. From the defined

coordinate system, you can see that the body frame’s x-axis, y-axis and z-axis correspond to the

camera frame’s zc-axis, xc-axis and yc-axis respectively. Therefore, there is a need to find the
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rotation matrix that is needed to transform the coordinates from the camera frame to that of the

NED frame in Eqn. 5.48.

Pb = Rb/cPc (5.46)


0 0 1

1 0 0

0 1 0

 = Rb/c


1 0 0

0 1 0

0 0 1

 (5.47)

Rb/c =


0 0 1

1 0 0

0 1 0

 (5.48)

With this rotation matrix calculated, all 3D coordinates of feature points found could be

transformed into that of the body NED frame for reference to navigation and map building.

The equation for creating 3D maps with the objects detected from the stereo vision algorithm is

shown in Eqn. 5.49.

Vw = Rw/cPc +Qw (5.49)

where Vw is the vector of the object in world coordinate. Rw/c is the rotation matrix that

transform camera coordinates to the world coordinate frame. Qw is the position vector of the

UAV in world coordinate.

Rw/c = Rn/bRb/c (5.50)

Rn/b is obtained from UAV onboard IMU readings and calculated below. The rotation

angles are the Euler angles obtained from the UAV. To rotate the navigation frame to coincide

with the body frame, the sequence of rotation to be carried out is to rotate about the z, y and x

axis respectively.
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Rn/b = Rz(ψ)Ry(θ)Rx(φ) (5.51)

=


cosψ −sinψ 0

sinψ cosψ 0

0 0 1



cosθ 0 sinθ

0 1 0

−sinθ 0 cosθ




1 0 0

0 cosφ −sinφ

0 sinφ cosφ

 (5.52)

=


cosθcosψ sinφsinθcosψ − cosφsinψ cosφsinθcosψ + sinφsinψ

cosθsinψ sinφsinθsinψ + cosφcosψ cosφsinθsinψ − sinφcosψ

−sinθ sinφcosθ cosφcosθ

(5.53)

5.9 Conclusion

We set up our experiment in a VICON enabled workspace which allows us to obtain the true

motion of our UAV system. The VICON system could measure the UAV’s absolute position and

attitudes relative to the defined VICON coordinate system. Our stereo system was mounted in

front of the UAV facing a feature-rich environment. During our experiment, we positioned our

UAV over the origin of the VICON system before moving in a rectangular fashion around the

workspace. The distance we covered was a perimeter of a 3 m by 2 m rectangle.

Fig. 5.5 shows the 3D-to-3D Rigid motion stereo odometry estimation results plotted against

the VICON system data. The plot is a 2D plan view of the experiment work space and depicts

the motion that our camera system has undergone. It could be seen that the 3D-to-3D motion

estimation is not very smooth and there were alot of erroneous movement estimated. The errors

involved range from error spikes of up to 0.75 m against the VICON logged movement. On

average, the error ranges between 20 cm to 30 cm. However, one positive note was that the

result at least had a closed loop which was in-line with our experiments.

We found the results unsatisfactory and sort to use the 3D-to-2D Perspective-n-Points mo-

tion estimation method. We believed that by using this method, we will reduce the error propa-

gation we observed in stereo triangulation modeling.

Fig. 5.6 shows the implementation of Iterative PNP against the VICON data set. In our

motion estimation comparison, it could be seen that the 3D-to-2D method exhibits less drift

than the 3D-to-3D method and conforms more to the ground truth obtained from the VICON

system. The red curve was our first implementation of our algorithm and we found that the

results were skewed and showed a significant drift. We then enhanced our RANSAC outlier
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Figure 5.5: Rigid motion calculation vs VICON data.
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Figure 5.6: Iterative PNP vs VICON data.
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rejection algorithm by increasing the threshold in which our algorithm accepts inliers, thereby

increasing the strictness of our algorithm. The results were significantly better and they could be

seen in the blue curve. From the results shown, I propose to obtain the camera pose estimation

through 3D-to-2D reprojections instead of 3D-to-3D calculations.
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Figure 5.7: EPNP vs Iterative PNP.

We then implemented our algorithm with that using the EPNP [83] formulation which boast

faster implementation and more accurate results. From Fig. 5.7, you may see the difference in

performance of our algorithm with that of EPNP. Both algorithms perform well with our real-

life test data. The improved algorithms now have possible spike errors of only about 30 cm and

on average have errors less than 10 cm. However it was still not satisfactory against the VICON

ground truth. Below, we create a list of possible factors that affects our test results as well as

insights that we gained from our experiments.

Results Review

1. 3D-to-2D motion estimation has less drift when compared to 3D-to-3D motion estimation

and posed less error from stereo triangulation due to only one use of triangulated 3D points

during each frame of motion estimation.
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2. Stereo triangulation possess significant error as mentioned in Section 3.2. Therefore, if

the actual motion of the camera was too small, the error proportion might be too large and

create erroneous estimates. This meant that our frequency for motion estimation was too

high and we needed more motion between each image frame.

3. Our current camera baseline is only 0.1 m. If we viewed image features that are too

far, their 3D coordinate error will scale up exponentially. Therefore, we had to limit

our feature usage to features that were calculated to be within our custom-built stereo

camera’s working range.

Figure 5.8: KITTI Vision Benchmark Suite urban images.

The KITTI Vision benchmark suite [84] is an open source set of data that provides real-

world urban environment navigational data for benchmarking as shown in Fig. 5.8. The data

suite consists of stereo images, GPS position, IMU data and a Velodyne laser scanner that are

used to create a ground truth that researchers could use to compare their algorithm with. In this

work, we made use of the data to verify our motion estimation algorithm to determine if the

above mentioned problems might exist even with a different data set.

Fig. 5.9 shows our motion estimation algorithm using the KITTI data set and compared with

the ground truth provided. This data set represents a motion of a vehicle traveling around 300 m

in an urban environment. It can been seen that our motion estimation algorithm performed very

well in this data set. The ground truth for this data set is the blue curve. We performed our

algorithm twice on this data set and they are show as the red and green curve. Our data did have

some wrong motion estimations and this could be see in as spikes in the curve. However, this

could be remedied by using a stronger filter.

From the results shown, we can see that stereo vision has the advantage over monocular

vision that both motion and structure are computed in the absolute scale which results in less

drift if our parameters are tuned accurately. However, if the distance from the camera to the

scene is much larger than the stereo camera’s baseline, our case will degenerate from a stereo
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Figure 5.9: KITTI Vision Benchmark test.
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visual odometry into a monocular visual odometry.
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Chapter 6

2D Map Stitching

6.1 Introduction

In the recent International Micro Air Vehicle(IMAV) Competition 2014, we developed a method-

ology for real-time map stitching while the UAV is performing waypoint flight. Our methodol-

ogy is very different from other map stitching methods as we emphasize on the real-time nature

of performing map stitching in a disaster zone where rescuers will require a map of the area of

operations fast. Current existing map stitching methods could not be achieved in real-time and

will usually require desktop computers with high processing power. Our algorithm enables our

UAV to capture the scene of the disaster area and create a stitched map while it is performing

its flight around the area of interest.

During the competition, we were able to fly our UAV over a military disaster zone that was

about 300 m× 150 m and provide a stitched map of the area immediately after our UAV landed

all in about 15 mins. By achieving this requirement and other mission aspects, our team was

then crowned the Champions of the IMAV Competition 2014 held in Delft, the Netherlands.

Figure 6.1: Quadrotor with downward facing camera.
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The platform we used is a Quadrotor platform with a downward facing camera. The camera

is hard-mounted to the UAV and is vibration damped using silicon vibration isolators. Our whole

UAV system runs fully autonomously with our onboard system and it is shown in Fig. 6.1.

The stitching algorithm runs on the onboard Intel i7 Quad-core Mastermind computer from

Ascending Technologies Pte Ltd.

For our UAV to realize fully automatous flight and onboard image stitching, two processor

layers are designed. One is used for automatic flight control which includes take-off, GPS

waypoint tracking and landing. The other processor used for the vision algorithm captures and

stores onboard images at 5 Hz. Given the village area to be covered in the competition, a

sweep pattern path is generated online automatically from the GPS coordinates to maximize the

image coverage. This coverage is calculated based on the pre-determined flight speed of the

UAV and camera parameters while maintaining certain parameters such as image resolution of

the village. Once the designated flight path has completed the last waypoint, the flight control

processor will trigger the vision processor to start the image stitching process with the recorded

onboard images. With such intelligence, the image stitching task can be realized near real time

and is ready to be rendered to the ground control station once it returns home.

6.2 Homography-based Motion Model

Panoramic stitching relies on the concept behind projective transformation where transformation

between two sets of points from two images are computed that represent the camera motion

between the two images. This camera motion consists of rotation as well as translation and

could be represented by the Homography [85] found based on features that correspond from

one image to the next. We make use of this concept and apply it to map stitching of our target

area.

In map stitching, we established a mathematical model that is able to map the pixel coor-

dinates from one image onto another in 2D homogeneous coordinates xi
′ = (xi

′, yi
′, 1) and

xi = (xi, yi, 1) such that,

xi
′ = Hxi (6.1)

where Homography, H , is a 3× 3 matrix of 9 elements.
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Although the Homography matrix contains 9 entries, it represents transformation only up to

scale and consist of 8 degrees of freedom in 2D transformation. A 2D point has two degrees

of freedom corresponding to its x and y coordinates. Since each point-to-point correspondence

accounts for two constraints, it can be seen that a total of four corresponding points are needed

to solve and constraint H fully.

In an image set, it usually consists of many features points that could be detected and tracked

across the different images. We have more feature points than needed to calculate the Homog-

raphy matrix but much of these feature points are noisy and could represent bad matches. If

we use all the features to calculate Homography, we might not get a solution which represents

the best projective transformation for our features. As such, we implement RANSAC [76] with

the large number of feature points and set a threshold value for a maximum re-projection error

calculated in homogeneous coordinates to treat a point correspondence as an inlier as shown

below,

∥∥xi′ −H × xi∥∥ > Reprojection Error Threshold (6.2)

In the RANSAC implementation, random sets of four corresponding points are chosen to

estimate the homography matrix using a simple least-squares algorithm. Using the homography

matrix estimate, we then compute the inlier ratio of the computed homography based on the

re-projection error threshold shown above. The eventual best subset is then used to produce the

initial estimate of the homography matrix with its set of inliers. Our aim is then to minimize the

back-projection error,

∑
i

(
xi
′ − h11xi + h12yi + h13

h31xi + h32yi + h33

)2

+

(
yi
′ − h21xi + h22yi + h23

h31xi + h32yi + h33

)2

(6.3)

Finally, the computed homography is refined further with the Levenberg-Marquardt method [86]

to further reduce the re-projection error.

One very important aspect to note is that in the calculation of homography matrix, the as-

sumption is that the features found in the images all belong to the same plane. Therefore, in map

stitching, it is of the upmost importance to include a robust calculation method which rejects

outliers. This is due to the fact that in real UAV flight, the UAV flies over objects that project
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out from the ground plane such as trees and buildings as shown in Fig. 6.2.

Figure 6.2: Military village in the Netherlands.

If a set of features belong in a fixed plane, they can be used to obtain a homography matrix

which composes elements of rotation, translation as well as skew factor of an image with respect

to the previous image. We then use the homography matrix to map each of the subsequent

images onto the same main image to create a stitched map.

6.3 Onboard Stitching Implementation

Our methodology for solving the onboard stitching problem is to optimize and create a stitching

algorithm that is robust and reliable while not including time consuming enhancements that

aim to beautify the stitched map usually found in panoramic stitching algorithms. Some of the

enhancement algorithms that we did not implement are gain compensation, multi-band blending

and seam line detection where additional computational time will be imminent. Therefore, our

stitched image may not be as “beautiful” as some other panorama stitching but it gives us an

instant result suitable for use by disaster response teams.

6.3.1 First Image Initialization

Prior to starting the stitching process, there is a need to initialize the first image where the

stitching algorithm takes reference from. This initial image is where the stitching will propagate
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from and is important in terms of orientation and location on the stitching canvas. During

stitching, should you not know how the stitching movement will be, you will have to create a

general canvas that can accommodate any form of movement for the images that are to come.

This will usually be inefficient as the amount of computer memory used to create this canvas

can be quite large and will generally slow down the whole computational process.
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Figure 6.3: Waypoint generation for the UAV.

There are many map stitching methods which rely on different kinds of map initialization.

For our implementation, we are able to automatically generate waypoints in our area of opera-

tions which creates a “zig-zig” path to efficiently cover the area of interest as shown in Fig. 6.3.

We are then able to set the waypoint which we prefer as the initial start point for our stitching

algorithm. Our stitching algorithm initializes the first image as the origin for 2D map building.

To achieve fully autonomous flights with our UAV, we are able to know the pose information of

the UAV through the readings from our IMU sensor. With these initial states, we can use it to

correct the first image to be near parallel with the ground plane.

It is important to note that initialization is particularly important as the map is built upon

the initialized image. Should the initial image be skewed, the rest of the map will be affected

and propagate from this skew factor. Therefore, it is of great importance to initialize the first

image well using our onboard IMU reading to bring the image as close to being parallel with

the ground plane. After this initialization, we then carry out frame by frame feature detection

and tracking.
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6.3.2 Kanade Lucas Tomasi(KLT) Feature Detection and Tracking

In computer vision literature, there are many feature detection and matching algorithms such as

that of SURF, SIFT and Harris corner detector. However, these feature detectors and matchers

perform relatively slower as compared to the KLT Tracker. We have tested a lot of the feature

detection algorithms and though they can be very robust and accurate, their calculation time

was too much for our onboard system to handle. As such, we decided to perform our onboard

stitching algorithm with the aid of the KLT tracker which shows good performance on top of

being computationally efficient. The KLT tracker uses optical flow tracking that is calculated

over different gaussian pyramids of the two images and it is proven to work well even in areas

that seem homogeneous to the human eye such as that of grass patches and also foliage areas as

shown in Fig. 6.4.

Figure 6.4: Left: KLT Optical flow, Right: FAST feature detector.

One important factor for using the KLT tracker effectively is that the frequency of images

used should be relatively high such as that of 5Hz and above. During the running of the algo-

rithm, should the image capturing frequency be too low, there are cases where the KLT tracker

fails due to large movement. This can be seen in Fig. 6.5.

6.3.3 Homography Calculation, Updating and Failure Checks

After the detection and tracking of feature points in our image stream, we can then use them to

calculate the homography matrix as shown in Sect. 6.2. The calculated homography matrix is

updated through a simple matrix multiplication process and used for further stitching of subse-

quent images as show in Eqn. 6.4. However, before the update could be done, there are a set of

checks that will have to be performed prior to the update process.
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Figure 6.5: Erroneous optical flow tracking.

Hupdated = HcalculatedHprevious (6.4)

During the calculations for the homography matrix, regardless of how robust the algorithm

is, there are times when the calculation fails either due to a very noisy image or if the motion of

the over system is too large for optical flow to manage. During these cases, we have developed

a failsafe in the forms of homography matrix failure checks.

Firstly, we performed a check on the overall change in image size as compared to the original

image. We allow an image size change of ±20% due to the skewing of the image and also

any enlargement or shrinking that should occur due to slight height differences while our UAV

system was flying.

Secondly, we performed a check on the overall translation of the image as compared to the

previous image. This was done by calculating the centroid of the image that has been projective

transformed by the calculated homography matrix. As we run our algorithm at 5Hz frequency,

we expect the translation of the image to be very small. Therefore, we allow the translation to

be less than half the diagonal distance of the original image.

The two failure checks are summarized in the pseudo code shown in Algorithm 1. If the

checks are passed by the algorithm, the algorithm will continue to run as in the next section.
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However, should any of the failure checks fail, an interim homography matrix will be calculated

and used. This interim homography matrix is calculated from IMU states which encompasses

the euler angles as well as the GPS coordinates.

Algorithm 1 Homography Failure Checks
1: procedure IMAGE SIZE CHECK

2: k = 1 or 0← Check results
3: Vector(points)← Projective Transform from H
4: Area ratio, A← Area between Vector(points) and original
5: if |1−A| ≥ 0.2 then
6: k ← 0
7: else
8: if |1−A| ≤ 0.2 then
9: k ← 1

10: procedure IMAGE TRANSLATION CHECK

11: Centroid Difference, D← Distance between centroid of Vector(points) and original
12: if |D| ≥ 0.5× diag(img) then
13: k ← 0
14: else
15: if |D| ≤ 0.5× diag(img) then
16: k ← 1

17: procedure FAILURE CHECK RECTIFICATION

18: HIMU ← IMU states input
19: if k = 1 then
20: continue;
21: else
22: if k = 0 then
23: IMU − based Homography Calculation,HIMU

6.3.4 Warping and Cropping of Images

After the successful calculation of the homography matrix, what is in line next is the warping

of the current image using the homography matrix. The source image will have a perspective

transform performed using the specified matrix to give a resulting destination image as shown

in Eqn. 6.5. The perspective transform will map the current image onto a canvas which is a

previously defined image of (5×ImgWidth)× (5×ImgHeight). Since we know the general

movement of the images, we can reduce the canvas size significantly and improve computational

time. During the warping of the new images onto the canvas, they are warped onto the top of

the stitched map which means that the final map always has the newest view of the terrain.

dst(x, y) = src

(
M11x+M12y +M13

M31x+M32y +M33
,
M21x+M22y +M23

M31x+M32y +M33

)
(6.5)
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After all the images have been warped onto the canvas, you will usually see that there are

big patches of the canvas that was not mapped with any images. If these areas are not removed,

they will usually take up additional memory and result in a bigger than needed image. In order

to remove this areas, we performed a threshold of the whole image to obtain the area of the final

stitched map and create a bounding box to extract the minimal image size that could encompass

the final stitched image. To obtain the bounding box, we converted the thresholded image into

a contour where we could obtain the vertices of the final stitched image. With the vertices, we

then created a bounding box that could cover the require area. In Fig. 6.6 , we see the image

prior to performing cropping.

Figure 6.6: Map with uncropped boarder.

6.4 Stitching Performance

During the IMAV 2014 competition, our team was the only team that was able to perform on-

board stitching from our UAV where we could submit the stitched map of our area of operations
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immediately after our UAV landed. Other teams still needed to download the images to a desk-

top computer which they setup and perform map stitching for up to 10 mins before they could

submit their stitched map.

Our success lies in the strategy in which we chose to accomplish our task. We firstly pro-

grammed the UAV to perform waypoint flight over our area of interests and obtain initialization

parameters for our determined first waypoint then proceed to capture images at a frequency of

5 Hz. When the UAV finishes its last waypoint over the area of interest, it starts to trigger the

“return home” command. It is at this point in time that our program consolidates the images and

UAV states and starts the stitching process. As the UAV takes about 2 mins to return to its home

and perform the “landing” command, our program makes use of this time to stitch the images

together. Even after landing, the program onboard still runs to complete our map stitching. Our

full stitched map is usually ready after retrieving the UAV and connecting it to a monitor for

display purposes.

Table 6.1: Computational time for stitching using different detectors & matcher sets.

Detector Descriptor Matcher Time

FAST BRIEF Brute Force 0.118 s
GFTT Optical Flow Optical Flow 0.153 s
SURF SURF FLANN 0.292 s

In Table 6.1, it shows the different sets of detector, descriptor and matcher an their compu-

tational times. It could be seen that the FAST detector set has the fastest computational time

but we have noticed that its performance is not as ideal as compared to the optical flow method.

During our flight over our area of interest, we have taken over 1000 images and performed our

stitching algorithm based on this number of images. The total time taken for stitching our map

is 153 s which translate to only 2 mins 33 secs which is a very fast time.

6.5 Conclusion

We performed the above algorithm in a few real flight scenarios namely in different terrains in

Singapore. Some of the terrain include a huge field of grass and sandy terrain with some urban

features. We were unable to fly over real buildings due to safety concerns which means that the

flight during the IMAV 2014 competition over an built-up urban village is the first time we have
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done so. From Fig. 6.7 you can see that the results we obtained are very good considering the

quick computational time as well as the algorithm being run onboard a UAV. The areas covered

are about 200 m× 200 m each.

Figure 6.7: Left: Tuas stitched map, Right: Blackmore Drive stitched map.

During the IMAV 2014 competition, we are required to fly over the military village of Oost-

dorp, the Netherlands. This was quite an undertaking as we are required to fly over an area where

there are buildings and trees as high as 15 m in height. As previously mentioned in Sect. 6.2,

the homography calculation requires the observed points to be part of the same plane. However,

with buildings and trees in the vicinity, this is obviously not the case. However, our algorithm,

with its robust RANSAC-based homography calculation, was able to reject those features that

were detected on the buildings and trees and produce a stitched map shown in Fig. ??. We

were able to produce the stitched map immediately after our UAV landed and thus enabled our

team to obtain really high scores. Part of the requirement of the stitched map was to be able to

allow the users to identify potential blockages or obstacles that might be a hindrance to rescue

workers. In Fig. 6.9, you can observe that we were able to detect roadblocks and obstacles in

the stitched map very clearly.

One of the main problems we encountered during our flight in the Netherlands was that due

to high winds, the clouds move at a very high rate above our UAV. This creates ever changing

exposure levels not in the whole image but in patches found in the image as shown in Fig. 6.10.

This resulted in our stitched map being not very pleasing to the eyes as there are obvious changes

151



Figure 6.8: Left: Final stitched map, Right: Google map view.

Figure 6.9: Detected obstacles in the stitched map.
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in exposure during moments where the cloud cover cleared and resulted in the sun shining

very brightly on the landscape. Our next step will be to solve this using adaptive exposure

compensation to create a stitched map that does not exhibit such high exposure contrasts that

sometimes might be distracting to the user.

Figure 6.10: Uneven exposure due to clouds.

The exposure change also affected the optical flow feature detection. It violates the bright-

ness constancy assumption that is specified in the Lucas-Kanade Optical flow method. However,

due to the application of the gaussian pyramids, the high frequency of images used as well as

the RANSAC outlier rejection scheme, our algorithm was able to reject the erroneous feature

points.
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Chapter 7

Conclusions & Future work

7.1 Conclusions

This thesis focused on the development of unmanned aerial vehicles with the capability for

obstacle detection, motion estimation and map building using visual measurements. It presented

the theoretical and practical aspects of these capabilities in urban environments through many

scenarios.

The major contribution of this thesis is the description of a comprehensive UAV system that

is capable of urban exploration. This thesis developed many algorithms that created various

functionalities for UAVs keeping in mind that all algorithms must be able to run onboard the

UAV and with real-time computation. In urban or outdoor UAV missions, it is believed that

communication between the UAV and the ground control system might be severed due to range

or line-of-sight issues. This brings out the need for the UAV to process all algorithms onboard

without relying on off-board computational power.

In this thesis, we explored the development of the quadrotor UAV and an unconventional

UAV, U-Lion, which provide the basis of UAV urban exploration. Both UAV platforms were

self-constructed with their individual avionics systems built onboard. Their respective flight

control laws and navigational capabilities were implemented and tested rigorously. Both UAVs

have been used to take part in international UAV competitions such as that of the Internation-

al Micro Air Vehicle Competition 2014 (IMAV) in the Netherlands and the UAV Grand Prix

2013 (UAVGP) in Beijing, China. They have also been used to participate in national competi-

tions such as the Singapore Amazing Flying Machine Competition 2014 (SAFMC). Both UAV

platforms achieved many awards in all the mentioned competitions.
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Above the platform and its controls, lies the visual-based algorithms which provide a top

level intelligence and mission completion capability. The visual-based algorithms developed in

this thesis are all independent from the UAV platform itself. They can be applied to any UAV

platform with the required sensor configuration and onboard processing power.

The visual-based algorithms developed assisted the UAV system to detect and classify obsta-

cles while performing navigation based on the stereo camera system. Some novel visual-based

algorithms that the thesis detailed are the fast onboard stitching algorithm and the active stere-

o vision algorithm that could be used in featureless environments. Both of which have been

implemented during international and national competitions.

7.2 Future Work

Although this thesis depicts a comprehensive UAV system capable of urban navigation, it is in

no way exhaustive. I truly believe that there are still plenty of room for improvement as some

of the developed functions can still be built to be more robust and intelligent.

The following is a list of future work that could be performed to enable more functions for

the UAV.

1. Unconventional UAV:

The development of U-Lion is still at its infant stages. The structure and mechanisms of

U-Lion have been designed and optimized but we have yet to perform autonomous flight

using the unconventional UAV. There are still much more work we can perform on U-Lion

to enable it to perform autonomous flight and autonomous transition. It is a one of a kind

hybrid aircraft and there is still a lot of potential yet to be unleashed from it.

2. Obstacle Avoidance Algorithm:

During the discussion of obstacle detection in Chapter 3, we did not cover in detail about

the possible obstacle avoidance strategies and algorithms that could be developed. This

topic is a huge topic and it has been a major deficient capability among all of the UAVs

in recent development. There is definitely work that could be done to implement novel

avoidance strategies into our UAVs increase the intelligence of our system.
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3. GPS-Less Motion Estimation:

GPS-less navigation has been of great interest in potential applications of UAV systems.

However, although many have implemented GPS-less navigation in the form of visual-

based or lidar-based navigation, not one system could achieve an all rounded solution to

this ever present topic. There are still many attractive and unique solutions to the GPS-less

navigation problem.

4. Path Planning Algorithms:

The current development of UAVs in this thesis does not include path planning algorithm-

s. The literature behind path planning is very vast. It includes search algorithms such as

computational geometry-based approaches such as cell decomposition, road map and po-

tential field methods. These then leads to the use of multi-tiered path planning where

different algorithms are used for global, local and reactive search respectively. I will like

to work on a basic path planning algorithm that could be used to allow the Quadrotor to

navigate through an urban environment and use the obstacle avoidance technology effec-

tively.
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