29 research outputs found

    CLUSTERING OF TERRITORIAL AREAS: A MULTI-CRITERIA DISTRICTING PROBLEM

    Get PDF
    Endogenous resources, economic profile and socio-economic issues are the criteria that define the development level and the identity features of a territorial unit. The territorial units that organize the country, in political and administrative terms – parishes and counties –, have a hierarquical structure, which initially reflected the organization of productive activities as well as the tradition State organization. The success of development policies addressed to territorial agglomerates depends on its homogeneity and of their territorial units. Facing to this the clustering of territorial areas can be stated as a districting multi-criteria problem. Thus, this paper aims to propose a framework for obtaining homogenous territorial clusters based on a Pareto frontier that includes multicriteria related to the territorial endogenous resources, economic profile and sociocultural features. This framework is developed in two phases. First, the criteria correlated with the development at the territory unit level are determined through statistical and econometric methods. Then, a multi-criteria approach is developed to allocate each territory unit to an agglomerate of territory according to the Pareto frontier established. The framework is applied to the context of a set of parishes and counties of the Alentejo Central region, southern Portugal. Results are presented and discussed in the scope of a regional strategy of development

    Zone design of specific sizes using adaptive additively weighted voronoi diagrams

    Get PDF
    Territory or zone design processes entail partitioning a geographic space, organized as a set of areal units, into different regions or zones according to a specific set of criteria that are dependent on the application context. In most cases, the aim is to create zones of approximately equal sizes (zones with equal numbers of inhabitants, same average sales, etc.). However, some of the new applications that have emerged, particularly in the context of sustainable development policies, are aimed at defining zones of a predetermined, though not necessarily similar, size. In addition, the zones should be built around a given set of seeds. This type of partitioning has not been sufficiently researched; therefore, there are no known approaches for automated zone delimitation. This study proposes a new method based on a discrete version of the adaptive additively weighted Voronoi diagram that makes it possible to partition a two-dimensional space into zones of specific sizes, taking both the position and the weight of each seed into account. The method consists of repeatedly solving a traditional additively weighted Voronoi diagram, so that each seed?s weight is updated at every iteration. The zones are geographically connected using a metric based on the shortest path. Tests conducted on the extensive farming system of three municipalities in Castile-La Mancha (Spain) have established that the proposed heuristic procedure is valid for solving this type of partitioning problem. Nevertheless, these tests confirmed that the given seed position determines the spatial configuration the method must solve and this may have a great impact on the resulting partition

    A GRASP-Tabu Heuristic Approach to Territory Design for Pickup and Delivery Operations for Large-Scale Instances

    Get PDF
    Weaddressalogisticsdistrictingproblemfacedbyaparcelcompanywhoseoperationsconsistofpickingupanddeliveringpackages overaserviceregion.Thedistrictingprocessaimstofindapartitionoftheserviceregionintodeliveryandcollectionzonesthat may be served by a single vehicle that departs from a central depot. Criteria to be optimized are to balance workload content among the districts and to create districts of compact shape. A solution approach based on a hybrid procedure that combines elements of GRASP and Tabu Search (TS) is proposed to solve large-scale instances. Numerical experimentation is performed consideringdifferentinstancesizesandtypes.Resultsshowthattheproposedsolutionapproachisabletosolvelarge-scaleinstances inreasonablecomputationaltimeswithgoodqualityofthesolutionsobtained.Todeterminethequalityofthesolutions,resultsare comparedwithCPLEXsolutionsandwiththecurrentrealsolutiontohighlightthebenefitsoftheproposedapproach.Conclusions andrecommendationsforfurtherresearchareprovided

    A Partition-centric Distributed Algorithm for Identifying Euler Circuits in Large Graphs

    Full text link
    Finding the Eulerian circuit in graphs is a classic problem, but inadequately explored for parallel computation. With such cycles finding use in neuroscience and Internet of Things for large graphs, designing a distributed algorithm for finding the Euler circuit is important. Existing parallel algorithms are impractical for commodity clusters and Clouds. We propose a novel partition-centric algorithm to find the Euler circuit, over large graphs partitioned across distributed machines and executed iteratively using a Bulk Synchronous Parallel (BSP) model. The algorithm finds partial paths and cycles within each partition, and refines these into longer paths by recursively merging the partitions. We describe the algorithm, analyze its complexity, validate it on Apache Spark for large graphs, and offer experimental results. We also identify memory bottlenecks in the algorithm and propose an enhanced design to address it.Comment: To appear in Proceedings of 5th IEEE International Workshop on High-Performance Big Data, Deep Learning, and Cloud Computing, In conjunction with The 33rd IEEE International Parallel and Distributed Processing Symposium (IPDPS 2019), Rio de Janeiro, Brazil, May 20th, 201

    Nuevas medidas de compacidad geométrica para el diseño de zonas

    Get PDF
    The design of compact zones has been studied because of its influence in the creation of zones with regular forms, which are easier to analyze, to investigate or to administer. This paper propose a new method to measure compactness,by means of the transformation of the original geographical spaces, into figures formed with square cells, which are used to measure the similarity between the original zone and an ideal zone with straight forms. The proposed method was applied to design electoral zones, which must satisfy constraints of compactness, contiguity and population balance, in a topographical configuration that favors the creation of twisted and diffuse shapes. The results show that the new method favors the creation of zones with straight forms, without an important effect to the population balance, which are considered zones of high quality.Keywords: Redistricting, compactness, simulated annealing, GIS.Mathematics Subject Classification: 90C59, 90C29, 68T20.El diseño de zonas compactas es un problema que ha sido estudiado por su influencia en la creación de zonas con formas regulares, las cuales resultan más fáciles de analizar, estudiar o administrar. En este trabajo se propone un nuevo método para medir la compacidad, mediante la transformación de los espacios geográficos originales, en figuras formadas con celdas cuadradas, las cuales son utilizadas para cuantificar la similitud entre la zona original y una zona ideal con contornos rectos. Este procedimiento fue aplicado para diseñar zonas electorales compactas, conexas y con equilibrio poblacional, en una configuración topográfica que favorece la creación de formas retorcidas y difusas. Los resultados obtenidos, muestran que el nuevo método favorece la creación de zonas con formas rectas, sin afectar, de manera importante el equilibrio poblacional, dando como resultado zonas de buena calidad tanto por su forma como por el número de habitantes que contiene.Palabras clave: Distritación, compacidad, recocido simulado, SIG.Mathematics Subject Classification: 90C59, 90C29, 68T20

    Estado del arte en procesos de zonificacion

    Full text link
    Los procesos de partición espacial implican la división de un espacio geográfico en diferentes unidades o zonas según un conjunto específico de criterios. En ámbitos relacionados con las ciencias geoespaciales, la delimitación de estas zonas se realiza por agrupación de otras unidades básicas de área existentes en el espacio de trabajo. En este artículo se ofrece una revisión de los métodos de solución diseñados para este tipo de problemas, comenzando por una introducción a las técnicas heurísticas y modelos matemáticos más utilizados desde los años 60, para finalizar describiendo los recientes algoritmos aplicados a diagramas de Voronoi. También se revisan las aplicaciones en las que se han implementado algunos de estos modelos, quedando patente que son herramientas diseñadas para el tratamiento de problemas específicos, dada la dificultad de diseñar modelos genéricos y versátiles para este tipo de particiones espaciales o zonificacione

    The mixed capacitated arc routing problem with non-overlapping routes

    Get PDF
    Real world applications for vehicle collection or delivery along streets usually lead to arc routing problems, with additional and complicating constraints. In this paper we focus on arc routing with an additional constraint to identify vehicle service routes with a limited number of shared nodes, i.e. vehicle service routes with a limited number of intersections. This constraint leads to solutions that are better shaped for real application purposes. We propose a new problem, the bounded overlapping MCARP (BCARP), which is defined as the mixed capacitated arc routing problem (MCARP) with an additional constraint imposing an upper bound on the number of nodes that are common to different routes. The best feasible upper bound is obtained from a modified MCARP in which the minimization criteria is given by the overlapping of the routes. We show how to compute this bound by solving a simpler problem. To obtain feasible solutions for the bigger instances of the KARP heuristics are also proposed. Computational results taken from two well known instance sets show that, with only a small increase in total time traveled, the model BCARP produces solutions that are more attractive to implement in practice than those produced by the MCARP modelinfo:eu-repo/semantics/submittedVersio

    Balancing Graph Voronoi Diagrams

    Full text link
    Abstract—Many facility location problems are concerned with minimizing operation and transportation costs by par-titioning territory into regions of similar size, each of which is served by a facility. For many optimization problems, the overall cost can be reduced by means of a partitioning into balanced subsets, especially in those cases where the cost associated with a subset is superlinear in its size. In this paper, we consider the problem of generating a Voronoi partition of a discrete graph so as to achieve balance conditions on the region sizes. Through experimentation, we first establish that the region sizes of randomly-generated graph Voronoi diagrams vary greatly in practice. We then show how to achieve a balanced partition of a graph via Voronoi site resampling. For bounded-degree graphs, where each of the n nodes has degree at most d, and for an initial randomly-chosen set of s Voronoi nodes, we prove that, by extending the set of Voronoi nodes using an algorithm by Thorup and Zwick, each Voronoi region has size at most 4dn/s+1 nodes, and that the expected size of the extended set of Voronoi nodes is at most 2s logn. Keywords-graph Voronoi diagram; balancing; facility loca-tion; territorial design I
    corecore